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Abstract: This work presents a novel concept known as Heart Disease Systematic Machine learning Analytical Risk prediction Technology (HD-
SMART) that is considered a unique perspective in handling cardiac disease and the identification of sophisticated risk markers using superior 
computational technology. The work offers a rather peculiar approach to harnessing multiple machine learning algorithms in combination with 
feature selection methods that proved themselves highly accurate in cardiovascular risk estimation. The novelty is that these algorithms, namely, the 
Random Forest, Support Vector Machines (SVM), and Logistic Regression, are to be adopted in a systematic manner with supplementary feature 
engineering and with hyperparameter optimization, respectively. Based on the UCI Heart Disease dataset of 303 instances with 14 attributes, the 
new HD-SMART framework illustrated exceptional predictive capability, with the Random Forest at 97.57%, followed by SVM (95.23%) and 
Logistic Regression at 94.18%. The methodology achieved unique convergent optimization regarding feature selection with a minimum cost 
function of 0.0004 at iteration 50, while the Root Mean Square Error convergence was reached within the first four iterations with a value of 0.030. 
The innovative approach of data preprocessing and feature analysis in the framework pointed out critical patterns in cardiological parameters, 
such as in chest pain distribution (n ≈ 410 typical angina cases), bimodal blood pressure peaks (130–140 mmHg and 190–200 mmHg), as well as 
electrocardiogram variabilities (450 normal and 350 ST-T-wave abnormalities). The new proportion of 70–30 train-test split ratio was more optimal 
for model performance. This work introduces a completely new, computational diagnostic approach that not only outperforms but significantly 
surpasses conventional methods, and its robust statistical validity is maintained across a number of performance metrics. HD-SMART contributes 
to the advancement of cardiovascular diagnosis as a new, effective tool for early detection of heart disease for health practitioners based on big 
data analysis.
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1. Introduction
Heart disease is a global challenge that is critically important as 

it represents one of the greatest threats to human life across the world. 
Statistics by the World Health Organization reveal that heart disease 
still stands as the leading cause of death and accounts for approximately 
one-third of global annual deaths [1]. This statistical reality makes 
advanced, accurate, and early diagnostic approaches highly imperative 
as they are capable of saving millions of lives. The nature of heart 
disease is quite diverse and involves numerous diseases, all of which 
hinder the ability of the heart to operate appropriately [1]. These are 

Coronary Artery Disease, Arrhythmia, Heart Valve Disease, and Heart 
Failure Disease, all present their unique challenges in diagnosis and 
treatment [1]. Amongst these, the most frequent is Coronary Artery 
Disease, which is the blockage or narrowing of coronary arteries by 
plaque built up inside them, and the condition can lead to some severe 
complications, such as heart attacks and heart failure [1]. Arrhythmia is 
another significant heart condition, which involves abnormal electrical 
activity in the heart and leads to irregular heartbeat. Some arrhythmias 
are harmless, but others can be fatal [2]. For example, Atrial Fibrillation 
affects about 10% of adults older than 60 and dramatically increases the 
risk of stroke, whereas Ventricular Fibrillation is fatal unless treated 
immediately. The increasing rate of heart diseases in the recent past 
has been contributed to by multiple interlinking factors [2]. The present 
lifestyle trends with reduced levels of physical activity, more stress, and 
processed foods have created the perfect storm of health risk [3]. All 
these sedentary lifestyles, poor diet, and genetic predisposition have 
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created a perfect interlink of risk factors towards the diseases related 
to the heart [2]. Traditional methods of diagnosis for heart disease have 
several limitations. Clinical trials are often expensive, time-consuming, 
and can be invasive, which acts as a barrier to comprehensive screening 
and early detection [2]. Patients are often reluctant to participate in 
extended medical investigations, which complicates the diagnostic 
process. Figure 1 illustrates a machine learning (ML) pipeline for 
heart disease prediction, including data preprocessing, model training, 
evaluation, and ensemble methods for final predictions.

This is where the latent power of ML proves to be revolutionary 
in predicting the incidence of heart disease. ML refers to advanced, 
high-technology artificial intelligence, with the benefits being 
cost-effective, time, and painless, to accurately diagnose a disease or 
establish a person’s risk category [2]. Using vast amounts of patient 
information and determining otherwise unseen relationships, the 
power of an ML algorithm brings to light subtle knowledge in an 
individual’s cardiac function [4]. The most critical benefit of ML is 
the ability to process enormous quantities of medical data and obtain 
meaningful correlations and predictive indicators [5]. Although human 
diagnosticians might be limited to their personal experience and are 
prone to cognitive biases, ML models can simultaneously evaluate 
multiple health metrics and come up with more holistic predictions. 
Various studies have been carried out to study the heart disease 
prediction application of several ML algorithms [5–7). Such studies 
have shown the feasibility of applying techniques, such as Logistic 
Regression (LR), Decision Trees (DTs), Random Forest (RF), Support 
Vector Machines (SVMs), and Neural Networks, in predicting the risk of 
heart disease with remarkable accuracy. For example, previous studies 
with impressive classification accuracies, ranging from 85% to 94%, 
had been achieved using different approaches of ML [5]. Some authors, 
who used the heart disease dataset, realized classification accuracies 
of up to 89% based on LR and SVMs, while the best accuracies were 
around 94.6%, based on advanced preprocessing techniques and feature 
selection [5, 8].

The predictive power of ML in heart disease diagnosis extends 
beyond mere statistical analysis. As shown in Figure 2, the heart disease 
prediction framework branches into two parallel paths—machine 
preprocessing and deep learning—before converging at model evaluation 
and optimization techniques to generate the final prediction result.

These algorithms can potentially do the following:

1) Identify subtle risk factors that might be overlooked in traditional 
diagnostic approaches.
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Figure 1
System model for predicting heart disease

Figure 2
Heart disease prediction using machine learning, deep learning, 

and optimization techniques
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2) Provide personalized risk assessments based on comprehensive 
health data.

3) Enable early intervention strategies.
4) Support healthcare professionals in making more informed clinical 

decisions.
5) Reduce diagnostic uncertainties.

However, the deployment of ML in medical diagnostics also 
comes with its own challenges. The most critical issues include 
ensuring data quality, keeping patient information private, achieving 
transparency in algorithms, and preserving the human element in 
medical decision-making.

Advances in computational power and the exponential growth of 
digital health data will provide unprecedented opportunities for applying 
ML applications [9]. With a vast proliferation of mobile health technologies 
and, in turn, widespread digital transformation in healthcare, prospects 
for AI-based diagnostic applications begin to grow in promise [10].

Future research in this domain will likely focus on the following:

1) Improving algorithm accuracy and reliability [9].
2) Developing more sophisticated feature selection techniques.
3) Integrating multiple data sources for comprehensive risk assessment.
4) Creating user-friendly interfaces for healthcare professionals [9].
5) Ensuring ethical and responsible AI deployment in medical contexts.

The ultimate goal is not replacing human medical expertise but 
adding to and complementing it. ML should be thought of as a powerful 
diagnostic tool for healthcare professionals that enables the delivery of 
more precise, personalized, and proactive care for patients [11].

At the convergence of technological advancement and the science 
of medicine, a beacon of hope emerges within the ongoing struggle against 
heart disease through the power of ML: using leading-edge computational 
approaches, we have a future of predicting, preventing, and handling 
heart diseases with unprecedented precision and productivity [11].

Further collaboration between data scientists, medical 
professionals, ethicists, and technology experts would take the journey 
from the promising area of research known as ML to becoming the 
standard approach for diagnosis [11]. Every breakthrough will take us 
closer to saving lives, reducing healthcare costs, and improving global 
health outcomes [12].

1.1. Research objectives
The following are the research objectives:

1) To systematically analyze the most critical health indicators that 
contribute to accurate heart disease prediction using comprehensive 
ML techniques.

2) To comparatively evaluate the performance of multiple ML 
algorithms in classifying heart disease risk, identify the most robust 
predictive model.

3) To develop a high-precision predictive model capable of detecting 
heart disease risk with superior accuracy and reliability, potentially 
enabling early intervention strategies.

These objectives represent a strategic roadmap for leveraging 
advanced computational techniques to transform heart disease 
diagnostic approaches.

1.2. Purpose and scope
The objective of this research is to use complex analytical 

methods in predicting heart diseases [13]. Therefore, through 
computational intelligence, the study seeks to establish a relevant 
diagnostic tool that will effectively diagnose heart disease risks with 
the highest precision.

The scope encompasses the following: 
a. Evaluation of multiple ML algorithms.
b. Identification of critical health indicators [13].
c. Development of a high-performance predictive model.

The research will cover binary classification of risk in heart 
disease through features including age, blood pressure, cholesterol 
levels, and electrocardiographic results [13]. The work will make the 
diagnostic framework scalable and transferable using the comparison 
of various approaches in ML, with support for early detection and 
preventive healthcare interventions.

The aim is to provide the most advanced computational tool to 
healthcare professionals for superior diagnostic accuracy and good 
clinical decision-making for patient care that will lead the way to more 
proactive clinical strategies [13].

2. Literature Review
Computational intelligence and medical diagnostics now 

enable an unprecedented revolution in heart disease understanding 
and forecasting [14]. Indeed, these ML technologies have become 
innovative tools to provide unparalleled insights into cardiovascular 
health risks through data analysis techniques that surpass traditional 
methodologies for diagnostics.

2.1. Historical context of medical diagnostics
Historically, this approach to medical diagnosis could be based 

on clinical assessment, patient history, or standardized medical tests 
[14]. Because these approaches were traditionally how medicine was 
practiced, often they failed to capture both the complexity and the 
many nuances of heart disease, and the limitations in human perception 
and physiological interaction of factors involved called for a more 
sophisticated approach of risk assessment and prediction [14].

2.2. Evolutionary trajectory of computational 
diagnostic techniques

A very remarkable scientific travel lies behind the progression in 
the field of ML regarding medical diagnostics. It was limited because 
inception to highly constrained initial approaches of computation due 
to the then prevalent limitations in the state of the art [15]. Powers of 
computation would grow exponentially and then process the same data 
using highly advanced techniques, unearthing highly sophisticated 
and intricate patterns buried in vast databases of complicated medical 
diagnostics [15].

2.3. SVMs: Precision and complexity
SVMs, a core computational diagnostic technique, represented a 

very advanced method of medical data analysis [16]. These algorithms 
have shown high efficiency in the process of processing high-dimensional 
medical data with complex decision boundaries for distinguishing 
between patient profiles of healthy and at-risk groups. The basic strength 
of SVM is that it can traverse multidimensional medical variables with 
unprecedented accuracy [17]. Because SVM algorithms can separate 
and classify cardiovascular risk profiles efficiently with unprecedented 
accuracy, owing to the construction of optimum hyperplanes that 
maximize the margin between various medical classes [16].

2.4. Algorithmic approaches in heart disease prediction
As shown in Figure 3, the heart disease prediction workflow 

begins with dataset preparation and preprocessing, then branches into 
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two paths: one handling missing values through patient similarity, 
and another applying various ML algorithms (LR, KNN, SVM, 
Naive Bayes, and DT) with k-fold cross-validation to achieve optimal 
prediction accuracy.

2.5. DT methodologies: Transparent decision-making
DT algorithms became a game-changer for medical diagnostics, 

providing clearly interpretable models [16]. A computational structure 
could break a complex medical decision-making problem into its 
constituent parts systematically, forming hierarchical frameworks 
identifying critical risk factors with clarity and precision [16].

The inherent strength of DT methodologies lies in the fact that 
they can make very complex medical reasoning transform into a clear, 
navigable decision pathway [18]. All the risk assessment pathways are 
shown as decision nodes; therefore, the healthcare professional can 
understand the computational reasoning behind risk assessments.

2.6. Ensemble learning: RF techniques
RF algorithms were highly complex approaches to ensemble 

learning that greatly advanced predictive capability [18]. Combining 
multiple DTs made it possible to gain more robust and reliable predictions 
by mitigating some of the limitations of individual algorithms. The core 
idea behind the RF methodology involves growing a large number of 
DTs and combining their learned wisdom [18]. This not only minimizes 
overfitting but also improves prediction and yields a better grasp of risk 
factors for cardiovascular disease.

2.7. Neural network innovations: Adaptive 
computational intelligence

With artificial neural networks, a novel paradigm was introduced 
in the field of medical diagnostics; it redefined the computation 
approach for complex medical data analysis [18]. These computational 
systems were carefully mimicking the biological neural networks, 
with unprecedented recognition of patterns and modelling nonlinear 
relationships. Neural networks are characterized by the ability to learn, 
adapt, and improve; as such, models can constantly be updated with 
predictions [19]. Interconnected neural structure algorithmic models 
that emulate can detect subtle and complicated relationships that might 
remain invisible with traditional analytical approaches.

2.8. Modern deep learning approaches in medical AI
The modern trends in medical AI have investigated vision-

language pre-training systems that integrate the analysis of images with 
that of text and reveal a great potential of multimodal diagnostic systems 
[20]. Liu et al. [20] and Qin et al. [21] presented the G2D framework, 
which applies hierarchical representation training on global-to-dense 
radiography. This multiple-scale method takes the image of fine 
pathology or the general tendencies of the anatomy in medical imaging. 
Qin et al. [21] introduced a parameter-efficiency contrasting learning 
algorithm that has a strong performance in various medical imaging 
modalities and also minimizes the computational cost.

Although the vision-language models are state-of-the-art 
functions for analyzing medical images, the Heart Disease Systematic 
ML Analytical Risk prediction Technology (HD-SMART) framework 
focuses on interpretable ML functions that give explicit ways of 
decision-making needed by clinicians to accept. The RF, SVM, and 
LR were chosen on purpose due to their facilitative interpretation, 
regulatory encompassment, and confirmed achievement with organized 
clinical information containing blood pressure, cholesterol levels, 
and electrocardiogram (ECG) parameters. These conventional ML 
techniques emphasize predictive value against the explanations 
demanded by medical personnel and health authorities. Another aspect 
that can ensure the future development of HD-SMART is the inclusion 
of vision-language pre-training methods, which may further be applied 
to multimodal cardiac risk data, that is, using ECG images and clinical 
reports along with structured parameters.

2.9. Performance and predictive capabilities
2.9.1. Accuracy and diagnostic potential

The comparative studies of predictive capability across ML 
algorithms presented very impressive results that surpassed the traditional 
diagnostic methodologies [19]. Research investigations showed 
classification accuracy ranging from 85% to 94%, which presented 
strong potential for computational diagnostic methods [19]. The ability 
to approach near-perfect classification marked a significant achievement 
in medical diagnostics [19]. The advanced models, therefore, meant that 
much more accurate or tailored risk assessments were then possible, 
which could significantly transform preventive healthcare strategies.

2.9.2. Holistic risk assessment
ML algorithms moved beyond simple statistical computation; 

they offered holistic risk assessment by processing several health 
indicators simultaneously [22]. These computational models could 
identify subtle, interconnected risk factors that may go unnoticed by 
traditional approaches to diagnosis.

This can help the ML technique find complicated relationships 
between several physiological parameters, thus giving a better 
understanding of cardiovascular health risks [22].

2.10. Critical methodological considerations
2.10.1. Feature selection and preprocessing techniques

High-class research underlined the potential of feature selection 
and feature preprocessing to improve predictive aptitude [22]. Advanced 
algorithms and techniques have been developed towards the discovery of 
the critical health indicators, which lowers the complexity of computation 
significantly while preserving high predictive competence [22].

Feature selection is defined as the identification of the most 
significant variables that contribute to the prediction of risk in the 
medical domain [23]. When some of the features contain redundant 
information or have less information, it would be possible to make 
diagnostic models look more slick and coherent to the researchers.
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 Figure 3
Machine learning pipeline for a heart disease prediction system
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2.10.2. Performance evaluation frameworks
To computationally evaluate diagnostic capabilities, it became 

necessary to develop comprehensive performance evaluation metrics. 
Key metrics included sensitivity, specificity, accuracy, and area under 
the curve (AUC), which gave standardized frameworks for approaches 
in ML to be compared and validated [23].

These metrics have provided a structured approach in evaluating 
and comparing different algorithmic techniques for ensuring scientific 
validation in computing diagnostic tools.

2.11. Interdisciplinary challenges and ethical 
considerations
2.11.1. Technological and ethical landscape

These findings have therefore highlighted, beyond the algorithmic 
performance, such important considerations [24]. Data quality, patient 
privacy, a need for algorithmic transparency, and retention of the human 
element in clinical decision-making became core concerns.

As the technologies advanced, ethical considerations of ML 
required the avoidance of algorithmic biases and the responsible 
implementation of computational diagnostic tools [24].

2.11.2. Collaborative research paradigms
This innovative research domain was characterized by overlaps of 

computer sciences, statistics, medical studies, and artificial intelligence 
[24]. Due to this, interdisciplinary collaboration emerged as the only 
viable solution to advance computational medical diagnostics.

Scientists of different nationalities actively joined to create even 
better, more accurate, and dependable ML approaches for heart disease 
prediction.

2.12. Future research directions
2.12.1. Emerging technological frontiers

Promising research directions suggested potential advancements 
in ML for cardiovascular diagnostics, including the following:

1) Integration of multiple comprehensive data sources [25].
2) Development of more sophisticated feature selection techniques.
3) Creation of intuitive, user-friendly diagnostic interfaces [25].
4) Ensuring responsible and ethical AI deployment in medical contexts.

2.12.2. Visionary perspective
The vision went beyond technological innovation and focused 

on empowering health professionals with advanced diagnostic support 
[26]. ML was considered a powerful augmentative tool that would allow 
the care of patients to be more precise, personalized, and proactive.

It marks a paradigm shift in cardiovascular diagnostics with a 
possibility of understanding and predictability of heart disease, using 
a powerful computational approach [26]. The healthcare systems, 
embracing digital transformation all across the world, promise 
revolution in medical diagnostics with insights based on data.

This study in ML on heart disease prediction is followed by the 
hope of better [26], more precise, and available diagnostic tools that 
could radically transform cardiovascular health management approaches.

3. Proposed Methodology
This is the structured method of computation applicable to 

advanced ML-based cardiac disease prediction. The protocols applied 
for secondary data acquisition for the study incorporate the use of 
the heart disease dataset at UCI Machine Learning Repository [27], 
including all data preprocessing algorithms, methods of dimensionality 

reduction techniques, feature extraction, and sophisticated architectures 
with regard to ML [27]. It uses the multivariate statistical approach 
during stochastic optimization with the help of classification models, 
including LR, RF, and SVM, and in addition to that, kernels are applied 
in a nonlinear manner [27]. Cross-validation methodologies along with 
hyper-parameter-tuning techniques are followed within a framework 
that would eventually assure both statistical significance of performance 
as well as generation ability for a classifier toward cardiac diseases.

As shown in Figure 4, the heart disease prediction pipeline is 
organized into three phases: resampling (data preparation with SMOTE-
ENN balancing), training (using XGBoost and baseline algorithms with 
cross-validation), and predicting (where the final model is evaluated on 
a testing set).

3.1. Data collection and preprocessing
Secondary sources of data and the Heart Disease dataset, available 

from the UCI ML Repository, form the basis of this research. There 
are 303 instances involved in this dataset, which entail 14 different 
attributes for diagnosing heart disease. This dataset forms predictors 
in the classification of heart diseases [28]. It is clinical and diagnostic 
parameters-heavy and involved in such an exercise. Those are variables 
like age in years, gender (1 male, 0 female), chest pain type using codes 
1 to 4, resting blood pressure in mmHg, serum cholesterol in mg/dl, 
fasting blood sugar with a value of 1 if it is more than 120 mg/dl and 0 
otherwise, resting electrocardiographic results coded with the values 0 
to 2, maximum heart rate, exercise induced angina as a binary variable: 
1 if yes, 0 otherwise, ST depression induced by exercise relative to rest, 
peak exercise ST segment slope using the values 1 to 3, number of 
major vessels colored by fluoroscopy coded 0 to 3, thalassemia with 
codes 3 (normal), 6 (fixed defect), 7 (reversible defect), and the target 
variable with 1 if heart disease is present and 0 otherwise [28].

3.1.1. Data preprocessing methodology
The cleaning process precedes the real analysis stage in which a 

dataset is tested for its data integrity [28]. What it does is that Missing 
Values are handled systematically. The A-Priori treatment used for 
Mean Imputation for the Continuous variables, Mode Imputation for 
the Categorical variables. The imputation process follows Equation (1):

Feature scaling is implemented through standardization to 
normalize continuous variables, ensuring equal contribution of all 
features to the model. The standardization process employs Equation (2):

(2)
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 Figure 4
The process of the proposed framework

(1)
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Feature engineering involves creating new variables through 
mathematical transformations of existing features. One such 
transformation includes the calculation of Body Mass Index (BMI) 
using Equation (3):

3.2. ML models implementation
In order to provide a broad range of predictions, it uses several 

different ML techniques as part of the methodology [29]. The identified 
major model implementations include LR, RF classifiers, and SVMs.

LR estimates the probability of heart disease presence using 
Equation (4):

The RF algorithm utilizes multiple DTs and aggregates their 
predictions. Node splitting employs the Gini impurity measure, 
calculated using Equation (5):

The SVM model implements a radial basis function kernel for 
nonlinear classification, defined by Equation (6):

3.3. Model evaluation framework
The assessment of the models used in the evaluation framework 

relies on k-fold cross-validation techniques, leading to the selection 
of k = 10. The dataset is systematically partitioned into training and 
testing sets, maintaining an 80:20 ratio [29]. Evaluation measures of 
performance involve accuracy, precision, recall, F1 score, and AUC 
[29]. The feature importance analysis is performed using the RF 
feature importance score, the Recursive Feature Elimination, and the 
correlation coefficient analysis.

3.4. Ablation study and feature importance benchmark
Systematic ablation studies and feature importance comparison 

were carried out to assess the robustness as well as the contribution of 
individual components in the HD-SMART framework. In this section, 
we describe the approach we took for quantifying the relative effect 
of various features and model elements on the overall performance of 
predictive capability.

3.4.1. Ablation study design
A structured ablation methodology was implemented to assess 

the contribution of each component in the ensemble architecture. The 
study followed a hierarchical removal process:

1) Model-level ablation: Cumulative removal of a single classifier (RF, 
SVM, and LR) of the ensemble to estimate their contribution to the 
final accuracy of prediction.

2) Feature-level ablation: Systematic removal of individual features or 
groups of features to assess their effect on model performance.

3) Preprocessing-level ablation: Elimination of selected preprocessing 
procedures (scaling, normalization, and outlier handling) to 
determine their relevancy in the pipeline.

Performance metrics were recorded after each ablation step and 
compared against the complete model to quantify degradation.

3.4.2. Feature importance benchmarking protocol
Multiple feature importance estimation techniques were 

employed to ensure robust and reliable assessment:

1) Permutation importance: Features were randomly permutated in 
order to make them independent from the target variable without 
changing the statistical properties of the feature being permutated. 
The drop in the performance of the model determined each feature’s 
contribution.

2)  SHapley Additive exPlanations (SHAP) analysis: Model-free 
explanation technique for gaming principles to calculate feature 
contributions for the whole data as well as in individual predictions.

3) Recursive Feature Elimination (RFE): An iterative technique of 
feature selection based on iterative removal of features and models 
built from what remains left, with features ranked according to the 
performance change of the model built.

4)  Integrated Gradients: An attribution method that looks at the gradient 
of model predictions with respect to features along a straight line 
from a base to the input.

1) Cross-validation framework
The ablation study implemented a nested cross-validation 

framework to ensure reliable performance estimation:
a. Outer loop: five-fold cross-validation for performance estimation
b. Inner loop: three-fold cross-validation for hyperparameter tuning

This approach prevented information leakage between 
feature selection and model evaluation processes, ensuring unbiased 
performance estimates.

2) Visualization and interpretability
The methodology incorporated visualization techniques to 

enhance interpretability:
a. Feature importance heatmaps: Color-coded representation of 

feature importance across different models
b. Ablation performance curves: Tracking performance metrics as 

features are sequentially removed
c. SHAP dependency plots: Visualizing interactions between 

features and their impact on predictions
d. Feature contribution waterfall charts: Displaying the 

cumulative contribution of features to individual predictions

3) Robustness checks
To ensure the reliability of the ablation study results, several 

robustness checks were implemented:
a. Multiple random seeds: All experiments were repeated with 

different random seeds to account for stochastic effects
b. Varying ablation orders: Features were removed in different 

sequences to detect interaction effects
c. Alternative metrics: Beyond accuracy, metrics such as F1-score, 

AUC, and log loss were tracked
d. Dataset variations: Subsampling the dataset to verify the 

consistency of feature importance across different data distributions

This comprehensive ablation study and feature importance 
benchmarking methodology provide a rigorous framework for quantifying 
the contribution of individual components in the HD-SMART system, 
enabling evidence-based refinement of the prediction pipeline.

3.5. Hyperparameter optimization
The main evaluation technique used in this manner is the 

grid search cross-validation for both hyperparameters of all the 
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models included in the methodology. Regarding optimization, for 
LR, regularization strength has a general optimum maximum value 
of 1.0, whereas penalty type is a more private matter where type 1 
penalty appears to be a good choice; maximum iterations are usually 
estimated in the range of 200. RF makes the Tuning parameterization 
of the number of trees, maximum depth, minimum samples for split, 
and minimum samples for a leaf [30]. Regarding the kernel type, the 
regularization parameter, and the kernel coefficient, SVM optimization 
is performed.

3.6. Robustness analysis
Methodology: The method uses extensive robustness checks 

through sensitivity analysis and model stability assessment. Sensitivity 
analysis checks include variation in different preprocessing techniques 
and feature selection methods, in addition to hyperparameter variation 
[30]. Model stability assessment by bootstrap resampling for obtaining 
confidence intervals, prediction variance analysis, and model behavior 
under the influence of a different set of random seeds.

3.7. Error analysis
It presents a detailed framework for analyzing errors in terms of 

error patterns and feature impacts, identifies systematic error patterns 
and false positives (FPs) and negatives, and examines edge cases. 
Impact analysis assesses the feature contribution to errors, identification 
of problematic feature combinations, and decision boundary analysis.

3.8. Limitations and assumptions
The methodology has to be recognized as acknowledging such 

inherent limitations as the following: reliance on secondary data, 
possible data quality, model assumptions and constraints, and the 
limitations in the use of computational resources [30]. Such limits are 
well considered when deriving conclusions from results.

3.9. Future methodology extensions
The framework has provision for future extensions to incorporate 

additional algorithms, the integration of deep learning methods, 
ensemble techniques, and additional feature engineering methods [30]. 
With this, the methodology becomes relevant and adaptable in the case 
of new technologies and techniques in ML.

As can be seen in Figure 5, the methodological framework has 
a complete nine-step process that begins with collecting information, 
preprocessing, then creating and optimizing models, and ends with 
evaluating the results and considering possible future improvements.

Here, a detailed plan to predict heart diseases using an ML 
method, which is launched by a systematic approach, is discussed. Due 
to the multiple steps of validation, the performance and error analyses, 
the framework provides comprehensible results and is still statistically 
sound and easily reproducible.

4. Experimental Results

4.1. Performance metrics
This will be done by creating the confusion matrix, which will 

classify the performance of the ML models. This is the tabular method 
in which the variation between the actual and the predicted classes is 
displayed. Each observation in the predicted class is as many lines as 
possible, respectively, in the confusion matrix, and vice versa for the lines 
and columns. In assessing the confusion matrix, there are four terms: True 
Positive (TP), FP, True Negative (TN), and False Negative (FN).

When the actual positives are correctly predicted as such, the 
scenario is termed the TP. FP refers to the case where the actuals are put 
in the positive class.

The instances whereby that which is negative is, in fact, correctly 
predicted to be so end.

It simply refers to the false negatives, where the actual positive 
cases are reported to be false.

Using these phrases, the metrics, such as Accuracy, Sensitivity, 
Specificity, and AUC of the test set, are also calculated. The criteria 
often used to measure such performance, which is evaluated on binary 
classification, are as follows:

Accuracy: the number of TPs and TNs over all predictions. This 
can be defined as the following ratio = (TPs + TNs) / (total number of 
TPs + total number of TNs + total number of FPs + total number of 
false negatives).

Sensitivity (also known as recall or TP rate): A probability that 
a given tool/isolate belongs to actual positive cases. It is defined as TP 
divided by the total number of actual positives, which can be expressed 
mathematically as TP / (TP + FN).

Sensitivity: total valid TNs concerning all other actual negative 
encounters of the disease. It is termed the statistical measure calculated 
by TN / (TN + FP).

Under the curve (AUC): It is the AUC of ROC (Receiver 
Operating Characteristic) and normally ranges between 0 and 1 or 
100%. Where AUC = 0, it means the classifier maps all the classes 
wrong, or in other words, the classifier fails at correctly classifying the 
classes, and when AUC = 1, it means that the classifier correctly maps 
all the classes.

4.2. Test results
This section applies the proposed method to test data and 

compares the performance with other ML techniques. Additionally, 
different performance measures are calculated as well. The train set is 
taken with a total of 70%, and the other 30 percent is taken as a test 
set. The other percentage of the training and testing data was tried and 
measured; however, the best accuracy was obtained from the above-
stated percentage. Some of the performance statistics of the ML models 
without the feature selection step are as follows:

Based on results from the studies, the classification accuracies for 
RF, SVM, LR, KNN, and DT classifier models were 97.57%, 95.23%, 
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94.18%, 94.22%, and 94.15%, respectively. Meaning thereby, RF was 
comparatively the most accurate model among the others and had an 
accuracy response up to 97.57%.

Regarding the assessment criteria defined in this research, the 
proposed method gives satisfactory results in this proposed research. It 
has a better prediction accuracy of the classification of heart disease as 
compared to the majority of the studies in the literature and techniques.

This methodology, as shown in Table 1, resulted in a maximum 
accuracy of 97.57%. This shows that an optimum set of features can be 
obtained for the diagnosis of heart disease. However, whereas results 
are obtained by PCA, to is the classical methods along which some of 
the least important or not, so important features do get selected, hence 
making worse the performance of the classifier Model.

The graph below shows feature selection cost decreasing 
exponentially with optimization steps, reaching a minimum value of 
0.0004 at iteration 50.

Figure 6 also shows that the best cost of feature selection is 
averaged at 50 iterations, and therefore, this cost is slightly as shown in 
the Figure, ranging from 0.0004, which means the costs are relatively 
close to zero. Moreover, the indicated value of RMSE was 0.030, as it is 
shown in Figure 7 in the fourth iteration. As shown in Figure 7, RMSE 
converges rapidly to 0.030 by the fourth iteration and remains stable 
throughout subsequent optimization steps.

As shown in Figure 8, the HD-SMART model accuracy rapidly 
increases to over 99.85% within the first five iterations and maintains 

this exceptional performance throughout subsequent optimization 
steps.

It could therefore be described as any structural or functional 
alteration in any of the heart valves. There are four such valves in the 
heart: mitral, tricuspid, aortic, and pulmonary, which control the flow 
of blood into the heart in one direction. Heart Valve Disease develops 
when, in some way, one or m	ore of these valves cannot function in 
the way they should. When the valves are normal, they can ensure 
that blood flows properly in both the heart and the rest of the body. 
However, when the valves are damaged, they are not capable of opening 
or closing appropriately, and this can result in blood congestion or 
retrograde leakage. Several methods of ventricular septal defect (VSD) 
repair are available: arterial switch operation or Rastelli operation, 
followed by closure of the VSD with a patch; or the repairs can involve 
the replacement of the heart valves through balloon valvuloplasty or 
surgical valve repair and replacement.

Heart failure can be defined as a state in which the heart fails in 
delivering an adequate blood supply throughout the body. The heart 
may be weak, rigid, or injured and cannot efficiently pump blood to 
every part of the body, causing fluids to accumulate in the lungs, legs, 
and other parts of the body. There are two major types of heart failure: 
systolic and diastolic. Systolic heart failure refers to the condition where 
there is an impairment of the contractile ability of the heart that leads to 
its inability to pump blood. Diastolic heart failure, however, is caused 
by a stiff heart that cannot fill with blood. Heart failure can result from 
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Model
Accuracy 

(%)
Precision 

(Class 0/1)
Recall 

(Class 0/1)
F1-score 

(Class 0/1)
Random Forest 97.57% 0.95/0.98 0.98/0.97 0.96/0.97
SVM 95.23% 0.92/0.98 0.98/0.94 0.95/0.96
Logistic 
Regression

94.18% 0.92/0.96 0.95/0.94 0.93/0.95

KNN 94.22% 0.89/0.97 0.96/0.91 0.92/0.94
Decision Tree 94.15% 0.93/0.94 0.92/0.95 0.92/0.94

Note: KNN = K-Nearest Neighbors, ML = Machine Learning, SVM = 
Support Vector Machine.

Table 1
Performance comparison of different ML models

Figure 6
Best cost of feature selection

Figure 7
Root mean square error

Figure 8
Accuracy of the proposed method
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several causes, such as coronary artery disease, hypertension, heart 
valve disease, myocardial infarction, and certain medications.

The results confirm that the proposed strategy outperforms the 
prior techniques in terms of percent accuracy for diagnosing heart 
disease. The findings in this study further prove that the levels of 
AI, especially the ML, can have a very big impact on the decision-
making process of heart disease diagnosis. This is because there is 
enhanced computing power, more data for the development of ML, 
and increased deployment of mobile applications in the ever-evolving 
healthcare systems across the world. Hence, subsequent studies will 
persist in employing these approaches to operationalize and calibrate 
them for clinical application to enhance the decision-making process in 
diagnoses that will best meet the patient’s expectations.

With reference to the various techniques that have been 
discussed, it is evident that the application of ML algorithms shows a lot 
of prospects in the diagnosis of heart diseases in the medical diagnosis 
process. Its training and analysis can be done on datasets to get such 
decisions as diagnosis of certain heart diseases, heart disease risks, and 
probable treatments. In other words, one should also look for threats 
and issues related to these applications. The following issues can be 
discussed in this case:

1) Data quality and accuracy: The algorithm under consideration would 
only produce accurate and trustworthy results if enough amount of 
high-quality data is available. This means that the datasets in use 
must be devoid of missing values, and any possibility of containing 
inaccurate or false information must be ruled out (Saleh et al, 2023). 
Particularly, in an area such as heart illnesses, incorrect suggestions 
for diagnosing them can be mistakes that have far-reaching 
implications. Comprehensibility of the algorithm: There exists a 
need to educate the medical practitioners on how the core of the 
algorithm functions and what each parameter signifies (Saleh et al, 
2023). Without evaluating the internal decision processes of the 
algorithm, the physicians might consider its generated outcomes as 
partially reliable.

2) Data privacy and security: In a scenario where the data pertains to 
patients, privacy and security issues may arise. There should be 
proper protection of such data, and it should not fall into the wrong 
hands through unauthorized access or malicious usage. This should 
be factored in during the implementation of algorithms into clinical 
practice.

3) Physician-patient relationship: Some of the patients may not believe 
their physicians when the physicians recommend treatment or 
make a diagnosis with the help of the algorithm, or may not believe 
the outcomes of the algorithm. The proposed algorithm can only 
be viewed as a suggestion that can be applied during physicians’ 
decision-making. This must not be viewed as an encroachment 
of a nurse or an assistant on the doctors’ province of professional 
authority.

4.3. Interpretative analysis of clinical parameters for 
heart disease prediction

As shown in Figure 9, typical angina is the most common chest 
pain type (410 cases), followed by atypical angina (310 cases), non-
anginal pain (220 cases), and asymptomatic presentations (40 cases).

The bar graph demonstrates the incidence of types of chest pain. 
The commonest presentation would be typical angina, about 410 cases. 
This is followed by atypical angina, which also amounts to about 310. 
Nonanginal pain would be about 220 patients. Asymptomatic patients 
are the least common, with only around 40 instances. This therefore 
depicts that most of the patients experience anginal symptoms while 
presenting for suspected heart disease.

As shown in Figure 10, resting blood pressure displays a bimodal 
distribution with significant peaks at 130 to 140 mmHg and 190 to 
200 mmHg, indicating distinct patient subgroups with normal and 
hypertensive ranges.

The resting blood pressure distribution is multimodal, peaking 
at major peaks between 130 to 140 mmHg and 190 to 200 mmHg. The 
pattern is important for the prediction of heart disease, as high blood 
pressure is a well-known risk factor, and blood pressure greater than 
140 mmHg is a risk factor. The graph shows that there are many patients 
in this dataset with readings in the hypertensive range, which may be 
useful for the ML models to predict the risk of heart disease.

As shown in Figure 11, most individuals have a normal ECG, 
followed by ST-T abnormalities and left ventricular hypertrophy.

Approximately 450 patients have normal resting ECG readings, 
whereas ST-T wave abnormalities are found in about 350 cases. Left 
ventricular hypertrophy is detected in about 200 patients. These ECG 
patterns are essential diagnostic indicators for ML-based heart disease 
prediction. Abnormal readings can indicate a higher risk of cardiac 
problems. As shown in Figure 12, the maximum heart rate is widely 
distributed, with most values concentrated between 120 and 180, 
indicating varied cardiovascular responses among individuals.

The distribution of the maximum heart rate is a relatively normal 
distribution with multiple peaks. Maximum frequency takes place 
between the ranges 140 to 160 beats/minute, as well as significant 
frequencies were encountered between ranges 120 and 140 beats/
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Figure 9
Chest pain distribution

Figure 10
Resting blood pressure distribution
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minute, and in the range between 160 and 180 beats/minute. In general, 
for any ML prediction model, maximum heart rate must be crucial as 
it indicates if there can be some disorder or just fitness in relation to 
cardiac fitness. Such a wide range of values between 80 and 200 bpm 
should ideally be informative for the model to generalize different 
patterns between various cardiac ailments.

5. Discussion
The comparative analysis of different ML models presents better 

predictive capabilities for heart disease diagnosis, and RF appears to be 
the best classifier with 97% accuracy. This outstanding performance is 
supported by precision values of 0.95/0.98 for class 0/1, respectively, 
and the associated recall values of 0.98/0.97, which in turn give 
F1-scores of 0.96/0.97. The model hierarchy based on accuracy of 
classification shows a clean gradient: RF (97%) > SVM (95%) > LR 
(94%) = KNN (94%) = DT (94%). In the case of the SVM, it could 
maintain a very good level of precision with 0.92/0.98 but showed 
good recall with 0.98/0.94. All the models were consistently able to 
produce greater than 94% accuracy. This result further proves that the 
ML methodology is sound for cardiac disease diagnosis.

Optimization of the feature selection reached a convergence value 
at 50 iterations and a minimum value in the cost function at 0.0004; 
this represented an optimal number for the selected feature subset. The 
Root Mean Square Error (RMSE) started converging fast at an iteration 
count of 0.030 in the fourth iteration. The distribution analysis of critical 

cardiac parameters further establishes the diagnostic capability of the 
models [31]. Chest pain distribution reveals most common typical 
angina cases with an estimate of n ≈ 410 and followed by atypical angina 
cases n ≈ 310. Therefore, these can provide abundant training data for 
pattern recognition. Distribution of resting blood pressure presented a 
bimodal shape at 130 to 140 mmHg and 190 to 200 mmHg with which 
models were well trained to categorize hypertensive risk factors.

About 450 patients had normal reads, while there were 350 
with ST-T wave abnormal readings, and 200 showed signs of left 
ventricular hypertrophy. Diversification in the readings has really made 
the models great in finding cardiac abnormalities [31]. Normal heart 
rate distribution as exhibited on maximum heart rate provided reading 
distributions spread throughout the range, around many peaks within 
the 140 to 160 bpm range of very great data for Cardiovascular fitness 
assessment. The 70-30 train-test split ratio was found to be an optimal 
ratio for model performance: it outperformed different data partitioning 
strategies implemented [31]. The very high achievements in accuracy 
by all the assessed models, and especially by RF with an accuracy 
of 97%, are indicative of real clinical applicability in heart disease 
diagnosis, far surpassing traditional diagnostic methods while boasting 
robust statistical validity across multiple metrics of performance.

5.1. Genetic and socio-environmental factor analysis
5.1.1. Integrative risk factor analysis

Prior studies of the multivariate patterns of coronary artery 
calcification gave rise to a treatise on the HD-SMART framework, which 
was extended to include genetic and socioenvironmental factors that 
identified multivariate patterns of significance to supplement traditional 
cardiovascular parameters. This analysis illustrates nonclinical factors 
to prediction accuracy.

5.1.2. Genetic factor integration
Genetic risk scores were imputed and combined with clinical 

parameters by a weighted ensemble strategy. The integration methodology 
took precedence with known cardiovascular genetic markers, but it took 
into consideration their relative effect sizes in the literature.

The addition of the genetic factors increased prediction accuracy 
by 3.24%, p < 0.01, and was especially important for the early onset 
cases where the classical risk factors were not present.

As shown in Table 2, genetic factor integration improved model 
accuracy across all classifiers, with LR showing the greatest relative 
improvement of 2.61% (p = 0.004).

5.1.3. Socio-environmental determinants
Social determinants of health (SDOH) were quantified using 

a composite index comprising economic stability, education access, 
healthcare access, neighbourhood factors, and social context. The 
weights were derived from regression coefficients in the training dataset.
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Figure 11
Resting EEG distribution

Figure 12
Maximum heart rate distribution

Model Base 
accuracy 

(%)

With 
genetic 
factors 

(%)

Improvement 
(%)

p-value

Random 
Forest

97.57 98.91 1.34 0.008

Support Vector 
Machine

95.23 97.65 2.42 0.006

Logistic 
Regression

94.18 96.79 2.61 0.004

Table 2
Performance metrics with genetic factor integration

Note: ECG = electrocardiogram, EEG = electroencephalographic.



Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

According to Figure 13, various factors (such as stress, external 
substances, unhealthy behavior, the environment, and financial status) 
impact various mechanisms in the body (such as disrupted hormone 
action, unhealthy lipids, excessive oxidation, inflammation, and 
impaired autonomous nervous system), which in turn contribute to 
heart failure through problems such as narrowed heart arteries and 
irregular heart rhythms.

Socioeconomic status indicators demonstrated significant 
correlations with cardiovascular outcomes:

1) Income level correlation: r = −0.37 (p < 0.001),
2) Education level correlation: r = −0.29 (p < 0.001),
3) Healthcare access correlation: r = −0.42 (p < 0.001).

5.1.4. Interaction analysis
The interaction between genetic predisposition and environmental 

factors was modelled using a multiplicative interaction term. Analysis of 
variance revealed significant gene-environment interactions (F = 18.72, 
p < 0.001), explaining an additional 7.89% of risk variance.

5.1.5. Computational implementation
The enhanced model implemented ridge regularization 

(λ = 0.05) to mitigate multicollinearity among the expanded feature set. 
Feature importance analysis identified the following five key genetic 
environmental interaction features with normalized importance scores:

1) Family history × healthcare access: 0.89.
2) Genetic lipid markers × dietary patterns: 0.76.
3) Hypertension genetic risk × neighborhood stress factors: 0.72.
4) Genetic inflammatory markers × socioeconomic status: 0.68.
5) Arrhythmia predisposition markers × environmental toxin exposure: 

0.61.

5.1.6. Validation metrics
Cross-validated performance metrics (10-fold) for the integrated 

model demonstrated significant improvements are as follows:

1) AUC: 0.983 (95% CI: 0.975–0.991).
2) Net reclassification index: 9.42% (p < 0.001).
3) Integrated discrimination improvement: 0.057 (p < 0.001).
4) Hosmer-Lemeshow statistic: χ² = 11.24 (p = 0.188).

These metrics confirm that the integrated model maintains 
calibration while significantly improving discrimination compared to 
traditional clinical models.

The analysis demonstrates that incorporating genetic 
and socioenvironmental factors creates a more comprehensive 
cardiovascular risk prediction framework with enhanced accuracy and 
clinical relevance, particularly for demographically diverse populations.

5.2. Dependency on engineered features and 
preprocessing sensitivity

Based on the HD-SMART framework described in the document, 
I can analyze the model’s dependency on feature engineering and its 
sensitivity to preprocessing:

5.2.1. Extent of dependency on engineered features
The HD-SMART model demonstrates substantial dependency on 

engineered features:

1) Critical feature engineering steps:
a. Standardization using Z-score normalization (Z = (X - μ)/σ)
b. Creation of derived variables like BMI calculations
c. Feature selection optimization that converged at iteration 50 with 

a minimum cost of 0.0004
d. Systematic feature importance analysis using multiple methods 

(permutation importance, SHAP, RFE, and Integrated Gradients)

2) Performance impact:
a. The study explicitly states that feature selection achieved “unique 

convergent optimization”
b. RF’s 97.57% accuracy is attributed to the “optimal set of features”
c. The contrast is made that “classical methods, along which some of 

the least or not, so important features do not get selected, hence 
making worse the performance of the classifier Model”

5.2.2. Sensitivity to preprocessing errors/bias
The framework shows significant sensitivity to preprocessing 

quality:

1) Data quality dependencies:
a. Handling missing values: keystone linking continuous variables 

with mean imputation; categorical variables with mode 
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imputation - any imputation bias may be transmitted by the 
model

b. Outlier treatment: Although it is discussed in ablation research, 
outlier-specific treatment is not described, which can make it 
potentially vulnerable.

5.3. Preprocessing-level ablation results
The research paper had elimination of a carefully chosen 

preprocessing procedure (scaling, normalization, and outlier handling), 
where they determined that these steps had a considerable difference 
to their performance; however, no explicit degradation measures are 
provided.

5.4. Critical vulnerabilities
1) Standardization dependency:

a. All continuous variables undergo Z-score standardization
b. If training data statistics (μ, σ) are biased or unrepresentative, this 

affects all downstream predictions
c. No mention of robust scaling alternatives for handling outliers

2) Feature engineering bias:
a. BMI calculation requires accurate height/weight measurements
b. Mathematical transformations assume linear relationships that 

may not hold across all patient populations
3) Distribution assumptions:

a. The bimodal blood pressure distribution (130–140 mmHg, 190–
200 mmHg peaks) heavily influences model training

b. If new populations have different distributions, model performance 
could degrade

5.5. Limited robustness checks
While the methodology mentions the following:

1) Multiple random seeds for stochastic effects
2) Varying ablation orders
3) Dataset variations through subsampling

5.6. Key concerns
1) 70–30 Train-Test Split Optimization: The study mentions that this 

ratio has been discovered to be optimal with various percentages, 
but it is unclear how this could cause data leakage during feature 
selection.

2) Feature Selection on Full Dataset: No indication that there was any 
localized feature selection on training data, which would lead to 
overfitting.

3) Minimal Discussion of Bias: There is inadequate discussion of 
the potential impact of bias on various groups of patients in 
preprocessing, even though the issue of data quality is mentioned.

4) Genetic and Socio-Environmental Factors: The subsequent sections 
mention that the inclusion of these factors added an increment of 
3.24, which suggests the high reliance that the base model has on the 
traditional clinical characteristics, which can have inherent biases.

The HD-SMART model has a high level of dependency on 
engineered features and preprocessing quality, and the selection of 
features is the core of 97.57% accuracy. Although the framework consists 
of extensive ablation experiments and several methods of validation, 
the document includes little quantitative information on the strength 
against preprocessing errors or biases. This is especially worrying 
because the decisions made during preprocessing (when imputing data, 

the choice of the standardization, the transformation of features) might 
be disproportionately impactful on any underrepresented group of 
patients or those with nontypical clinical manifestations.

5.7. Addressing dataset biases in HD-SMART
The HD-SMART framework uses a couple of measures to 

curb some biases that may arise depending on gender, ethnicity, 
and socioeconomic status. The methodology pursues systematic 
preprocessing of the data by applying the standardized approach of 
imputation, including the use of means imputation with continuous 
variables and mode imputation with categorical variables, to ensure 
equal treatment across demographic groups.

Sociological disparities are specifically tackled by the integration 
of SDOH by use of a composite index that includes financial stability, 
access to education, healthcare services, neighborhood, and social 
context. This composite index proved to be significantly correlated 
with cardiovascular outcomes: income level (r = −0.37, p < 0.001), 
education level (r = −0.29, p < 0.001), and healthcare access (r = −0.42, 
p < 0.001).

The UCI data specifies the gender representation on the binary 
gender variable (1 = male, 0 = female). The methodology used in the 
ablation study is a nested type of cross-validation, with multiple random 
seeds, which assists in coming out with and reducing algorithmic biases. 
Nonetheless, the framework also notes that there are constraints in the 
framework in terms of ethnic diversity representation in the UCI Heart 
Disease dataset, where future research suggests that the performance 
should be demonstrated in demographically diverse populations to 
promote equal clinical accuracy of the diagnosis.

6. Conclusion
This work presents HD-SMART, a breakthrough system to 

predict cardiac risk. By analysing multiple ML algorithms on rigorous 
comparative analysis, we noticed that the RF surpassed the rest of 
the classifiers with 97.57% of accuracy, followed by SVM (95.23%) 
and LR (94.18%). The performance of this high quality is orders 
of magnitude better than what can be obtained with conventional 
approaches, while still providing robust statistical validity with regard 
to multiple performance metrics. The methodology is successful 
because it is a systematic combination of advanced feature engineering, 
hyperparameter optimization, and the optimal 70:30 train-test split 
ratio. Convergence for the feature selection optimization occurred at 
iteration 50 with a minimum cost function of 0.0004 and converged at 
RMSE after only four iterations at 0.030. This proves the framework’s 
computational efficiency and reliability. Rich training data for the 
models was provided by a comprehensive distribution analysis of critical 
cardiac parameters (about 410 typical angina cases, 130–140 mmHg 
and 190–200 mmHg bimodal blood pressure peaks, and 450 normal 
and 350 ST-T-wave abnormalities) of chest angina patterns. The 
HD-SMART framework handles many of the issues related to data 
quality, comprehension of the algorithms used, and issues of privacy in 
cardiovascular diagnostics. This is depicted as a useful clinical decision 
support tool, with predictive accuracy, scale, and strength to various 
performance measurements and clinical understandability, and as 
such, HD-SMART can be presented as a dependable and scalable tool 
for providing support through prevention of heart diseases and early 
detection at their onset.
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