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Abstract: Generative Adversarial Networks (GANs) have gained increasing attention in healthcare as a promising approach to addressing data
scarcity, offering synthetic alternatives that support research while mitigating privacy risks. This review examines the landscape of GAN-based
synthetic data generation in healthcare, with applications spanning medical imaging, electronic health records, genomics, and multimodal datasets.
A systematic search guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework identified 81
peer-reviewed studies published between 2014 and 2025, ensuring comprehensive coverage of methodological and translational developments.
The review maps the diversity of GAN architectures employed, synthesizes evidence on evaluation strategies, and outlines ethical, privacy, and
regulatory considerations that influence adoption. Results indicate that GANSs often achieve strong fidelity and downstream utility, with emerging
fairness-aware models addressing demographic bias. However, inconsistent validation practices, limited clinical integration, and unresolved
ethical and governance challenges continue to hinder translation into real-world settings. Overall, the review consolidates methodological trends,
barriers, and future directions, highlighting the potential of GANs to serve as viable tools to overcome data scarcity in healthcare research and
practice.
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1. Introduction high-dimensional feature relationships, produced unrealistic samples,
or lacked formal privacy safeguards [4, 5].

Generative Adversarial Networks (GANs) have emerged as
a promising alternative, utilizing an adversarial process between a
generator and a discriminator to create high-fidelity privacy-preserving
datasets that closely mirror real clinical data [6]. These models support
dataset augmentation, class balancing, rare disease research, and
multimodal data integration while minimizing patient-data exposure.
Evaluation of GAN-generated data typically benchmarks performance
against real datasets or competing models using metrics of fidelity,
utility, privacy, and clinical applicability [7].

Against this backdrop, this study examines the current state of
GAN-based synthetic data generation in healthcare and its effectiveness
in mitigating data scarcity. It reviews GAN architectures, evaluation
approaches, ethical and regulatory considerations, and translational
barriers to real-world adoption.

The recent revolution in Artificial Intelligence (AI) has
transformed medical diagnostics, enabling faster and more accurate
disease prediction from multimodal healthcare datasets, such as
medical imaging, biosignals, Electronic Health Records (EHRs), and
genomics [1]. However, access to high-quality, diverse data remains
limited—especially for rare conditions and specialized clinical use—
and is further restricted by data protection regulations such as the Health
Insurance Portability and Accountability Act (HIPAA) and General
Data Protection Regulation (GDPR), alongside rising cybersecurity
risks [2, 3].

Earlier efforts to address data scarcity, including oversampling
methods such as the Synthetic Minority Oversampling Technique
(SMOTE) and generative models, such as Variational AutoEncoders
(VAEs), provided partial solutions but often failed to capture complex,
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prior approaches to medical data handling, grouped into distinct
methodological categories.

1) Privacy-Preserving Approaches

Data anonymization presents significant challenges, including
high re-identification risks through external data linkages, considerable
utility loss for Machine Learning (ML) applications, and difficulties
preserving rare conditions or complex variable relationships [9].
Federated learning, while maintaining data locality, contends
with privacy vulnerabilities in gradient exchanges, infrastructure
complexities, and limitations in producing realistic datasets for
development and testing purposes [10].

2) Real-World Data and Early Resources

Real-World Data (RWD) [11] has long been used in clinical
research and health outcome analysis. However, challenges in data
quality, standardization, and generalizability arise due to heterogeneity
and missing values. Simulation-Based Training (SBT) has contributed
to clinical education, while open datasets (e.g., Medical Information
Mart for Intensive Care [MIMIC], PhysioNet) have provided
benchmarks for research. Yet these approaches face high costs, limited
realism, and issues of scope and representativeness [12, 13]. Similarly,
data augmentation techniques enhanced ML pipelines, particularly for
imaging tasks, but remain limited for tabular and structured data [14].

3) Emergence of Synthetic Data

These constraints have positioned synthetic data as a viable
alternative that balances privacy protection with the need for accessible,
diverse datasets to support research and innovation [15].

Table 1 illustrates the timeline of the evolution of medical data
methods, highlighting the progression toward the adoption of synthetic
data.

4) Generative Adversarial Networks

Introduced by Ian Goodfellow et al. [16] in 2014, GANSs represent
a pivotal advance in generative modeling. This breakthrough addressed
two critical healthcare challenges: data scarcity and patient privacy.
Unlike earlier approaches such as VAEs [17], GANs demonstrated
superior performance in generating high-quality synthetic data while

preserving confidentiality capabilities. These strengths are particularly
valuable in medicine, where complex data and strict privacy
requirements create unique research barriers.

2.1. Applications of GANs in medical data synthesis

GAN-based applications in medicine can be grouped into seven
categories reflecting different data modalities and clinical goals:
(1) medical imaging, (ii) tabular clinical data, (iii) genomics, (iv)
multimodal fusion, (v) pharmaceutical research and drug discovery, (vi)
clinical decision support, and (vii) privacy-preserving infrastructures.

2.1.1. Medical imaging

GANs have become a powerful tool in medical imaging,
addressing challenges in data augmentation, modality translation,
and image enhancement. They enable the generation and refinement
of imaging data to compensate for limited annotations and improve
diagnostic accuracy. A notable example is [18], which used CycleGAN
to translate chromatography (CT) to magnetic resonance imaging
(MRI) scans while preserving anatomical structures—valuable given
the superior soft-tissue contrast of MRIL.

Their diagnostic potential is well established. Study [19] reviewed
their use in enhancement, modality conversion, and dataset expansion,
showing consistent gains in image quality, noise reduction, and task
performance. Recent advances include a semi-supervised sequential
GAN by [20], which achieved superior cross-modality translation for
both paired and unpaired data, preserving anatomical and modality-
specific features.

Further innovations extend the utility of GANs. Study [21]
introduced a model that synthesizes high-fidelity images from limited
datasets using specialized convolutional modules for multimodality
augmentation. Similarly, [22] developed a low-noise discriminator
(LND) for image denoising that improved peak signal-to-noise ratio by
9.75% and reduced processing time, demonstrating real-time clinical
potential. Collectively, these works demonstrate how GANs enhance
imaging quality, support cross-modality translation, and improve
patient safety by reducing radiation exposure.

Table 1
Evolution of medical data methods
Category Method Applications Limitations
Traditional Data anonymization Protects patient identity in datasets ¢ High re-identification risk
privacy-preserving * Reduced ML utility
approaches * Difficulties preserving rare conditions or

Federated Learning (FL)

Early data resources
and augmentation
methods

Real-World Data (RWD)

Simulation-Based Training (SBT)
development

Open datasets
(e.g., MIMIC, PhysioNet)

Data augmentation techniques

Emergence of syn-
thetic data

Synthetic data

Collaborative model training across
distributed devices/institutions
without sharing raw data

Used in clinical research and health
outcome analysis

Supports clinical education and skill

Provide benchmarks for research
and model validation

Expand datasets for ML training,
particularly imaging
Enables Al development, software

testing, and research without
compromising patient privacy

complex relationships

*Vulnerable to privacy leakage via gradients

* Requires additional defenses to ensure data
privacy

* Challenges in data quality, standardization,
and generalizability due to heterogeneity and
missing data

* High costs, limited realism, and the need for
specialized faculty training

* Limited scope, potential outdatedness, and the
lack of representativeness

* Primarily effective for images; limited
applicability to tabular or structured data

» Emerging best practices

* Ongoing need for validation to ensure realism
and utility
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2.1.2. Tabular data

GANs are also widely applied to structured tabular data,
including EHRs, clinical trials, and demographic records. This domain
emphasizes specialized architectures designed to handle mixed data
types, non-Gaussian distributions, and privacy constraints.

Conditional Tabular Generative Adversarial Network (CTGAN)
[23] introduced conditional generation with non-uniform sampling,
which effectively modeled continuous and categorical variables,
producing realistic privacy-preserving synthetic patient records.
Building on this, [24] presented an ML-based approach for generating
realistic healthcare datasets suitable for validating clinical applications
while ensuring privacy.

Enhanced models continue to emerge. CTAB-GAN+ [25]
effectively manages mixed data and imbalanced class distributions,
improving both quality and usability for robust Al development. An
optimized Conditional GAN (cGAN) proposed by [26] generates
synthetic cardiovascular data for mobile-based care, maintaining
statistical accuracy and confidentiality.

MedGAN, initially designed for EHR generation, has also
evolved. Study [27] demonstrated its capacity to reproduce feature
distributions while enabling secure data sharing, reinforcing its
relevance for privacy-sensitive medical research and inter-institutional
collaboration.

2.1.3. Genomics

In genomics, GANs enable realistic synthesis of DNA, gene
expression, and single-cell RNA sequencing (scRNA-seq) data,
advancing precision medicine and integrative omics. Study [28]
simulated artificial human genomes to improve genotype imputation for
rare alleles, enhancing population-level analyses, while [29] achieved
high statistical similarity in synthetic cat genome sequences.

Expanding into regulatory design, ExpressionGAN [30]
generated DNA sequences inducing targeted mRNA expression, often
surpassing natural controls, demonstrating potential in gene regulation
research. For gene expression modeling, [31] proposed the Single-Cell
Generative Adversarial Network (scGAN) and Conditional Single-Cell
Generative Adversarial Network (cscGAN) for realistic scRNA-seq
data generation, thereby improving marker gene detection and cell-type
classification. MG-GAN [32] further enhanced cancer classification
through data augmentation, and omicsGAN [33] integrated multi-omics
datasets to improve cancer outcome prediction.

To address scRNA-seq sparsity and noise, [34] introduced
scIGANs for accurate imputation while preserving gene—gene
and cell—cell relationships. GroundGAN [35] incorporated gene
regulatory networks for biologically grounded synthesis, and scGFT
[36] introduced a train-free, Fourier-based architecture preserving
intrinsic transcriptomic features. These works collectively demonstrate
the growing role of GANs in generating realistic privacy-preserving
genomic data for clinical and functional genomics research.

2.1.4. Multimodal fusion

Beyond single modalities, GANs enable the synthesis and
integration of imaging, genomics, and clinical text, enhancing predictive
modeling and survival analysis.

MedFusionGAN [37] fuses three-dimensional (3D) T1-weighted
MRI and CT scans to improve brain tumor analysis and protocol
generalization. cGANs [38] integrate imaging with genomic data for
breast cancer mutation prediction, achieving superior Fréchet Inception
Distance (FID) scores and higher accuracy when combined with real
data.

The Mutual-Guided Cross-Modality Transformer (MGCT)
[39] combines histopathology and genomic data to model tumor
microenvironments, improving multi-cancer survival prediction.
Similarly, HEALNet [40] integrates whole slide images with multi-

omics data while managing missing modalities, achieving state-of-the-
art survival prediction.

Further multimodal innovations include a GAN framework
[41] that generates multi-label discrete EHRs, modeling longitudinal
trajectories with strong privacy preservation. Study [42] synthesized
radiology reports by combining medical images, clinical knowledge,
and text, improving diagnostic report generation.

2.1.5. Pharmaceutical research and drug discovery

The pharmaceutical sector is increasingly using GAN-generated
synthetic data to accelerate research while maintaining privacy
compliance. Syntegra, in partnership with the Institute for Health
Metrics, developed a synthetic data platform replicating over seven
million de-identified EHRs [43]. This dataset supports real-world
evidence studies and health economics research without exposing
sensitive data. Likewise, Electronic Medical Record Bots (EMRBots)
[44] demonstrated the practical use of synthetic EMRs in drug discovery
and development.

2.1.6. Clinical decision support systems

GANs also strengthen clinical decision support by generating
synthetic records and medical images for model training and validation.
MDClone’s synthetic data engine [45] enabled research on spine surgery
outcomes by generating statistically equivalent patient records, thereby
supporting risk analysis without using protected health information. In
neuroimaging, 3D-StyleGAN [46] synthesizes high-resolution brain
MRI scans, thereby expanding diagnostic datasets and improving
model robustness.

2.1.7. Privacy-preserving data infrastructure

GANs contribute to privacy-preserving data infrastructures
that enable secure, compliant data exchange and multi-institutional
collaboration. HealthVerity [47] supported the National Cancer
Institute’s COVID-19 Real-World Data Infrastructure by integrating
synthetic medical claims and laboratory and vaccination records using
Privacy-Preserving Record Linkage, facilitating large-scale Al research
while maintaining compliance. Similarly, ADS-GAN [48] demonstrates
accurate EHR synthesis under complete anonymity, supporting privacy-
conscious data sharing and large-scale analytics.

Table 2 summarizes these GAN applications across medical data
domains, highlighting their key contributions, study years, and research
impact.

2.2. Types of GANs used for medical data synthesis

Since the seminal work of Goodfellow et al. (2014) introduced
the GAN framework, there has been substantial evolution in GAN
architectures specifically designed for medical data synthesis. The study
categorizes these models into three groups: (i) foundational GANSs that
established training stability and basic architectures, (ii) recent variants
optimized for high-fidelity imaging and structured tabular synthesis,
and (iii) hybrid models that combine multiple mechanisms to address
the heterogeneity of medical data.

Although the original GAN remains the sole peer-reviewed model
from the foundational 2014-2015 period, early influential preprints,
such as the Conditional GAN (¢cGAN) and Deep Convolutional GAN
(DCGAN), rapidly disseminated architectural innovations that were
widely adopted in experimental settings.

However, it was not until 2016 that the field witnessed a surge
of peer-reviewed advancements addressing key challenges in GAN
training, namely instability, mode collapse, and limited interpretability.
Although foundational models such as cGAN and DCGAN appeared
earlier in the form of preprints or conference proceedings, to the best of
the authors’ knowledge, peer-reviewed applications relevant to medical
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Table 2
GANs applications in medical data synthesis
Category Application/Study Year(s) Impact/Notes
Medical imaging CycleGAN (CT—MRI), 2018-2022 < Cross-modality synthesis and improved paired/unpaired
semi-supervised sequential GAN, translation
high-fidelity convolutional GAN * Preserves anatomical structures and features
» Augments limited datasets across modalities
Tabular data (EHR, LND denoising GAN, CTGAN / 2018-2022  « Handles mixed/conditional data
clinical) MedGAN / CTAB-GAN+, cGAN * Preserves statistical distributions and privacy
for mobile CV care * Enhances downstream utility (e.g., cardiovascular patient
data)
* +9.75% PSNR, reduces processing time
Genomics GAN-based artificial genomes / cat 2019-2025 < Rare allele imputation, population-level studies
genome synthesis, ExpressionGAN, * Synthetic regulatory DNA for targeted mRNA expression
scGAN / cscGAN / MG-GAN * Single-cell and multi-omics data synthesis
/ omicsGAN, scIGANs / * Preserves gene-gene/cell-cell relationships, improves
GroundGAN / scGFT downstream analysis
Multimodal data MedFusionGAN, cGAN 2021-2023 e+ Cross-modality and multi-omics integration
integration imaging+genomics, MGCT, * Enhances diagnosis, mutation prediction, survival
HEALNet, multi-label EHR GAN, prediction, and trajectory modeling
context-enhanced radiology GAN
Pharmaceutical research ~ Syntegra, EMRBots 2022 * Large-scale synthetic human/experimental records
& drug discovery * Accelerates real-world evidence and drug research
Clinical decision MDClone, 3D-StyleGAN 2022-2023 e Synthetic patient records and MRI
support systems * Enhances outcome modeling and diagnostic tools
Privacy-preserving data ~ HealthVerity, ADS-GAN 2024 * Secure synthetic EHR sharing

infrastructure

* Regulatory compliant, supports multi-institution
collaboration

data synthesis were limited or undocumented during 2014-2015.

Table 3 summarizes foundational GAN architectures,
highlighting their main contributions and representative medical
use cases. These models addressed early challenges such as training
instability and mode collapse, enabling initial medical applications that
include synthetic echocardiographs (ECGs) and MRI augmentation. For
instance, InfoGAN [49] introduced disentangled latent representations,
facilitating interpretable phenotype synthesis by controlling semantic
features in the latent space. The DCGAN incorporated convolutional
layers that significantly enhanced the spatial coherence and visual
fidelity of synthetic medical images, such as brain MRI scans [50].
Meanwhile, WGAN [51] and its variant WGAN-GP [52] improved
convergence behavior by replacing the Jensen-Shannon divergence
with the Earth-Mover (Wasserstein) distance and introducing gradient
penalties, which proved critical for stable training in biomedical
imaging contexts. Spectral Normalization GAN (SNGAN) [53] further
advanced stability by constraining the spectral norm of discriminator

weights, leading to improved convergence and higher-quality synthetic
images. Additionally, cGANs [54] enabled label- or modality-
conditioned generation, expanding applications to multi-contrast MRI
synthesis and EHR generation conditioned on clinical labels.

Foundational GANs established the baseline for adversarial
training and image synthesis, but their limited control over feature
conditioning and challenges with structured data constrained broader
clinical adoption. Models such as DCGAN and ¢cGAN were pivotal
for early medical imaging and label-conditioned EHR generation,
respectively, highlighting how architectural modifications align with
domain-specific requirements.

Building on foundational GANSs, recent variants have advanced
fidelity, diversity, and privacy preservation, with applications spanning
imaging, EHRs, and genomics. StyleGAN [55] and its improved
variants, including StyleGAN2-ADA [56], introduced style-based
latent control and data-efficient augmentation techniques, enabling
highly realistic facial phenotyping and modeling of rare diseases with

Table 3

Foundational GAN variants in medical data synthesis
Model Year Main Contribution Medical Use Case
GAN 2014 Introduced adversarial training framework Baseline synthetic ECGs, MRIs
InfoGAN 2016 Disentangled latent representations for interpretability =~ Phenotypic feature synthesis
DCGAN 2017 Convolutional layers for improved image coherence Context-aware brain MRI synthesis
WGAN 2017 Earth-Mover distance for stable training Histopathological image synthesis
WGAN-GP 2017 Gradient penalty for improved convergence Brain MRI augmentation
SNGAN 2018 Spectral normalization to stabilize training Medical image synthesis
cGAN 2019 Label- or modality-conditioned generation Label-conditioned EHR generation
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improved data efficiency. For structured data, tabular GANs, such
as CTGAN [57], have become essential for synthesizing complex,
heterogeneous datasets, such as EHRs and genomics, addressing the
challenges posed by mixed data types and class imbalances. Privacy-
preserving GAN [58] variants that incorporate differential privacy
mechanisms have also emerged, facilitating the secure generation
of synthetic medical data while maintaining patient confidentiality.
Recently, Transformer-based GANs such as Trans-cGAN [59] have
incorporated attention mechanisms and U-Net architectures to enhance
cross-modality medical image synthesis, effectively capturing intricate
anatomical details and improving clinical relevance.

Table 4 summarizes these modern GAN architectures and
highlights their primary innovations and specific applications in
medical data synthesis.

Recent variants demonstrate targeted optimizations: StyleGAN
and StyleGAN2-ADA excel in high-fidelity image synthesis due to
style-based latent control, while CTGAN dominates tabular data
synthesis because it effectively handles mixed data types and class
imbalances. Privacy-preserving GANs and Transformer-based models
further extend applicability to sensitive EHRs and cross-modality
imaging, reflecting the growing emphasis on clinical relevance and
regulatory compliance.

While Section 2.1 mapped the diverse applications of GANs
across medical domains, their success fundamentally depends on
architectural innovations that address stability, interpretability, and
clinical utility. This section surveys the evolution of GAN variants that
underpin these applications. Some models, such as cGAN or CTGAN,
appear across both application- and architecture-focused discussions;
here we emphasize their methodological innovations rather than
specific clinical deployments.

Hybrid GAN architectures have emerged to better capture the
complex heterogeneity of medical data by combining complementary
modeling strategies. MOSA [60] utilizes multi-omic synthetic data
augmentation to study drug resistance in cancer. Hybrid GANs
[61] integrate spatial and frequency domain features to synthesize
histopathology images with both global structure and fine texture.
EnhGAN [62] leverages conditional GANs with contrast enhancement
to improve tumor subregion visibility and segmentation in brain MRI.
HAGAN [63] employs hybrid attention mechanisms and hierarchical
discriminators to generate anatomically consistent, realistic medical
images. Recent models continue to integrate domain-specific strategies,
such as spatial-frequency fusion and attention mechanisms, to enhance
realism and clinical utility in challenging datasets.

Table 5 outlines these hybrid models, illustrating their specialized
contributions and application domains.

Hybrid architectures combine complementary mechanisms to
address heterogeneous and complex medical datasets. For instance,
MOSA focuses on multi-omics data integration, while HAGAN and
EnhGAN enhance anatomical consistency and segmentation accuracy in
imaging. These design choices illustrate how domain-specific challenges
drive the evolution toward specialized, high-utility GAN variants.

In summary, these developments chart a clear evolution in
generative Al for medicine: a shift from general-purpose frameworks
to specialized architectures fine-tuned for the complexities of medical
imaging, genomics, and clinical records. This progression highlights
the field’s focused response to paramount challenges, including model
stability, interpretability, data heterogeneity, and, most critically,
clinical relevance. The outcome of this specialization is the ability to
generate highly realistic and trustworthy synthetic datasets. As a result,
GANSs have matured into essential tools that not only augment data for
training robust Al models but also protect patient privacy and facilitate
groundbreaking research into rare and complex diseases.

2.3. Types of GANs validation used for medical data
synthesis

Evaluating the quality and utility of GAN-generated medical
data is essential to determine whether it can effectively substitute or
supplement real-world datasets. Validation ensures that synthetic
data not only appears realistic but also replicates the statistical,
structural, and clinically relevant properties of original data. While
visual realism is valuable, rigorous technical and clinical evaluations
are required to verify performance in downstream tasks. Broadly,
validation approaches fall into two categories: (i) technical validation,
emphasizing quantitative and algorithmic measures (e.g., distributional
similarity, feature fidelity), and (ii) clinical validation, focusing on
usability, expert review, and diagnostic performance.

2.3.1. Technical validation

Researchers assess synthetic data using quantitative metrics (e.g.,
FID, Inception Score [IS]), model-based testing (e.g., Train on Synthetic,
Test on Real [TSTR]), and visualization tools (e.g., t-SNE, histograms).
These methods evaluate alignment between real and synthetic data in
terms of distribution, diversity, and feature representation.

FID [64] and IS [65] are common in medical imaging, quantifying
perceptual realism and diversity through pretrained feature embeddings.
They capture subtle distributional differences but depend on ImageNet-
trained encoders, which may not fully represent clinical features. For
structured data, the Maximum Mean Discrepancy (MMD) [66] directly
compares statistical distributions and is model agnostic, although
sensitive to kernel selection and dimensionality. TSTR [67] assesses
predictive utility by measuring the performance of models trained on
synthetic data on real data, although outcomes may conflate model bias
with data quality. Dimensionality reduction methods such as t-SNE and
PCA [68] offer qualitative visualization of distributional overlap but are
parameter dependent and unsuitable for standalone validation.

Each technique highlights a different notion of quality: FID and
IS capture perceptual fidelity, MMD measures structural similarity,
TSTR reflects predictive value, and visualization aids interpretability.
Their complementarity suggests that robust evaluation requires a
combination of multiple statistical, task-based, and visualization
approaches. Common techniques are summarized in Table 6.

Table 4

Recent GAN variants for high-fidelity and structured medical data synthesis
Model Year Main Contribution Medical Use Case
StyleGAN 2019 Style-based latent control Facial phenotyping in rare diseases
StyleGAN2-ADA 2020 Data-efficient augmentation Rare disease modeling
CTGAN 2019 Handling mixed data types and imbalances Synthetic EHR tables
cGAN with DP 2023 Privacy-preserving synthetic data generation EHRs
Trans-cGAN 2023 Transformer—U-Net hybrid for image synthesis Cross-modality MRI generation
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Table 5
Hybrid GAN architectures for medical data synthesis
Model Year Main Contribution Medical Use Case
MOSA 2024 Multi-omic synthetic data augmentation Cancer research, drug resistance
HAGAN 2024 Hybrid attention and hierarchical discriminator Medical image synthesis
Enhancement GAN (EnhGAN) 2025 Conditional GAN with contrast enhancement for ~ Brain tumor MRI synthesis and
segmentation segmentation
Hybrid GAN (Spatial-Frequency) 2025 Fusion of spatial and frequency domain features ~ Histopathological image synthesis

Table 6
Technical validation on synthetic dataset

Metric / Method

Purpose

Example Use

Fréchet Inception Distance (FID)
Inception Score (IS)

Maximum Mean Discrepancy
(MMD)

data
Train on Synthetic, Test on Real
(TSTR)
Dimensionality Reduction
Visualization (e.g., t-SNE, PCA)

generalize to real data

data distributions

Measures distributional similarity between real and
synthetic images using deep feature embeddings

Assesses the quality and diversity of generated images
based on classification confidence

Measures the distance between distributions of real and
synthetic data, applicable to both images and tabular

Evaluates how well models trained on synthetic data

Visually assesses the overlap between real and synthetic

Evaluated synthetic medical images
across various modalities

Applied to synthetic chest X-rays and
dermoscopy images

Used in evaluating EHR tabular GANs
such as CTGAN

Applied in synthetic EHR and genomics
research

Used to evaluate structural similarity in
synthetic longitudinal EHR datasets

2.3.2. Clinical validation

Clinical validation ensures that synthetic data preserves medically
relevant features and remains suitable for real-world use. It involves
comparing the characteristics and outcomes of synthetic datasets
against real clinical data to confirm that key patterns, distributions, and
relationships are retained. This step is essential for maintaining data
integrity for applications such as disease modeling, diagnostic support,
and epidemiological forecasting.

Several complementary methods address different aspects of
clinical validity. Statistical validation [69] compares disease trajectories,
comorbidity patterns, and visit distributions between real and synthetic
EHRs, confirming temporal and cohort-level fidelity. Prospective
clinical trial simulations [70] model treatment pathways and outcomes
but rely on assumptions about synthetic patient responses. Downstream
task performance [71] tests diagnostic or predictive models trained on
synthetic data, although results are task dependent. Blinded diagnostic
studies [72] provide strong perceptual validation but are resource
intensive and limited in scale. Clinical usability studies [73] evaluate
practical integration into workflows, emphasizing operational feasibility
rather than statistical accuracy.

These approaches form a multi-layered validation framework:
statistical and trial-based analyses ensure baseline clinical realism, task-
based testing demonstrates utility, and expert-in-the-loop evaluations
confirm real-world relevance. As summarized in Table 7, this combined
evidence supports the reliability and translational potential of synthetic
medical data while upholding privacy protections.

2.4. Challenges, limitations, and ethical considerations

2.4.1. Privacy risks and re-identification

Although GAN-generated medical datasets are designed to be
privacy preserving, they remain susceptible to adversarial attacks.
When models are overfitted or training data are scarce, synthetic records
may inadvertently replicate real individuals, leading to the leakage of

sensitive information. Membership inference attacks have shown that
adversaries can determine whether a particular record contributed to
model training, especially when contrastive learning enhances attack
precision [74].

Beyond membership inference, attribute inference and linkage
attacks exploit correlations to reconstruct hidden traits or re-identify
individuals by matching synthetic entries to real records [75, 76].
Similar vulnerabilities have been demonstrated in image-based GANSs,
where discriminators or black-box access can reveal training set
membership, showing that risks extend beyond EHRs to other medical
data modalities [77].

Ultimately, synthetic data generation involves a trade-off between
utility and privacy. Techniques such as differential privacy can mitigate
re-identification but often reduce data fidelity in high-dimensional
healthcare settings. Table 8 summarizes key adversarial attack types
and their implications for GAN-based medical data.

2.4.2. Bias amplification and fairness

Generative models may inadvertently amplify biases present
in training data, posing an ongoing challenge for synthetic medical
data. To address this, the Bias-Transforming GAN (BT-GAN) applies
fairness constraints during generation to rebalance demographic and
outcome disparities, such as unequal disease prevalence across gender
or racial groups, while maintaining clinical validity [78].

In parallel, FairGAN promotes fairness by aligning distributions
of protected attributes (e.g., race, gender), ensuring downstream
classifiers trained on synthetic data perform equitably [79]. While
FairGAN provides a general approach, BT-GAN adapts this concept for
healthcare, preserving subgroup densities and clinical fidelity essential
to medical analysis.

These models exemplify the tension between enforcing fairness
and preserving data utility. Fairness-aware frameworks such as BT-
GAN and FairGAN demonstrate that equity and realism can coexist,
but achieving this balance requires careful optimization of fairness
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Table 7

Clinical validation on synthetic dataset

Method

Purpose

Example Use

Hierarchical Autoregressive
Language mOdel (HALO) for
Longitudinal EHR Synthesis

Prospective Clinical Trial Simulation

Downstream Task Performance
Blinded Diagnostic Studies

Clinical Usability Studies

To generate and validate high-dimensional,
longitudinal synthetic EHRs that preserve
clinical and temporal dependencies while
maintaining privacy.

The use of synthetic patient populations to
simulate clinical trials for drug safety and
efficacy predictions.

Tests whether synthetic data supports clinical
model training (e.g., segmentation, diagnosis).
Physicians diagnose cases from real and
synthetic data to assess indistinguishability.

Assessment of synthetic data for medical
education, software testing, or decision support.

HALO-generated synthetic EHRs were compared
with real patient data for disease prevalence and
treatment trajectories, showing close alignment
and predictive parity (AUC =~ 0.94).

Synthetic oncology patient cohorts are used to
model trial outcomes and optimize study design
before real-world trials.

GAN-generated CT scans evaluated for lung
cancer detection accuracy.

Used in validating CycleGAN-based
cross-modality synthesis (e.g., CT-MRI).
Synthetic patient records are used in EMR system
simulations or student training.

Table 8

Re-identification and privacy threats in synthetic healthcare data

Attack Type Description

Example / Context

* Membership inference

* Limitations of

differential privacy
high-dimensional healthcare data

Attribute inference

Linkage attacks
datasets
Cross-domain inference
membership detection

 Determines if a specific real record was used in training
 Exploits statistical similarity between real and synthetic samples
» DP reduces privacy risks but significantly degrades fidelity in

* Predicts unknown sensitive attributes from partially known traits

* Matches synthetic entries to real individuals using auxiliary

* GAN discriminators/black-box access used for training set

Explicitly demonstrated against synthetic
EHRs, enhanced by contrastive learning;
Trade-off between data utility and privacy
protection

Attackers infer missing patient features
(e.g., disease status) from correlations.
Even without direct mapping, partial
re-identification is possible.
Image-based GANSs (no explicit identity
labels) are shown to leak membership
info.

constraints within domain-specific limits. Table 9 summarizes the
respective strategies, strengths, and applications of the models.

2.4.3. Data quality and fidelity

Ensuring that synthetic medical data adequately replicates the
complexity, unpredictability, and subtle pathological aspects of real-
world datasets remains a considerable task. Study [80] highlighted the
trade-off between fidelity, accurately reflecting real data, and diversity,
maintaining variability to prevent mode collapse and overfitting. Their
GAN framework for retinal image synthesis addressed these issues by
enhancing both visual quality and representational diversity, thereby
improving trust in downstream diagnostic models.

Building on this, [81] proposed the Vessel and Style Guided GAN
(VSG-GAN), which separates retinal image generation into vascular
structure and background style components. Using style transformation
and GAN inversion, VSG-GAN produces retinal images with diverse
morphological patterns and superior realism across evaluation metrics.

Similarly, [82] reviewed synthetic data generation across
healthcare domains, emphasizing the persistent challenge of maintaining
fidelity and diversity in complex datasets. Robust GAN architectures
must preserve fine pathological details while capturing real-world
variability to ensure reliability and ethical deployment in clinical
research and decision support. Table 10 summarizes representative
models, their objectives, and comparative strengths and limitations.

Table 9
Fairness-aware GAN models for synthetic medical data

Model Key Strategy Remarks (Strengths and Limitations) Application Context
BT-GAN  Bias-transforming constraints * Reduces amplification of existing health data biases  Synthetic health datasets (e.g.,
on demographic/outcome and preserves clinical validity disease prevalence across subgroups)
variables * Requires careful tuning; fairness
« Utility trade-off remains
FairGAN  Adversarial fairness constraints Balances sensitive attributes (race, gender) during * General tabular data

enforcing parity in protected
attributes

generation while maintaining data utility
* Evaluated mainly on general tabular datasets,

*Adaptable to medical contexts

limited direct healthcare tests
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Table 10
Fidelity and diversity in GAN-generated medical data

Method / Model Objective / Outcome

Remarks (Strengths & Limitations)

GAN framework
for retinal images

* Improve fidelity and diversity in synthetic
medical images

* Retinal image synthesis balancing realism and
variability

VSG-GAN * Decouple vascular and background features to
enhance diversity and fidelity

* Retinal images with varied morphology

Review of synthetic
data in healthcare

* Assess fidelity/diversity challenges across
datasets

* Broad healthcare applications

* Preserves visual quality and diversity

* Reduces mode collapse

* May require careful tuning

* Only demonstrated in the retinal domain

* Generates more realistic and morphologically diverse images
* Style-based control

* Specialized retinal images

» May not generalize to other modalities

* Highlights common pitfalls

* Informs robust GAN design

* Conceptual only, does not provide implementation-level solutions

2.4.4. Ethical misuse and accountability

Study [83] highlights the growing risk of ethical misuse as
generative Al becomes more accessible in clinical and research contexts.
Without standardized accountability mechanisms, synthetic data may
be misused, for example, in misleading publications, unauthorized
data augmentation, or bypassing regulatory oversight. The authors
call for clear ethical boundaries and institutional oversight to ensure
transparency in how synthetic data are generated, validated, and
applied, emphasizing traceability, consent, and shared responsibility
among developers, clinicians, and policymakers.

Similarly, [84] identifies ethical vulnerabilities in Al healthcare,
such as data breaches, misuse of sensitive information, and unregulated
commercialization, underscoring the need for robust governance
frameworks. Recent studies further emphasize transparency, consent,
and regulatory compliance as essential pillars of responsible Al. Study
[85] advocates structured ethical frameworks for Al deployment, [86]
explores the ethical-legal implications of consent and privacy, and [87]
stresses institutional oversight and traceability to prevent misuse.

Table 11 summarizes major ethical challenges and best practices
in synthetic medical data governance.

2.4.5. Toward unified ethical governance

Growing concerns over privacy, bias, and data fidelity have
underscored the need for comprehensive ethical governance frameworks
in synthetic medical data development. Study [88] introduces an ethical
checklist for generative Al in healthcare, providing a practical guide
for responsible model design and deployment, including GANs. The
framework addresses interconnected risks such as privacy violations,

algorithmic bias, data fidelity loss, and lack of transparency, issues
which are particularly critical when synthetic data influence diagnostic
or therapeutic decisions. It emphasizes governance grounded in justice,
accountability, and explainability, alongside technical robustness to
maintain patient trust and uphold medical ethics.

In alignment, [89] advocates integrating ethical values with
technical rigor, while [90] proposes a co-designed governance model
tailored to healthcare institutions, enhancing stakeholder collaboration
and real-world oversight. Study [91] further highlights the importance
of secure infrastructure, strong data governance, and ethical guidelines
for responsible use of Al. Collectively, these studies reinforce the need
to establish a unified oversight mechanism to protect patient trust and
align synthetic data practices with core medical principles. Table 12
summarizes notable contributions and key takeaways in this area.

3. Methodology

This systematic review was conducted in accordance with the
PRISMA 2020 guidelines. The review question was formulated using the
PECO (P Population, E Exposure, C Comparator, O Outcome) framework
to ensure transparency and reproducibility. Table 13 summarizes the key
components of the PECO framework applied in this study.

3.1. Eligibility criteria

Eligibility criteria were defined to operationalize the PECO
framework into practical rules for study selection. Studies were
included or excluded according to the criteria summarized in Table 14.

Table 11
Ethical issues and recommended mitigations in synthetic medical data

Ethical Issue Description

Example / Implication

Recommended Mitigation

Misuse of
synthetic data

Synthetic medical images or EHRs
used in misleading publications or

unauthorized augmentation origin

Lack of No standardized oversight for
accountability synthetic data generation and

application
Consent & Patients may not consent to
privacy gaps synthetic use of their data, and

privacy risks remain consent
Traceability & Difficulty tracking synthetic outputs
transparency and their origin

Using GAN-generated CT scans in
studies without disclosing synthetic

Circumventing regulatory requirements
or bypassing ethical review

Using synthetic data derived from
sensitive EHRs without informed

Difficulty auditing or validating
synthetic datasets in clinical pipelines

Implement clear usage guidelines and
disclosure policies

Establish institutional oversight and
shared responsibility among developers,
clinicians, and policymakers

Integrate consent procedures and
privacy safeguards

Maintain provenance records, logging
generation process, and versioning
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Table 12
Ethical governance reviews on GANs
Year Main Contribution Key Takeaways
2025 Structured ethical checklist for generative Al in Practical guidance for responsible GAN deployment, addresses privacy, bias,
healthcare data fidelity, and transparency
2024 Ethical principles for Al in medical research Emphasizes justice, accountability, and explainability alongside technical rigor
2025 Co-designed Al governance framework for Promotes stakeholder collaboration and real-world oversight of Al systems
healthcare organizations
2024 Ethical implications of generative Al in clinical Highlights the need for robust data governance, secure infrastructure, and
practice ethical guidelines
Table 13 Medicine, IEEE Transactions on Medical Imaging, and Bioinformatics.
PECO framework for the systematic review IEEE Xplore captured conference proceedings from leading venues,
— such as the Conference on Neural Information Processing Systems
Component Description

Population (P) Healthcare datasets across imaging, EHR/

tabular, genomics, and other biomedical domains

Exposure (E) Use of GANs to generate synthetic data
Comparator (C)  Real-world datasets or alternative generative
models, where available

Outcome (0) Measures used to evaluate GAN-generated

synthetic data, including fidelity (statistical
similarity to real data), utility (performance

in downstream ML tasks), privacy protection
(resilience against re-identification), clinical or
translational applicability, and any other metrics
that benchmark or improve GAN performance

3.2. Search strategy

A comprehensive literature search was conducted to identify
studies on GAN-based synthetic data generation in healthcare. To
capture both biomedical and computer science perspectives, we
searched PubMed, Scopus, Web of Science, and IEEE Xplore, covering
publications from January 2014 to June 2025. While the primary
focus of this review is on recent developments from 2020 onwards,
studies published from 2014 to 2019 were also included to illustrate the
evolution of GAN applications in healthcare. Searches were limited to
English-language peer-reviewed articles and conference proceedings.

The selected databases reflect the dual publication patterns in this
field. PubMed ensured coverage of medical and life science journals,
while Scopus and Web of Science provided multidisciplinary indexing
of high-impact outlets, including Nature Communications, NPJ Digital

(NeurIPS), Medical Image Computing and Computer Assisted
Intervention (MICCAI), Conference on Computer Vision and Pattern
Recognition (CVPR), International Conference on Machine Learning
(ICML), and IEEE International Conference on Bioinformatics and
Biomedicine (IEEE BIBM), which are known for their innovations in
technical GAN in healthcare.

The search was designed to capture studies meeting the inclusion
criteria defined in Table 14. Keywords and controlled vocabulary were
derived from the PECO framework:

Population (P): “medical,” “clinical,” “biomedical,” “EHR,”
“genomic”

Exposure (E): “generative adversarial network,” “GAN,”
“CTGAN,” “WGAN,” “StyleGAN”

Outcome (O): “synthetic data,” “data generation,” “data
augmentation,” and evaluation metrics such as “FID,” “TSTR,” or
“MMD”

An example Boolean search string used in Scopus was

("generative adversarial network" OR "GAN" OR "CTGAN" OR
"WGAN" OR "StyleGAN")

AND ("synthetic data" OR "data generation" OR "data
augmentation")

AND ("healthcare" OR "medical" OR "clinical" OR "biomedical"
OR "genomic" OR "electronic health record" OR "EHR")

3.3. Study selection and bias considerations

All records retrieved from the database searches were manually
screened and duplicates were removed through careful comparison.
Titles and abstracts were evaluated against the eligibility criteria,

Table 14
Eligibility criteria for included studies

PECO Component / Criterion Inclusion

Exclusion

» Generic computer-vision benchmarks only

» Methods papers with no empirical GAN
application

* Duplicate reports of the same dataset/model
without novel analysis

Population (P) » Healthcare datasets across imaging, EHR/tabular,
genomics, and other biomedical domains

Exposure (E) * Application of GANSs for synthetic data generation
(e.g., GAN, cGAN, WGAN, CycleGAN, StyleGAN,
CTGAN)

Comparator (C) * Real-world datasets or alternative generative
models, where available

Outcome (O) « Studies reporting at least one validation of synthetic

data (e.g., FID, IS, MMD, TSTR, clinical expert

* Studies with no evaluation or empirical results
of synthetic data

review, downstream task performance)

* Published 20142025
* Written in English

Time frame / language

* Non-English papers
* Preprints or non—peer-reviewed sources
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Figure 1
PRISMA study selection flow diagram
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followed by full-text review of potentially relevant studies. Screening
and selection were conducted systematically by a single reviewer to
ensure consistency and transparency. This limitation is discussed
further in Section 4.4. The overall selection process is summarized in
the PRISMA 2020 flow diagram (Figure 1), which details the number
of records identified, screened, excluded (with reasons), and ultimately
included in the review.

A total of 174 records were identified, including 153 from
electronic databases and 21 from other sources. After removing
14 duplicates, 160 unique records remained for title and abstract
screening. Of these, 66 were excluded for not meeting the inclusion
criteria. The full texts of 120 records were then assessed for eligibility
(99 from databases and 21 from other sources). A total of 32 records
were excluded: 13 from databases (due to methodological limitations,
irrelevant focus, or non—peer-reviewed status) and 19 from other
sources (Gray Literature [11], Methodological Limitations [6], Non-
Academic Sources [2]). Finally, 81 studies were included in the review,
comprising 79 from databases and 2 from other sources.

Potential sources of bias were considered both in the review
process and in the included studies. Table 15 summarizes the main bias
types, their sources, potential impacts, and the strategies employed to
mitigate them.

3.4. Data extraction and synthesis

Data was systematically extracted to obtain key information from
each included study. Extracted details included author and year, dataset
type and domain, GAN architecture and configuration, evaluation
metrics (fidelity, utility, privacy, interpretability), and main findings.
This structured approach ensured consistency and transparency, and
enabled a meaningful comparison across studies.

Given the heterogeneity of study designs, datasets, and
evaluation metrics, a narrative synthesis approach was adopted. Studies
were grouped thematically by data modality (imaging, EHR/tabular,
genomics) and evaluation focus (fidelity, utility, privacy, clinical
translation) to analyze patterns, strengths, and limitations, deriving
insights into the current state and practical applicability of GAN-based
synthetic data in healthcare.

4. Discussion

The analysis is structured around four key dimensions:
Distribution of Included Studies by Publication Type and Article
Category, Thematic Map of GAN-Based Synthetic Medical Data
Literature, Technical Comparison of GAN Methods, and Limitations

Table 15
Bias considerations in the review process and included studies

Bias Type Source

Description / Impact

Mitigation Strategy

Reviewer bias Review process

reviewer

« Screening and data extraction performed by a single

* Systematic search, predefined eligibility
criteria, structured extraction template

» May introduce errors or inconsistencies

Publication bias  Included studies

Methodological  Included studies

bias tion, selective reporting

* Limits generalizability

* Only peer-reviewed English-language studies included
» May exclude null/negative results

» Small or single-source datasets, lack of external valida-

» Acknowledge in synthesis and discus-
sion

* Consider during synthesis

* Highlight limitations in discussion

10
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and Future Directions. These perspectives illuminate both the current
capabilities of GANs and the critical gaps that must be addressed for
safe and effective clinical integration.

4.1. Distribution of included studies by publication
type and article category

Table 16 categorizes the 81 included studies based on publication
type and thematic focus. The majority are peer-reviewed journal articles
(n=62), including 46 original research studies and 16 conceptual works
such as reviews, frameworks, and ethical discussions. Additionally, one
peer-reviewed book was included. These serve as the foundation of the
analysis, offering validated findings on GAN architectures, evaluation
methods, and clinical applications.

Sixteen conference proceedings complement this core set,
highlighting emerging developments in generative modeling. While
some studies lack clinical validation, they represent important technical
progress and reflect the rapidly evolving nature of the field.

Two additional sources were included after a careful credibility
check: one technical industry report and one expert blog post. While
the latter two are not peer reviewed, they provide practical perspectives
that help bridge the gap between theory and real-world implementation.

In total, the dataset consists of 62 original research studies, 17
review or perspective articles (including one book), and 2 vetted non-
academic sources. This balanced mix allows for a robust and relevant
synthesis, based on peer-reviewed research while incorporating diverse
viewpoints from practice.

As shown in Figure 2, most included studies are peer reviewed,
reflecting the strong academic foundation of GAN research in healthcare.
Journal articles constitute the largest share, with 62 publications (76.5%
of the total), including 46 research articles (56.8%) and 16 review
articles (19.8%). Additionally, 1 book (1.2%) was included. These
journals span high-impact outlets such as Nature Communications,
NPJ Digital Medicine, IEEE Transactions on Medical Imaging,
Bioinformatics, Journal of Biomedical Informatics, Biophysical
Journal, Computational and Structural Biotechnology Journal, Iranian
Journal of Public Health, Preventing Chronic Disease, Frontiers
in Artificial Intelligence, The Lancet Digital Health, Kosin Medical
Journal, JMIR Research Protocols, and Journal of Medical Internet
Research, highlighting the interdisciplinary collaboration between Al
and medical science.

The conference proceedings account for 16 studies (20% of the
total), all of which are research articles from leading Al and healthcare
venues, including NeurIPS, MICCAI, CVPR, and others such as the
International Conference on Learning Representations (ICLR), ICML,
IEEE BIBM, and Proceedings on Privacy Enhancing Technologies
(PoPETs). Their presence demonstrates the active engagement of the
ML community in addressing real-world medical challenges, including
limited datasets, privacy, and annotation constraints, all of which utilize
GAN-based solutions.

The remaining two sources (2%) are industry reports or blogs,
providing additional perspective outside traditional academic publishing.

Figure 2
Distribution of publication type
Publication Sources by Type (n=81)

Other
Sources (2)

Overall, this publication pattern reveals two main trajectories in GAN
research: advancing core technical methodologies and addressing
clinical demands for reliable, interpretable, and regulatory-compliant
solutions, aligning closely with the objectives of this review to evaluate
both technical innovation and practical applicability in healthcare.

4.2. Thematic map of GAN-based synthetic medical
data literature

Figure 3 presents a thematic analysis of the included 81 studies,
highlighting established research directions and emerging trends in GAN
applications for medical data synthesis. Medical Imaging Synthesis is
the largest category with 23 studies (28%), reflecting the suitability of
GANSs for pixel-based data generation in radiology. Tabular Data and
EHR Synthesis follow with 18 studies (22%), demonstrating substantial
interest in generating structured clinical data for research and decision
support. Together, these two categories account for half of the reviewed
literature, underscoring the technical focus of the field on clinically
impactful applications.

Emerging domains, though smaller in scale, are growing in
representation: Genomics and Omics appear in 10 studies (12%),
indicating their expanding application in biological data synthesis,
while Multimodal Fusion is addressed in 7 studies (9%), representing
innovative approaches to integrating heterogeneous clinical data.
Ethical, Privacy, and Regulatory Issues are discussed in 13 studies
(16%), and Pharmaceutical and Clinical Decision Support in 4
studies (5%), indicating a focus on implementation and translational
challenges, despite these areas remaining underdeveloped relative to
technical research. Reviews and Methodological Frameworks as well
as Industry-Focused Case Studies appear in three studies each (4%),
highlighting gaps in synthesizing best practices and capturing real-
world deployment experiences.

Overall, this thematic distribution maps the current research
landscape and reveals opportunities for future work, particularly in

Table 16
Classification of included studies by source type and article category
Total by Source
Source Type Review (incl. Perspective) Research Article Other (Industry / Book) Type
Journal 16 46 1 63
Conference proceedings 16 0 16
Other (industry reports / press / blog) 0 2 2
Total by Publication Type 16 62 3 81

11
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Figure 3
Proportional distribution of references by research theme in medical Al and data science

Medical Imaging Synthesis
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Ethical, Privacy & Regulatory Issues
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Thematic Category

Pharmaceutical & Clinical Decision Support

Industry-Focused Case Studies & Tools

Reviews & Methodological Frameworks

bridging technical innovation with clinical implementation, developing
standardized evaluation frameworks, and addressing translational
challenges in healthcare.

4.3. Technical comparison of GAN methods

To evaluate the methodological landscape of GAN-based
synthetic medical data, Tables 17 and 18 summarize the key
architectures identified in this review, organized by application domain.
Table 17 focuses on GAN techniques applied to tabular EHR and
clinical datasets, highlighting commonly used evaluation metrics, key
findings, and reported strengths and limitations. Table 18 presents GAN
techniques for imaging and multi-omics data, illustrating domain-
specific performance and technical considerations.

These comparative tables provide a concise overview of the
capabilities of each model, validation approaches, and practical
constraints, facilitating identification of trends, domain-specific
strengths, and remaining gaps in clinical translation. The following
discussion interprets these trends in terms of fidelity, downstream utility,

10 15 20
Number of Papers

w4

fairness, and ethical considerations, highlighting critical observations
relevant for real-world implementation.

The comparison of GAN techniques reveals several notable
trends. Domain-specific strengths are evident: CTGAN, TVAE,
and CopulaGAN excel at tabular EHR data, preserving statistical
distributions and enabling downstream modeling, while imaging-
focused GANSs, such as CycleGAN, StyleGAN variants, and Trans-
c¢GAN, achieve high visual fidelity for cross-modality or rare disease
datasets. Hybrid architectures support multi-omics integration,
providing flexible augmentation for complex datasets.

Several objective metrics have been employed to assess algorithm
performance across these domains. For tabular datasets, MMD and
TSTR evaluate distribution similarity and downstream task utility,
respectively. For imaging applications, FID and IS quantify visual
fidelity and diversity, often complemented by dimensionality reduction
techniques such as t-SNE or PCA to visualize the overlap between
real and synthetic data. Some studies have also incorporated clinical
or expert validation, including blinded diagnostic assessments or
simulated clinical trials, to provide a real-world evaluation of synthetic

Table 17
GAN techniques for tabular EHR and clinical data

GAN Technique / Model Evaluation Metrics Key Findings / Performance Strengths / Limitations
CTGAN MMD, TSTR * Preserves categorical correlations « Effective for structured data
* High fidelity in mixed-type tabular data e Limited for imaging
» Widely adopted for clinical datasets
MedGAN / CTAB-GAN+  MMD, TSTR * Captures conditional distributions  Conditional generation improves
* Good downstream task performance realism
» May require large datasets
TVAE MMD, FID * Comparable to CTGAN on small datasets  * Effective for smaller datasets
* Preserves statistical patterns « Slightly less robust on highly
imbalanced features
CopulaGAN MMD » Strong preservation of distributional ¢ Limited handling of categorical

characteristics

MMD, TSTR, fairness
metrics

Fairness-aware GANs
(BT-GAN, FairGAN)

* Reduces demographic bias
* Maintains clinical validity

variables

» Mainly for numeric tabular data
* Fairness—utility trade-off

* Limited real-world validation

12
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Table 18
GAN techniques for imaging and multi-omics data
Application
GAN Technique / Model Domain Evaluation Metrics Key Findings / Performance Strengths / Limitations
CycleGAN Imaging FID, IS, blinded * High-quality cross-modality * Effective for paired/unpaired
(CT <> MRI) diagnostic studies synthesis translation
* Preserves anatomical structures ¢ Primarily for imaging
STNG / Trans-cGAN Imaging FID, IS * High-fidelity image synthesis * Strong visual realism
* Captures complex anatomical * Not applicable to tabular data
features * Preclinical validation only
StyleGAN / Style- Imaging / FID, IS * Generates visually realistic * High visual fidelity
GAN2-ADA rare disease images * Specialized for image-based tasks
phenotyping « Style-based latent control * Limited tabular application
Hybrid GANs (MOSA, Multi-omic, MMD, TSTR, FID * Multi-domain augmentation * Combines multiple architectures
HAGAN, EnhGAN, imaging * Preserves structural and * May require complex training

Spatial-Frequency)

frequency features

pipelines

data. Together, these metrics provide a multifaceted assessment
encompassing statistical, visual, and functional performance.

Despite these validations, clinical evaluation remains limited;
only a few studies perform blinded diagnostic assessments, trial
simulations, or downstream task evaluation, highlighting the ongoing
“bench-to-bedside” gap. While GANs generally demonstrate high
fidelity and structural realism, limitations persist in generalizability,
categorical feature handling, and dataset-specific tuning, with preclinical
evaluation predominating and no methods yet fully transitioning to
large-scale clinical trials. Fairness-aware GANs partially mitigate bias
in tabular datasets but require careful trade-offs between data utility and
demographic parity.

Moreover, regulatory pathways and ethical governance for
GAN-generated data are underdeveloped, and privacy risks, including
membership inference and linkage attacks, as well as potential misuse,
must be addressed alongside considerations of fidelity and fairness.
Integrating ethical checklists, consent frameworks, and transparency
measures will be critical for real-world translation. Overall, the
technical performance of state-of-the-art GANs is promising,
particularly for domain-specific applications; however, robust clinical
validation, standardized evaluation, and ethical safeguards remain
essential for their safe and effective deployment in healthcare research
and practice.

4.4. Limitations and future directions

This systematic review provides a comprehensive review of
GAN applications in medical data generation, but several significant
constraints still warrant attention. First, the rapid development of GAN
research means that, despite a rigorous selection process, the dataset
may not fully capture the latest architectural advancements or novel
variants that emerge after the deadline. This is an inherent challenge
in any rapidly evolving field, suggesting that continuous updates
or dynamic systematic reviews are crucial to maintain an up-to-date
understanding of the state-of-the-art.

Second, limiting research to English publications and peer-
reviewed sources may have excluded relevant studies, including null
or negative results, thus introducing potential publication bias. Future
research could mitigate this limitation by collaborating with multilingual
teams or professional translation services, thereby expanding inclusion
criteria and ensuring a more globally representative perspective.

Third, the screening and data extraction were performed by a
single reviewer, which could introduce reviewer bias due to errors or

inconsistencies. While structured extraction templates and predefined
eligibility criteria were used to mitigate this risk, future multi-reviewer
validation would further strengthen the reliability of the study.

Fourth, significant methodological heterogeneity exists across
the studies, including differences in dataset characteristics, model
architectures, and evaluation metrics, which complicates direct
comparison and synthesis of findings. Many studies relied on small or
single-source datasets, lacked external validation, or selectively reported
results, thus limiting generalizability. The lack of widely accepted
benchmarks and standardized reporting practices remains a key obstacle.
Moving forward, the development and adoption of community standards
and the sharing of datasets are essential to facilitate more consistent and
transparent assessment of GAN models in the medical field.

Fifth, despite technical advances, the majority of reviewed
studies remain at the preclinical stage. Only a small number included
preliminary clinical validation, and none have progressed to full-
scale clinical trials, highlighting a significant “bench-to-bedside” gap.
Regulatory pathways for integrating GAN-synthesized data into clinical
practice have not yet been established. Agencies such as the FDA may
require extensive validation to ensure both fidelity and patient safety,
representing a key barrier to clinical translation. Addressing these gaps
is crucial for translating synthetic data from methodological research
into safe and effective clinical applications.

Lastly, the stringent inclusion criteria prioritized methodological
quality and relevance but excluded studies without empirical GAN
applications, purely methodological papers, duplicate datasets, or
studies lacking validation metrics. While this approach ensures rigor,
it may overlook preliminary or exploratory work that has the potential
to introduce impactful innovations. Future work can incorporate more
nuanced, tiered review approach to include such early-stage research to
track emerging trends and assess their maturation over time.

5. Conclusion

This review has examined the rapidly evolving landscape of
GAN-based synthetic data generation in healthcare, highlighting
its transformative potential and the challenges that shape its current
trajectory. Evidence from imaging, tabular health records, and emerging
applications such as genomics suggests that GANs can meaningfully
augment or even substitute real-world datasets by preserving statistical
fidelity, enhancing privacy, and enabling downstream analysis where
data scarcity would otherwise hinder progress. At the same time, novel
adaptations such as CTGAN variants and fairness-aware models signal
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an ongoing shift from proof-of-concept studies toward more mature,
problem-oriented implementations.

Despite these advances, significant obstacles remain. The
predominance of single-source or small-scale datasets, along with
methodological variability in model architectures and evaluation
metrics, limits the comparability of results and the generalizability
of insights. Many reports of progress emphasize technical similarity
rather than clinical relevance, raising concerns about its translation
into real-world practical application. Ethical issues, including privacy
guarantees, fairness, and the environmental cost of training, remain
underexplored, particularly when considering deployment in sensitive
clinical settings.

Taken together, these findings underscore both the promise and
the fragility of current GAN-based approaches. To realize their potential,
future research should adopt standardized, transparent benchmarks that
extend beyond technical accuracy to include fairness, robustness, and
clinical utility. Broader collaboration across institutions and disciplines
will be critical to ensure diversity of datasets and to capture insights
that single studies cannot provide. Furthermore, integrating ethical and
regulatory considerations from the outset, rather than as afterthoughts,
will be essential for building trust and fostering adoption.

Ultimately, GANs represent more than a technical innovation;
they embody a paradigm shift in how healthcare data may be
generated, shared, and applied. Their future impact will depend not
only on advances in architectural design but also on the willingness
of the research community to embrace inclusivity, standardization, and
responsible innovation. By addressing these dimensions, GAN-based
synthetic data generation can progress from a promising research tool
to a cornerstone of equitable, scalable, and secure healthcare research
and practice.

Recommendations

To advance GAN-based synthetic medical data research, future
reviews should adopt dynamic and regularly updated literature col-
lection strategies to capture emerging developments while preserving
connections to foundational work. Broadening the scope to include
non-English and regional publications can enhance the inclusivity and
global relevance of findings. Additionally, promoting methodological
standardization in datasets, architectures, and evaluation metrics would
improve study comparability. Future syntheses should also track and
evaluate promising yet understudied GAN variants to uncover novel
directions, while fostering interdisciplinary collaboration to integrate
insights from fields such as bioinformatics and Al ethics for a more
comprehensive understanding of synthetic medical data applications.
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