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Abstract: Generative Adversarial Networks (GANs) have gained increasing attention in healthcare as a promising approach to addressing data 
scarcity, offering synthetic alternatives that support research while mitigating privacy risks. This review examines the landscape of GAN-based 
synthetic data generation in healthcare, with applications spanning medical imaging, electronic health records, genomics, and multimodal datasets. 
A systematic search guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework identified 81 
peer-reviewed studies published between 2014 and 2025, ensuring comprehensive coverage of methodological and translational developments. 
The review maps the diversity of GAN architectures employed, synthesizes evidence on evaluation strategies, and outlines ethical, privacy, and 
regulatory considerations that influence adoption. Results indicate that GANs often achieve strong fidelity and downstream utility, with emerging 
fairness-aware models addressing demographic bias. However, inconsistent validation practices, limited clinical integration, and unresolved 
ethical and governance challenges continue to hinder translation into real-world settings. Overall, the review consolidates methodological trends, 
barriers, and future directions, highlighting the potential of GANs to serve as viable tools to overcome data scarcity in healthcare research and 
practice.
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1. Introduction
The recent revolution in Artificial Intelligence (AI) has 

transformed medical diagnostics, enabling faster and more accurate 
disease prediction from multimodal healthcare datasets, such as 
medical imaging, biosignals, Electronic Health Records (EHRs), and 
genomics [1]. However, access to high-quality, diverse data remains 
limited—especially for rare conditions and specialized clinical use—
and is further restricted by data protection regulations such as the Health 
Insurance Portability and Accountability Act (HIPAA) and General 
Data Protection Regulation (GDPR), alongside rising cybersecurity 
risks [2, 3].

Earlier efforts to address data scarcity, including oversampling 
methods such as the Synthetic Minority Oversampling Technique 
(SMOTE) and generative models, such as Variational AutoEncoders 
(VAEs), provided partial solutions but often failed to capture complex, 

high-dimensional feature relationships, produced unrealistic samples, 
or lacked formal privacy safeguards [4, 5].

Generative Adversarial Networks (GANs) have emerged as 
a promising alternative, utilizing an adversarial process between a 
generator and a discriminator to create high-fidelity privacy-preserving 
datasets that closely mirror real clinical data [6]. These models support 
dataset augmentation, class balancing, rare disease research, and 
multimodal data integration while minimizing patient-data exposure. 
Evaluation of GAN-generated data typically benchmarks performance 
against real datasets or competing models using metrics of fidelity, 
utility, privacy, and clinical applicability [7].

Against this backdrop, this study examines the current state of 
GAN-based synthetic data generation in healthcare and its effectiveness 
in mitigating data scarcity. It reviews GAN architectures, evaluation 
approaches, ethical and regulatory considerations, and translational 
barriers to real-world adoption.

2. Literature Review
While synthetic data has been available for some time, its 

benefits have only recently garnered substantial recognition [8]. This 
growing interest stems from identified limitations in traditional privacy-
preserving methods. To contextualize the role of GANs, we first review 
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prior approaches to medical data handling, grouped into distinct 
methodological categories.

1) Privacy-Preserving Approaches
Data anonymization presents significant challenges, including 

high re-identification risks through external data linkages, considerable 
utility loss for Machine Learning (ML) applications, and difficulties 
preserving rare conditions or complex variable relationships [9]. 
Federated learning, while maintaining data locality, contends 
with privacy vulnerabilities in gradient exchanges, infrastructure 
complexities, and limitations in producing realistic datasets for 
development and testing purposes [10].

2) Real-World Data and Early Resources
Real-World Data (RWD) [11] has long been used in clinical 

research and health outcome analysis. However, challenges in data 
quality, standardization, and generalizability arise due to heterogeneity 
and missing values. Simulation-Based Training (SBT) has contributed 
to clinical education, while open datasets (e.g., Medical Information 
Mart for Intensive Care [MIMIC], PhysioNet) have provided 
benchmarks for research. Yet these approaches face high costs, limited 
realism, and issues of scope and representativeness [12, 13]. Similarly, 
data augmentation techniques enhanced ML pipelines, particularly for 
imaging tasks, but remain limited for tabular and structured data [14].

3) Emergence of Synthetic Data
These constraints have positioned synthetic data as a viable 

alternative that balances privacy protection with the need for accessible, 
diverse datasets to support research and innovation [15].

Table 1 illustrates the timeline of the evolution of medical data 
methods, highlighting the progression toward the adoption of synthetic 
data.

4) Generative Adversarial Networks
Introduced by Ian Goodfellow et al. [16] in 2014, GANs represent 

a pivotal advance in generative modeling. This breakthrough addressed 
two critical healthcare challenges: data scarcity and patient privacy. 
Unlike earlier approaches such as VAEs [17], GANs demonstrated 
superior performance in generating high-quality synthetic data while 

preserving confidentiality capabilities. These strengths are particularly 
valuable in medicine, where complex data and strict privacy 
requirements create unique research barriers.

2.1. Applications of GANs in medical data synthesis
GAN-based applications in medicine can be grouped into seven 

categories reflecting different data modalities and clinical goals: 
(i) medical imaging, (ii) tabular clinical data, (iii) genomics, (iv) 
multimodal fusion, (v) pharmaceutical research and drug discovery, (vi) 
clinical decision support, and (vii) privacy-preserving infrastructures.

2.1.1. Medical imaging
GANs have become a powerful tool in medical imaging, 

addressing challenges in data augmentation, modality translation, 
and image enhancement. They enable the generation and refinement 
of imaging data to compensate for limited annotations and improve 
diagnostic accuracy. A notable example is [18], which used CycleGAN 
to translate chromatography (CT) to magnetic resonance imaging 
(MRI) scans while preserving anatomical structures—valuable given 
the superior soft-tissue contrast of MRI.

Their diagnostic potential is well established. Study [19] reviewed 
their use in enhancement, modality conversion, and dataset expansion, 
showing consistent gains in image quality, noise reduction, and task 
performance. Recent advances include a semi-supervised sequential 
GAN by [20], which achieved superior cross-modality translation for 
both paired and unpaired data, preserving anatomical and modality-
specific features.

Further innovations extend the utility of GANs. Study [21] 
introduced a model that synthesizes high-fidelity images from limited 
datasets using specialized convolutional modules for multimodality 
augmentation. Similarly, [22] developed a low-noise discriminator 
(LND) for image denoising that improved peak signal-to-noise ratio by 
9.75% and reduced processing time, demonstrating real-time clinical 
potential. Collectively, these works demonstrate how GANs enhance 
imaging quality, support cross-modality translation, and improve 
patient safety by reducing radiation exposure.

2

Category Method Applications Limitations
Traditional 
privacy-preserving 
approaches

Data anonymization Protects patient identity in datasets • High re-identification risk
• Reduced ML utility
• Difficulties preserving rare conditions or 
complex relationships

Federated Learning (FL) Collaborative model training across 
distributed devices/institutions 
without sharing raw data

•Vulnerable to privacy leakage via gradients 
• Requires additional defenses to ensure data 
privacy

Early data resources 
and augmentation 
methods

Real-World Data (RWD) Used in clinical research and health 
outcome analysis

• Challenges in data quality, standardization, 
and generalizability due to heterogeneity and 
missing data

Simulation-Based Training (SBT) Supports clinical education and skill 
development

• High costs, limited realism, and the need for 
specialized faculty training

Open datasets 
(e.g., MIMIC, PhysioNet)

Provide benchmarks for research 
and model validation

• Limited scope, potential outdatedness, and the 
lack of representativeness

Data augmentation techniques Expand datasets for ML training, 
particularly imaging

• Primarily effective for images; limited 
applicability to tabular or structured data

Emergence of syn-
thetic data

Synthetic data Enables AI development, software 
testing, and research without 
compromising patient privacy

• Emerging best practices
• Ongoing need for validation to ensure realism 
and utility

Table 1
Evolution of medical data methods
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2.1.2. Tabular data
GANs are also widely applied to structured tabular data, 

including EHRs, clinical trials, and demographic records. This domain 
emphasizes specialized architectures designed to handle mixed data 
types, non-Gaussian distributions, and privacy constraints.

Conditional Tabular Generative Adversarial Network (CTGAN) 
[23] introduced conditional generation with non-uniform sampling, 
which effectively modeled continuous and categorical variables, 
producing realistic privacy-preserving synthetic patient records. 
Building on this, [24] presented an ML-based approach for generating 
realistic healthcare datasets suitable for validating clinical applications 
while ensuring privacy.

Enhanced models continue to emerge. CTAB-GAN+ [25] 
effectively manages mixed data and imbalanced class distributions, 
improving both quality and usability for robust AI development. An 
optimized Conditional GAN (cGAN) proposed by [26] generates 
synthetic cardiovascular data for mobile-based care, maintaining 
statistical accuracy and confidentiality.

MedGAN, initially designed for EHR generation, has also 
evolved. Study [27] demonstrated its capacity to reproduce feature 
distributions while enabling secure data sharing, reinforcing its 
relevance for privacy-sensitive medical research and inter-institutional 
collaboration.

2.1.3. Genomics
In genomics, GANs enable realistic synthesis of DNA, gene 

expression, and single-cell RNA sequencing (scRNA-seq) data, 
advancing precision medicine and integrative omics. Study [28] 
simulated artificial human genomes to improve genotype imputation for 
rare alleles, enhancing population-level analyses, while [29] achieved 
high statistical similarity in synthetic cat genome sequences.

Expanding into regulatory design, ExpressionGAN [30] 
generated DNA sequences inducing targeted mRNA expression, often 
surpassing natural controls, demonstrating potential in gene regulation 
research. For gene expression modeling, [31] proposed the Single-Cell 
Generative Adversarial Network (scGAN) and Conditional Single-Cell 
Generative Adversarial Network (cscGAN) for realistic scRNA-seq 
data generation, thereby improving marker gene detection and cell-type 
classification. MG-GAN [32] further enhanced cancer classification 
through data augmentation, and omicsGAN [33] integrated multi-omics 
datasets to improve cancer outcome prediction.

To address scRNA-seq sparsity and noise, [34] introduced 
scIGANs for accurate imputation while preserving gene–gene 
and cell–cell relationships. GroundGAN [35] incorporated gene 
regulatory networks for biologically grounded synthesis, and scGFT 
[36] introduced a train-free, Fourier-based architecture preserving 
intrinsic transcriptomic features. These works collectively demonstrate 
the growing role of GANs in generating realistic privacy-preserving 
genomic data for clinical and functional genomics research.

2.1.4. Multimodal fusion
Beyond single modalities, GANs enable the synthesis and 

integration of imaging, genomics, and clinical text, enhancing predictive 
modeling and survival analysis.

MedFusionGAN [37] fuses three-dimensional (3D) T1-weighted 
MRI and CT scans to improve brain tumor analysis and protocol 
generalization. cGANs [38] integrate imaging with genomic data for 
breast cancer mutation prediction, achieving superior Fréchet Inception 
Distance (FID) scores and higher accuracy when combined with real 
data.

The Mutual-Guided Cross-Modality Transformer (MGCT) 
[39] combines histopathology and genomic data to model tumor 
microenvironments, improving multi-cancer survival prediction. 
Similarly, HEALNet [40] integrates whole slide images with multi-

omics data while managing missing modalities, achieving state-of-the-
art survival prediction.

Further multimodal innovations include a GAN framework 
[41] that generates multi-label discrete EHRs, modeling longitudinal 
trajectories with strong privacy preservation. Study [42] synthesized 
radiology reports by combining medical images, clinical knowledge, 
and text, improving diagnostic report generation.

2.1.5. Pharmaceutical research and drug discovery
The pharmaceutical sector is increasingly using GAN-generated 

synthetic data to accelerate research while maintaining privacy 
compliance. Syntegra, in partnership with the Institute for Health 
Metrics, developed a synthetic data platform replicating over seven 
million de-identified EHRs [43]. This dataset supports real-world 
evidence studies and health economics research without exposing 
sensitive data. Likewise, Electronic Medical Record Bots (EMRBots) 
[44] demonstrated the practical use of synthetic EMRs in drug discovery 
and development.

2.1.6. Clinical decision support systems 
GANs also strengthen clinical decision support by generating 

synthetic records and medical images for model training and validation. 
MDClone’s synthetic data engine [45] enabled research on spine surgery 
outcomes by generating statistically equivalent patient records, thereby 
supporting risk analysis without using protected health information. In 
neuroimaging, 3D-StyleGAN [46] synthesizes high-resolution brain 
MRI scans, thereby expanding diagnostic datasets and improving 
model robustness.

2.1.7. Privacy-preserving data infrastructure
GANs contribute to privacy-preserving data infrastructures 

that enable secure, compliant data exchange and multi-institutional 
collaboration. HealthVerity [47] supported the National Cancer 
Institute’s COVID-19 Real-World Data Infrastructure by integrating 
synthetic medical claims and laboratory and vaccination records using 
Privacy-Preserving Record Linkage, facilitating large-scale AI research 
while maintaining compliance. Similarly, ADS-GAN [48] demonstrates 
accurate EHR synthesis under complete anonymity, supporting privacy-
conscious data sharing and large-scale analytics.

Table 2 summarizes these GAN applications across medical data 
domains, highlighting their key contributions, study years, and research 
impact.

2.2. Types of GANs used for medical data synthesis
Since the seminal work of Goodfellow et al. (2014) introduced 

the GAN framework, there has been substantial evolution in GAN 
architectures specifically designed for medical data synthesis. The study 
categorizes these models into three groups: (i) foundational GANs that 
established training stability and basic architectures, (ii) recent variants 
optimized for high-fidelity imaging and structured tabular synthesis, 
and (iii) hybrid models that combine multiple mechanisms to address 
the heterogeneity of medical data.

Although the original GAN remains the sole peer-reviewed model 
from the foundational 2014–2015 period, early influential preprints, 
such as the Conditional GAN (cGAN) and Deep Convolutional GAN 
(DCGAN), rapidly disseminated architectural innovations that were 
widely adopted in experimental settings.

However, it was not until 2016 that the field witnessed a surge 
of peer-reviewed advancements addressing key challenges in GAN 
training, namely instability, mode collapse, and limited interpretability. 
Although foundational models such as cGAN and DCGAN appeared 
earlier in the form of preprints or conference proceedings, to the best of 
the authors’ knowledge, peer-reviewed applications relevant to medical 

3
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data synthesis were limited or undocumented during 2014–2015.
Table 3 summarizes foundational GAN architectures, 

highlighting their main contributions and representative medical 
use cases. These models addressed early challenges such as training 
instability and mode collapse, enabling initial medical applications that 
include synthetic echocardiographs (ECGs) and MRI augmentation. For 
instance, InfoGAN [49] introduced disentangled latent representations, 
facilitating interpretable phenotype synthesis by controlling semantic 
features in the latent space. The DCGAN incorporated convolutional 
layers that significantly enhanced the spatial coherence and visual 
fidelity of synthetic medical images, such as brain MRI scans [50]. 
Meanwhile, WGAN [51] and its variant WGAN-GP [52] improved 
convergence behavior by replacing the Jensen-Shannon divergence 
with the Earth-Mover (Wasserstein) distance and introducing gradient 
penalties, which proved critical for stable training in biomedical 
imaging contexts. Spectral Normalization GAN (SNGAN) [53] further 
advanced stability by constraining the spectral norm of discriminator 

weights, leading to improved convergence and higher-quality synthetic 
images. Additionally, cGANs [54] enabled label- or modality-
conditioned generation, expanding applications to multi-contrast MRI 
synthesis and EHR generation conditioned on clinical labels.

Foundational GANs established the baseline for adversarial 
training and image synthesis, but their limited control over feature 
conditioning and challenges with structured data constrained broader 
clinical adoption. Models such as DCGAN and cGAN were pivotal 
for early medical imaging and label-conditioned EHR generation, 
respectively, highlighting how architectural modifications align with 
domain-specific requirements.

Building on foundational GANs, recent variants have advanced 
fidelity, diversity, and privacy preservation, with applications spanning 
imaging, EHRs, and genomics. StyleGAN [55] and its improved 
variants, including StyleGAN2-ADA [56], introduced style-based 
latent control and data-efficient augmentation techniques, enabling 
highly realistic facial phenotyping and modeling of rare diseases with 
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Model Year Main Contribution Medical Use Case
GAN 2014 Introduced adversarial training framework Baseline synthetic ECGs, MRIs
InfoGAN 2016 Disentangled latent representations for interpretability Phenotypic feature synthesis
DCGAN 2017 Convolutional layers for improved image coherence Context-aware brain MRI synthesis
WGAN 2017 Earth-Mover distance for stable training Histopathological image synthesis
WGAN-GP 2017 Gradient penalty for improved convergence Brain MRI augmentation
SNGAN 2018 Spectral normalization to stabilize training Medical image synthesis
cGAN 2019 Label- or modality-conditioned generation Label-conditioned EHR generation

Table 3
Foundational GAN variants in medical data synthesis

Category Application/Study Year(s) Impact/Notes
Medical imaging CycleGAN (CT→MRI), 

semi-supervised sequential GAN, 
high-fidelity convolutional GAN

2018–2022 • Cross-modality synthesis and improved paired/unpaired 
translation
• Preserves anatomical structures and features
• Augments limited datasets across modalities

Tabular data (EHR, 
clinical)

LND denoising GAN, CTGAN / 
MedGAN / CTAB-GAN+, cGAN 
for mobile CV care

2018–2022 • Handles mixed/conditional data
• Preserves statistical distributions and privacy
• Enhances downstream utility (e.g., cardiovascular patient 
data)
• +9.75% PSNR, reduces processing time

Genomics GAN-based artificial genomes / cat 
genome synthesis, ExpressionGAN, 
scGAN / cscGAN / MG-GAN 
/ omicsGAN, scIGANs / 
GroundGAN / scGFT

2019–2025 • Rare allele imputation, population-level studies
• Synthetic regulatory DNA for targeted mRNA expression
• Single-cell and multi-omics data synthesis
• Preserves gene-gene/cell-cell relationships, improves 
downstream analysis

Multimodal data 
integration

MedFusionGAN, cGAN 
imaging+genomics, MGCT, 
HEALNet, multi-label EHR GAN, 
context-enhanced radiology GAN

2021–2023 • Cross-modality and multi-omics integration
• Enhances diagnosis, mutation prediction, survival 
prediction, and trajectory modeling

Pharmaceutical research 
& drug discovery

Syntegra, EMRBots 2022 • Large-scale synthetic human/experimental records
• Accelerates real-world evidence and drug research

Clinical decision 
support systems

MDClone, 3D-StyleGAN 2022–2023 • Synthetic patient records and MRI
• Enhances outcome modeling and diagnostic tools

Privacy-preserving data 
infrastructure

HealthVerity, ADS-GAN 2024 • Secure synthetic EHR sharing
• Regulatory compliant, supports multi-institution 
collaboration

Table 2
GANs applications in medical data synthesis
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improved data efficiency. For structured data, tabular GANs, such 
as CTGAN [57], have become essential for synthesizing complex, 
heterogeneous datasets, such as EHRs and genomics, addressing the 
challenges posed by mixed data types and class imbalances. Privacy-
preserving GAN [58] variants that incorporate differential privacy 
mechanisms have also emerged, facilitating the secure generation 
of synthetic medical data while maintaining patient confidentiality. 
Recently, Transformer-based GANs such as Trans-cGAN [59] have 
incorporated attention mechanisms and U-Net architectures to enhance 
cross-modality medical image synthesis, effectively capturing intricate 
anatomical details and improving clinical relevance. 

Table 4 summarizes these modern GAN architectures and 
highlights their primary innovations and specific applications in 
medical data synthesis.

Recent variants demonstrate targeted optimizations: StyleGAN 
and StyleGAN2-ADA excel in high-fidelity image synthesis due to 
style-based latent control, while CTGAN dominates tabular data 
synthesis because it effectively handles mixed data types and class 
imbalances. Privacy-preserving GANs and Transformer-based models 
further extend applicability to sensitive EHRs and cross-modality 
imaging, reflecting the growing emphasis on clinical relevance and 
regulatory compliance.

While Section 2.1 mapped the diverse applications of GANs 
across medical domains, their success fundamentally depends on 
architectural innovations that address stability, interpretability, and 
clinical utility. This section surveys the evolution of GAN variants that 
underpin these applications. Some models, such as cGAN or CTGAN, 
appear across both application- and architecture-focused discussions; 
here we emphasize their methodological innovations rather than 
specific clinical deployments.

Hybrid GAN architectures have emerged to better capture the 
complex heterogeneity of medical data by combining complementary 
modeling strategies. MOSA [60] utilizes multi-omic synthetic data 
augmentation to study drug resistance in cancer. Hybrid GANs 
[61] integrate spatial and frequency domain features to synthesize 
histopathology images with both global structure and fine texture. 
EnhGAN [62] leverages conditional GANs with contrast enhancement 
to improve tumor subregion visibility and segmentation in brain MRI. 
HAGAN [63] employs hybrid attention mechanisms and hierarchical 
discriminators to generate anatomically consistent, realistic medical 
images. Recent models continue to integrate domain-specific strategies, 
such as spatial-frequency fusion and attention mechanisms, to enhance 
realism and clinical utility in challenging datasets. 

Table 5 outlines these hybrid models, illustrating their specialized 
contributions and application domains. 

Hybrid architectures combine complementary mechanisms to 
address heterogeneous and complex medical datasets. For instance, 
MOSA focuses on multi-omics data integration, while HAGAN and 
EnhGAN enhance anatomical consistency and segmentation accuracy in 
imaging. These design choices illustrate how domain-specific challenges 
drive the evolution toward specialized, high-utility GAN variants.

In summary, these developments chart a clear evolution in 
generative AI for medicine: a shift from general-purpose frameworks 
to specialized architectures fine-tuned for the complexities of medical 
imaging, genomics, and clinical records. This progression highlights 
the field’s focused response to paramount challenges, including model 
stability, interpretability, data heterogeneity, and, most critically, 
clinical relevance. The outcome of this specialization is the ability to 
generate highly realistic and trustworthy synthetic datasets. As a result, 
GANs have matured into essential tools that not only augment data for 
training robust AI models but also protect patient privacy and facilitate 
groundbreaking research into rare and complex diseases.

2.3. Types of GANs validation used for medical data 
synthesis

Evaluating the quality and utility of GAN-generated medical 
data is essential to determine whether it can effectively substitute or 
supplement real-world datasets. Validation ensures that synthetic 
data not only appears realistic but also replicates the statistical, 
structural, and clinically relevant properties of original data. While 
visual realism is valuable, rigorous technical and clinical evaluations 
are required to verify performance in downstream tasks. Broadly, 
validation approaches fall into two categories: (i) technical validation, 
emphasizing quantitative and algorithmic measures (e.g., distributional 
similarity, feature fidelity), and (ii) clinical validation, focusing on 
usability, expert review, and diagnostic performance.

2.3.1. Technical validation
Researchers assess synthetic data using quantitative metrics (e.g., 

FID, Inception Score [IS]), model-based testing (e.g., Train on Synthetic, 
Test on Real [TSTR]), and visualization tools (e.g., t-SNE, histograms). 
These methods evaluate alignment between real and synthetic data in 
terms of distribution, diversity, and feature representation.

FID [64] and IS [65] are common in medical imaging, quantifying 
perceptual realism and diversity through pretrained feature embeddings. 
They capture subtle distributional differences but depend on ImageNet-
trained encoders, which may not fully represent clinical features. For 
structured data, the Maximum Mean Discrepancy (MMD) [66] directly 
compares statistical distributions and is model agnostic, although 
sensitive to kernel selection and dimensionality. TSTR [67] assesses 
predictive utility by measuring the performance of models trained on 
synthetic data on real data, although outcomes may conflate model bias 
with data quality. Dimensionality reduction methods such as t-SNE and 
PCA [68] offer qualitative visualization of distributional overlap but are 
parameter dependent and unsuitable for standalone validation.

Each technique highlights a different notion of quality: FID and 
IS capture perceptual fidelity, MMD measures structural similarity, 
TSTR reflects predictive value, and visualization aids interpretability. 
Their complementarity suggests that robust evaluation requires a 
combination of multiple statistical, task-based, and visualization 
approaches. Common techniques are summarized in Table 6. 
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Model Year Main Contribution Medical Use Case
StyleGAN 2019 Style-based latent control Facial phenotyping in rare diseases
StyleGAN2-ADA 2020 Data-efficient augmentation Rare disease modeling
CTGAN 2019 Handling mixed data types and imbalances Synthetic EHR tables
cGAN with DP 2023 Privacy-preserving synthetic data generation EHRs
Trans-cGAN 2023 Transformer–U-Net hybrid for image synthesis Cross-modality MRI generation

Table 4
Recent GAN variants for high-fidelity and structured medical data synthesis



Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

2.3.2. Clinical validation
Clinical validation ensures that synthetic data preserves medically 

relevant features and remains suitable for real-world use. It involves 
comparing the characteristics and outcomes of synthetic datasets 
against real clinical data to confirm that key patterns, distributions, and 
relationships are retained. This step is essential for maintaining data 
integrity for applications such as disease modeling, diagnostic support, 
and epidemiological forecasting.

Several complementary methods address different aspects of 
clinical validity. Statistical validation [69] compares disease trajectories, 
comorbidity patterns, and visit distributions between real and synthetic 
EHRs, confirming temporal and cohort-level fidelity. Prospective 
clinical trial simulations [70] model treatment pathways and outcomes 
but rely on assumptions about synthetic patient responses. Downstream 
task performance [71] tests diagnostic or predictive models trained on 
synthetic data, although results are task dependent. Blinded diagnostic 
studies [72] provide strong perceptual validation but are resource 
intensive and limited in scale. Clinical usability studies [73] evaluate 
practical integration into workflows, emphasizing operational feasibility 
rather than statistical accuracy.

These approaches form a multi-layered validation framework: 
statistical and trial-based analyses ensure baseline clinical realism, task-
based testing demonstrates utility, and expert-in-the-loop evaluations 
confirm real-world relevance. As summarized in Table 7, this combined 
evidence supports the reliability and translational potential of synthetic 
medical data while upholding privacy protections.

2.4. Challenges, limitations, and ethical considerations
2.4.1. Privacy risks and re-identification 

Although GAN-generated medical datasets are designed to be 
privacy preserving, they remain susceptible to adversarial attacks. 
When models are overfitted or training data are scarce, synthetic records 
may inadvertently replicate real individuals, leading to the leakage of 

sensitive information. Membership inference attacks have shown that 
adversaries can determine whether a particular record contributed to 
model training, especially when contrastive learning enhances attack 
precision [74].

Beyond membership inference, attribute inference and linkage 
attacks exploit correlations to reconstruct hidden traits or re-identify 
individuals by matching synthetic entries to real records [75, 76]. 
Similar vulnerabilities have been demonstrated in image-based GANs, 
where discriminators or black-box access can reveal training set 
membership, showing that risks extend beyond EHRs to other medical 
data modalities [77].

Ultimately, synthetic data generation involves a trade-off between 
utility and privacy. Techniques such as differential privacy can mitigate 
re-identification but often reduce data fidelity in high-dimensional 
healthcare settings. Table 8 summarizes key adversarial attack types 
and their implications for GAN-based medical data.

2.4.2. Bias amplification and fairness 
Generative models may inadvertently amplify biases present 

in training data, posing an ongoing challenge for synthetic medical 
data. To address this, the Bias-Transforming GAN (BT-GAN) applies 
fairness constraints during generation to rebalance demographic and 
outcome disparities, such as unequal disease prevalence across gender 
or racial groups, while maintaining clinical validity [78].

In parallel, FairGAN promotes fairness by aligning distributions 
of protected attributes (e.g., race, gender), ensuring downstream 
classifiers trained on synthetic data perform equitably [79]. While 
FairGAN provides a general approach, BT-GAN adapts this concept for 
healthcare, preserving subgroup densities and clinical fidelity essential 
to medical analysis.

These models exemplify the tension between enforcing fairness 
and preserving data utility. Fairness-aware frameworks such as BT-
GAN and FairGAN demonstrate that equity and realism can coexist, 
but achieving this balance requires careful optimization of fairness 

6

Metric / Method Purpose Example Use
Fréchet Inception Distance (FID) Measures distributional similarity between real and 

synthetic images using deep feature embeddings
Evaluated synthetic medical images 
across various modalities

Inception Score (IS) Assesses the quality and diversity of generated images 
based on classification confidence

Applied to synthetic chest X-rays and 
dermoscopy images

Maximum Mean Discrepancy 
(MMD)

Measures the distance between distributions of real and 
synthetic data, applicable to both images and tabular 
data

Used in evaluating EHR tabular GANs 
such as CTGAN

Train on Synthetic, Test on Real 
(TSTR)

Evaluates how well models trained on synthetic data 
generalize to real data

Applied in synthetic EHR and genomics 
research

Dimensionality Reduction 
Visualization (e.g., t-SNE, PCA)

Visually assesses the overlap between real and synthetic 
data distributions

Used to evaluate structural similarity in 
synthetic longitudinal EHR datasets

Table 6
Technical validation on synthetic dataset

Model Year Main Contribution Medical Use Case
MOSA 2024 Multi-omic synthetic data augmentation Cancer research, drug resistance
HAGAN 2024 Hybrid attention and hierarchical discriminator Medical image synthesis
Enhancement GAN (EnhGAN) 2025 Conditional GAN with contrast enhancement for 

segmentation
Brain tumor MRI synthesis and 
segmentation

Hybrid GAN (Spatial-Frequency) 2025 Fusion of spatial and frequency domain features Histopathological image synthesis

Table 5
Hybrid GAN architectures for medical data synthesis
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constraints within domain-specific limits. Table 9 summarizes the 
respective strategies, strengths, and applications of the models.

2.4.3. Data quality and fidelity 
Ensuring that synthetic medical data adequately replicates the  

complexity, unpredictability, and subtle pathological aspects of real-
world datasets remains a considerable task. Study [80] highlighted the 
trade-off between fidelity, accurately reflecting real data, and diversity, 
maintaining variability to prevent mode collapse and overfitting. Their 
GAN framework for retinal image synthesis addressed these issues by 
enhancing both visual quality and representational diversity, thereby 
improving trust in downstream diagnostic models.

Building on this, [81] proposed the Vessel and Style Guided GAN 
(VSG-GAN), which separates retinal image generation into vascular 
structure and background style components. Using style transformation 
and GAN inversion, VSG-GAN produces retinal images with diverse 
morphological patterns and superior realism across evaluation metrics.

Similarly, [82] reviewed synthetic data generation across 
healthcare domains, emphasizing the persistent challenge of maintaining 
fidelity and diversity in complex datasets. Robust GAN architectures 
must preserve fine pathological details while capturing real-world 
variability to ensure reliability and ethical deployment in clinical 
research and decision support. Table 10 summarizes representative 
models, their objectives, and comparative strengths and limitations.
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Attack Type Description Example / Context
• Membership inference 
• Limitations of 
differential privacy

• Determines if a specific real record was used in training 
• Exploits statistical similarity between real and synthetic samples
• DP reduces privacy risks but significantly degrades fidelity in 
high-dimensional healthcare data

Explicitly demonstrated against synthetic 
EHRs, enhanced by contrastive learning; 
Trade-off between data utility and privacy 
protection 

Attribute inference • Predicts unknown sensitive attributes from partially known traits Attackers infer missing patient features 
(e.g., disease status) from correlations.

Linkage attacks • Matches synthetic entries to real individuals using auxiliary 
datasets

Even without direct mapping, partial 
re-identification is possible.

Cross-domain inference • GAN discriminators/black-box access used for training set 
membership detection

Image-based GANs (no explicit identity 
labels) are shown to leak membership 
info.

Table 8
Re-identification and privacy threats in synthetic healthcare data

Model Key Strategy Remarks (Strengths and Limitations) Application Context
BT-GAN Bias-transforming constraints 

on demographic/outcome 
variables

• Reduces amplification of existing health data biases 
and preserves clinical validity
• Requires careful tuning; fairness
• Utility trade-off remains

Synthetic health datasets (e.g., 
disease prevalence across subgroups)

FairGAN Adversarial fairness constraints 
enforcing parity in protected 
attributes

• Balances sensitive attributes (race, gender) during 
generation while maintaining data utility
• Evaluated mainly on general tabular datasets, 
limited direct healthcare tests

• General tabular data
•Adaptable to medical contexts

Table 9
Fairness-aware GAN models for synthetic medical data

Method Purpose Example Use
Hierarchical Autoregressive 
Language mOdel (HALO) for 
Longitudinal EHR Synthesis

To generate and validate high-dimensional, 
longitudinal synthetic EHRs that preserve 
clinical and temporal dependencies while 
maintaining privacy.

HALO-generated synthetic EHRs were compared 
with real patient data for disease prevalence and 
treatment trajectories, showing close alignment 
and predictive parity (AUC ≈ 0.94).

Prospective Clinical Trial Simulation The use of synthetic patient populations to 
simulate clinical trials for drug safety and 
efficacy predictions.

Synthetic oncology patient cohorts are used to 
model trial outcomes and optimize study design 
before real-world trials.

Downstream Task Performance Tests whether synthetic data supports clinical 
model training (e.g., segmentation, diagnosis).

GAN-generated CT scans evaluated for lung 
cancer detection accuracy.

Blinded Diagnostic Studies Physicians diagnose cases from real and 
synthetic data to assess indistinguishability.

Used in validating CycleGAN-based 
cross-modality synthesis (e.g., CT-MRI).

Clinical Usability Studies Assessment of synthetic data for medical 
education, software testing, or decision support.

Synthetic patient records are used in EMR system 
simulations or student training.

Table 7
Clinical validation on synthetic dataset
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2.4.4. Ethical misuse and accountability 
Study [83] highlights the growing risk of ethical misuse as 

generative AI becomes more accessible in clinical and research contexts. 
Without standardized accountability mechanisms, synthetic data may 
be misused, for example, in misleading publications, unauthorized 
data augmentation, or bypassing regulatory oversight. The authors 
call for clear ethical boundaries and institutional oversight to ensure 
transparency in how synthetic data are generated, validated, and 
applied, emphasizing traceability, consent, and shared responsibility 
among developers, clinicians, and policymakers.

Similarly, [84] identifies ethical vulnerabilities in AI healthcare, 
such as data breaches, misuse of sensitive information, and unregulated 
commercialization, underscoring the need for robust governance 
frameworks. Recent studies further emphasize transparency, consent, 
and regulatory compliance as essential pillars of responsible AI. Study 
[85] advocates structured ethical frameworks for AI deployment, [86] 
explores the ethical–legal implications of consent and privacy, and [87] 
stresses institutional oversight and traceability to prevent misuse.

Table 11 summarizes major ethical challenges and best practices 
in synthetic medical data governance.

2.4.5. Toward unified ethical governance 
Growing concerns over privacy, bias, and data fidelity have 

underscored the need for comprehensive ethical governance frameworks 
in synthetic medical data development. Study [88] introduces an ethical 
checklist for generative AI in healthcare, providing a practical guide 
for responsible model design and deployment, including GANs. The 
framework addresses interconnected risks such as privacy violations, 

algorithmic bias, data fidelity loss, and lack of transparency, issues 
which are particularly critical when synthetic data influence diagnostic 
or therapeutic decisions. It emphasizes governance grounded in justice, 
accountability, and explainability, alongside technical robustness to 
maintain patient trust and uphold medical ethics.

In alignment, [89] advocates integrating ethical values with 
technical rigor, while [90] proposes a co-designed governance model 
tailored to healthcare institutions, enhancing stakeholder collaboration 
and real-world oversight. Study [91] further highlights the importance 
of secure infrastructure, strong data governance, and ethical guidelines 
for responsible use of AI. Collectively, these studies reinforce the need 
to establish a unified oversight mechanism to protect patient trust and 
align synthetic data practices with core medical principles. Table 12 
summarizes notable contributions and key takeaways in this area.

3. Methodology
This systematic review was conducted in accordance with the 

PRISMA 2020 guidelines. The review question was formulated using the 
PECO (P Population, E Exposure, C Comparator, O Outcome) framework 
to ensure transparency and reproducibility. Table 13 summarizes the key 
components of the PECO framework applied in this study.

3.1. Eligibility criteria
Eligibility criteria were defined to operationalize the PECO 

framework into practical rules for study selection. Studies were 
included or excluded according to the criteria summarized in Table 14.
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Method / Model Objective / Outcome Remarks (Strengths & Limitations)
GAN framework 
for retinal images 

• Improve fidelity and diversity in synthetic 
medical images
• Retinal image synthesis balancing realism and 
variability

• Preserves visual quality and diversity
• Reduces mode collapse
• May require careful tuning
• Only demonstrated in the retinal domain

VSG-GAN • Decouple vascular and background features to 
enhance diversity and fidelity
• Retinal images with varied morphology

• Generates more realistic and morphologically diverse images
• Style-based control
• Specialized retinal images
• May not generalize to other modalities

Review of synthetic 
data in healthcare 

• Assess fidelity/diversity challenges across 
datasets
• Broad healthcare applications

• Highlights common pitfalls
• Informs robust GAN design
• Conceptual only, does not provide implementation-level solutions

Table 10
Fidelity and diversity in GAN-generated medical data

Ethical Issue Description Example / Implication Recommended Mitigation
Misuse of 
synthetic data

Synthetic medical images or EHRs 
used in misleading publications or 
unauthorized augmentation

Using GAN-generated CT scans in 
studies without disclosing synthetic 
origin

Implement clear usage guidelines and 
disclosure policies

Lack of 
accountability

No standardized oversight for 
synthetic data generation and 
application

Circumventing regulatory requirements 
or bypassing ethical review

Establish institutional oversight and 
shared responsibility among developers, 
clinicians, and policymakers

Consent & 
privacy gaps

Patients may not consent to 
synthetic use of their data, and 
privacy risks remain

Using synthetic data derived from 
sensitive EHRs without informed 
consent

Integrate consent procedures and 
privacy safeguards

Traceability & 
transparency

Difficulty tracking synthetic outputs 
and their origin

Difficulty auditing or validating 
synthetic datasets in clinical pipelines

Maintain provenance records, logging 
generation process, and versioning

Table 11
Ethical issues and recommended mitigations in synthetic medical data
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3.2. Search strategy
A comprehensive literature search was conducted to identify 

studies on GAN-based synthetic data generation in healthcare. To 
capture both biomedical and computer science perspectives, we 
searched PubMed, Scopus, Web of Science, and IEEE Xplore, covering 
publications from January 2014 to June 2025. While the primary 
focus of this review is on recent developments from 2020 onwards, 
studies published from 2014 to 2019 were also included to illustrate the 
evolution of GAN applications in healthcare. Searches were limited to 
English-language peer-reviewed articles and conference proceedings.

The selected databases reflect the dual publication patterns in this 
field. PubMed ensured coverage of medical and life science journals, 
while Scopus and Web of Science provided multidisciplinary indexing 
of high-impact outlets, including Nature Communications, NPJ Digital 

Medicine, IEEE Transactions on Medical Imaging, and Bioinformatics. 
IEEE Xplore captured conference proceedings from leading venues, 
such as the Conference on Neural Information Processing Systems 
(NeurIPS), Medical Image Computing and Computer Assisted 
Intervention (MICCAI), Conference on Computer Vision and Pattern 
Recognition (CVPR), International Conference on Machine Learning 
(ICML), and IEEE International Conference on Bioinformatics and 
Biomedicine (IEEE BIBM), which are known for their innovations in 
technical GAN in healthcare.

The search was designed to capture studies meeting the inclusion 
criteria defined in Table 14. Keywords and controlled vocabulary were 
derived from the PECO framework:

Population (P): “medical,” “clinical,” “biomedical,” “EHR,” 
“genomic”

Exposure (E): “generative adversarial network,” “GAN,” 
“CTGAN,” “WGAN,” “StyleGAN”

Outcome (O): “synthetic data,” “data generation,” “data 
augmentation,” and evaluation metrics such as “FID,” “TSTR,” or 
“MMD”

An example Boolean search string used in Scopus was 
("generative adversarial network" OR "GAN" OR "CTGAN" OR 

"WGAN" OR "StyleGAN")
AND ("synthetic data" OR "data generation" OR "data 

augmentation")
AND ("healthcare" OR "medical" OR "clinical" OR "biomedical" 

OR "genomic" OR "electronic health record" OR "EHR")

3.3. Study selection and bias considerations
All records retrieved from the database searches were manually 

screened and duplicates were removed through careful comparison. 
Titles and abstracts were evaluated against the eligibility criteria, 
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Component Description
Population (P) Healthcare datasets across imaging, EHR/

tabular, genomics, and other biomedical domains
Exposure (E) Use of GANs to generate synthetic data
Comparator (C) Real-world datasets or alternative generative 

models, where available
Outcome (O) Measures used to evaluate GAN-generated 

synthetic data, including fidelity (statistical 
similarity to real data), utility (performance 
in downstream ML tasks), privacy protection 
(resilience against re-identification), clinical or 
translational applicability, and any other metrics 
that benchmark or improve GAN performance

Table 13
PECO framework for the systematic review

PECO Component / Criterion Inclusion Exclusion
Population (P) • Healthcare datasets across imaging, EHR/tabular, 

genomics, and other biomedical domains
• Generic computer-vision benchmarks only

Exposure (E) • Application of GANs for synthetic data generation 
(e.g., GAN, cGAN, WGAN, CycleGAN, StyleGAN, 
CTGAN)

• Methods papers with no empirical GAN 
application

Comparator (C) • Real-world datasets or alternative generative 
models, where available

• Duplicate reports of the same dataset/model 
without novel analysis

Outcome (O) • Studies reporting at least one validation of synthetic 
data (e.g., FID, IS, MMD, TSTR, clinical expert 
review, downstream task performance)

• Studies with no evaluation or empirical results 
of synthetic data

Time frame / language • Published 2014–2025
• Written in English

• Non-English papers
• Preprints or non–peer-reviewed sources

Table 14
Eligibility criteria for included studies

Year Main Contribution Key Takeaways
2025 Structured ethical checklist for generative AI in 

healthcare
Practical guidance for responsible GAN deployment, addresses privacy, bias, 
data fidelity, and transparency

2024 Ethical principles for AI in medical research Emphasizes justice, accountability, and explainability alongside technical rigor
2025 Co-designed AI governance framework for 

healthcare organizations
Promotes stakeholder collaboration and real-world oversight of AI systems

2024 Ethical implications of generative AI in clinical 
practice

Highlights the need for robust data governance, secure infrastructure, and 
ethical guidelines

Table 12
Ethical governance reviews on GANs
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followed by full-text review of potentially relevant studies. Screening 
and selection were conducted systematically by a single reviewer to 
ensure consistency and transparency. This limitation is discussed 
further in Section 4.4. The overall selection process is summarized in 
the PRISMA 2020 flow diagram (Figure 1), which details the number 
of records identified, screened, excluded (with reasons), and ultimately 
included in the review.

A total of 174 records were identified, including 153 from 
electronic databases and 21 from other sources. After removing 
14 duplicates, 160 unique records remained for title and abstract 
screening. Of these, 66 were excluded for not meeting the inclusion 
criteria. The full texts of 120 records were then assessed for eligibility 
(99 from databases and 21 from other sources). A total of 32 records 
were excluded: 13 from databases (due to methodological limitations, 
irrelevant focus, or non–peer-reviewed status) and 19 from other 
sources (Gray Literature [11], Methodological Limitations [6], Non-
Academic Sources [2]). Finally, 81 studies were included in the review, 
comprising 79 from databases and 2 from other sources.

Potential sources of bias were considered both in the review 
process and in the included studies. Table 15 summarizes the main bias 
types, their sources, potential impacts, and the strategies employed to 
mitigate them.

3.4. Data extraction and synthesis
Data was systematically extracted to obtain key information from 

each included study. Extracted details included author and year, dataset 
type and domain, GAN architecture and configuration, evaluation 
metrics (fidelity, utility, privacy, interpretability), and main findings. 
This structured approach ensured consistency and transparency, and 
enabled a meaningful comparison across studies.

Given the heterogeneity of study designs, datasets, and 
evaluation metrics, a narrative synthesis approach was adopted. Studies 
were grouped thematically by data modality (imaging, EHR/tabular, 
genomics) and evaluation focus (fidelity, utility, privacy, clinical 
translation) to analyze patterns, strengths, and limitations, deriving 
insights into the current state and practical applicability of GAN-based 
synthetic data in healthcare.

4. Discussion 
The analysis is structured around four key dimensions: 

Distribution of Included Studies by Publication Type and Article 
Category, Thematic Map of GAN-Based Synthetic Medical Data 
Literature, Technical Comparison of GAN Methods, and Limitations 
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Figure 1
PRISMA study selection flow diagram

Bias Type Source Description / Impact Mitigation Strategy
Reviewer bias Review process • Screening and data extraction performed by a single 

reviewer
• May introduce errors or inconsistencies

• Systematic search, predefined eligibility 
criteria, structured extraction template

Publication bias Included studies • Only peer-reviewed English-language studies included
• May exclude null/negative results

• Acknowledge in synthesis and discus-
sion

Methodological 
bias

Included studies • Small or single-source datasets, lack of external valida-
tion, selective reporting
• Limits generalizability

• Consider during synthesis
• Highlight limitations in discussion

Table 15
Bias considerations in the review process and included studies
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and Future Directions. These perspectives illuminate both the current 
capabilities of GANs and the critical gaps that must be addressed for 
safe and effective clinical integration.

4.1. Distribution of included studies by publication 
type and article category

Table 16 categorizes the 81 included studies based on publication 
type and thematic focus. The majority are peer-reviewed journal articles 
(n = 62), including 46 original research studies and 16 conceptual works 
such as reviews, frameworks, and ethical discussions. Additionally, one 
peer-reviewed book was included. These serve as the foundation of the 
analysis, offering validated findings on GAN architectures, evaluation 
methods, and clinical applications.

Sixteen conference proceedings complement this core set, 
highlighting emerging developments in generative modeling. While 
some studies lack clinical validation, they represent important technical 
progress and reflect the rapidly evolving nature of the field. 

Two additional sources were included after a careful credibility 
check: one technical industry report and one expert blog post. While 
the latter two are not peer reviewed, they provide practical perspectives 
that help bridge the gap between theory and real-world implementation.

In total, the dataset consists of 62 original research studies, 17 
review or perspective articles (including one book), and 2 vetted non-
academic sources. This balanced mix allows for a robust and relevant 
synthesis, based on peer-reviewed research while incorporating diverse 
viewpoints from practice.

As shown in Figure 2, most included studies are peer reviewed, 
reflecting the strong academic foundation of GAN research in healthcare. 
Journal articles constitute the largest share, with 62 publications (76.5% 
of the total), including 46 research articles (56.8%) and 16 review 
articles (19.8%). Additionally, 1 book (1.2%) was included. These 
journals span high-impact outlets such as Nature Communications, 
NPJ Digital Medicine, IEEE Transactions on Medical Imaging, 
Bioinformatics, Journal of Biomedical Informatics, Biophysical 
Journal, Computational and Structural Biotechnology Journal, Iranian 
Journal of Public Health, Preventing Chronic Disease, Frontiers 
in Artificial Intelligence, The Lancet Digital Health, Kosin Medical 
Journal, JMIR Research Protocols, and Journal of Medical Internet 
Research, highlighting the interdisciplinary collaboration between AI 
and medical science.

The conference proceedings account for 16 studies (20% of the 
total), all of which are research articles from leading AI and healthcare 
venues, including NeurIPS, MICCAI, CVPR, and others such as the 
International Conference on Learning Representations (ICLR), ICML, 
IEEE BIBM, and Proceedings on Privacy Enhancing Technologies 
(PoPETs). Their presence demonstrates the active engagement of the 
ML community in addressing real-world medical challenges, including 
limited datasets, privacy, and annotation constraints, all of which utilize 
GAN-based solutions.

The remaining two sources (2%) are industry reports or blogs, 
providing additional perspective outside traditional academic publishing. 

Overall, this publication pattern reveals two main trajectories in GAN 
research: advancing core technical methodologies and addressing 
clinical demands for reliable, interpretable, and regulatory-compliant 
solutions, aligning closely with the objectives of this review to evaluate 
both technical innovation and practical applicability in healthcare.

4.2. Thematic map of GAN-based synthetic medical 
data literature

Figure 3 presents a thematic analysis of the included 81 studies, 
highlighting established research directions and emerging trends in GAN 
applications for medical data synthesis. Medical Imaging Synthesis is 
the largest category with 23 studies (28%), reflecting the suitability of 
GANs for pixel-based data generation in radiology. Tabular Data and 
EHR Synthesis follow with 18 studies (22%), demonstrating substantial 
interest in generating structured clinical data for research and decision 
support. Together, these two categories account for half of the reviewed 
literature, underscoring the technical focus of the field on clinically 
impactful applications.

Emerging domains, though smaller in scale, are growing in 
representation: Genomics and Omics appear in 10 studies (12%), 
indicating their expanding application in biological data synthesis, 
while Multimodal Fusion is addressed in 7 studies (9%), representing 
innovative approaches to integrating heterogeneous clinical data. 
Ethical, Privacy, and Regulatory Issues are discussed in 13 studies 
(16%), and Pharmaceutical and Clinical Decision Support in 4 
studies (5%), indicating a focus on implementation and translational 
challenges, despite these areas remaining underdeveloped relative to 
technical research. Reviews and Methodological Frameworks as well 
as Industry-Focused Case Studies appear in three studies each (4%), 
highlighting gaps in synthesizing best practices and capturing real-
world deployment experiences.

Overall, this thematic distribution maps the current research 
landscape and reveals opportunities for future work, particularly in 
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Source Type Review (incl. Perspective) Research Article Other (Industry / Book)
Total by Source 

Type
Journal 16 46 1 63
Conference proceedings 0 16 0 16
Other (industry reports / press / blog) 0 0 2 2
Total by Publication Type 16 62 3 81

Table 16
Classification of included studies by source type and article category

Figure 2
Distribution of publication type
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bridging technical innovation with clinical implementation, developing 
standardized evaluation frameworks, and addressing translational 
challenges in healthcare.

4.3. Technical comparison of GAN methods
To evaluate the methodological landscape of GAN-based 

synthetic medical data, Tables 17 and 18 summarize the key 
architectures identified in this review, organized by application domain. 
Table 17 focuses on GAN techniques applied to tabular EHR and 
clinical datasets, highlighting commonly used evaluation metrics, key 
findings, and reported strengths and limitations. Table 18 presents GAN 
techniques for imaging and multi-omics data, illustrating domain-
specific performance and technical considerations.

These comparative tables provide a concise overview of the 
capabilities of each model, validation approaches, and practical 
constraints, facilitating identification of trends, domain-specific 
strengths, and remaining gaps in clinical translation. The following 
discussion interprets these trends in terms of fidelity, downstream utility, 

fairness, and ethical considerations, highlighting critical observations 
relevant for real-world implementation.

The comparison of GAN techniques reveals several notable 
trends. Domain-specific strengths are evident: CTGAN, TVAE, 
and CopulaGAN excel at tabular EHR data, preserving statistical 
distributions and enabling downstream modeling, while imaging-
focused GANs, such as CycleGAN, StyleGAN variants, and Trans-
cGAN, achieve high visual fidelity for cross-modality or rare disease 
datasets. Hybrid architectures support multi-omics integration, 
providing flexible augmentation for complex datasets.

Several objective metrics have been employed to assess algorithm 
performance across these domains. For tabular datasets, MMD and 
TSTR evaluate distribution similarity and downstream task utility, 
respectively. For imaging applications, FID and IS quantify visual 
fidelity and diversity, often complemented by dimensionality reduction 
techniques such as t-SNE or PCA to visualize the overlap between 
real and synthetic data. Some studies have also incorporated clinical 
or expert validation, including blinded diagnostic assessments or 
simulated clinical trials, to provide a real-world evaluation of synthetic 
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GAN Technique / Model Evaluation Metrics Key Findings / Performance Strengths / Limitations
CTGAN MMD, TSTR • Preserves categorical correlations

• High fidelity in mixed-type tabular data
• Effective for structured data
• Limited for imaging
• Widely adopted for clinical datasets

MedGAN / CTAB-GAN+ MMD, TSTR • Captures conditional distributions
• Good downstream task performance

• Conditional generation improves 
realism
• May require large datasets

TVAE MMD, FID • Comparable to CTGAN on small datasets
• Preserves statistical patterns

• Effective for smaller datasets
• Slightly less robust on highly 
imbalanced features

CopulaGAN MMD • Strong preservation of distributional 
characteristics

• Limited handling of categorical 
variables
• Mainly for numeric tabular data

Fairness-aware GANs 
(BT-GAN, FairGAN)

MMD, TSTR, fairness 
metrics

• Reduces demographic bias
• Maintains clinical validity

• Fairness–utility trade-off
• Limited real-world validation

Table 17
GAN techniques for tabular EHR and clinical data

 Figure 3
Proportional distribution of references by research theme in medical AI and data science
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data. Together, these metrics provide a multifaceted assessment 
encompassing statistical, visual, and functional performance.

Despite these validations, clinical evaluation remains limited; 
only a few studies perform blinded diagnostic assessments, trial 
simulations, or downstream task evaluation, highlighting the ongoing 
“bench-to-bedside” gap. While GANs generally demonstrate high 
fidelity and structural realism, limitations persist in generalizability, 
categorical feature handling, and dataset-specific tuning, with preclinical 
evaluation predominating and no methods yet fully transitioning to 
large-scale clinical trials. Fairness-aware GANs partially mitigate bias 
in tabular datasets but require careful trade-offs between data utility and 
demographic parity.

Moreover, regulatory pathways and ethical governance for 
GAN-generated data are underdeveloped, and privacy risks, including 
membership inference and linkage attacks, as well as potential misuse, 
must be addressed alongside considerations of fidelity and fairness. 
Integrating ethical checklists, consent frameworks, and transparency 
measures will be critical for real-world translation. Overall, the 
technical performance of state-of-the-art GANs is promising, 
particularly for domain-specific applications; however, robust clinical 
validation, standardized evaluation, and ethical safeguards remain 
essential for their safe and effective deployment in healthcare research 
and practice.

4.4. Limitations and future directions
This systematic review provides a comprehensive review of 

GAN applications in medical data generation, but several significant 
constraints still warrant attention. First, the rapid development of GAN 
research means that, despite a rigorous selection process, the dataset 
may not fully capture the latest architectural advancements or novel 
variants that emerge after the deadline. This is an inherent challenge 
in any rapidly evolving field, suggesting that continuous updates 
or dynamic systematic reviews are crucial to maintain an up-to-date 
understanding of the state-of-the-art.

Second, limiting research to English publications and peer-
reviewed sources may have excluded relevant studies, including null 
or negative results, thus introducing potential publication bias. Future 
research could mitigate this limitation by collaborating with multilingual 
teams or professional translation services, thereby expanding inclusion 
criteria and ensuring a more globally representative perspective.

Third, the screening and data extraction were performed by a 
single reviewer, which could introduce reviewer bias due to errors or 

inconsistencies. While structured extraction templates and predefined 
eligibility criteria were used to mitigate this risk, future multi-reviewer 
validation would further strengthen the reliability of the study.

Fourth, significant methodological heterogeneity exists across 
the studies, including differences in dataset characteristics, model 
architectures, and evaluation metrics, which complicates direct 
comparison and synthesis of findings. Many studies relied on small or 
single-source datasets, lacked external validation, or selectively reported 
results, thus limiting generalizability. The lack of widely accepted 
benchmarks and standardized reporting practices remains a key obstacle. 
Moving forward, the development and adoption of community standards 
and the sharing of datasets are essential to facilitate more consistent and 
transparent assessment of GAN models in the medical field.

Fifth, despite technical advances, the majority of reviewed 
studies remain at the preclinical stage. Only a small number included 
preliminary clinical validation, and none have progressed to full-
scale clinical trials, highlighting a significant “bench-to-bedside” gap. 
Regulatory pathways for integrating GAN-synthesized data into clinical 
practice have not yet been established. Agencies such as the FDA may 
require extensive validation to ensure both fidelity and patient safety, 
representing a key barrier to clinical translation. Addressing these gaps 
is crucial for translating synthetic data from methodological research 
into safe and effective clinical applications.

Lastly, the stringent inclusion criteria prioritized methodological 
quality and relevance but excluded studies without empirical GAN 
applications, purely methodological papers, duplicate datasets, or 
studies lacking validation metrics. While this approach ensures rigor, 
it may overlook preliminary or exploratory work that has the potential 
to introduce impactful innovations. Future work can incorporate more 
nuanced, tiered review approach to include such early-stage research to 
track emerging trends and assess their maturation over time.

5. Conclusion
This review has examined the rapidly evolving landscape of 

GAN-based synthetic data generation in healthcare, highlighting 
its transformative potential and the challenges that shape its current 
trajectory. Evidence from imaging, tabular health records, and emerging 
applications such as genomics suggests that GANs can meaningfully 
augment or even substitute real-world datasets by preserving statistical 
fidelity, enhancing privacy, and enabling downstream analysis where 
data scarcity would otherwise hinder progress. At the same time, novel 
adaptations such as CTGAN variants and fairness-aware models signal 
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GAN Technique / Model
Application 

Domain Evaluation Metrics Key Findings / Performance Strengths / Limitations
CycleGAN Imaging 

(CT ↔ MRI)
FID, IS, blinded 
diagnostic studies

• High-quality cross-modality 
synthesis
• Preserves anatomical structures

• Effective for paired/unpaired 
translation
• Primarily for imaging

STNG / Trans-cGAN Imaging FID, IS • High-fidelity image synthesis
• Captures complex anatomical 
features

• Strong visual realism
• Not applicable to tabular data
• Preclinical validation only

StyleGAN / Style-
GAN2-ADA

Imaging / 
rare disease 
phenotyping

FID, IS • Generates visually realistic 
images
• Style-based latent control

• High visual fidelity
• Specialized for image-based tasks
• Limited tabular application

Hybrid GANs (MOSA, 
HAGAN, EnhGAN, 
Spatial-Frequency)

Multi-omic, 
imaging

MMD, TSTR, FID • Multi-domain augmentation
• Preserves structural and 
frequency features

• Combines multiple architectures
• May require complex training 
pipelines

Table 18
GAN techniques for imaging and multi-omics data
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an ongoing shift from proof-of-concept studies toward more mature, 
problem-oriented implementations.

Despite these advances, significant obstacles remain. The 
predominance of single-source or small-scale datasets, along with 
methodological variability in model architectures and evaluation 
metrics, limits the comparability of results and the generalizability 
of insights. Many reports of progress emphasize technical similarity 
rather than clinical relevance, raising concerns about its translation 
into real-world practical application. Ethical issues, including privacy 
guarantees, fairness, and the environmental cost of training, remain 
underexplored, particularly when considering deployment in sensitive 
clinical settings.

Taken together, these findings underscore both the promise and 
the fragility of current GAN-based approaches. To realize their potential, 
future research should adopt standardized, transparent benchmarks that 
extend beyond technical accuracy to include fairness, robustness, and 
clinical utility. Broader collaboration across institutions and disciplines 
will be critical to ensure diversity of datasets and to capture insights 
that single studies cannot provide. Furthermore, integrating ethical and 
regulatory considerations from the outset, rather than as afterthoughts, 
will be essential for building trust and fostering adoption.

Ultimately, GANs represent more than a technical innovation; 
they embody a paradigm shift in how healthcare data may be 
generated, shared, and applied. Their future impact will depend not 
only on advances in architectural design but also on the willingness 
of the research community to embrace inclusivity, standardization, and 
responsible innovation. By addressing these dimensions, GAN-based 
synthetic data generation can progress from a promising research tool 
to a cornerstone of equitable, scalable, and secure healthcare research 
and practice.

Recommendations
To advance GAN-based synthetic medical data research, future 

reviews should adopt dynamic and regularly updated literature col-
lection strategies to capture emerging developments while preserving 
connections to foundational work. Broadening the scope to include 
non-English and regional publications can enhance the inclusivity and 
global relevance of findings. Additionally, promoting methodological 
standardization in datasets, architectures, and evaluation metrics would 
improve study comparability. Future syntheses should also track and 
evaluate promising yet understudied GAN variants to uncover novel 
directions, while fostering interdisciplinary collaboration to integrate 
insights from fields such as bioinformatics and AI ethics for a more 
comprehensive understanding of synthetic medical data applications.
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