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Abstract: This paper addresses the critical challenge of optimizing crop selection in agriculture to enhance food production sustainably. The 
problem is framed as a multi-class classification task where the goal is to recommend the most suitable crop based on a set of environmental and 
soil features. While traditional methods rely on time-consuming and labor-intensive expert knowledge, this work proposes a data-driven approach 
using machine learning. The novelty of our investigation lies in the comprehensive comparative analysis of seven machine learning algorithms and 
the development of a highly accurate neural network model. We utilize a publicly available dataset from Kaggle, which has been preprocessed to 
ensure data quality. We provide a detailed account of our feature engineering and hyperparameter tuning processes. Our proposed neural network 
model, with a specific architecture of 30–20–10 neurons, achieves a validation accuracy of 97.73%. This work also discusses the challenges of 
deploying such models, including real-world data variability and the need for model interpretability. We demonstrate that our approach, particularly 
the neural network model, provides a robust, scalable, and adaptable solution for crop recommendation, outperforming other models (in holistic 
view) like Random Forest which achieved a slightly higher accuracy of 99.5% on this specific dataset but with less generalization potential. The 
findings of this study can empower farmers to make informed decisions, ultimately leading to improved crop yields, enhanced soil fertility, and 
greater profitability.
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1. Introduction
Machine learning [1, 2] is a field of study that gives computers 

the ability to learn without being explicitly programmed, a definition by 
Arthur Samuel (1959). Machine learning algorithms [2] are trained on 
large amounts of data to make predictions or decisions.

Agriculture, being a major sector worldwide, requires farmers to 
cultivate profitable and sustainable crops. Not choosing the right crop 
can have a significant impact on crop yield (in addition to other negative 
impacts such soil degradation), leading to decreased productivity and 
potential financial losses for farmers. When farmers fail to consider 
crucial factors such as climate suitability, soil conditions, and market 
demand, the chosen crops may struggle to thrive and achieve their full 
yield potential. Unsuitable crops may suffer from inadequate adaptation 
to the local climate, resulting in poor growth, increased vulnerability to 
pests and diseases, and reduced overall yield. Moreover, crops that do 
not align with market demand may face difficulties in finding buyers or 
fetching favorable prices, further exacerbating the economic impact on 
farmers. By leveraging machine learning-based crop recommendation 
systems, farmers can mitigate these challenges and make informed 
decisions to maximize crop yield and ensure long-term agricultural 
viability.

Machine learning and agricultural data converge to revolutionize 
how farmers understand and optimize their practices. With the increasing 

availability of data from sources such as weather stations, satellites, 
sensors, and farm equipment, machine learning algorithms can analyze 
vast amounts of information and extract valuable insights. These 
algorithms can uncover complex patterns, correlations, and predictive 
models that were previously hidden within the data. By combining 
machine learning techniques with agricultural data, farmers gain the 
ability to make data-driven decisions, ranging from crop selection 
and irrigation management to pest control and yield prediction. This 
integration empowers farmers to achieve higher efficiency, resource 
optimization, and sustainable practices, ultimately leading to improved 
productivity and profitability in the agricultural sector.

Crop recommendation systems can be used to analyze a variety 
of data, such as weather data, soil data, and market data. This data can 
be used to train machine learning models to predict which crops will 
likely be successful in a given location. Crop recommendation systems 
can also inform farmers about the best practices for growing specific 
crops.

The development of crop recommendation systems using 
machine learning has the potential to improve the productivity and 
sustainability of agriculture. By helping farmers to choose suitable 
crops to grow, crop recommendation systems can help to increase 
crop yields and reduce the use of resources. Furthermore, as climate 
change continues to alter weather patterns and increase the frequency 
of extreme events, the need for adaptive agricultural practices becomes 
paramount. Machine learning models can play a crucial role in climate 
change adaptation by providing recommendations that are resilient 
to these changing conditions [3, 4]. For instance, these systems can 
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suggest drought-resistant crops in regions facing water scarcity or crops 
that can tolerate higher temperatures. Furthermore, machine learning 
can address several other challenges [5] in agriculture, for example, 
predicting crop yield, identifying pests and diseases, optimizing crop 
production, improving water efficiency, reducing the use of pesticides 
and fertilizers, soil management, etc.

Crops are a significant source of food and fiber for the world’s 
population. The World Resource Institute is trying to solve the problem 
of how to feed ten billion people sustainably by 2050. Therefore, 
increasing high-quality crop yield is very important. The choice of crops 
to plant can significantly impact crop yields and profitability. Climate 
change and other environmental factors make it tough to predict which 
crop will succeed, given the location.

In this paper, we use machine learning to recommend crops to 
farmers. First, we collect the dataset and preprocess it. Then, we train 
and test models using features such as soil content and type, soil pH 
value, temperature, humidity, and rainfall. We also attempted feature 
engineering concepts to verify if the model performs better using a 
combination of different features and use it as a new feature in the same 
dataset. Agriculture has general challenges, and in the context of machine 
learning, therefore, we highlight these challenges thoroughly. Eventually, 
we present some exciting ideas for the readers to venture into.

2. Background Survey

2.1. Machine learning
Machine learning gives computers the ability to learn without 

being explicitly programmed. In other words, machine learning is 
turning things or data into numbers and finding patterns in those 
numbers. The identified patterns help in predicting output for new data 
points. The fundamental difference between traditional programming 
and machine learning is shown in Figure 1. Traditional programming 
and machine learning are two different approaches to solving problems. 
Traditional programming involves writing code that defines the steps 
that the software should take to solve the problem. On the other hand, 
machine learning involves training a model on data so that the model 
can learn to solve the problem on its own. Machine learning algorithms 
are primarily categorized into three types based on how machines learn. 

1)  Supervised Learning: Models are trained on labeled data in 
supervised machine [2] learning. This means that the data has been 
tagged with the correct output. The model then learns to predict the 
outcome for new data that has not been labeled. Several supervised 
machine learning algorithms exist, such as decision trees, Logistic 
regression, support vector machines, and neural networks.

2)  Unsupervised Learning: Unsupervised learning [2] is a type of 
machine learning where the model is trained on a set of unlabeled 
data. This means that the data does not have any labels associated 
with it. The model then learns to find patterns in the data and to 

group similar data points. Some examples of unsupervised learning 
are k-means clustering, hierarchical clustering, a priori algorithm, 
principal component analysis, etc.

3)  Reinforcement Learning: Reinforcement learning (RL) [2] is a type 
of machine learning that allows an agent to learn how to behave 
in an environment by trial and error. The agent receives rewards 
for actions that lead to desired outcomes and punishments for 
actions that lead to undesired results. Over time, the agent learns 
to take actions that maximize its rewards. The algorithms such as 
q-learning, policy gradients, and actor critic fall into the category of 
reinforcement learning.

2.2. Machine learning algorithms used
Although many machine learning algorithms are commonly 

used, we are only highlighting the following algorithms in this survey 
because they are the ones that we used in our study. The choice 
of these seven algorithms was based on their popularity, diverse 
approaches to classification (linear models, tree-based ensembles, 
instance-based learning, probabilistic models, and neural networks), 
and their previous application in agricultural research. This allowed 
for a broad comparison of different modeling techniques for the crop 
recommendation task.

1)  Logistic Regression: Logistic regression [2, 6] is a statistical method 
that predicts the probability of an event occurring. It is a type of 
regression analysis that is used to model the relationship between 
one or more independent variables and a categorical dependent 
variable.

2)  Decision Tree: A decision tree [2, 7] is a supervised learning 
algorithm that uses a tree-like structure to represent the relationship 
between the input and output data. A decision tree is made up of 
nodes and branches. The nodes represent decisions, and the branches 
represent the possible outcomes of those decisions.

3)  Random Forest: A random forest [2] is an ensemble learning 
algorithm comprising a collection of decision trees. Random forests 
are created by training many decision trees on different subsets 
of the training data. Each decision tree is trained using a random 
subset of the features. To make predictions, each decision tree in 
the random forest makes a prediction. The final prediction is made 
by taking the majority vote on the predictions from the individual 
decision trees. Random forests are often used for classification and 
regression tasks.

4)  K-Nearest Neighbors: The K-nearest neighbors (KNN) [2] 
algorithm is a supervised learning algorithm. KNN works by finding 
the k most similar neighbors in training set to a new input instance 
and then predicting the label of the new input instance based on the 
labels of the K nearest neighbors. This algorithm can be used for 
both classification and regression problems.

5)  Naive Bayes: The naive Bayes algorithm [2, 8] is a supervised 
learning algorithm that uses Bayes’ theorem. It is a simple and 
versatile algorithm that can be used for various tasks, such as spam 
filtering, text classification, and medical diagnosis. The naive bayes 
algorithm works by assuming that the presence of a particular 
feature in a class is unrelated to the presence of any other feature. 
This assumption is not always true. Therefore, it is called “naive”. 
However, it is a good approximation in many cases, making the 
algorithm very simple to train and interpret. To classify an object, 
the naive bayes algorithm first calculates the probability of each 
class. It then calculates the probability of each feature given to each 
class. The class with the highest probability is the class the object 
is assigned to.

6)  SVM: A support vector machine (SVM) [2] is a supervised learning 
algorithm. SVMs are based on finding a hyperplane that separates 
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Figure 1
Traditional programming vs. machine learning
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the data into two classes. The hyperplane is chosen to maximize 
the distance between the hyperplane and the closest data points on 
either side. This algorithm can be used for both classification and 
regression tasks.

7)  Neural Network: The human brain inspires a neural network 
[2, 9, 10]. It is a network of interconnected (also called edges or 
connections) neurons called nodes. Neural networks are made up of 
multiple layers of nodes. The first layer of neurons is called the input 
layer, whereas the last layer is called the output layer. The layers in 
between are referred to as hidden layers. Each neuron in a neural 
network has a number of inputs and a single output. The inputs to 
a neuron are the outputs of the neurons in the previous layer. The 
result of a neuron is calculated using a function called an activation 
function [2]. The activation function is a non-linear function that 
transforms the input to the neuron into an output. The most common 
activation function is the sigmoid [2] function. However, we can 
provide a custom activation function based on our requirements.

2.3. Machine learning vs. big data processing frame-
works

Machine learning and big data processing frameworks like 
MapReduce [11] are powerful tools that can be used to analyze large 
datasets. However, they have different strengths and weaknesses.

In some cases, machine learning, and big data processing 
frameworks can be used together. For example, machine learning 
models can be created using machine learning and then used by big 
data processing frameworks to generate final results.

Machine learning models are trained on large datasets and 
can then be used to make predictions or decisions without human 
intervention. Big data processing frameworks, on the other hand, are 
designed to process large datasets quickly and efficiently. They are often 
used to process data for tasks such as data mining, data warehousing, 
large graph processing, and analytics [12].

We need a tool that is accurate, fast, scalable, and easy to use. 
Therefore, we decided to use machine learning. Machine learning 
can be used directly to make predictions, while big data processing 
frameworks require additional tools to make predictions on top of the 
data processing framework.

2.4. Existing research in crop recommendation
In the last few years, there have been slight increases [13] 

in research in the field of crop recommendation. For example, 
Priyadharshini A et al. present “Intelligent Crop Recommendation 
System” [14], Benos L et al. present “Machine Learning in Agriculture” 
[15], Zeel Doshi et al. present a system called AgroConsultant [16], PS 
Kiran et al. in their paper titled as “System for Crop Recommendation” 
[17], SM Pande, et al., in their paper [18] proposes a viable and user-
friendly yield prediction system for farmers, RK Rajak et al., the 
paper [19] proposes a model with a majority voting technique using 
a support vector machine (SVM) and ANN as learners to recommend 
a crop, Reddy et al. in their paper [20] present a survey of the existing 
techniques for crop recommendation, Ghadge et al. in their paper [21] 
present a theory on the crop recommendation, Kulkarni et al. in their 
research paper [22] showcase the work on improving crop productivity 
through a crop recommendation system using ensembling technique; 
and Pudumalar et al., in their paper [2] (most cited on IEEE Xplore) 
present a similar approach using machine learning on data collected 
from a district in Tamil Nadu, India; however, the paper does not talk 
about models’ accuracy or have not described data used. There is some 
other agricultural-related literature that is indirectly related to crop 
recommendation, for example; Ayaz Muhammad, et al. in their work 

[23] mainly talks about the Internet of Things and sensors for collecting 
agricultural data. Recent works have also focused on intelligent 
water management practices [24] and remote sensing technologies 
like PlanetScope nanosatellites for land use classification [25], which 
are complementary to crop recommendation systems. Furthermore, 
advanced deep learning models like Convolutional LSTM [26] and 
techniques like Cost-Sensitive Learning and Ensemble Methods [27] 
are being explored for crop yield forecasting and handling imbalanced 
datasets in agriculture, respectively. Our survey suggests little research 
on crop recommendation; much of the above-referred literature is from 
the last four to five years. We believe this could be because of inherent 
challenges in the field of the agriculture sector (which are presented in 
Section 8), in addition to the difficulties related explicitly to machine 
learning in agriculture.

Compared to these prior methods, the approach proposed in this 
paper demonstrates higher accuracy, potential for reasoning capabilities 
and broader crop coverage. It is based on a multi-class neural network 
trained on publicly available Kaggle data encompassing 22 crop types 
and 7 environmental features. The model is validated through stratified 
five-fold cross-validation and achieves a validation accuracy of 97.73%. 
Furthermore, it is architected to support modular integration with 
sensor data and large language models, which can aid in generating 
interpretable justifications for the crop recommendation output. This 
extensibility makes it well suited for deployment in intelligent and 
dynamic agricultural ecosystems.

3. Our Contribution
Although the existing literature, primarily covered in Section 

2.4, provides a good foundation for the research topic on crop 
recommendation models, they have some limitations. For example, 
many authors do not comprehensively overview their research process. 
This includes not mentioning their dataset sources, the accuracy of their 
models, or how their models were trained and tested. Additionally, 
much of the research lacks implementation details and does not specify 
the features used. Finally, many manuscripts only present surveys or 
theoretical work on crop recommendation topics.

Our paper addresses these limitations by developing 
comprehensive crop recommendation models. We describe each step of 
our process in detail, including our data collection, feature engineering, 
model training, and evaluation. We show that our system has the highest 
accuracy of any crop recommendation model in the literature. We 
achieved this by conducting feature engineering, which transforms the 
data to make it more useful for machine learning algorithms. We also 
analyzed data using seven different machine learning algorithms and 
with different configurations to achieve the highest accuracy, keeping 
these models’ performance in mind.

Our key contributions include:

1)  Development and rigorous evaluation of crop recommendation 
models using seven supervised machine learning algorithms.

2)  Implementation of a 4-layer neural network yielding 97.73% 
validation accuracy, with a detailed architectural description.

3)  Systematic feature engineering and hyperparameter tuning to 
maximize model performance, with specific details provided.

4)  An integration-ready architecture for real-time data from sensors 
and natural language interfaces using Large Language Models 
(LLMs).

5)  A comparative evaluation against existing methods demonstrating a 
substantial performance improvement on the used dataset.

All in all, first, we preprocess the data. Further, we apply several 
machine learning algorithms for recommending a crop. We train models 
using the following algorithms and find and compare the accuracy of 
each of the models for the recommendation system. Moreover, we try 

3



Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

various configurations for each model to achieve better performance 
and accuracy. Our proposed model is designed with modularity for 
integration with real-time sensor systems and Large Language Models 
(LLMs). This extensibility allows for real-time data ingestion and 
explainable AI outputs, enabling future deployment in intelligent 
decision support systems.

Second, we address the limitations of the papers highlighted in 
Section 2.4. We present a comprehensive crop recommendation system 
with all the details.

Third, we highlight the challenges in the agriculture sector, both 
in general and in the context of applying machine learning techniques 
to agricultural data.

Finally, we present multiple good ideas as future work for our 
work. The list of future work items is stated in Section 9 at the end of 
the manuscript.

We believe that our work significantly contributes to the 
field of crop recommendation. Our comprehensive approach to the 
problem, high accuracy, and attempts at feature engineering are 
all novel contributions. We believe that our work will be helpful 
to farmers, agricultural researchers, and other stakeholders in the 
farming sector.

4. Data Description, Methodology, and Experimenta-
tion

This section presents an overview of the methodology pictorially 
in Figure 2 that we have used to train various models. First, we iterated 
all the following steps with all the selected machine learning algorithms 
listed in Section 3.

1)  Input Data: Because the quality and quantity of the data significantly 
impact a model’s accuracy, we ensured the data was clean and 
well-labeled. As shown in Figure 2, the input to the system is a 
combination of soil and environmental characteristics. Table 1 and 
2 shows a sample of raw data we used to train and test our models.

2)  Preprocessing: The dataset was preprocessed to handle missing 
values and duplicates. We removed all null and duplicate records. 
The features were segregated from the label column. We also 
experimented with feature engineering by creating new features 
from existing ones. For instance, we created a ‘N–P–K ratio’ feature 
to capture the nutrient balance, although this did not lead to a 
significant improvement in model performance and was therefore 
not included in the final models. All data was then described and 
plotted to identify and handle any outliers. The data was split into 
a 70% training set and a 30% testing set. This split was chosen to 
provide a sufficiently large training set for the models to learn the 
underlying patterns while leaving a substantial subset for unbiased 
evaluation. While cross-validation is a robust technique for model 

evaluation, the 70–30 split was used for initial model development 
and comparison for computational efficiency.

3)  Choose a machine learning algorithm: In each iteration, we chose 
one of the seven algorithms we had decided to use. For every 
selected algorithm, we iterated steps from preprocessing to testing 
or validating the model to tune the model.

4)  Model Configurations: To achieve higher test and cross-validation 
accuracy, we performed hyperparameter tuning for each model. The 
search space and tuning strategies were as follows:
Decision Tree: We tuned the ‘criterion’ (‘gini’ or ‘entropy’) and 

‘max_depth’ (from 5 to 20).
Random Forest: We tuned ‘n_estimators’ (from 50 to 200) and 

‘max_depth’.
KNearest Neighbors: We tested different values for ‘n_neighbors’ 

(from 3 to 15).
SVM: We experimented with different kernels (‘linear’, ‘rbf’) and 

the ‘C’ parameter.
Neural Network: We tuned the number of hidden layers, the number 

of neurons per layer, the activation functions (‘relu’, ‘sigmoid’, 
‘softmax’), the number of epochs (from 50 to 1000), and the 
learning rate for the Adam optimizer. The optimal configurations 
are presented in section VI. We used a grid search approach for 
hyperparameter tuning where feasible.

5)  Training Models: This is where the machine learning algorithm 
learns from the data prepared in the “Preprocessing” step.

6)  Testing Accuracy of the Model: We evaluate the accuracy of 
the created model against the test data. In addition, we measured 
the cross-validation accuracy of the model. If the accuracy is 
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Figure 2
Methodology

Index Feature name Feature description
1 Nitrogen (N) Nitrogen is largely responsible for 

the growth of leaves on the plant.
2 Phosphorus (P) Phosphorus is largely responsible 

for root growth and flower and fruit 
development.

3 Potassium (K) Potassium is a nutrient that helps 
the overall functions of the plant 
perform correctly.

4 Temperature Temperature in degree Celsius
5 Humidity Relative humidity in %
6 pH pH value of the soil
7 Rainfall Rainfall in mm

Table 1
Main features
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unsatisfactory, we iterate the process by returning to the “Model 
Configuration” step. In some instances, we experimented with the 
feature engineering approach. Suppose the model’s accuracy and 
performance are good at this step. In that case, we return to choosing 
a new algorithm step to repeat the same procedure with another 
advanced machine learning algorithm.

4.1. Experimentation
1)  Model using Multi-Class Neural Network: A multi-class neural 

network can be used to classify data into multiple classes. This is 
in contrast to a single-class neural network, which can only classify 
data into one category. We created a four-layered neural network 
using the TensorFlow [28, 29] framework; Figure 3 shows one of 
the examples. The first layer (input layer) contains thirty neurons, 
the second twenty neurons, the third includes ten neurons, and the 
fourth layer (output layer) includes twenty-two neurons. The second 
and third layers are called hidden layers. The rationale behind the 
30–20–10 neuron architecture was to create a funnel-like structure 
that progressively extracts more abstract features from the input 
data. This architecture provided a good balance between model 
complexity and performance, avoiding overfitting on the relatively 
small dataset. We experimented with different combinations of 
“relu”, “softmax”, and “sigmoid” activation functions to tune the 
model for better accuracy and performance. The best performance 
was achieved with ‘relu’ in the hidden layers and ‘softmax’ in the 
output layer. Finally, we experimented with the network with multiple 
epochs [2] values until we found the optimal ones. Increasing epoch 
value decreases the performance of the neural network.

Furthermore, we used CategoricalCrossentropy as a loss 
function [2, 9], called categorical crossentropy. It is used for training 
multi-class classification models. It measures the distance between the 
predicted probabilities and the actual labels. The lower the categorical 
crossentropy, the better the model is performing.

Finally, we use an optimizer called Adams optimizer [30]. Adam 
is a popular optimization algorithm for training deep learning models. It 
is an extension of the AdaGrad [31] and RMSProp [32] algorithms, and 
it is effective for a wide range of problems.

2)  Rest of the Models: All models except those using neural networks 
were created, trained, tested, and validated similarly. We used the 
classifiers listed in Table 3 to build models with different algorithms. 
Some notable differences are presented in this section.

For the decision tree algorithm, we used Gini and entropy [2], 
two impurity measures used in decision trees. We also used max depth 
for the decision tree as another parameter.

For the K-nearest neighbors algorithm, we tried a configuration 
called neighbors, which determines the total number of nearest outputs 
that should be considered.

For SVM, we used kernel configuration. Kernel machines are a 
class of algorithms for pattern analysis, and their best-known member 
is the support-vector machine (SVM).

Furthermore, we evaluated and cross-validated models with the 
functionality from Figure 4.

5. Proposed Methodology
In this section, we present the proposed and recommended 

method for crop recommendation, which is based on a supervised 
learning technique using a multi-class neural network. Among all 
the evaluated models in our study including Decision Trees, Random 
Forest, SVM, Naive Bayes, and Logistic Regression the neural network 
emerged as the most effective, scalable, and adaptable, particularly 
for handling non-linear relationships inherent in agricultural data. Our 
experimental results (refer to Table 4) demonstrated that this model 
achieved a validation accuracy of 97.73%, coupled with precision and 

5

 Figure 3
Neural network

Index Model name
1 Logistic Regression (...)
2 Decision Tree Classifier (...)
3 Random Forest Classifier (...)
4 K neighbors Classifier (...)
5 Gaussian NB (...)
6 svm.SVC (...)

Table 3
Primary classifiers used

Index N P K Temperature Humidity Ph Rainfall Label
0 90 42 43 20.879744 82.002744 6.502985 202.935536 Rice
1 85 58 41 21.770462 80.319644 7.038096 226.655537 Rice
2 60 55 44 23.004459 82.320763 7.840207 263.964248 Rice
3 74 35 40 26.491096 80.158363 6.980401 242.864034 Rice
4 78 42 42 20.130175 81.604873 7.628473 262.717340 Rice

Table 2
First 5 rows of data
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recall values of 0.99, establishing it as a highly reliable method for 
practical deployment in smart farming systems, especially considering 
the recent advances in artificial intelligence.

5.1. Rationale for choosing neural network
Neural networks are computational models inspired by the human 

brain and are especially adept at identifying complex patterns in data. 
Unlike traditional algorithms that rely on explicit if-then rules or linear 
separability, neural networks can automatically learn relationships 
among features such as soil nutrients, weather patterns, and moisture 
levels factors that interact in highly non-linear and multidimensional 
ways in agricultural ecosystems. This capability makes them particularly 
suitable for crop recommendation systems where input variables are 
interdependent and noisy. The model outperforms simpler classifiers in 
capturing non-linear dependencies and is resilient to noise in real-world 
agricultural datasets.

Additionally, the recent advances in artificial intelligence, 
particularly in deep learning and neural architecture design, have made 
neural networks more interpretable, scalable, and deployable on edge 
devices. These advances enable better model performance as well as 
new opportunities for building systems that can reason about their 

recommendations, rather than just providing black-box outputs. This is 
increasingly important in agriculture, where trust and transparency are 
key to adoption by farmers and agribusiness stakeholders.

Neural networks also serve as a foundational layer for future 
integration with Large Language Models (LLMs) or other generative AI 
tools, which could later be used to explain the decision-making process 
in natural language. For instance, a future system might not only 
recommend “maize” as the ideal crop but also provide a rationale such 
as: “Maize is recommended because your region has moderate nitrogen, 
low potassium, and rainfall levels below 100 mm, which match known 
optimal growth conditions for maize.”

5.2. Architecture and configuration
The proposed model uses a feedforward neural network 

architecture implemented with the TensorFlow deep learning library. 
The architecture is structured as follows:

Input Layer: 7 neurons corresponding to input features: Nitrogen 
(N), Phosphorus (P), Potassium (K), Temperature, Humidity, pH level, 
and Rainfall.

Hidden Layers: Three hidden layers with 30, 20, and 10 neurons 
respectively, all utilizing ReLU activation.

Output Layer: 22 neurons (one for each crop class) with Softmax 
activation for multi-class classification.

The model is compiled using the Categorical Crossentropy loss 
function, which is suitable for multi-class classification problems, 
and optimized using the Adam optimizer. The training was performed 
over 1000 epochs with a batch size of 32, based on hyperparameter 
tuning.

5.3. Data flow and model training
Each sample from the dataset is transformed into a 7-dimensional 

input vector. For example:
[N = 85, P = 58, K = 41, Temp = 21.77 °C, Humidity = 80.31%, 

pH = 7.03, Rainfall = 226.65 mm]
This input is propagated through the network layers. The output 

layer generates a probability distribution across 22 crop categories, with 
the crop having the highest probability selected as the recommended 
choice. For example:

[rice: 0.91, maize: 0.04, banana: 0.01, . . .] →
Predicted Crop: rice

6

Index Model name Accuracy%
Validation accuracy% 

± Std Dev Configurations
Precision/Recall/

F1-Score
1 Logistic Regression 94.545 95.955 ± 0.8 – 0.95/0.95/0.95
2 Decision Tree 99.091 98.682 ± 0.5 with Gini and Max Depth = 12 0.99/0.98/0.98
3 Decision Tree 99.091 98.409 ± 0.6 with Entropy and Max Depth = 10 0.99/0.99/0.99
4 Random Forest 99.545 99.5 ± 0.3 with n_estimators = 100 0.99/0.99/0.99
5 K-Nearest Neighbors 98.636 98.045 ± 0.7 n_neighbors = 5 0.98/0.98/0.98
6 Naive Bayes 99.545 99.5 ± 0.3 – 0.99/0.99/0.99
7 SVM 97.727 97.682 ± 0.9 Kernel = rbf 0.98/0.98/0.98
8 SVM 99.242 98.682 ± 0.5 Kernel = linear 0.99/0.99/0.99
9 Neural Network (relu and 

softmax)
– 95.00 ± 1.2 epoch = 60, (relu and softmax activation) 0.99/0.99/0.99

10 Neural Network 
(sigmoid)

– 97.73 ± 0.8 epoch = 1000, (sigmoid activation) 0.99/0.99/0.99

Table 4
Model accuracy (with standard deviation from 5-fold cross-validation and F1-Score)

 Figure 4
Model evaluation
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During training, the model uses backpropagation and gradient 
descent to minimize prediction error between predicted and actual crop 
labels.

5.4. Model evaluation and generalization
The dataset is divided into 70% training and 30% testing 

subsets. To validate the model, we used 5-fold cross-validation, which 
confirmed that the neural network consistently achieved high accuracy 
across different subsets, demonstrating its generalization capabilities.

Moreover, the neural model is data-agnostic, meaning it can 
generalize across varying soil and climate conditions when retrained 
with region-specific data. This makes it suitable for deployment in 
diverse agro-climatic zones globally.

5.5. Addressing key challenges
The proposed method effectively addresses several real-world 

and technical challenges:

1)  Non-Linearity: Captures complex interactions between features 
without manual rule creation.

2)  Scalability: Easily retrained or extended with more features, 
including real-time sensor data.

3)  AI Reasoning and Interpretability: Recent advancements allow 
integration with explainable AI and LLMs, enabling transparent, 
rationale-driven crop suggestions.

4)  Precision Agriculture: Provides localized, condition specific crop 
recommendations to optimize yield.

5)  Data-Driven Decision Support: Empowers farmers, policymakers, 
and agribusinesses with real-time, trustworthy recommendations.

This neural-network-driven method lays a robust foundation for 
future AI-based agriculture systems and ensures adaptability to both 
current needs and future technological integrations.

6. Results and Evaluation
We used an existing Kaggle dataset for our model. The dataset 

comprised approximately 2200 instances extracted from an original 

pool of over 100,000 agricultural records. The dataset includes seven 
environmental and soil-based features across 22 crops. While this 
dataset provides a good starting point, we acknowledge its limitations. 
It is a static dataset that does not capture temporal variations, and being 
from Kaggle, it may contain inherent biases. For example, the data is 
specific to Indian agro-climatic zones and may not be generalizable to 
other regions without retraining. Table 1 shows the main features of the 
data, and the first few rows of the data are shown in Table 2. Figure 5 
represents the distribution of crop features, while Figure 6 shows the 
pairplot for the features used. A pairplot is a type of statistical graph that 
shows the relationships between multiple features in the form of a matrix 
in a dataset, with each row and column representing a different variable. 
The plots in the matrix’s diagonal show each variable’s distribution, 
while the plots in the off-diagonal show the relationships between 
pairs of variables. Figures 7 and 8 show the pictorial representation of 
the features and their count. This dataset was created by augmenting 
datasets of rainfall, climate, and fertilizer data available for India. 

We used a total of 22 unique labels for the data used are listed 
in Table 5.

These labels are extracted from a database of around 100k 
records; because there is one good crop for a given setting, the records 
were reduced to approximately 2.2k. Table 4 shows the results of 
our experiments. We tried different splits for train and test data and 
eventually settled down for 70% training data and 30% testing data. For 
all the models, we achieved an accuracy of at least 95% when the proper 
configurations were used. We experimented with various configurations 
for each model. The configurations in Table 4 are optimal in terms of 
performance and accuracy.

The high accuracy achieved by most models, particularly 
Naive Bayes and Random Forest (99.5%), is noteworthy. The Naive 
Bayes model performed surprisingly well, possibly because the 
features in the dataset have a high degree of independence, which is 
the core assumption of this algorithm. The Random Forest model’s 
high accuracy is expected, given its robustness and ability to handle 
complex interactions between features. Our proposed Neural Network, 
while achieving a slightly lower accuracy of 97.73%, offers better 
scalability and adaptability for more complex, real-world scenarios. 
The discrepancy in accuracy between the NN and RF can be attributed 
to the relatively small size of the dataset (2.2k rows), which may not be 
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 Figure 5
Crop features distribution (N (kg/ha), P (kg/ha), K (kg/ha), temperature (°C), humidity (%), Rainfall (mm))
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large enough for the NN to fully leverage its learning capacity without 
overfitting. The computational cost of training the neural network 
was higher than the other models, especially with a large number of 
epochs, but its prediction time is fast, making it suitable for real-time 
applications.

For example, increasing the depth value of the decision tree 
increases the accuracy but also increases the training and prediction 
time. We achieved an accuracy of 99.5% with a random forest algorithm 
with 100 estimators.

For the neural network model, we observed that the number 
of epochs plays a significant role in the accuracy and performance. 
The experiments clearly show that the performance is inversely 
proportional to the number of epochs, and the accuracy is directly 
proportional to the number of epochs. For example, we achieved an 
accuracy of 97.73% with 100 epochs. In machine learning, precision 
and recall [2] are two metrics used to evaluate the performance of 
a model. Precision measures the fraction of positive predictions 
that are positive, while recall measures the fraction of positive 
instances that are correctly identified. The last column in Table 4 
shows precision and recall for each model. The formulas to calculate 
precision and recall are: Precision = TP / (TP + FP) Recall = TP / 
(TP + FN) where, TP = True Positives, FP = False Positives, and FN = 
False Negatives.

Based on our experimentation, the model using the Naive Bayes 
algorithm showed the highest accuracy. However, we believe that 
general neural networks would perform much better when the dataset 
size is much larger; also, it would be data agnostic.

We believe this work will help other developers or researchers 
understand the impact of different configurations on the accuracy and 
performance of machine learning models.

1) Average Conditions for Each Crop: Table 6 shows the average 
weather and soil characteristics values for each crop. Given the 
specific conditions in their region, this table can help farmers and 
other agricultural stakeholders make informed decisions about 
which crops to grow.
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 Figure 6
Pair plotting of all data

 Figure 7
Feature graph for phosphorus (P) in kg/ha
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7. Limitations
Despite strong model performance, several limitations exist:
Data Dependency: The model relies on structured, labeled 

data, which may be unavailable or inconsistent in real-world farming 
scenarios, particularly in developing regions.

No Real-Time Inputs: The current system does not integrate 
sensor or live weather data, limiting its adaptability to changing field 
conditions.

Economic Factors Ignored: Crop recommendations are based 
solely on environmental features, without considering market demand, 
pricing, or profitability.

Limited Regional Applicability: The model is trained on Indian 
conditions and may not generalize well to other agro-climatic zones 
without retraining.

Low Interpretability: The neural network offers high accuracy 
but lacks transparent explanations, which may hinder user trust and 
adoption.

Static Dataset: The model does not account for temporal 
trends such as seasonal shifts, soil degradation, or evolving climate 
patterns.

These constraints highlight areas for future work, particularly 
in enhancing data diversity, economic modeling, and system 
explainability.

8. Challenges in Agriculture
Agriculture faces many challenges today, both in general and 

in the context of machine learning. Some of the most concerning 
challenges are listed and explained below.

1)  Climate change: Climate change [3] is already significantly 
impacting agriculture, and the effects are expected to worsen. 
Climate change is causing more extreme weather events, such 
as droughts and floods, which can damage crops and livestock. 
Climate change is also causing changes in temperature and 
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 Figure 8
Feature graphs (temperature (°C), humidity (%), rainfall (mm), N (kg/ha), K (kg/ha))
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precipitation patterns, making it difficult for farmers to grow the 
necessary crops.

2)  Increasing population: The world’s population is expected to reach 
9.7 billion by 2050. This means that we will need to produce more 
food to feed everyone. The increasing population puts a strain on 
agricultural resources, such as land, water, and fertilizer.

3)  Water scarcity: Water scarcity [33] is a significant challenge in many 
parts of the world. Agriculture is a primary water user, and growing 
crops will become more challenging as water resources become 
scarce.

4)  Soil degradation: Soil degradation [34] is a significant problem 
in many parts of the world. Various factors, such as overgrazing, 
deforestation, and poor agricultural practices, can cause soil 
degradation. Soil degradation makes it difficult to grow crops and 
can lead to erosion.

5)  Pests and diseases: Pests and diseases [35] can damage crops 
and livestock, leading to significant losses for farmers. Pests and 
diseases are becoming more resistant to pesticides, making it more 
difficult to control them.

6)  Labor shortages: There is a labor shortage in many parts of the 
world, including the agricultural sector. This is due to several 
factors, such as an aging population, migration, and low wages. 
Labor shortages make it difficult for farmers to harvest crops and 
care for livestock.

7)  Economic challenges: Farmers face several economic challenges, 
such as low crop prices, high input costs, and competition from 

imported food. These challenges can make it difficult for farmers 
to make a living.

8)  Data availability: Machine learning algorithms require large 
amounts of data to train. This data can be difficult and expensive, 
especially in developing countries.

9)  Data quality: The data used to train machine learning algorithms 
must be high quality. This means that the data must be accurate, 
complete, and consistent.

10)  Model interpretability: Understanding how machine learning 
models make decisions is essential. This is important for farmers 
who need to be able to trust the decisions made by the models.

11)  Awareness: Many farmers lack resources and government 
subsidiaries to tackle their problems. Developing countries like 
India are getting better at this challenge. However, some countries 
still lack interest access and thus related resources to educate 
farmers.

12)  Losses, inefficiencies, and waste in the global food system: First, 
because global agricultural dry biomass consumed as food is 6% 
(energy 9.0% and protein 7.6%); and second, 44% of harvested 
crops dry matter lost before human consumption. This is more 
detailed in the reference [36].

13)  Crop damage: Crop damage by wild animals [37, 38] is a serious 
problem affecting farmers worldwide. Wild animals can damage 
crops in various ways, such as eating, trampling, polluting, and 
transmitting diseases. As a result, crop damage by wild animals can 
significantly impact farmers’ livelihoods. In some cases, it can even 
lead to financial ruin.

9. Future Work/Ideas
There are multiple ways this work can be extended. Some of the 

examples are listed below. The readers are encouraged to extend this 
work by picking any of the following ideas.

1)  Given the rapid advancements in Generative AI [39, 40], particularly 
large language models (LLM), a compelling future research 
direction involves developing an LLM-based crop recommendation 
system. This system would not only provide recommendations but 
also generate natural language explanations for them, addressing the 
interpretability challenge. A comparative study of this LLM-based 
system against the models evaluated in this paper would be highly 
valuable. This enhanced interpretability would allow farmers to 
understand the reasoning behind a recommendation and make more 
informed decisions.

2)  Conduct a survey among farmers to evaluate the economic impact 
of using the proposed recommendation system. This would help 
quantify the financial benefits in terms of cost savings and increased 
profitability.

3)  Develop a mobile application that integrates the proposed models, 
providing an end-to-end solution for farmers and agribusinesses. 
This would make the technology more accessible and user-friendly.

4)  Collect and use data from diverse geographical regions to improve the 
model’s generalizability and create region-specific recommendation 
systems. 

5)  Utilize a larger and more comprehensive dataset, including data on 
soil health, water quality, and pest infestations, to build more robust 
and accurate models.

6)  Evaluate the economic and environmental impact of the 
recommendations, considering factors like water usage, carbon 
footprint, and market prices.

7)  Integrate real-time data from on-farm sensors (for soil moisture, 
temperature, etc.) to provide dynamic and highly contextualized 
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Index Label name
1 Rice
2 Maize
3 Chickpea
4 Kidney beans
5 Pigeon peas
6 Moth beans
7 Mung bean
8 Black gram
9 Lentil
10 Pomegranate
11 Banana
12 Mango
13 Grapes
14 Watermelon
15 Muskmelon
16 Apple
17 Orange
18 Papaya
19 Coconut
20 Cotton
21 Jute
22 Coffee

Table 5
All unique labels
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crop recommendations. This would also help in reducing crop losses 
and improving decision-making.

8)  Explore the use of hybrid or ensemble models, such as stacking, to 
potentially achieve even higher accuracy and robustness.

10. Conclusion
In conclusion, this research paper has presented crop 

recommendation models to predict the best crops to grow using multiple 
advanced machine learning algorithms and a deep neural network. The 
technique is scalable and easily adapted to new data and regions or 
countries.

The results of this study have several positive implications 
for the agricultural industry. First, the technique can be used by 
farmers to make more informed decisions about what crops to grow. 
Second, the method can be used by governments to develop policies 
that support the agricultural sector. Third, the method can be used 
by businesses to create new products and services that support the 
agricultural industry; Fourth, it will help keep the agricultural goods 
prices stable.

Next, we thoroughly presented agricultural challenges and some 
interesting future ideas to venture into.

Overall, this research has made a significant contribution to the 
field of agriculture. The technique is scalable, accurate, and easy to use, 
making it a valuable tool for farmers, governments, and businesses.
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Index Crop name Nitrogen Phosphorous Potassium Temperature Humidity pH Rainfall
1 Rice 79.89 47.58 39.87 23.69 82.27 6.43 236.18
2 Maize 77.76 48.44 19.79 22.39 65.09 6.25 84.77
3 Chickpea 40.09 67.79 79.92 18.87 16.86 7.34 80.06
4 Kidney beans 20.75 67.54 20.05 20.12 21.61 5.75 105.92
5 Pigeon peas 20.73 67.73 20.29 27.74 48.06 5.79 149.46
6 Moth beans 21.44 48.01 20.23 28.19 53.16 6.83 51.20
7 Mung bean 20.99 47.28 19.87 28.53 85.50 6.72 48.40
8 Black gram 40.02 67.47 19.24 29.97 65.12 7.13 67.88
9 Lentil 18.77 68.36 19.41 24.51 64.80 6.93 45.68
10 Pomegranate 18.87 18.75 40.21 21.84 90.13 6.43 107.53
11 Banana 100.23 82.01 50.05 27.38 80.36 5.98 104.63
12 Mango 20.07 27.18 29.92 31.21 50.16 5.77 94.70
13 Grapes 23.18 132.53 200.11 23.85 81.88 6.03 69.61
14 Watermelon 99.42 17.00 50.22 25.59 85.16 6.50 50.79
15 Muskmelon 100.32 17.72 50.08 28.66 92.34 6.36 24.69
16 Apple 20.80 134.22 199.89 22.63 92.33 5.93 112.65
17 Orange 19.58 16.55 10.01 22.77 92.17 7.02 110.47
18 Papaya 49.88 59.05 50.04 33.72 92.40 6.74 142.63
19 Coconut 21.98 16.93 30.59 27.41 94.84 5.98 175.69
20 Cotton 117.77 46.24 19.56 23.99 79.84 6.91 80.40
21 Jute 78.40 46.86 39.99 24.96 79.64 6.73 174.79
22 Coffee 101.20 28.74 29.94 25.54 58.87 6.79 158.07

Table 6
Features’ mean values for each crop

https://www.kaggle.com/datasets/atharvaingle/crop-recommendation-dataset/data
https://www.kaggle.com/datasets/atharvaingle/crop-recommendation-dataset/data
https://www.techrxiv.org/doi/full/10.36227/techrxiv.23504496
https://www.techrxiv.org/doi/full/10.36227/techrxiv.23504496
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