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Abstract: DDoS attacks flood the target systems with bulky, abnormal traffic, rendering them unavailable to benign users, and could lead to the 
crash of servers or computing devices, a loss of money, and a loss of productivity in time-dependent sectors like banks, airlines, online shopping, 
and more. Many researchers have sought to address DDoS attack issues using various techniques despite these attacks continuing to rise. To address 
these concerns, the study employed PRISMA guidelines to excavate open issues from recent and pertinent research articles to provide viable 
solutions and employed diverse deep-learning models. Each model was fine-tuned and trained with and without the SMOTEENN dataset balancing 
strategy using diverse train-test-validation splits. When looking at the models’ efficacy, it was evident that all models achieved remarkable accuracy 
rates on the test dataset following the application of the SMOTEENN dataset balancing strategy. Among others, the combination of the MLP model 
with SMOTEENN  scored the top accuracy of 98.90%. The SMOTEENN technique reduces the FNR and FPR for models like DNN and BiLSTM. 
While slightly increasing FPR, it lowers FNR for the majority of models, including MLP, LSTM, DCNN, CNN-LSTM, and DNN-AE. Despite 
significantly improving the accuracy, the SMOTEENN technique did not reduce the model’s train-test computational times. The review findings 
reveal that applying relevant feature selection strategies could reduce model computational time. The study demonstrates the workflow for DDoS 
attack detection, classification, and mitigation using the proposed model.
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1. Introduction
Distributed denial-of-service  (DDoS) attacks are one of the 

leading causes of network instability and service disruption. They 
send bulky illegitimate traffic to the target systems to disrupt online 
services [1–3]. Because these attacks can originate from a variety of 
sources, it is difficult to prevent and mitigate. Because more people 
are accessing the Internet through mobile devices and the Internet of 
Things, cybercriminals are getting more interested in targeting systems 
and network infrastructure [4–6].

DDoS attacks have become more complex and frequent in recent 
years, making it difficult to defend against them using traditional 
security techniques. Traditional detection techniques, like signature-
based and statistical anomaly detection, sometimes fall short in spotting 
new and changing DDoS attack patterns as attackers use increasingly 
sophisticated tactics [7]. In recent years, applications of deep learning 
techniques have contributed to enhanced cybersecurity defense [8]. 
It excels in relevant feature extraction and handling incomplete data, 
offering diverse model options, chaining capabilities, pre-trained 
knowledge, and high-performance rate requirements, and has shown 
promise in detecting and mitigating DDoS attacks [9–14].

Imbalanced classification is a problem for many real-world 
applications in general and for machine learning models in particular. 
This problem arises when there is a bias in predictions toward the 
majority class due to a skewed distribution of the target variable. There 
is an urgent need for effective solutions to address this issue in the big 

data era. Several techniques are discussed in the recent study to address 
class imbalance issues, such as random undersampling (RUS), random 
oversampling (ROS), SMOTE, cost-sensitive learning (weighting), and 
K-medoid [15].

To make the majority class samples equivalent to the minority 
class samples, the majority class samples are randomly eliminated 
from the dataset in RUS. This strategy could result in relevant 
information loss. The minority class samples are randomly replicated 
to be equivalent to the majority class samples in ROS. This strategy 
could result in model overfitting due to duplicate samples used for 
training. The minority class will be given high weight in the cost-
sensitive learning method without increasing or decreasing the number 
of samples. There are some classifiers supporting weighting methods, 
such as ANN and SVM. K-medoid is used to cluster the samples of 
the majority class; the number of clusters is equal to the number of 
minority training samples. Since they are balanced in this instance, the 
minority class and the medoid—the cluster centers—are used for the 
training phase [14]. Unlike the ROS method, SMOTE doesn’t replicate 
the minority class dataset; instead, SMOTE generates synthetic samples 
for the minority class by interpolating current instances of the class. 
To do this, SMOTE picks a minority class instance with its k-nearest 
neighbors. While SMOTE focuses solely on oversampling the minority 
class, SMOTEENN adopts a more holistic approach by incorporating 
the undersampling of the majority class. This dual strategy affords 
better handling of varying degrees of class imbalance, thereby making 
it more adaptable to different datasets and scenarios. By removing 
noisy majority instances, the SMOTEENN approach allows the model 
to learn more effectively, leading to improved classification accuracy. 
Additionally, SMOTEENN not only increases the number of minority 
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class samples but also ensures that the majority class representation 
is more relevant. This balance aids in building models that generalize 
better to unseen data, thereby reducing the risk of over-fitting associated 
with using SMOTE alone [16–18].

With the use of deep learning techniques, the field of DDoS 
attack detection has seen notable advancements. Many researchers 
have sought to address DDoS attack issues using various techniques 
despite these attacks continuing to rise [19]. This emphasizes the need 
for beating DDoS attacks using accurate, reliable, and adaptive models. 
Our study highlights recent studies conducted between 2019 and 2024 
on the use of deep learning techniques for DDoS attack detection to 
identify the gaps, formulate research methodology, and offer workable 
answers.

The following research questions are meant to be addressed by 
conducting different experiments:

1.  How well do the deep learning models perform with different 
datasets train, validation, and test splits? 

2.  How do deep learning models perform both with and without an 
SMOTEENN dataset balancing strategy in terms of accuracy, 
false positive rate (FPR), false negative rate (FNR), and train-test 
computational time?

3.  How can incoming network traffic data be categorized using a variety 
of features utilizing a DDoS attack detection and classification 
prototype?

2. Literature Review
To retrieve recent and pertinent research works, a suitable 

keyword-based search strategy like DDoS attack detection OR 
distributed denial-of-service detection AND deep learning, used to 
extract these research papers from reputable sources, including the 
Web of Science, EEE, Springer, and SCOPUS databases, in accordance 
with PRISMA principles. Boolean operators (AND, OR) were used to 
successfully combine these search terms. Based on a keyword-based 
search strategy, 85 papers were retrieved in the first stage, 40 papers 
were screened in the second stage because they were relevant and 
included both machine learning and deep learning algorithms, and 24 

papers were examined in the third stage because they were appropriate 
and contained only deep learning algorithms for DDoS attack detection.

The following research questions are meant to be addressed in 
Sections 2.1–2.5:

1.  Which deep learning models are top performing in DDoS attack 
detection? 

2.  What are popular datasets used for DDoS attack detection?
3.  Did the reviewed studies use balanced datasets for DDoS attack 

detection?
4.  What types of dataset splits used in the reviewed studies?
5.  Did the reviewed studies reveal relevant experimental details for the 

replication or revalidation of their research findings?

The review results are framed based on the following research 
questions.

2.1. RQ#1: which deep learning models are top per-
forming in DDoS attack detection?

As can be seen from Table 1, the scientific community uses a 
variety of deep learning algorithms, albeit not all of them are equally 
effective in identifying DDoS attacks. To save future researchers’ time in 
model selection, the study determined which models performed best in 
identifying DDoS attacks based on prior studies. Autoencoder (AE) was 
the least chosen DL model for DDoS attack detection, while long short-
term memory (LSTM) and deep neural network (DNN) were among 
the most popular and well-performed models based on the application 
on an individual basis. The scientific community has employed several 
hybrid-based applications, including LSTM-AE, CNN-LSTM, LSTM-
RNN, AE-MLP, and RNN_AE, to demonstrate top performance in 
DDoS attack detection. 

2.2. RQ#2: what are popular datasets used for DDoS 
attack detection?

Commonly utilized datasets for deep learning-based DDoS 
attack detection includes CICDDoS2019, CICIDS2017, NSL-KDD, 
ISCX2012, and UNSW 2018. Appearing in 17 out of 24 studies, the 

2

Evaluation criteria [6] [10] [11] [13]
Deep learning used DNN DNN, LSTM LSTM (CNN) 2D, LSTM-DAE, DNN
Used dataset CICDDoS2019 CICDDoS2019 CICDDoS2019 CICDDoS2019
Data source CIC CIC CIC CIC
No. of the used dataset 1 1 1 1
Data size 730,355 Unknown Unknown 186,548
Dataset ratios Balanced Imbalanced Balanced Imbalanced
Feature selection techniques Unknown Unknown Unknown Unknown
No. of used  features 69 24 71 80
Feature scaling techniques Applied Not applied Applied Applied 
No. of DDoS attack type 14 3 Not mentioned 12
% of train-test-validation split ratio 80/20 60/20/20 Not mentioned 90/10
Model hyperparameter Revealed Revealed Revealed Revealed 
Classification type Multi-class Multi-class Binary Multi-class 
Best-performing detection model DNN LSTM LSTM LSTM
Accuracy rate 94.57% 99.90% 98% 74.42%

Table 1
Structured summary of the reviewed research works
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CICDDoS2019 dataset was determined to be the most recent and highly 
favored dataset by the scientific community. The Canadian Institute for 
Cybersecurity (CIC) provides this dataset and included the new types of 
DDoS attacks like UDP-lag and NetBIOS (refer to Table 1).

Performance is significantly impacted by the quantity, quality, 
and distribution of datasets used to train deep learning algorithms. 
Despite revealing model accuracy, 9 out of 24 studies still need to 

reveal the dataset size used for DDoS attack detection; 4 out of 24 
studies did not reveal train-test-validation dataset ratios; 6 out of 24 
studies did not reveal the optimal model hyperparameters used; 6 out 
of 24 studies did not reveal the number of top predictive features used 
for DDoS attack detection; 10 out of 24 studies did not reveal feature 
scaling/normalization techniques, used to avoid one feature dominating 
another; and 4 out of 24 studies did not reveal whether the dataset used 

3

Evaluation criteria [2] [8] [50] [28]
Deep learning used AE-MLP 1DCCN-LSTM RNN_AE AE, DCAE, VAE, LSTM
Used dataset CICDDoS2019 CICDDoS2019 CICDDoS2019 CICDDoS2019, CICIDS2017, NSL-KDD
Data source CIC CIC CIC CIC
No. of used dataset 1 1 1 3
Data size 70,427,637 1,060,572 230,673 Unknown
Dataset ratios Imbalanced Imbalanced Balanced Imbalanced 
Feature selection techniques Unknown Unknown Autoencoder Contractive auto encoder &stochastic 

threshold
No. of used features 78 79 77 CICDDoS2019, 78; CICIDS2017, 77; NSL_

KDD, 121
Feature scaling techniques Applied Applied Applied Not applied
No. of DDoS attack type 5 12 Unknown Unknown
% of train-test-validation splits 70/20/10 80/10/10 70/20/10 Unknown
Model hyperparameter Revealed Revealed Revealed Not revealed
Classification type Multi-class  Binary & multi-class Binary Binary 
Best-performing detection model AE-MLP DCNN-LSTM RNN_AE DCAE
Accuracy rate 98% 99.76% 98.8% CICDDoS2019, 97.58%; NSL-KDD, 

96.08%; CICIDS2017, 92.45%

Table 1
(Continued) 

Evaluation criteria [21] [31] [29] [32]
Deep learning used BiLSTM LSTM CNN LSTM-CNN 
Used dataset CIC-IDS2017 

CICDDoS2019
ISCX2012 CICDDoS2019

CICIDS2017
UNSW 2018 dataset
DDoS attack SDN dataset

Data source CIC CIC CIC University of New South Wales, Australia
Mendeley dataset

No. of the used dataset 2 1 2 2
Data size Unknown 240,000 Unknown Unknown
Dataset ratios Imbalanced Unknown Imbalanced Unknown
Feature selection techniques GMM Bayes approach Geometric metrics stack autoencoder
No. of the used features Unknown Unknown Unknown 23
Feature scaling techniques Unknown Unknown Applied Unknown
No. of DDoS attack types used 6 Unknown CICDDoS2019 :10

CICID2017:No
4

% of train-test-validation split ratio 10-fold 80/20 Unknown 80/20
Model hyperparameter Revealed Not revealed Revealed Not revealed
Classification types Binary Binary Binary Binary 
Best-performing detection model BiLSTM LSTM-BA CNN-GEO LSTM-RNN with stack autoencoder
Accuracy rate 94% 98.15% 98% 99.99%

Table 1
(Continued) 
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in the study was balanced or Imbalanced. These practices are against 
replicating study findings and revalidating models for deployment in 
actual environments (refer to Table 1).

2.3. RQ#3: did the reviewed studies use balanced 
datasets for DDoS attack detection?

Most (13 out of 24) studies used Imbalanced datasets (used 
uneven DDoS and none-DDoS dataset ratios) to train deep learning 
models or did not apply popular dataset balancing strategy like SMOTE 
even though models were biased toward the majority classes when 

using Imbalanced datasets (refer to Table 1). Even though model 
performance varies when using different train-test split ratios, the 
majority of reviewed papers only use one dataset split to train deep 
learning models. According to our review findings, only the study by 
Jamal et al. [17] employed the SMOTEENN data balancing approach 
for DDoS attack detection, even though they did not use the popular 
dataset, CICDDoS2019; did not use deep learning models like 
MLP, DNN, BiLSTM, and DNN-AE; did not develop a prototype 
to facilitate evaluation of the top-performing model by experts; and 
did not assess the train-test computational time of the SMOTEENN 
on CICDDoS2019 dataset. These authors employed four balancing 

4

Evaluation criteria [1] [7] [23] [33]
Deep learning used CNN-RNN DNN DNN MLP, CNN, LSTM, LSTM-CNN
Used dataset CICDDoS2019 CICIDS2017 CICDDoS2019 CICIDS2017
Data source CIC CIC CIC CIC
No. of the used dataset 1 1 1 1
Data size 1,130,650 691395 12,797,829 Unknown
Dataset ratios Imbalanced Imbalanced Imbalanced Unknown
Feature selection techniques Random Forest 

Feature Importance
Unknown Unknown Unknown

No. of  used  features 83 75 11 Unknown
Feature scaling techniques Unknown Applied Unknown Applied 
No. of DDoS attack type used 16 5 3 5
% of train-test-validation split ratio 70/20/10 80/10/10 train-validation-

test split
Unknown Unknown

Model hyperparameter Revealed Revealed Revealed Not revealed 
Classification type Multi-class Multi-class Binary Multi-class 
Best-performing detection model CNN-RNN DNN DNN LSTM-CNN
Accuracy rate 98.92% 99% 99% 97.16%

Table 1
(Continued) 

Evaluation criteria [22] [24] [34] [25]
Deep learning used DNN LSTM CCN-LSTM DNN and CNN-AE
Used dataset CICDDoS2019 CICDDoS2019 Synthetic dataset CICDDoS2019
Data source CIC CIC Unknown CIC
No. of used dataset 1 1 1 1
Data size Over 180,000 Unknown 1,000,000 650,000
Dataset ratios Balanced Unknown Imbalanced Balanced 
Feature selection techniques PCC Unknown Unknown Unknown
No. of the used features 10 Unknown 12 83
Feature scaling techniques Applied Unknown Applied Applied 
No. of DDoS attack class used 10 8 Unknown Unknown
% of train-test-validation split ratio 70/30 80/20 80/20 Unknown
Model hyperparameter Revealed Revealed  Revealed Not revealed 
Classification type Multi-class Binary Binary Binary 
Best-performing detection model DNN LSTM CNN-LSTM CNN-AE
Accuracy rate 99.66% 99.19% 99% 87%

Table 1
(Continued) 
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strategies—SMOTE-Tomek, SMOTE-ENN, Borderline SMOTE, and 
SMOTE—to demonstrate that the MSCAD dataset, with six classes, 
was representative of the entire population. They found that 99.99% top 
accuracy was achieved after applying the SMOTEENN with the KNN 
model. To get beyond the drawbacks of the separate dataset balancing 
strategies, SMOTEENN integrates the inherent qualities of RUS and 
ROS approaches. Thus, SMOTE corrects unequal class distributions 
by boosting the representation of the minority class, while ENN acts 
as a cleaning mechanism, guaranteeing that the final training set is 
more coherent and less prone to noise [14]. By eliminating problematic 
points, ENN protects the quality of the data, which makes SMOTEENN 
an effective method for enhancing classification performance on highly 
skewed datasets [16–18, 20]. The aforementioned literature-based 
evidence was one of the core rationales for selecting SMOTEENN for 
our study.

2.4. RQ#4: what common types of dataset splits are 
used in the reviewed studies?

To evaluate model skills on unobserved or unseen data, different 
dataset split ratios were used by the scientific community. The dataset 
split ratios of 80%–20% were used in five studies, 60%–20%–20% 
splits in three studies, 70%–20%–10% splits in three studies, 80%–
10%–10% splits in three studies, 90%–10% split in one study, 70%–
30% split in one study, and tenfold cross-validation in one study. Most 
studies used 80%–20% dataset split ratios for DDoS attack detection 
(refer to Table 1). 

2.5. RQ#5: did the reviewed studies reveal relevant 
experimental details for the replication or revalidation 
of their research findings?

As seen from Table 1, most studies did not reveal each experimental 
detail for the reproducibility of research findings. Specifically, most 
studies used imbalanced datasets and did not reveal dataset size, fine-

tuned model hyperparameters, and train-test-validation split ratios. For 
instance, references [1, 8, 21–27] used the same dataset CICDDoS2019 
with our study even though references [10, 11, 21, 24, 28] did not reveal 
dataset size, references [11, 23, 25, 27–29] did not reveal train-test-
validation split ratios, references [24, 29, 30] did not reveal number of 
top predictive features used, and references [28, 25, 26] did not reveal 
fine-tuned model hyperparameters. The study is an effort to address 
these issues.

3. Materials and Methods
Intrinsic properties and better performance in related research 

works were taken into consideration while choosing deep learning 
algorithms for experiments. The dataset, that is, CICDDoS2019, was 
selected based on popularity and recent development. The dataset 
balancing strategy, that is, SMOTEENN, was selected based on 
advantages and disadvantages when compared with RUS, ROS, and 
SMOTE (see Sections 1 and 3.3). The identified research gaps and the 
advantages of filling them are listed in Table 2.

3.1. Dataset information
The findings of our systematic research indicate that 

CICDDoS2019, CICIDS2017, NSL-KDD, ISCX2012, and UNSW 
2018 are frequently used datasets for deep learning-based DDoS attack 
detection. The CICDDoS2019 dataset was found to be the latest and most 
popular dataset by the scientific community, appearing in 17 out of 24 
articles. These findings led our study to favor publicly available datasets, 
such as CICDDoS2019, which was made available by the Canadian 
Institute for Cybersecurity (CICS). These datasets were arranged in 
numerous CSV files, each of which represented a distinct attack type in 
addition to typical traffic data [11]. Downloading this dataset requires 
filling out a request form to obtain access, thereby ensuring the data 
is utilized for legitimate research purposes. Each data point within the 
dataset encompasses over 88 distinct features, incorporating millions 

5

Evaluation criteria [5] [35] [26] [27]
Deep learning used MLP CNN-AE, BiLSTM-AE, & 

ANN-AE
CNN,LSTM,GRU. CNN_LSTM

Used dataset NSL-KDD ISCXIDS2012 UNSW2018 CICDDoS2019 CICDDoS2019
Data source University of New Brunswick  Unknown CIC CIC
No. of used dataset 1 2 1 1
Data size 148,527 ISCX2012 = 100,000

Unsw2018 = 200,000
50,063,112  138,839

Dataset ratios Imbalanced Balanced  Imbalanced Balanced 
Feature selection techniques Unknown Autoencoder RFE (SVM) XGBoost
No. of used  features 41 Unknown 81 10
Feature scaling techniques Unknown Unknown Applied Applied 
No. of DDoS attack classes 22 Unknown 11 3
% of train-test-validation split ratio 60/20/20 60/20/20 80/10/10 Unknown
Model hyperparameter Not revealed Revealed Not revealed Revealed 
Classification types Binary Binary Multi-class Binary 
Best-performing detection model MLP BiLSTM-AE Hybrid of them CNN-LSTM
Accuracy rate 99.13% ISCDX2012, 99.35%

UNSW2018, 99.95% 
89.4% 99.5%

Table 1
(Continued) 
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of records that provide a diverse representation of DDoS attack traffic 
[36]. This dataset was selected due to its comprehensiveness, well-
documented features, and recent development. Its widespread use 
in other studies allows for valid comparisons with existing research. 
CICDDoS2019 dataset incorporates the varied types of DDoS attacks 
categorized into reflection and exploitation [36]. From the exploitation 
attacks, the study used SYN, UDP-lag, and UDP and from the reflection 
attacks used TFTP, NTP, MSSQL, and LDAP [22, 36].

Application and transport layer protocols like UDP, TCP, or a 
combination of the two are used in reflection-based DDoS attacks. 
While TCP-based protocols include SSDP and MSSQL attacks, UDP-
based DDoS attacks include TFTP, NTP, and CharGen. DNS, LDAP, 
NetBIOS, and SNMP may all be attacked using a combination of TCP 
and UDP. While UDP-based exploits include UDP-lag and UDP flood, 
TCP SYN flood is a TCP-based exploitation attempt. In order to create 
a three-way handshake connection, attackers use TCP SYN flooding 
to interfere with the victim’s authentic connection. Attackers launch a 
TCP SYN attack by bombarding a server with SYN packets and then 
failing to reply to the server’s response. Sending a large quantity of 
UDP packets to the remote computer initiates a UDP flood attack. These 
UDP packets are sent quickly to the target system’s random ports. As 
a result, the system crashes, performance declines, and the network’s 
available capacity is exhausted [2, 27]. An attacker takes advantage of 
flaws in Microsoft Structured Query Language (MSSQL) by posing as 
a genuine MSSQL client and sending scripted requests to the MSSQL 
server using a spoofed IP address, making it look as though they were 
coming from the target server. DDoS attack uses the Lightweight 
Directory Access Protocol (LDAP), an application layer protocol that 
is commonly used to retrieve a human-readable URL (such as google.
com), to send queries to a publicly accessible but insecure LDAP 
server in order to produce a huge number of answers [2]. The detailed 
descriptions of the dataset features, that is, CICDDoS2019, could be 
accessed from the recent study by Cil et al. [6].

3.2. Data preprocessing techniques
The CICDDoS2019 dataset is very large, making it challenging 

to find the necessary hardware for processing such large quantities of 
data, especially in resource-constrained devices in African countries in 
general and Ethiopia in particular. It requires GPU-enabled hardware to 
handle this volume effectively. In this respect, the study concentrated on 
eight specific classes of DDoS attacks to conduct experiments. These 
are SYN, UDP, MSSQL, UDP-lag, TFTP, NTP, LDAP, and benign 
classes, as assessed by their importance for DDoS attack detection in 

existing studies. The study removed the duplicates using the Python 
function drop_duplicates for each class, which may affect the 
performance of the models. After removing the duplicated records from 
each class, the study concatenated the data into a single file, facilitating 
easier manipulation and analysis. After concatenation, the dataset 
comprised 797,128 samples. During this process, the study identified 
and removed certain entries from the dataset that were deemed irrelevant 
or potentially harmful to model performance.

To mitigate the model overfitting issues, the study opted to remove 
socket-related features like Source Port, Timestamp, Destination IP, 
Flow ID, Destination Port, and Source IP. These attributes can exhibit 
significant variability across different network configurations, which 
can complicate the training process [2]. Overfitting issues can occur 
when training the deep learning model by incorporating socket feature 
values due to the attackers and legitimate users sharing the same IP 
address [6, 8, 50].

Due to their lack of variability, we removed features such as Bwd 
Packet Length Std, Bwd PSH Flags, Fwd URG Flags, Bwd URG Flags, 
Bwd Avg Bytes/Bulk, ECE Flag Count, Fwd Avg Packets/Bulk, Fwd 
Avg Bytes/Bulk, FIN Flag Count, PSH Flag Count, Fwd Avg Bulk Rate, 
Bwd Avg Packets/Bulk, Unnamed, Bwd Avg Bulk Rate, and Similar 
HTTP [6]. After excluding the zero variance features, the updated 
dataset consists of 67 features. 

One-hot encoding was used to accurately represent the categorical 
data [16]; StandardScaler was used to transform each feature to have 0 
mean and 1 standard deviation for standardizing the features with the 
highest variance identified in the dataset [37].

3.3. Dataset balancing strategy
Most (13 out of 24) studies used Imbalanced datasets to train deep 

learning models. This approach could result in biased model outputs. 
To address these concerns, the SMOTEENN technique combines 
the advantages of oversampling and data cleaning to better handle 
imbalanced datasets. SMOTE creates fresh samples for the minority 
class in the first stage. This method reduces the risk of overfitting that 
can occur with the naïve replication of uncommon samples and helps 
address the problem of having too few training cases in the minority 
class. However, because misaligned synthetic points may obscure class 
distinctions, including freshly generated data in noisy regions or close 
to class determination boundaries might occasionally reduce model 
performance. SMOTEENN follows a hybrid approach to overcome 
class imbalance. Thus, SMOTE corrects unequal class distributions by 
boosting the representation of the minority class, while ENN acts as 
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Limitations in past studies
No. of studies 

out of 24 Benefits of addressing it
1 Did not disclose fine-tuned model hyperparameters 7 Facilitate reproducibility of research findings  
2 Did not disclose DDoS-benign dataset ratios 4 Facilitate reproducibility of research findings  
3 Used only one deep learning algorithm 9 Comparing multiple models to select the better one
4 Did not disclose train-test split/cross-validations 7 Facilitate reproducibility of research findings  
5 Used Imbalanced datasets/no balancing strategy  13 Better generalization
6 Didn’t disclose dataset size 8 To check scalability and make comparisons 
7 Focused on binary classification 14 Increase model decision scope 
8 Evaluated model before and after dataset balancing strategy None To ensure the impacts using dataset balancing 

techniques on the deep learning models’ performance
9 Focused on research publications from 2020 to 2024 None To see the current DDoS attack detection practices

Table 2
Some notable limitations in the related research works
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a cleaning mechanism, guaranteeing that the final training set is more 
coherent and less prone to noise. By eliminating problematic points, 
ENN protects the quality of the data, which makes SMOTEENN an 
effective method for enhancing classification performance on highly 
skewed datasets [20, 38–40].

Compared to dataset balancing strategies like the synthetic 
minority oversampling technique (SMOTE), ADASYN, RUS 
(random undersampling), and ROS, SMOTEENN is a new resampling 
technique that uses Map-Reduce architecture to combine intelligent 
undersampling and oversampling and show outperforming results for 
small- and medium-sized datasets while achieving positive results 
on large datasets with reduced running times. One useful technique 
for lowering the overall complexity of the learning process is 
undersampling. Nonetheless, several studies have demonstrated that 
hybrid undersampling/oversampling techniques like SMOTEENN that 
incorporate SMOTE oversampling and ENN undersampling might help 
raise the predictive capabilities of classifiers [38]. Table 3 illustrates the 
imbalanced and balanced dataset distributions across multi-class. 

3.4. Implemented deep learning algorithms
The study employed seven popular deep learning algorithms, 

namely, MLP, LSTM, BiLSTM, DNN, deep convolutional neural 
network (DCNN), CNN-LSTM, and DNN with autoencoder. These 
deep learning algorithms were chosen due to their ability to leverage 
various strengths for managing complex, high-dimensional, and 
sequential data. Each algorithm was trained before and after employing 
the SMOTEENN dataset balancing techniques for performance 
comparison. Descriptions of each deep learning algorithm are presented 
as follows.

3.4.1. Multilayer perceptron (MLP)
MLP is a type of feed-forward neural network; it can handle 

both linear and nonlinear data, widely used and are trained using 
backpropagation, and is a supervised learning method [41, 42]. It 
was applied in numerous domains, such as speech recognition, image 
compression, financial data prediction, autonomous vehicle control, 
medical diagnosis, and phishing website detection. MLP supports a 
nonlinear activation function [43, 44].

As stated in study by Najar and Manohar Naik [5], MLP uses 
the nonlinear backpropagation algorithm to compute all input neuron’s 
standard sum as shown in Equation (1).

An example of a common MLP is shown in Equation (1), where 
b is the bias, Xj is the neuron input, and Wj is the input weight. With 

a specific number of neurons in each layer, the network is completely 
connected. The characteristics of the data collection and the quantity 
of classes determine the size of the incoming and outgoing neurons. m 
outputs are produced by the model for every M-class categorization. 
Using the input sequence Y = (Y1; Y2; Y3; ...; Yd)

T as guide Class g’s 
production is determined by:

hn represents the number of hidden layers, and Wgi and Vi represent the 
output and hidden layers’ connection weights, respectively. The values 
for every connection are automatically determined when the MLP 
classifier is trained on a testing dataset [5].

The MLP scored an accuracy of 99.13% in the study [5], even 
though the study used binary classifications and imbalanced datasets, 
and it shows a quick computational time in identifying phishing 
websites [43]. In our study, the MLP model achieved the highest 
accuracy (98.9%) in DDoS attack detection utilizing a balanced dataset 
for multi-class classifications. 

3.4.2. Deep neural network (DNN)
DNN mimics the works of the human brain.  It is analogous 

to the traditional MLP algorithm despite DNN having more hidden 
layers. Increasing the amount of input features and the size of the 
model hyperparameter can affect the DNN model performance in terms 
of computational speed. The DNN uses the backpropagation for the 
learning process [43]. 

Three steps are involved in the DNN algorithm’s model 
construction. Initially, the number of layers and the neurons for each 
layer are determined by the model topology along with the relationships 
between them. Then, using artificial neurons, the forward propagation 
with its activation function and perceptron classifier is employed. 
Finally, backpropagation is used in conjunction with the optimizer and 
loss function [49]. DNN formula is represented in Equation (3)

where H stands for these nodes’ values, cn for the number of nodes in 
the layer, W for the weights, and B for the nodes’ bias in Equation (3). 
Activation functions receive the results. The notion of the activation 
function is generally based on how a neuron functions in the human 
brain and is explicitly activated at a certain level, known as the activation 
potential. It puts the outcome inside a certain range. Between the typical 
activation functions, which include sigmoid, tanh, softmax, and ReLU, 
this system used ReLU activation functions in the hidden layers [45].

(1)

(2)

(3)
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 Dataset Traffic type No. of entries before SMOTEENN No. of entries after SMOTEENN
CICDDoS2019 TFTP 153175 144267
CICDDoS2019 SYN 143725 105477
CICDDoS2019 DrDDoS_LDAP 17265 142932
CICDDoS2019 DrDDoS_UDP 151498 148461
CICDDoS2019 UDP-lag 61370 99213
CICDDoS2019 DrDDoS_NTP 151758 146860
CICDDoS2019 BENIGN 49143 151035
CICDDoS2019 DrDDoS_MSSQL 69194 144846

Total = 797128 Total = 1083091

Table 3
Dataset distributions before and after using the SMOTEENN technique
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The accuracy of the DNN model in our investigation was 98.73%, 
which is 0.1% better than that of the LSTM model, 4.16% better than 
the accuracy of the LSTM model in the study by Cil et al. [6], while 
0.93% lower accuracy attained by Amaizu et al. [22]. Despite the DNN 
model train using Imbalanced datasets, it attains 99% accuracy in the 
study by Asad et al. [7] as well as Sbai and Elboukhari [23]. To attain 
98.73% accuracy, our study uses a balanced dataset; the initial three 
hidden layers of DNN consist of 256, 128, and 128 units, respectively, 
while the subsequent layers contain 96, 48, 56, and 32 units, with a 
dropout rate of 0.2. The model utilized the Adam solver with categorical 
cross-entropy loss function and accuracy as metrics.

3.4.3. Long short-term memory (LSTM) 
LSTM is a type of RNN that addresses the vanishing gradient 

problems, which can occur when training deep networks over long 
sequences. Its architecture includes an input gate, output gate, and 
forget gate. These components maintain the flow of signals between the 
layers, enabling long-term learning dependencies [39, 40]. It is often 
used in applications like language modeling, intrusion detection, and 
sentiment analysis [39, 40].

As indicated in the study by Zainudin et al. [27], memory cells 
are neurons found in the LSTM layer. Three gates are present in every 
memory cell: input, forget, and output gates. Every gate processes the 
input features in a different way. Depending on the cell’s state, the 
forget gate, for example, chooses which data should be processed by 
eliminating irrelevant data. To remove extraneous data, the forget gate 
first passes the previous cell output Fg−1 and the addition layer output 
Fg via a sigmoid gate σ. Lastly, the acquired data are multiplied and 
combined.

The output of the forget gate ft is shown in Equation (4) [27]

where Wf and bf depict the weight matrix and the forget gate offset, 
respectively.

Consequently, the input gate uses a sigmoid function for the 
input data control and generating the current state. The processing of 
the input gate can be shown in Equation (5) [27]

where Wi and bi depict the weight matrix and the forget gate offset, 
respectively.

Additionally, the input gate creates a vector of the data to be 
added to the current state using a tanh function. The network calculates 
the hidden state cg in the following manner using the outputs of the 
input and forget gates [27] (see Equations (6) and (7)):

Lastly, the output gate chooses helpful characteristics depending 
on the cell’s current state, the preceding cell’s outcome, and new 
data. An expression for this gate’s output og function can be shown in 
Equation (8):

The LSTM layer output (Fout) can be shown in Equation (9):

The dense layer receives input from the output LSTM layer. 
Softmax and fully linked layers process the output data after the dense 
layer in order to categorize each attack type [27].

LSTM scored accuracies of 99.9% [10], 98% [11], and 99.19% 
[24], even though the study by Khempetch and Wuttidittachotti [10] used 
Imbalanced dataset, the study by Kumar et al. [11] didn’t mention train-
test splits used and didn’t employ multi-class classification, and the study 
by Shurman et al. [24] didn’t mention dataset size and features. Despite 
being 0.63% more accurate than the accuracy achieved by the study [11], 
LSTM scored the lowest accuracy in our analysis (98.63%) compared 
to MLP, BiLSTM, CNN-LSTM, DNN, DNN-AE, and DCNN models.

3.4.4. Bidirectional long short-term memory (BiLSTM)
BiLSTM networks are particularly effective for handling 

numerical data, especially in applications like time series forecasting 
and other sequential tasks. These networks are designed to capture 
dependencies in both directions, which is especially beneficial for time 
series data where past and future values can impact predictions [46]. 
In BiLSTM architecture, two LSTM units are employed, with one 
processing the input in a forward direction and the other in reverse. 
This dual approach enhances the model’s ability to understand context 
and improve prediction accuracy. This method differs from the 
unidirectional LSTM approach by combining sequences from both 
directions to form a unified representation. This integration allows the 
model to utilize information from both LSTMs, enhancing its ability to 
forecast the next temporal output based on the combined results of the 
two LSTMs [47].

BiLSTM is an improved version of LSTM that combines 
backward and forward LSTM to analyze traffic data more precisely. 
This enables a two-way information analysis process that enables more 
accurate computations. This is how the computation is carried out [48] 
(see Equations (10), (11), and (12)).

 and  are the two LSTM layer outputs 
at time t in forward and backward directions, respectively.   
and  are the parameters of hidden layer, It is the input data, 

 and  are the offset values, and Ot is the output of 
the BiLSTM. Generic BiLSTM formula includes the forget gate, the 
input gate, the previous cell state, the current cell state, the output gate, 
the previous unit output, the current unit output, the weight of neural 
network, and the bias value [48]. 

In order to better comprehend the context and increase the 
prediction accuracy, our study used the BiLSTM model, which has 
advantages over LSTM in terms of capturing dependencies in both 
directions (past and future values) [46, 47]. The BiLSTM model in our 
investigation detected DDoS attacks with a third-best accuracy (98.8%), 
behind the MLP and CNN-LSTM combo accuracies, respectively. This 
accuracy is 4.8% greater than the accuracy achieved in the study by 
Nguyen et al. [21] by BiLSTM and 0.17% higher than the accuracy of 
the LSTM model in our study. 

To attain the stated accuracy, the first layer of the BiLSTM model 
contains 128 units, which process input sequences; the next layer 
contains 64 units to enhance the model’s capacity to capture complex 
temporal patterns with a dropout rate of 0.1. The model also featured 
a dense layer with 128 units and a ReLU function. To further mitigate 
overfitting, a second dense layer contains 64 units with a dropout rate 
of 0.1. Finally, the architecture concluded with a dense output layer 

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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that utilized the softmax activation function to generate probabilistic 
outputs for multiple classes. The architecture was set up with the Adam 
solver and a learning rate of 0.00001. For the loss function, categorical 
cross-entropy was employed, making it appropriate for tasks involving 
multiple classes.

3.4.5. Deep convolutional neural networks (DCNN)
The CNN has many layers, including input, convolutional, 

pooling, fully connected, and output layers; the number of layers 
used determines how deep the CNN is. The general system used by 
convolutional neural networks is comparable to that of multilayer 
perceptron. It is designed similarly to a multilayer perceptron. DCNN is 
capable of automatically learning hierarchical structures and identifying 
spatial relationships, which makes them well suited for analyzing and 
understanding structured grid-like data [30].

As indicated in the study by Jamal et al. [17], CNNs encompasses 
many hierarchical levels and computational procedures which are 
represented in Equation (13).

where

1.  Output depicts the features yielded by the layer.
2.  Activation is the function used elementwise.
3.  n is the number of kernels (filters)  in the layer.
4.  Wk depicts the kth filter’s weight.
5.  Inputk is the kth input feature.
6.  b depicts the bias term.
7.  ∗ indicates the convolution process between the filter and input 

feature.

In our study, DCNN attains 98.75% accuracy in DDoS attack 
detection which is better than LSTM, DNN, and DNN-AE accuracy. 
For DCNNs, we set up a sequential model, a popular way to build neural 
networks in Keras. The initial 1D CNN utilized 64 filters with a 3x3 
kernel size, serving as feature detectors with the ReLU function. The 
next layer contains 128 filters with a 3x3 kernel size. Max pooling layers 
were used twice to diminish the data’s dimensionality. Max pooling 
takes the maximum value within windows of size 2, summarizing the 
most vital variables in a smaller representation. The flattening layer 
then transformed the multidimensional output from the convolutional 
layer into single vectors. This step was essential for connecting the data 
to fully connected layers. We defined two dense layers with 64 and 
128 units, respectively, each monitored by a ReLU function to model 
complex relationships between the features more effectively.

3.4.6. CNN-LSTM
CNN and LSTM were combined to form the hybrid technique in 

our study. The CNN was served as a feature extractor to feed or provide 
important features for the LSTM model at its pooling layer. LSTM is 
a type of RNN that addresses the vanishing gradient problems, which 
can occur when training deep networks over long sequences or enabling 
long-term learning dependencies [39, 40].

Because it performs the best in identifying DDoS attacks among 
the examined studies, with accuracies of 97.16% [33], 99% [34], 
and 99.5% [27], the CNN-LSTM was selected for our experiment 
even though the study by Roopak et al. [33] did not include dataset 
size, number of features, train-test splits, and fine-tuned model 
hyperparameters, the study by Nugraha and Murthy [34] employed 
imbalanced datasets and binary classification, and the study by Roopak 
et al. [27] used binary classification and didn’t reveal train-test split 
ratios; these practices are against the replication or revalidation of the 
research findings.

In our study, the CNN-LSTM combo achieved the second better 

accuracy (98.82%) next to the MLP model in DDoS attack detection 
utilizing balanced dataset and multi-class classifications by fine-tuning 
the CNN-LSTM model using activation function (ReLU and softmax), 
hidden layer sizes, optimizer or solver (Adam), batch size, and 3x3 
kernel size.

3.4.7. DNN with autoencoder (DNN-AE) 
DNN and AE were combined to form the hybrid technique in 

our study. AE is frequently employed for dimensionality reduction and 
feature extraction [2]. AE is a feed-forward neural network with one 
or more hidden layers. These networks may be trained sequentially, 
layer by layer, reducing the computational resources necessary to 
develop an effective model [35]. It is a specific kind of artificial neural 
network primarily utilized for unsupervised learning tasks, especially 
in deep learning. Its main function is to learn a compact representation 
of input data by encoding it into a lower-dimensional latent space and 
subsequently reconstructing it back to its original form. These networks 
are specially trained to recreate their input. This approach does not 
require labeled data for training because it functions in a self-supervised 
fashion. An encoder and a decoder are the two primary parts of an 
autoencoder. To minimize the reconstruction error—the discrepancy 
between the original input data and the reconstructed output—the encoder 
must convert the input data into a lower-dimensional representation. 
The decoder then uses this compressed representation. This procedure 
motivates the autoencoder to create effective and educational data 
representations. One of the key benefits of using this model is its ability 
to identify significant features of the input by compelling it to learn the 
essential aspects of the data during the training phase. Dimensionality 
reduction occurs when fewer nodes exist in each hidden layer of the 
model [49]. A DNN has multiple hidden layers situated between the 
input and output layers. The hidden layers enable the network to capture 
increasingly complex representations of the input data, allowing it to 
tackle tasks that are more sophisticated [43].

Our study’s DNN-AE combo achieves 98.72% accuracy, 
surpassing the LSTM model’s 98.69% accuracy. To attain this result, 
the DNN-AE model included several dense layers with ReLU activation 
functions. The initial dense layer comprised 256 neurons, the ReLU 
function, and the dropout layer with a rate of 0.2 for regularization. 
The subsequent dense layer contained 128 neurons, also using ReLU 
activation, followed by another dropout layer with a rate of 0.2. The 
third dense layer had 64 neurons with ReLU activation, again followed 
by a dropout layer at a rate of 0.2.

The values of the hyperparameters directly affect the behavior 
of the trained model, which underscores the importance of choosing 
optimal settings. Selecting the best hyperparameter values relies on 
established best practices and human expertise [43]. According to 
the study by Sindian [49], while underfitting can occur when a model 
has few parameters and overfitting can occur when a model has 
many, increasing the depth of a model can also result in a gradient 
disappearing or gradient explosion. Therefore, it takes a lot of trial and 
error and careful consideration to create a model that precisely matches 
the computer resource limitation without sacrificing classification 
performance. In this respect, our study conducted multiple experiments 
to fine-tune models for better performance using parameters including 
the batch size, learning rate, number of layers, filter sizes, and number 
of neurons. The carefully selected model hyperparameter values are 
presented in Table 4.

3.5. Model evaluation and validation methods
The dataset is partitioned into multiple subsets to ensure 

the learning model’s generalization capability on unseen data [37, 
44]. In this regard, the study utilized various split ratios, including 
60/20/20, 70/20/10, and 80/10/10 for training, testing, and validation, 

(13)
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respectively. These ratios were carefully selected to balance the 
availability of training data with the necessity of reserving sufficient 
data for model validation and testing. The effectiveness of classification 
methods relies not only on the techniques employed but also on how 
the training and testing data is divided [50]. The appropriate split 
ratio may also be contingent on the size of the dataset; larger datasets 
might allow for smaller validation and test sets, while smaller datasets 
typically necessitate larger proportions to ensure a robust evaluation. 
Most studies didn’t compare different train-test splits. Additionally, 
introducing randomness into the data-splitting process is essential for 
guaranteeing that different experimental runs produce varied datasets, 
which in turn enhances the model’s robustness. A random seed is used 
for reproducibility of experiments, ensuring consistency across runs. 
The study employed diverse model evaluation metrics like precision, 
recall, accuracy, and F1 scores.

For code editing, Jupyter Notebook and Spyder were preferred 
due to their user-friendly interfaces and powerful functionalities, which 
are particularly suited for Python programming and data science tasks. 
The study used cloud-based tools to enhance computational efficiency, 
notably Google Colab, which offered additional graphics processing 
unit (GPU) resources during the deep learning model training. For 
data analysis, manipulation, visualizations, balancing, and model 
implementations, diverse Python libraries were used, namely, Pandas, 
NumPy, Scikit-learn, TensorFlow, Matplotlib, and Imblearn [43].

To conduct experiments, the study used the following hardware 
and software as illustrated in Table 5.

4. Experimental Results 
This section covers an experimental result on different train-

test splits, comparison of deep learning models’ performance with and 
without SMOTEENN dataset balancing strategy, the learning curve of 

the top-performing model, and workflow of how the proposed model 
works in detection, classification, and mitigation of DDoS attacks.

4.1. Experiment 1: assessing deep learning models’ 
performance across different dataset train, validation, 
and test splits

Seven distinct deep learning models were utilized to detect DDoS 
attacks in the context of multi-class classification. These models include 
MLP, DNN, DCNN, LSTM, BiLSTM, CNN-LSTM, and DNN-AE. To 
enhance each model’s performance, different tasks were carried out, 
such as feature scaling, encoding, data cleaning, dataset balancing, 
model fine-tuning, and partitioning the dataset into training, testing, and 
validation splits. Various data partitioning strategies were implemented 
on the proposed model, including splits of 80/10/10, 70/20/10, and 
60/20/20, to ensure model capability on unobserved data. Notably, the 
70/20/10 split consistently demonstrated optimal performance in the 
context of multi-class classification as illustrated in Table 6 and Figure 1.

4.2. Experiment 2: assessing deep learning models’ 
performance with and without the SMOTEENN 
dataset balancing strategy

As depicted in Figure 2, the MLP model outperformed the 
others, with 98.90% accuracy and a 0.69% improvement over its pre-
SMOTEENN results. MLP accuracy (98.90%) was 0.1% better than 
the third-best accuracy (98.8%) achieved by BiLSTM and marginally 
(0.08%) higher than the second-best accuracy (98.82%) achieved by 
CNN-LSTM combo.  

Although SMOTEENN technique significantly improved the 
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No. Aspects Details
1 Programming language Python 3.9
2 Environment Google Colab environment
3 Client operating system Windows 10
3 RAM 4GB
4 Processors Intel Core i3, operating at 2.4 GHz
5 Hard disk 500 GB
6 GPU T4 provided free Google Colab

Table 5
Experimental setups for implementing deep learning models

Models
Dataset split ratios (train/test/validation)

80/10/10 (%) 70/20/10 (%) 60/20/20 (%)
DNN 98.73 98.73 98.71
DNN-AE 98.55 98.72 98.57
CNN-LSTM 98.75 98.80 98.79
LSTM 98.61 98.63 98.58
DCNN 98.71 98.75 98.67
BiLSTM 98.79 98.80 98.76
MLP 98.85 98.90 98.83

Table 6
Performance of the models across different dataset split ratios

Models Parameter Learning rate Batch size Optimizer Activation function Kernel size 
Test accuracy 

(%)
MLP Values 0.00001 128 Adam ReLU, softmax – 98.9
DNN Values 0.00001 128 Adam ReLU, softmax – 98.73
LSTM Values 0.00001 128 Adam ReLU, softmax – 98.69
BiLSTM Values 0.00001 128 Adam ReLU, softmax – 98.8
DCNN Values 0.00001 128 Adam ReLU, softmax – 98.75
CNN-LSTM Values 0.00001 128 Adam ReLU, softmax 3x3 98.82
DNN-AE Values 0.00001 for DNN 

while 0.0001 for AE
128 for DNN 
& 64 for AE

Adam ReLU & softmax for 
DNN while ReLU & 
MSE for AE

– 98.72

Table 4
Selection of suitable hyperparameters for different deep learning models
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accuracy of each deep learning model, it did not reduce the train-test 
computational times for each model, as Table 7 illustrates. The MLP 
model’s train-test computational time was delayed by 802.15 seconds, 
the LSTM model by 737.66 seconds, the DNN model by 747.66 seconds, 
the BiLSTM model by 728.63 seconds, and the DCNN model by 797.11 
seconds after the SMOTEENN application. The CNN-LSTM and DNN-
AE models were delayed by 849.5 and 857.69 seconds, respectively. 
After applying the SMOTEENN technique, the experimental results 
show that BiLSTM is comparatively the quickest DDoS attack detection 
model, whereas CNN-LSTM and DNN-AE models are the slowest when 
compared to MLP, LSTM, and DCNN models. From these experimental 
results, it is possible to conclude that because they are hybrid models 
or combine the computational times of two models, CNN-LSTM and 
DNN-AE are the slowest models. According to the study by Zainudin 
et al. [27], applications of relevant feature selection strategies on 
CICDDoS2019 dataset was contributed to reduce machine learning and 
deep learning model’s computational time.

The model is said to be successful when lowering the false 
negative rate (FNR) and false positive rate (FPR). In this study, FPR 
indicates that benign traffic was mistakenly classified as DDoS attacks, 
whereas FNR indicates that DDoS attack traffic was mistakenly 
classified as benign traffic. Normal network operations are disrupted 
by both FPR and FNR. In this context, the SMOTEENN technique 
reduces the FNR of the MLP model by 0.57% while slightly increasing 
the FPR of the MLP model by 0.13%; reduces the FNR of the LSTM 
model by 0.48% while slightly increasing the FPR of the LSTM model 
by 0.12%; reduces the FNR and FPR of the DNN model by 0.51% 
and 0.52%, respectively; reduces the FNR and FPR of the BiLSTM 
model by 0.34% and 0.37%, respectively; reduces the FNR of the 
DCNN model by 0.32% while slightly increasing the FPR of the DCNN 
model by 0.08%; reduces the FNR of the CNN-LSTM model by 0.33% 
while slightly increasing the FPR of the CNN-LSTM model by 0.08%; 
and reduces the FNR of the DNN-AE model by 0.35% while slightly 
increasing the FPR of the DNN-AE model by 0.08%. According to these 
experimental results, the SMOTEENN technique reduces the FNR and 
FPR for models like DNN and BiLSTM. While slightly increasing 
the FPR, the SMOTEENN technique lowers FNR for the majority of 
models, including MLP, LSTM, DCNN, CNN-LSTM, and DNN-AE.
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Figure 1
Accuracy-based model comparisons across different data splits

Figure 2
Testing accuracy of the models with and without the SMOTEENN 

dataset balancing strategy 

No. Model name
With or without 
SMOTEENN  Accuracy (%)  FPR( %) FNR (%)

Train-test computational 
time in seconds

1 MLP
Without 98.21 1.15 1.90 7219.39
With 98.9 1.28 1.37 8021.54

2 LSTM
Without 97.85 1.25 1.85 6638.93
With 98.69 1.37 1.37 7376.59

3 DNN
Without 97.72 1.80 1.80 6728.96
With 98.73 1.28 1.29 7476.62

4 BiLSTM
Without 98.14 1.50 1.50 6557.61
With 98.8 1.13 1.16 7286.24

5 DCNN
Without 98.04 1.05 1.45 7173.95
With 98.75 1.13 1.13 7971.06

6 CNN-LSTM
Without 97.74 1.07 1.47 7645.46
With 98.82 1.14 1.14 8494.96

7 DNN-AE
Without 97.73 1.04 1.48 7719.27
With 98.72 1.12 1.13 8576.96

Table 7
Comparative model performance analysis with and without SMOTEENN technique
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As illustrated in Figure 3, the MLP model outperforms the 
remaining deep learning models such as DNN, DCNN, BiLSTM, 
LSTM, CNN-LSTM, and DNN-AE in terms of accuracy, precision, 
recall, and F1 score. For the MLP model, the study constructed the 
neural network model using the Keras Sequential API. It featured 
multiple densely connected layers with ReLU activation functions. The 
architecture began with an input dense layer of 1024 neurons, followed 
by dropout regularization (rate of 0.1) and batch normalization. The 

subsequent dense layers had 2024, 2000, 1000, 500, and 200 neurons, 
each with batch normalization and dropout. The output layer contained 
eight neurons and an activation function softmax. Training the 
MLP model involves Adam optimizer, 0.00001 learning rate value, 
categorical cross-entropy loss, and accuracy metrics, 50 epochs, 
and 128 batch sizes. It achieved an accuracy of 98.90% and showed 
consistent performance with precision, F1 score, and recall at 99%.

Classification reports, shown in Table 8, revealed no bias across 
classes, providing valuable insights into dataset fairness.

Figure 4 shows the accuracy and loss curves of MLP on multi-
class classification.

4.3. Experiment 3: demonstrating DDoS attack detec-
tion and classification using sample workflow

In order to show how the top-performing deep learning model 
might function in a real-world application, the study tried to demonstrate 
the workflow for DDoS attack detection, classification, and mitigation. 
Integrating MLP model into network security devices for DDoS attack 
detection and classification is a robust approach. Once a DDoS attack 
is detected and classified, a mitigation strategy can be implemented. 
Figure 5 illustrates a simple flowchart outlining the steps to follow 
for the mitigation strategies of identified DDoS attacks in a network-
computing environment.

The DDoS detection and classification model is trained to 
classify incoming network traffic data based on a comprehensive set 
of 67 features. Users can upload a CSV file, enabling predictions for 
multi-class classifications, that is, it helps users effectively identify 
and categorize data into one of eight target classes. For binary 
classification, it assists users by classifying network traffic as either 
benign or DDoS. This functionality may enhance the security and 
reliability of network systems. The MSC thesis served as the source 
of the manuscript’s contents, including the workflow for DDoS attack 
detection, classification, and mitigation of proposed model illustrated 
in Figure 5. Both the thesis supervisors and the examining committees 
evaluated and gave encouraging comments about the workflow during 
the MSC thesis defense. 

5. Discussions on Key Research Findings 
The study rigorously reviewed recent research works on detecting 

DDoS attacks utilizing deep learning approaches, specifically from 
2019 to 2024, and used structured guidelines to locate current research 
gaps and suggest viable solutions. These research works were retrieved 
using the PRISMA guidelines from reputed academic databases. 
The dataset used for the study was the CICDDoS2019, provided by 
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 Figure 4
Accuracy and loss curves of the MLP model and SMOTEENN combo

Classes Precision Recall F1 score Support
Benign 1.00 1.00 1.00 30,431
DrDoS_LDAP 0.95 0.98 0.97 28,822
DrDDoS_MSSQL 0.98 0.95 0.96 28,709
DrDDoS_NTP 1.00 1.00 1.00 29,447
DrDDoS_UDP 1.00 1.00 1.00 29,654
Syn 1.00 1.00 1.00 21,086
TFTP 1.00 1.00 1.00 28,801
UDP-lag 0.99 1.00 1.00 19,669
Accuracy 99 216619
Macro Avg 99 99 99 216619
Weighted Avg 99 99 99 216619

Table 8
MLP model classification results with SMOTEENN technique

 Figure 3
Models’ performance results using accuracy, precision, recall, and 

F1 score  
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the Canadian Institute for Cybersecurity (CIC). It was selected due 
to its recent release and importance within the intrusion detection 
system (IDS) field. Its widespread use in other studies allows for valid 
comparisons with existing research. CICDDoS2019 dataset consists 
of the various types of DDoS attacks categorized into reflection and 
exploitation-based attacks [36]. The study included exploitation-based 
attacks, such as SYN, UDP-lag, and UDP, and reflection-based attacks, 
such as TFTP, NTP, MSSQL, and LDAP [22, 36].

Seven popular deep learning models were utilized to detect 
DDoS attacks in the context of multi-class classification. These models 
include MLP, DNN, DCNN, LSTM, BiLSTM, CNN-LSTM, and DNN-
AE. To enhance each model’s performance, different tasks were carried 
out, such as feature scaling, encoding, data cleaning, dataset balancing, 
model fine-tuning, and partitioning the dataset into training, testing, and 
validation splits. Various data partitioning strategies were implemented 
on the proposed model, including splits of 80/10/10, 70/20/10, and 
60/20/20, to ensure model capability on unobserved data. Notably, the 
70/20/10 split consistently demonstrated optimal performance in the 
context of multi-class classification.

Although SMOTEENN technique significantly improved the 
accuracy of each deep learning model, it did not reduce the train-test 
computational times for each model. Even though MLP and CNN-LSTM 
achieved the first and second accuracy, 98.9% and 98.82%, respectively, 
the experimental results show that BiLSTM is comparatively the 
fastest DDoS attack detection model, with the third-best accuracy of 
98.8%, while CNN-LSTM and DNN-AE models are the slowest when 
compared to MLP, LSTM, and DCNN models. Because CNN-LSTM 
and DNN-AE are hybrid models or combine the computational times 
of two models, they become slower. Reducing the computational time 
of deep learning models requires the application of relevant feature 
selection strategies [27]. Despite being 0.63% more accurate than the 
accuracy achieved by Kumar et al. [11], LSTM achieved the lowest 
accuracy in our analysis (98.63%) when compared to MLP, BiLSTM, 

CNN-LSTM, DNN, DNN-AE, and DCNN.
The model is said to be successful when lowering the false 

negative rate (FNR) and false positive rate (FPR). In this study, FPR 
indicates that benign traffic was mistakenly classified as DDoS attacks, 
whereas FNR indicates that DDoS attack traffic was mistakenly 
classified as benign traffic. According to our experimental results, the 
SMOTEENN technique reduces the FNR and FPR for models like DNN 
and BiLSTM. While slightly increasing the FPR, the SMOTEENN 
technique lowers FNR for the majority of models, including MLP, 
LSTM, DCNN, CNN-LSTM, and DNN-AE.

Numerous studies have been conducted in this field. The review 
findings reveal that most studies did not reveal each experimental 
detail for the reproducibility of research findings. Specifically, most 
studies used imbalanced datasets and did not reveal dataset size, 
fine-tuned model hyperparameters, and train-test-validation split 
ratios. For instance, references [1, 8, 21–27] used the same dataset 
CICDDoS2019 with our study despite references [10, 11, 21, 24, 
28] not revealing dataset size, references [11, 23, 25, 27–29] not 
revealing train-test-validation split ratios, references [21, 24, 29] not 
revealing number of top predictive features used, and references [25, 
26, 28] not revealing fine-tuned model hyperparameters. The study 
aims to address these issues. When assessing the effectiveness of 
various models, the proposed deep learning approaches consistently 
outperform many existing methods. This success can be attributed 
to the careful selection of methodologies, including data balancing 
techniques, normalization techniques, missing values, removing 
irrelevant features, encoding techniques for converting categorical 
values to numerical values, and model optimization techniques. 
Based on extensive research, this study presents a comparative 
analysis of model performance alongside the most relevant preceding 
studies, highlighting the advancements in DDoS attack detection 
and classification through deep learning approaches as illustrated in 
Table 9.
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 Figure 5
Workflow for DDoS attack detection, classification, and mitigation of the proposed model 
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6. Limitations of the Study and Future Research Di-
rections 

Despite its contributions to science and literature, the study 
has the following limitations. To find research articles from reliable 
sources, the study used keyword-based search strategies, such as 
DDoS attack detection OR distributed denial-of-service detection 
AND deep learning. Different research articles may be retrieved using 
different keywords. Including model explainability and assessing the 
model’s resistance to adversarial attacks are left for future work. The 
future work will compare model performances on binary and multi-
class classifications. The CICDDoS2019 dataset was chosen due to its 
popularity in the examined research works, wide and diverse feature 
set, and recentness. Even though each deep learning model’s train-
test computational times increased, the SMOTEENN approach was 
utilized to handle class imbalance issues and significantly improve 
each model’s accuracy. In order to solve problems related to model 
computational time, future research would employ pertinent feature 
selection strategies. To guarantee model performance consistency, it is 
anticipated that the model performance will be compared across several 
DDoS datasets, including the CICIDS2017, NSL-KDD, and UNSW 
2018 datasets.

7. Conclusions 
Many researchers have sought to address DDoS attack issues 

using various techniques despite these attacks continuing to rise.  This 
emphasizes the need for beating DDoS attacks using accurate, reliable, 
and adaptive models. Our study highlights recent studies conducted 
between 2019 and 2024 on the use of deep learning techniques for DDoS 
attack detection to identify the gaps, formulate research methodology, 
and offer workable answers. The review findings reveal that most 
studies used imbalanced datasets and did not reveal dataset size, fine-
tuned model hyperparameters, and train-test-validation split ratios for 
replication and revalidation of their research findings. Our research 
findings reveal that none of the reviewed studies use the SMOTEENN 
dataset balancing strategy on the CICDDoS2019 dataset, considering 
its potential benefits. Even though model performance varies when 
using different train-test split ratios, the majority of reviewed papers 
only use one dataset split to train deep learning models. The study aims 
to address these issues.

The study assessed the performances of diverse deep learning 
algorithms, including MLP, DNN, DCNN, LSTM, BiLSTM, 
CNN-LSTM, and DNN-AE. To obtain better results, rigorous data 

preprocessing methods like feature scaling, encoding, removing 
duplicate features, dataset balancing strategy, proper train-test-
validation dataset splits, and fine-tuning of model hyperparameters 
were conducted. The experimental findings show that all models 
achieved remarkable accuracy rates of above 98.69% on the test dataset 
following the application of the SMOTEENN dataset balancing strategy 
and the combination of the MLP model with the SMOTEENN dataset 
strategy outperform the remaining deep learning models in detection 
and classification of the DDoS attack. 

Although SMOTEENN technique significantly improved the 
accuracy of each deep learning model, it did not reduce the train-test 
computational times for each model. According to our experimental 
results, the SMOTEENN technique reduces the FNR and FPR for 
models like DNN and BiLSTM. While slightly increasing the FPR, 
the SMOTEENN technique lowers FNR for the majority of models, 
including MLP, LSTM, DCNN, CNN-LSTM, and DNN-AE.

 Although not considered in the reviewed research works, our 
study developed the DDoS attack detection and classification workflows 
to categorize incoming network traffic data using a wide range of 
features or classify data into one of eight target classifications. Future 
researchers from many fields may find it easier to identify research gaps 
with the help of the structured evaluation parameters we utilized in our 
study to evaluate various research works.
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Related study 
Top-performing 

model Domains Classification types Dataset Dataset ratios
Accuracy 

(%)
[10] LSTM IDS Multi-class CICDDo2019 Imbalanced 99.4
[11] LSTM IDS Binary CICDDo2019 Balanced using random 

sampling techniques
98

[2] MLP-AE IDS Multi-class CICDDoS2019 Imbalanced 98.34
[6] DNN IDS Multi-class CICDDoS2019 Balanced by using RUS 94.57
[13] LSTM IDS Multi-class CICDDo2019 Imbalanced 74.42
[8] 1DCNN-LSTM IDS Binary and multi-class CICDDo2019 Imbalanced 99.76
[23] DNN IDS Binary CICDDoS2019 Imbalanced 99
Our proposed 
model

MLP IDS Multi-Class CICDDoS2019 SMOTTEEN 98.90

Table 9
Comparative performance analysis with the related works on CICDDoS2019 dataset
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