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Abstract: DDoS attacks flood the target systems with bulky, abnormal traffic, rendering them unavailable to benign users, and could lead to the
crash of servers or computing devices, a loss of money, and a loss of productivity in time-dependent sectors like banks, airlines, online shopping,
and more. Many researchers have sought to address DDoS attack issues using various techniques despite these attacks continuing to rise. To address
these concerns, the study employed PRISMA guidelines to excavate open issues from recent and pertinent research articles to provide viable
solutions and employed diverse deep-learning models. Each model was fine-tuned and trained with and without the SMOTEENN dataset balancing
strategy using diverse train-test-validation splits. When looking at the models’ efficacy, it was evident that all models achieved remarkable accuracy
rates on the test dataset following the application of the SMOTEENN dataset balancing strategy. Among others, the combination of the MLP model
with SMOTEENN scored the top accuracy of 98.90%. The SMOTEENN technique reduces the FNR and FPR for models like DNN and BiLSTM.
While slightly increasing FPR, it lowers FNR for the majority of models, including MLP, LSTM, DCNN, CNN-LSTM, and DNN-AE. Despite
significantly improving the accuracy, the SMOTEENN technique did not reduce the model’s train-test computational times. The review findings
reveal that applying relevant feature selection strategies could reduce model computational time. The study demonstrates the workflow for DDoS
attack detection, classification, and mitigation using the proposed model.
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1. Introduction

Distributed denial-of-service (DDoS) attacks are one of the
leading causes of network instability and service disruption. They
send bulky illegitimate traffic to the target systems to disrupt online
services [1-3]. Because these attacks can originate from a variety of
sources, it is difficult to prevent and mitigate. Because more people
are accessing the Internet through mobile devices and the Internet of
Things, cybercriminals are getting more interested in targeting systems
and network infrastructure [4—6].

DDoS attacks have become more complex and frequent in recent
years, making it difficult to defend against them using traditional
security techniques. Traditional detection techniques, like signature-
based and statistical anomaly detection, sometimes fall short in spotting
new and changing DDoS attack patterns as attackers use increasingly
sophisticated tactics [7]. In recent years, applications of deep learning
techniques have contributed to enhanced cybersecurity defense [8].
It excels in relevant feature extraction and handling incomplete data,
offering diverse model options, chaining capabilities, pre-trained
knowledge, and high-performance rate requirements, and has shown
promise in detecting and mitigating DDoS attacks [9-14].

Imbalanced classification is a problem for many real-world
applications in general and for machine learning models in particular.
This problem arises when there is a bias in predictions toward the
majority class due to a skewed distribution of the target variable. There
is an urgent need for effective solutions to address this issue in the big

*Corresponding author: Kibreab Adane, Computing and Software Engineering,
Arba Minch University, Ethiopia. Email: kibreab.adane@amu.edu.et

data era. Several techniques are discussed in the recent study to address
class imbalance issues, such as random undersampling (RUS), random
oversampling (ROS), SMOTE, cost-sensitive learning (weighting), and
K-medoid [15].

To make the majority class samples equivalent to the minority
class samples, the majority class samples are randomly eliminated
from the dataset in RUS. This strategy could result in relevant
information loss. The minority class samples are randomly replicated
to be equivalent to the majority class samples in ROS. This strategy
could result in model overfitting due to duplicate samples used for
training. The minority class will be given high weight in the cost-
sensitive learning method without increasing or decreasing the number
of samples. There are some classifiers supporting weighting methods,
such as ANN and SVM. K-medoid is used to cluster the samples of
the majority class; the number of clusters is equal to the number of
minority training samples. Since they are balanced in this instance, the
minority class and the medoid—the cluster centers—are used for the
training phase [14]. Unlike the ROS method, SMOTE doesn’t replicate
the minority class dataset; instead, SMOTE generates synthetic samples
for the minority class by interpolating current instances of the class.
To do this, SMOTE picks a minority class instance with its k-nearest
neighbors. While SMOTE focuses solely on oversampling the minority
class, SMOTEENN adopts a more holistic approach by incorporating
the undersampling of the majority class. This dual strategy affords
better handling of varying degrees of class imbalance, thereby making
it more adaptable to different datasets and scenarios. By removing
noisy majority instances, the SMOTEENN approach allows the model
to learn more effectively, leading to improved classification accuracy.
Additionally, SMOTEENN not only increases the number of minority

© The Author(s) 2026. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/

by/4.0/


https://doi.org/10.47852/bonviewAIA62026187
https://orcid.org/0000-0002-3021-5059
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:kibreab.adane%40amu.edu.et?subject=

Artificial Intelligence and Applications Vol. 00

Iss. 00 2026

class samples but also ensures that the majority class representation
is more relevant. This balance aids in building models that generalize
better to unseen data, thereby reducing the risk of over-fitting associated
with using SMOTE alone [16-18].

With the use of deep learning techniques, the field of DDoS
attack detection has seen notable advancements. Many researchers
have sought to address DDoS attack issues using various techniques
despite these attacks continuing to rise [19]. This emphasizes the need
for beating DDoS attacks using accurate, reliable, and adaptive models.
Our study highlights recent studies conducted between 2019 and 2024
on the use of deep learning techniques for DDoS attack detection to
identify the gaps, formulate research methodology, and offer workable
answers.

The following research questions are meant to be addressed by
conducting different experiments:

1. How well do the deep learning models perform with different
datasets train, validation, and test splits?

2. How do deep learning models perform both with and without an
SMOTEENN dataset balancing strategy in terms of accuracy,
false positive rate (FPR), false negative rate (FNR), and train-test
computational time?

3. How can incoming network traffic data be categorized using a variety
of features utilizing a DDoS attack detection and classification
prototype?

2. Literature Review

To retrieve recent and pertinent research works, a suitable
keyword-based search strategy like DDoS attack detection OR
distributed denial-of-service detection AND deep learning, used to
extract these research papers from reputable sources, including the
Web of Science, EEE, Springer, and SCOPUS databases, in accordance
with PRISMA principles. Boolean operators (AND, OR) were used to
successfully combine these search terms. Based on a keyword-based
search strategy, 85 papers were retrieved in the first stage, 40 papers
were screened in the second stage because they were relevant and
included both machine learning and deep learning algorithms, and 24

papers were examined in the third stage because they were appropriate
and contained only deep learning algorithms for DDoS attack detection.

The following research questions are meant to be addressed in
Sections 2.1-2.5:

1. Which deep learning models are top performing in DDoS attack
detection?

2. What are popular datasets used for DDoS attack detection?

3. Did the reviewed studies use balanced datasets for DDoS attack
detection?

4. What types of dataset splits used in the reviewed studies?

5. Did the reviewed studies reveal relevant experimental details for the
replication or revalidation of their research findings?

The review results are framed based on the following research
questions.

2.1. RQ#1: which deep learning models are top per-
forming in DDoS attack detection?

As can be seen from Table 1, the scientific community uses a
variety of deep learning algorithms, albeit not all of them are equally
effective in identifying DDoS attacks. To save future researchers’ time in
model selection, the study determined which models performed best in
identifying DDoS attacks based on prior studies. Autoencoder (AE) was
the least chosen DL model for DDoS attack detection, while long short-
term memory (LSTM) and deep neural network (DNN) were among
the most popular and well-performed models based on the application
on an individual basis. The scientific community has employed several
hybrid-based applications, including LSTM-AE, CNN-LSTM, LSTM-
RNN, AE-MLP, and RNN_AE, to demonstrate top performance in
DDoS attack detection.

2.2. RQ#2: what are popular datasets used for DDoS
attack detection?
Commonly utilized datasets for deep learning-based DDoS

attack detection includes CICDDo0S2019, CICIDS2017, NSL-KDD,
ISCX2012, and UNSW 2018. Appearing in 17 out of 24 studies, the

Table 1

Structured summary of the reviewed research works
Evaluation criteria [6] [10] [11] [13]
Deep learning used DNN DNN, LSTM LSTM (CNN) 2D, LSTM-DAE, DNN
Used dataset CICDDo0S2019 CICDDoS2019 CICDDo0S2019 CICDDo0S2019
Data source CIC CIC CIC CIC
No. of the used dataset 1 1 1 1
Data size 730,355 Unknown Unknown 186,548
Dataset ratios Balanced Imbalanced Balanced Imbalanced
Feature selection techniques Unknown Unknown Unknown Unknown
No. of used features 69 24 71 80
Feature scaling techniques Applied Not applied Applied Applied
No. of DDoS attack type 14 3 Not mentioned 12
% of train-test-validation split ratio ~ 80/20 60/20/20 Not mentioned 90/10
Model hyperparameter Revealed Revealed Revealed Revealed
Classification type Multi-class Multi-class Binary Multi-class
Best-performing detection model DNN LSTM LSTM LSTM
Accuracy rate 94.57% 99.90% 98% 74.42%
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Table 1
(Continued)

Evaluation criteria [2] [8] [50] [28]
Deep learning used AE-MLP IDCCN-LSTM RNN_AE AE, DCAE, VAE, LSTM
Used dataset CICDDo0S2019 CICDDoS2019 CICDDo0S2019  CICDDo0S2019, CICIDS2017, NSL-KDD
Data source CIC CIC CIC CIC
No. of used dataset 1 1 1 3
Data size 70,427,637 1,060,572 230,673 Unknown
Dataset ratios Imbalanced Imbalanced Balanced Imbalanced
Feature selection techniques Unknown Unknown Autoencoder Contractive auto encoder &stochastic

threshold
No. of used features 78 79 77 CICDDoS2019, 78; CICIDS2017, 77; NSL_

KDD, 121
Feature scaling techniques Applied Applied Applied Not applied
No. of DDoS attack type 5 12 Unknown Unknown
% of train-test-validation splits ~ 70/20/10 80/10/10 70/20/10 Unknown
Model hyperparameter Revealed Revealed Revealed Not revealed
Classification type Multi-class Binary & multi-class Binary Binary
Best-performing detection model AE-MLP DCNN-LSTM RNN AE DCAE
Accuracy rate 98% 99.76% 98.8% CICDDo0S2019, 97.58%; NSL-KDD,

96.08%; CICIDS2017, 92.45%

Table 1
(Continued)
Evaluation criteria [21] [31] [29] [32]
Deep learning used BiLSTM LSTM CNN LSTM-CNN
Used dataset CIC-IDS2017  ISCX2012 CICDDo0S2019 UNSW 2018 dataset
CICDDo0S2019 CICIDS2017 DDoS attack SDN dataset
Data source CIC CIC CIC University of New South Wales, Australia
Mendeley dataset
No. of the used dataset 2 1 2 2
Data size Unknown 240,000 Unknown Unknown
Dataset ratios Imbalanced Unknown Imbalanced Unknown
Feature selection techniques GMM Bayes approach  Geometric metrics stack autoencoder
No. of the used features Unknown Unknown Unknown 23
Feature scaling techniques Unknown Unknown Applied Unknown
No. of DDoS attack types used 6 Unknown CICDDo0S2019 :10 4
CICID2017:No

% of train-test-validation split ratio 10-fold 80/20 Unknown 80/20
Model hyperparameter Revealed Not revealed Revealed Not revealed
Classification types Binary Binary Binary Binary
Best-performing detection model ~ BiLSTM LSTM-BA CNN-GEO LSTM-RNN with stack autoencoder
Accuracy rate 94% 98.15% 98% 99.99%

CICDDo0S2019 dataset was determined to be the most recent and highly
favored dataset by the scientific community. The Canadian Institute for
Cybersecurity (CIC) provides this dataset and included the new types of
DDosS attacks like UDP-lag and NetBIOS (refer to Table 1).
Performance is significantly impacted by the quantity, quality,
and distribution of datasets used to train deep learning algorithms.
Despite revealing model accuracy, 9 out of 24 studies still need to

reveal the dataset size used for DDoS attack detection; 4 out of 24
studies did not reveal train-test-validation dataset ratios; 6 out of 24
studies did not reveal the optimal model hyperparameters used; 6 out
of 24 studies did not reveal the number of top predictive features used
for DDoS attack detection; 10 out of 24 studies did not reveal feature
scaling/normalization techniques, used to avoid one feature dominating
another; and 4 out of 24 studies did not reveal whether the dataset used
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(Continued)
Evaluation criteria [1] 7] 23] [33]
Deep learning used CNN-RNN DNN DNN MLP, CNN, LSTM, LSTM-CNN
Used dataset CICDDo0S2019 CICIDS2017 CICDDo0S2019 CICIDS2017
Data source CIC CIC CIC CIC
No. of the used dataset 1 1 1 1
Data size 1,130,650 691395 12,797,829 Unknown
Dataset ratios Imbalanced Imbalanced Imbalanced Unknown
Feature selection techniques Random Forest Unknown Unknown Unknown

Feature Importance

No. of used features 83 75 11 Unknown
Feature scaling techniques Unknown Applied Unknown Applied
No. of DDoS attack type used 16 5 3 5
% of train-test-validation split ratio 70/20/10 80/10/10 train-validation- Unknown Unknown

test split
Model hyperparameter Revealed Revealed Revealed Not revealed
Classification type Multi-class Multi-class Binary Multi-class
Best-performing detection model CNN-RNN DNN DNN LSTM-CNN
Accuracy rate 98.92% 99% 99% 97.16%

Table 1

(Continued)
Evaluation criteria [22] [24] [34] [25]
Deep learning used DNN LSTM CCN-LSTM DNN and CNN-AE
Used dataset CICDDo0S2019 CICDDo0S2019 Synthetic dataset CICDDo0S2019
Data source CIC CIC Unknown CIC
No. of used dataset 1 1 1 1
Data size Over 180,000 Unknown 1,000,000 650,000
Dataset ratios Balanced Unknown Imbalanced Balanced
Feature selection techniques PCC Unknown Unknown Unknown
No. of the used features 10 Unknown 12 83
Feature scaling techniques Applied Unknown Applied Applied
No. of DDoS attack class used 10 8 Unknown Unknown
% of train-test-validation split ratio 70/30 80/20 80/20 Unknown
Model hyperparameter Revealed Revealed Revealed Not revealed
Classification type Multi-class Binary Binary Binary
Best-performing detection model DNN LSTM CNN-LSTM CNN-AE
Accuracy rate 99.66% 99.19% 99% 87%

in the study was balanced or Imbalanced. These practices are against
replicating study findings and revalidating models for deployment in
actual environments (refer to Table 1).

2.3. RQ#3: did the reviewed studies use balanced
datasets for DDoS attack detection?

Most (13 out of 24) studies used Imbalanced datasets (used
uneven DDoS and none-DDoS dataset ratios) to train deep learning
models or did not apply popular dataset balancing strategy like SMOTE
even though models were biased toward the majority classes when

using Imbalanced datasets (refer to Table 1). Even though model
performance varies when using different train-test split ratios, the
majority of reviewed papers only use one dataset split to train deep
learning models. According to our review findings, only the study by
Jamal et al. [17] employed the SMOTEENN data balancing approach
for DDoS attack detection, even though they did not use the popular
dataset, CICDD0S2019; did not use deep learning models like
MLP, DNN, BiLSTM, and DNN-AE; did not develop a prototype
to facilitate evaluation of the top-performing model by experts; and
did not assess the train-test computational time of the SMOTEENN
on CICDDo0S2019 dataset. These authors employed four balancing
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Table 1
(Continued)
Evaluation criteria [5] [35] [26] 127]
Deep learning used MLP CNN-AE, BiLSTM-AE, & CNN,LSTM,GRU. CNN_LSTM
ANN-AE
Used dataset NSL-KDD ISCXIDS2012 UNSW2018 CICDDo0S2019 CICDDo0S2019
Data source University of New Brunswick Unknown CIC CIC
No. of used dataset 1 2 1 1
Data size 148,527 ISCX2012 = 100,000 50,063,112 138,839
Unsw2018 = 200,000
Dataset ratios Imbalanced Balanced Imbalanced Balanced
Feature selection techniques Unknown Autoencoder RFE (SVM) XGBoost
No. of used features 41 Unknown 81 10
Feature scaling techniques Unknown Unknown Applied Applied
No. of DDoS attack classes 22 Unknown 11 3
% of train-test-validation split ratio ~ 60/20/20 60/20/20 80/10/10 Unknown
Model hyperparameter Not revealed Revealed Not revealed Revealed
Classification types Binary Binary Multi-class Binary
Best-performing detection model MLP BiLSTM-AE Hybrid of them CNN-LSTM
Accuracy rate 99.13% ISCDX2012, 99.35% 89.4% 99.5%

UNSW2018, 99.95%

strategies—SMOTE-Tomek, SMOTE-ENN, Borderline SMOTE, and
SMOTE—to demonstrate that the MSCAD dataset, with six classes,
was representative of the entire population. They found that 99.99% top
accuracy was achieved after applying the SMOTEENN with the KNN
model. To get beyond the drawbacks of the separate dataset balancing
strategies, SMOTEENN integrates the inherent qualities of RUS and
ROS approaches. Thus, SMOTE corrects unequal class distributions
by boosting the representation of the minority class, while ENN acts
as a cleaning mechanism, guaranteeing that the final training set is
more coherent and less prone to noise [14]. By eliminating problematic
points, ENN protects the quality of the data, which makes SMOTEENN
an effective method for enhancing classification performance on highly
skewed datasets [16—18, 20]. The aforementioned literature-based
evidence was one of the core rationales for selecting SMOTEENN for
our study.

2.4. RQ#4: what common types of dataset splits are

used in the reviewed studies?

To evaluate model skills on unobserved or unseen data, different
dataset split ratios were used by the scientific community. The dataset
split ratios of 80%-20% were used in five studies, 60%-20%—-20%
splits in three studies, 70%—20%—10% splits in three studies, 80%—
10%—-10% splits in three studies, 90%—10% split in one study, 70%—
30% split in one study, and tenfold cross-validation in one study. Most
studies used 80%—20% dataset split ratios for DDoS attack detection
(refer to Table 1).

2.5. RQ#5: did the reviewed studies reveal relevant
experimental details for the replication or revalidation
of their research findings?

Asseen from Table 1, moststudies did notreveal each experimental

detail for the reproducibility of research findings. Specifically, most
studies used imbalanced datasets and did not reveal dataset size, fine-

tuned model hyperparameters, and train-test-validation split ratios. For
instance, references [1, 8, 21-27] used the same dataset CICDD0S2019
with our study even though references [10, 11, 21, 24, 28] did not reveal
dataset size, references [11, 23, 25, 27-29] did not reveal train-test-
validation split ratios, references [24, 29, 30] did not reveal number of
top predictive features used, and references [28, 25, 26] did not reveal
fine-tuned model hyperparameters. The study is an effort to address
these issues.

3. Materials and Methods

Intrinsic properties and better performance in related research
works were taken into consideration while choosing deep learning
algorithms for experiments. The dataset, that is, CICDD0S2019, was
selected based on popularity and recent development. The dataset
balancing strategy, that is, SMOTEENN, was selected based on
advantages and disadvantages when compared with RUS, ROS, and
SMOTE (see Sections 1 and 3.3). The identified research gaps and the
advantages of filling them are listed in Table 2.

3.1. Dataset information

The findings of our systematic research indicate that
CICDDo0S2019, CICIDS2017, NSL-KDD, ISCX2012, and UNSW
2018 are frequently used datasets for deep learning-based DDoS attack
detection. The CICDD0S2019 dataset was found to be the latest and most
popular dataset by the scientific community, appearing in 17 out of 24
articles. These findings led our study to favor publicly available datasets,
such as CICDDo0S2019, which was made available by the Canadian
Institute for Cybersecurity (CICS). These datasets were arranged in
numerous CSV files, each of which represented a distinct attack type in
addition to typical traffic data [11]. Downloading this dataset requires
filling out a request form to obtain access, thereby ensuring the data
is utilized for legitimate research purposes. Each data point within the
dataset encompasses over 88 distinct features, incorporating millions



Artificial Intelligence and Applications Vol. 00

Iss. 00 2026

Table 2
Some notable limitations in the related research works

No. of studies

Limitations in past studies out of 24 Benefits of addressing it
1 Did not disclose fine-tuned model hyperparameters 7 Facilitate reproducibility of research findings
2 Did not disclose DDoS-benign dataset ratios 4 Facilitate reproducibility of research findings
3 Used only one deep learning algorithm 9 Comparing multiple models to select the better one
4 Did not disclose train-test split/cross-validations 7 Facilitate reproducibility of research findings
5 Used Imbalanced datasets/no balancing strategy 13 Better generalization
6  Didn’t disclose dataset size 8 To check scalability and make comparisons
7  Focused on binary classification 14 Increase model decision scope
8  Evaluated model before and after dataset balancing strategy None To ensure the impacts using dataset balancing
techniques on the deep learning models’ performance
9  Focused on research publications from 2020 to 2024 None To see the current DDoS attack detection practices

of records that provide a diverse representation of DDoS attack traffic
[36]. This dataset was selected due to its comprehensiveness, well-
documented features, and recent development. Its widespread use
in other studies allows for valid comparisons with existing research.
CICDD0S2019 dataset incorporates the varied types of DDoS attacks
categorized into reflection and exploitation [36]. From the exploitation
attacks, the study used SYN, UDP-lag, and UDP and from the reflection
attacks used TFTP, NTP, MSSQL, and LDAP [22, 36].

Application and transport layer protocols like UDP, TCP, or a
combination of the two are used in reflection-based DDoS attacks.
While TCP-based protocols include SSDP and MSSQL attacks, UDP-
based DDoS attacks include TFTP, NTP, and CharGen. DNS, LDAP,
NetBIOS, and SNMP may all be attacked using a combination of TCP
and UDP. While UDP-based exploits include UDP-lag and UDP flood,
TCP SYN flood is a TCP-based exploitation attempt. In order to create
a three-way handshake connection, attackers use TCP SYN flooding
to interfere with the victim’s authentic connection. Attackers launch a
TCP SYN attack by bombarding a server with SYN packets and then
failing to reply to the server’s response. Sending a large quantity of
UDP packets to the remote computer initiates a UDP flood attack. These
UDP packets are sent quickly to the target system’s random ports. As
a result, the system crashes, performance declines, and the network’s
available capacity is exhausted [2, 27]. An attacker takes advantage of
flaws in Microsoft Structured Query Language (MSSQL) by posing as
a genuine MSSQL client and sending scripted requests to the MSSQL
server using a spoofed IP address, making it look as though they were
coming from the target server. DDoS attack uses the Lightweight
Directory Access Protocol (LDAP), an application layer protocol that
is commonly used to retrieve a human-readable URL (such as google.
com), to send queries to a publicly accessible but insecure LDAP
server in order to produce a huge number of answers [2]. The detailed
descriptions of the dataset features, that is, CICDD0S2019, could be
accessed from the recent study by Cil et al. [6].

3.2. Data preprocessing techniques

The CICDDo0S2019 dataset is very large, making it challenging
to find the necessary hardware for processing such large quantities of
data, especially in resource-constrained devices in African countries in
general and Ethiopia in particular. It requires GPU-enabled hardware to
handle this volume effectively. In this respect, the study concentrated on
eight specific classes of DDoS attacks to conduct experiments. These
are SYN, UDP, MSSQL, UDP-lag, TFTP, NTP, LDAP, and benign
classes, as assessed by their importance for DDoS attack detection in

existing studies. The study removed the duplicates using the Python
function drop duplicates for each class, which may affect the
performance of the models. After removing the duplicated records from
each class, the study concatenated the data into a single file, facilitating
easier manipulation and analysis. After concatenation, the dataset
comprised 797,128 samples. During this process, the study identified
and removed certain entries from the dataset that were deemed irrelevant
or potentially harmful to model performance.

To mitigate the model overfitting issues, the study opted to remove
socket-related features like Source Port, Timestamp, Destination IP,
Flow ID, Destination Port, and Source IP. These attributes can exhibit
significant variability across different network configurations, which
can complicate the training process [2]. Overfitting issues can occur
when training the deep learning model by incorporating socket feature
values due to the attackers and legitimate users sharing the same IP
address [6, 8, 50].

Due to their lack of variability, we removed features such as Bwd
Packet Length Std, Bwd PSH Flags, Fwd URG Flags, Bwd URG Flags,
Bwd Avg Bytes/Bulk, ECE Flag Count, Fwd Avg Packets/Bulk, Fwd
Avg Bytes/Bulk, FIN Flag Count, PSH Flag Count, Fwd Avg Bulk Rate,
Bwd Avg Packets/Bulk, Unnamed, Bwd Avg Bulk Rate, and Similar
HTTP [6]. After excluding the zero variance features, the updated
dataset consists of 67 features.

One-hot encoding was used to accurately represent the categorical
data [16]; StandardScaler was used to transform each feature to have 0
mean and 1 standard deviation for standardizing the features with the
highest variance identified in the dataset [37].

3.3. Dataset balancing strategy

Most (13 out of 24) studies used Imbalanced datasets to train deep
learning models. This approach could result in biased model outputs.
To address these concerns, the SMOTEENN technique combines
the advantages of oversampling and data cleaning to better handle
imbalanced datasets. SMOTE creates fresh samples for the minority
class in the first stage. This method reduces the risk of overfitting that
can occur with the naive replication of uncommon samples and helps
address the problem of having too few training cases in the minority
class. However, because misaligned synthetic points may obscure class
distinctions, including freshly generated data in noisy regions or close
to class determination boundaries might occasionally reduce model
performance. SMOTEENN follows a hybrid approach to overcome
class imbalance. Thus, SMOTE corrects unequal class distributions by
boosting the representation of the minority class, while ENN acts as
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a cleaning mechanism, guaranteeing that the final training set is more
coherent and less prone to noise. By eliminating problematic points,
ENN protects the quality of the data, which makes SMOTEENN an
effective method for enhancing classification performance on highly
skewed datasets [20, 38—40].

Compared to dataset balancing strategies like the synthetic
minority oversampling technique (SMOTE), ADASYN, RUS
(random undersampling), and ROS, SMOTEENN is a new resampling
technique that uses Map-Reduce architecture to combine intelligent
undersampling and oversampling and show outperforming results for
small- and medium-sized datasets while achieving positive results
on large datasets with reduced running times. One useful technique
for lowering the overall complexity of the learning process is
undersampling. Nonetheless, several studies have demonstrated that
hybrid undersampling/oversampling techniques like SMOTEENN that
incorporate SMOTE oversampling and ENN undersampling might help
raise the predictive capabilities of classifiers [38]. Table 3 illustrates the
imbalanced and balanced dataset distributions across multi-class.

3.4. Implemented deep learning algorithms

The study employed seven popular deep learning algorithms,
namely, MLP, LSTM, BiLSTM, DNN, deep convolutional neural
network (DCNN), CNN-LSTM, and DNN with autoencoder. These
deep learning algorithms were chosen due to their ability to leverage
various strengths for managing complex, high-dimensional, and
sequential data. Each algorithm was trained before and after employing
the SMOTEENN dataset balancing techniques for performance
comparison. Descriptions of each deep learning algorithm are presented
as follows.

3.4.1. Multilayer perceptron (MLP)

MLP is a type of feed-forward neural network; it can handle
both linear and nonlinear data, widely used and are trained using
backpropagation, and is a supervised learning method [41, 42]. It
was applied in numerous domains, such as speech recognition, image
compression, financial data prediction, autonomous vehicle control,
medical diagnosis, and phishing website detection. MLP supports a
nonlinear activation function [43, 44].

As stated in study by Najar and Manohar Naik [5], MLP uses
the nonlinear backpropagation algorithm to compute all input neuron’s
standard sum as shown in Equation (1).

1
Tre 3, WiXjTh (D

An example of a common MLP is shown in Equation (1), where
b is the bias, Xj is the neuron input, and Wj is the input weight. With

a specific number of neurons in each layer, the network is completely
connected. The characteristics of the data collection and the quantity
of classes determine the size of the incoming and outgoing neurons. m
outputs are produced by the model for every M-class categorization.
Using the input sequence Y = (Y ; Y,; Y,; ...; Y )" as guide Class g’s
production is determined by:

Yo(X) = [ (WeiS (VT X + Vi) Wyo) ©)
hn
S[ 1 (Wiihi + Woo)

hn represents the number of hidden layers, and W, and V, represent the
output and hidden layers’ connection weights, respectively. The values
for every connection are automatically determined when the MLP
classifier is trained on a testing dataset [5].

The MLP scored an accuracy of 99.13% in the study [5], even
though the study used binary classifications and imbalanced datasets,
and it shows a quick computational time in identifying phishing
websites [43]. In our study, the MLP model achieved the highest
accuracy (98.9%) in DDoS attack detection utilizing a balanced dataset
for multi-class classifications.

3.4.2. Deep neural network (DNN)

DNN mimics the works of the human brain. It is analogous
to the traditional MLP algorithm despite DNN having more hidden
layers. Increasing the amount of input features and the size of the
model hyperparameter can affect the DNN model performance in terms
of computational speed. The DNN uses the backpropagation for the
learning process [43].

Three steps are involved in the DNN algorithm’s model
construction. Initially, the number of layers and the neurons for each
layer are determined by the model topology along with the relationships
between them. Then, using artificial neurons, the forward propagation
with its activation function and perceptron classifier is employed.
Finally, backpropagation is used in conjunction with the optimizer and
loss function [49]. DNN formula is represented in Equation (3)

X = (XL (HW:+B) A3)

where H stands for these nodes’ values, e¢n for the number of nodes in
the layer, W for the weights, and B for the nodes’ bias in Equation (3).
Activation functions receive the results. The notion of the activation
function is generally based on how a neuron functions in the human
brain and is explicitly activated at a certain level, known as the activation
potential. It puts the outcome inside a certain range. Between the typical
activation functions, which include sigmoid, tanh, softmax, and ReL U,
this system used ReLU activation functions in the hidden layers [45].

Table 3
Dataset distributions before and after using the SMOTEENN technique

Dataset Traffic type No. of entries before SMOTEENN No. of entries after SMOTEENN
CICDDo0S2019 TFTP 153175 144267
CICDDo0S2019 SYN 143725 105477
CICDDo0S2019 DrDDoS_LDAP 17265 142932
CICDDo0S2019 DrDDoS_UDP 151498 148461
CICDDo0S2019 UDP-lag 61370 99213
CICDDo0S2019 DrDDoS_NTP 151758 146860
CICDDo0S2019 BENIGN 49143 151035
CICDDo0S2019 DrDDoS_MSSQL 69194 144846

Total = 797128

Total = 1083091
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The accuracy of the DNN model in our investigation was 98.73%,
which is 0.1% better than that of the LSTM model, 4.16% better than
the accuracy of the LSTM model in the study by Cil et al. [6], while
0.93% lower accuracy attained by Amaizu et al. [22]. Despite the DNN
model train using Imbalanced datasets, it attains 99% accuracy in the
study by Asad et al. [7] as well as Sbai and Elboukhari [23]. To attain
98.73% accuracy, our study uses a balanced dataset; the initial three
hidden layers of DNN consist of 256, 128, and 128 units, respectively,
while the subsequent layers contain 96, 48, 56, and 32 units, with a
dropout rate of 0.2. The model utilized the Adam solver with categorical
cross-entropy loss function and accuracy as metrics.

3.4.3. Long short-term memory (LSTM)

LSTM is a type of RNN that addresses the vanishing gradient
problems, which can occur when training deep networks over long
sequences. Its architecture includes an input gate, output gate, and
forget gate. These components maintain the flow of signals between the
layers, enabling long-term learning dependencies [39, 40]. It is often
used in applications like language modeling, intrusion detection, and
sentiment analysis [39, 40].

As indicated in the study by Zainudin et al. [27], memory cells
are neurons found in the LSTM layer. Three gates are present in every
memory cell: input, forget, and output gates. Every gate processes the
input features in a different way. Depending on the cell’s state, the
forget gate, for example, chooses which data should be processed by
eliminating irrelevant data. To remove extraneous data, the forget gate
first passes the previous cell output Fg—1 and the addition layer output
Fg via a sigmoid gate c. Lastly, the acquired data are multiplied and
combined.

The output of the forget gate ft is shown in Equation (4) [27]

fo=a(Wlfy 1, 1" +b7) 4)

where W, and b, depict the weight matrix and the forget gate offset,
respectively.

Consequently, the input gate uses a sigmoid function for the
input data control and generating the current state. The processing of
the input gate can be shown in Equation (5) [27]

iy = o(Wi [fy1, £, + b1) 5)

where W, and b, depict the weight matrix and the forget gate offset,
respectively.

Additionally, the input gate creates a vector of the data to be
added to the current state using a tanh function. The network calculates
the hidden state cg in the following manner using the outputs of the
input and forget gates [27] (see Equations (6) and (7)):

og = tahn(We. [fy 1, £+ b) ©)

cg=fg.cg—1+igcg tahn(Wc. (o1, f) " + bc) (7

Lastly, the output gate chooses helpful characteristics depending
on the cell’s current state, the preceding cell’s outcome, and new
data. An expression for this gate’s output o, function can be shown in
Equation (8):

04 = O'(Wo. [fo-1, fg]T + bg) ®)
The LSTM layer output (Fout) can be shown in Equation (9):

Fout = og. tahn(c,) ©)

The dense layer receives input from the output LSTM layer.
Softmax and fully linked layers process the output data after the dense
layer in order to categorize each attack type [27].

LSTM scored accuracies of 99.9% [10], 98% [11], and 99.19%
[24], even though the study by Khempetch and Wattidittachotti [10] used
Imbalanced dataset, the study by Kumar et al. [11] didn’t mention train-
test splits used and didn’t employ multi-class classification, and the study
by Shurman et al. [24] didn’t mention dataset size and features. Despite
being 0.63% more accurate than the accuracy achieved by the study [11],
LSTM scored the lowest accuracy in our analysis (98.63%) compared
to MLP, BiLSTM, CNN-LSTM, DNN, DNN-AE, and DCNN models.

3.4.4. Bidirectional long short-term memory (BiLSTM)

BIiLSTM networks are particularly effective for handling
numerical data, especially in applications like time series forecasting
and other sequential tasks. These networks are designed to capture
dependencies in both directions, which is especially beneficial for time
series data where past and future values can impact predictions [46].
In BiLSTM architecture, two LSTM units are employed, with one
processing the input in a forward direction and the other in reverse.
This dual approach enhances the model’s ability to understand context
and improve prediction accuracy. This method differs from the
unidirectional LSTM approach by combining sequences from both
directions to form a unified representation. This integration allows the
model to utilize information from both LSTMs, enhancing its ability to
forecast the next temporal output based on the combined results of the
two LSTMs [47].

BIiLSTM is an improved version of LSTM that combines
backward and forward LSTM to analyze traffic data more precisely.
This enables a two-way information analysis process that enables more
accurate computations. This is how the computation is carried out [48]
(see Equations (10), (11), and (12)).

K, tforward = f (Wforwardwl t+ I/Vcht—l forward +B forward) (10)

Ktbackward = f(WbackwardXIt + WbackwardXKt—lbackward + Bbackward) (1 1)

Ot = g(U:c [tharwardy Kt—lbackward] + C) (12)

K forward and K _1packwara are the two LSTM layer outputs
at time t in forward and backward directions, respectively. W gorward
and Whackward are the parameters of hidden layer, I, is the input data,
B forward and Backward are the offset values, and O, is the output of
the BILSTM. Generic BiLSTM formula includes the forget gate, the
input gate, the previous cell state, the current cell state, the output gate,
the previous unit output, the current unit output, the weight of neural
network, and the bias value [48].

In order to better comprehend the context and increase the
prediction accuracy, our study used the BiLSTM model, which has
advantages over LSTM in terms of capturing dependencies in both
directions (past and future values) [46, 47]. The BiILSTM model in our
investigation detected DDoS attacks with a third-best accuracy (98.8%),
behind the MLP and CNN-LSTM combo accuracies, respectively. This
accuracy is 4.8% greater than the accuracy achieved in the study by
Nguyen et al. [21] by BILSTM and 0.17% higher than the accuracy of
the LSTM model in our study.

To attain the stated accuracy, the first layer of the BILSTM model
contains 128 units, which process input sequences; the next layer
contains 64 units to enhance the model’s capacity to capture complex
temporal patterns with a dropout rate of 0.1. The model also featured
a dense layer with 128 units and a ReLU function. To further mitigate
overfitting, a second dense layer contains 64 units with a dropout rate
of 0.1. Finally, the architecture concluded with a dense output layer
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that utilized the softmax activation function to generate probabilistic
outputs for multiple classes. The architecture was set up with the Adam
solver and a learning rate of 0.00001. For the loss function, categorical
cross-entropy was employed, making it appropriate for tasks involving
multiple classes.

3.4.5. Deep convolutional neural networks (DCNN)

The CNN has many layers, including input, convolutional,
pooling, fully connected, and output layers; the number of layers
used determines how deep the CNN is. The general system used by
convolutional neural networks is comparable to that of multilayer
perceptron. It is designed similarly to a multilayer perceptron. DCNN is
capable of automatically learning hierarchical structures and identifying
spatial relationships, which makes them well suited for analyzing and
understanding structured grid-like data [30].

As indicated in the study by Jamal et al. [17], CNNs encompasses
many hierarchical levels and computational procedures which are
represented in Equation (13).

Output = Activation(} k = 1*(Wy*Input,) + b (13)

where

. Output depicts the features yielded by the layer.

. Activation is the function used elementwise.

. n is the number of kernels (filters) in the layer.

. W, depicts the k" filter’s weight.

. Input, is the k™ input feature.

. b depicts the bias term.

. = indicates the convolution process between the filter and input
feature.

~N NN~

In our study, DCNN attains 98.75% accuracy in DDoS attack
detection which is better than LSTM, DNN, and DNN-AE accuracy.
For DCNNSs, we set up a sequential model, a popular way to build neural
networks in Keras. The initial 1D CNN utilized 64 filters with a 3x3
kernel size, serving as feature detectors with the ReLU function. The
next layer contains 128 filters with a 3x3 kernel size. Max pooling layers
were used twice to diminish the data’s dimensionality. Max pooling
takes the maximum value within windows of size 2, summarizing the
most vital variables in a smaller representation. The flattening layer
then transformed the multidimensional output from the convolutional
layer into single vectors. This step was essential for connecting the data
to fully connected layers. We defined two dense layers with 64 and
128 units, respectively, each monitored by a ReLU function to model
complex relationships between the features more effectively.

3.4.6. CNN-LSTM

CNN and LSTM were combined to form the hybrid technique in
our study. The CNN was served as a feature extractor to feed or provide
important features for the LSTM model at its pooling layer. LSTM is
a type of RNN that addresses the vanishing gradient problems, which
can occur when training deep networks over long sequences or enabling
long-term learning dependencies [39, 40].

Because it performs the best in identifying DDoS attacks among
the examined studies, with accuracies of 97.16% [33], 99% [34],
and 99.5% [27], the CNN-LSTM was selected for our experiment
even though the study by Roopak et al. [33] did not include dataset
size, number of features, train-test splits, and fine-tuned model
hyperparameters, the study by Nugraha and Murthy [34] employed
imbalanced datasets and binary classification, and the study by Roopak
et al. [27] used binary classification and didn’t reveal train-test split
ratios; these practices are against the replication or revalidation of the
research findings.

In our study, the CNN-LSTM combo achieved the second better

accuracy (98.82%) next to the MLP model in DDoS attack detection
utilizing balanced dataset and multi-class classifications by fine-tuning
the CNN-LSTM model using activation function (ReLU and softmax),
hidden layer sizes, optimizer or solver (Adam), batch size, and 3x3
kernel size.

3.4.7. DNN with autoencoder (DNN-AE)

DNN and AE were combined to form the hybrid technique in
our study. AE is frequently employed for dimensionality reduction and
feature extraction [2]. AE is a feed-forward neural network with one
or more hidden layers. These networks may be trained sequentially,
layer by layer, reducing the computational resources necessary to
develop an effective model [35]. It is a specific kind of artificial neural
network primarily utilized for unsupervised learning tasks, especially
in deep learning. Its main function is to learn a compact representation
of input data by encoding it into a lower-dimensional latent space and
subsequently reconstructing it back to its original form. These networks
are specially trained to recreate their input. This approach does not
require labeled data for training because it functions in a self-supervised
fashion. An encoder and a decoder are the two primary parts of an
autoencoder. To minimize the reconstruction error—the discrepancy
between the original input data and the reconstructed output—the encoder
must convert the input data into a lower-dimensional representation.
The decoder then uses this compressed representation. This procedure
motivates the autoencoder to create effective and educational data
representations. One of the key benefits of using this model is its ability
to identify significant features of the input by compelling it to learn the
essential aspects of the data during the training phase. Dimensionality
reduction occurs when fewer nodes exist in each hidden layer of the
model [49]. A DNN has multiple hidden layers situated between the
input and output layers. The hidden layers enable the network to capture
increasingly complex representations of the input data, allowing it to
tackle tasks that are more sophisticated [43].

Our study’s DNN-AE combo achieves 98.72% accuracy,
surpassing the LSTM model’s 98.69% accuracy. To attain this result,
the DNN-AE model included several dense layers with ReLU activation
functions. The initial dense layer comprised 256 neurons, the ReLU
function, and the dropout layer with a rate of 0.2 for regularization.
The subsequent dense layer contained 128 neurons, also using ReLU
activation, followed by another dropout layer with a rate of 0.2. The
third dense layer had 64 neurons with ReLU activation, again followed
by a dropout layer at a rate of 0.2.

The values of the hyperparameters directly affect the behavior
of the trained model, which underscores the importance of choosing
optimal settings. Selecting the best hyperparameter values relies on
established best practices and human expertise [43]. According to
the study by Sindian [49], while underfitting can occur when a model
has few parameters and overfitting can occur when a model has
many, increasing the depth of a model can also result in a gradient
disappearing or gradient explosion. Therefore, it takes a lot of trial and
error and careful consideration to create a model that precisely matches
the computer resource limitation without sacrificing classification
performance. In this respect, our study conducted multiple experiments
to fine-tune models for better performance using parameters including
the batch size, learning rate, number of layers, filter sizes, and number
of neurons. The carefully selected model hyperparameter values are
presented in Table 4.

3.5. Model evaluation and validation methods

The dataset is partitioned into multiple subsets to ensure
the learning model’s generalization capability on unseen data [37,
44]. In this regard, the study utilized various split ratios, including
60/20/20, 70/20/10, and 80/10/10 for training, testing, and validation,
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Table 4
Selection of suitable hyperparameters for different deep learning models

Test accuracy

Models Parameter Learning rate Batch size Optimizer  Activation function Kernel size (%)
MLP Values 0.00001 128 Adam ReLU, softmax - 98.9
DNN Values 0.00001 128 Adam ReLU, softmax - 98.73
LSTM Values 0.00001 128 Adam ReLU, softmax - 98.69
BiLSTM Values 0.00001 128 Adam ReLU, softmax — 98.8
DCNN Values 0.00001 128 Adam ReLU, softmax — 98.75
CNN-LSTM  Values 0.00001 128 Adam ReLU, softmax 3x3 98.82
DNN-AE Values 0.00001 for DNN 128 for DNN  Adam ReLU & softmax for - 98.72
while 0.0001 for AE & 64 for AE DNN while ReLU &
MSE for AE

respectively. These ratios were carefully selected to balance the
availability of training data with the necessity of reserving sufficient
data for model validation and testing. The effectiveness of classification
methods relies not only on the techniques employed but also on how
the training and testing data is divided [50]. The appropriate split
ratio may also be contingent on the size of the dataset; larger datasets
might allow for smaller validation and test sets, while smaller datasets
typically necessitate larger proportions to ensure a robust evaluation.
Most studies didn’t compare different train-test splits. Additionally,
introducing randomness into the data-splitting process is essential for
guaranteeing that different experimental runs produce varied datasets,
which in turn enhances the model’s robustness. A random seed is used
for reproducibility of experiments, ensuring consistency across runs.
The study employed diverse model evaluation metrics like precision,
recall, accuracy, and F1 scores.

For code editing, Jupyter Notebook and Spyder were preferred
due to their user-friendly interfaces and powerful functionalities, which
are particularly suited for Python programming and data science tasks.
The study used cloud-based tools to enhance computational efficiency,
notably Google Colab, which offered additional graphics processing
unit (GPU) resources during the deep learning model training. For
data analysis, manipulation, visualizations, balancing, and model
implementations, diverse Python libraries were used, namely, Pandas,
NumPy, Scikit-learn, TensorFlow, Matplotlib, and Imblearn [43].

To conduct experiments, the study used the following hardware
and software as illustrated in Table 5.

4. Experimental Results

This section covers an experimental result on different train-
test splits, comparison of deep learning models’ performance with and
without SMOTEENN dataset balancing strategy, the learning curve of

the top-performing model, and workflow of how the proposed model
works in detection, classification, and mitigation of DDoS attacks.

4.1. Experiment 1: assessing deep learning models’
performance across different dataset train, validation,
and test splits

Seven distinct deep learning models were utilized to detect DDoS
attacks in the context of multi-class classification. These models include
MLP, DNN, DCNN, LSTM, BiLSTM, CNN-LSTM, and DNN-AE. To
enhance each model’s performance, different tasks were carried out,
such as feature scaling, encoding, data cleaning, dataset balancing,
model fine-tuning, and partitioning the dataset into training, testing, and
validation splits. Various data partitioning strategies were implemented
on the proposed model, including splits of 80/10/10, 70/20/10, and
60/20/20, to ensure model capability on unobserved data. Notably, the
70/20/10 split consistently demonstrated optimal performance in the
context of multi-class classification as illustrated in Table 6 and Figure 1.

4.2. Experiment 2: assessing deep learning models’
performance with and without the SMOTEENN
dataset balancing strategy

As depicted in Figure 2, the MLP model outperformed the
others, with 98.90% accuracy and a 0.69% improvement over its pre-
SMOTEENN results. MLP accuracy (98.90%) was 0.1% better than
the third-best accuracy (98.8%) achieved by BiLSTM and marginally
(0.08%) higher than the second-best accuracy (98.82%) achieved by
CNN-LSTM combo.

Although SMOTEENN technique significantly improved the

Table 6
Table 5 Performance of the models across different dataset split ratios
Experimental setups for implementing deep learning models Dataset split ratios (train/test/validation)

No. Aspects Details Models 80/10/10 (%)  70/20/10 (%)  60/20/20 (%)
1 Programming language  Python 3.9 DNN 98.73 98.73 98.71
2 Environment Google Colab environment DNN-AE 98.55 98.72 98.57
3 Client operating system ~ Windows 10 CNN-LSTM 98.75 98.80 98.79
3 RAM 4GB LSTM 98.61 98.63 98.58
4 Processors Intel Core i3, operating at 2.4 GHz DCNN 98.71 98.75 98.67
5 Hard disk 500 GB BILSTM 98.79 98.80 98.76
6 GPU T4 provided free Google Colab MLP 98.85 98.90 98.83
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Figure 1
Accuracy-based model comparisons across different data splits
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accuracy of each deep learning model, it did not reduce the train-test
computational times for each model, as Table 7 illustrates. The MLP
model’s train-test computational time was delayed by 802.15 seconds,
the LSTM model by 737.66 seconds, the DNN model by 747.66 seconds,
the BILSTM model by 728.63 seconds, and the DCNN model by 797.11
seconds after the SMOTEENN application. The CNN-LSTM and DNN-
AE models were delayed by 849.5 and 857.69 seconds, respectively.
After applying the SMOTEENN technique, the experimental results
show that BILSTM is comparatively the quickest DDoS attack detection
model, whereas CNN-LSTM and DNN-AE models are the slowest when
compared to MLP, LSTM, and DCNN models. From these experimental
results, it is possible to conclude that because they are hybrid models
or combine the computational times of two models, CNN-LSTM and
DNN-AE are the slowest models. According to the study by Zainudin
et al. [27], applications of relevant feature selection strategies on
CICDDo0S2019 dataset was contributed to reduce machine learning and
deep learning model’s computational time.

The model is said to be successful when lowering the false
negative rate (FNR) and false positive rate (FPR). In this study, FPR
indicates that benign traffic was mistakenly classified as DDoS attacks,
whereas FNR indicates that DDoS attack traffic was mistakenly
classified as benign traffic. Normal network operations are disrupted
by both FPR and FNR. In this context, the SMOTEENN technique
reduces the FNR of the MLP model by 0.57% while slightly increasing
the FPR of the MLP model by 0.13%; reduces the FNR of the LSTM
model by 0.48% while slightly increasing the FPR of the LSTM model
by 0.12%; reduces the FNR and FPR of the DNN model by 0.51%
and 0.52%, respectively; reduces the FNR and FPR of the BILSTM
model by 0.34% and 0.37%, respectively; reduces the FNR of the
DCNN model by 0.32% while slightly increasing the FPR of the DCNN
model by 0.08%; reduces the FNR of the CNN-LSTM model by 0.33%
while slightly increasing the FPR of the CNN-LSTM model by 0.08%;
and reduces the FNR of the DNN-AE model by 0.35% while slightly
increasing the FPR of the DNN-AE model by 0.08%. According to these
experimental results, the SMOTEENN technique reduces the FNR and
FPR for models like DNN and BiLSTM. While slightly increasing
the FPR, the SMOTEENN technique lowers FNR for the majority of
models, including MLP, LSTM, DCNN, CNN-LSTM, and DNN-AE.

Table 7
Comparative model performance analysis with and without SMOTEENN technique

With or without

Train-test computational

No. Model name SMOTEENN Accuracy (%) FPR( %) FNR (%) time in seconds
| MLP Without 98.21 1.15 1.90 7219.39

With 98.9 1.28 1.37 8021.54

Without 97.85 1.25 1.85 6638.93
2 LSTM .

With 98.69 1.37 1.37 7376.59

Without 97.72 1.80 1.80 6728.96
3 DNN .

With 98.73 1.28 1.29 7476.62

Without 98.14 1.50 1.50 6557.61
4 BiLSTM .

With 98.8 1.13 1.16 7286.24
s DONN Without 98.04 1.05 1.45 7173.95

With 98.75 1.13 1.13 7971.06

Without 97.74 1.07 1.47 7645.46
6 CNN-LSTM .

With 98.82 1.14 1.14 8494.96

Without 97.73 1.04 1.48 7719.27
7 DNN-AE .

With 98.72 1.12 1.13 8576.96
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As illustrated in Figure 3, the MLP model outperforms the
remaining deep learning models such as DNN, DCNN, BiLSTM,
LSTM, CNN-LSTM, and DNN-AE in terms of accuracy, precision,
recall, and F1 score. For the MLP model, the study constructed the
neural network model using the Keras Sequential API. It featured
multiple densely connected layers with ReLU activation functions. The
architecture began with an input dense layer of 1024 neurons, followed
by dropout regularization (rate of 0.1) and batch normalization. The

Figure 3
Models’ performance results using accuracy, precision, recall, and
F1 score
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Metric MLP DNN DCNN BILSTM LSTM CNN-LSTM DNN-AE
 Accuracy 98.90% 98.73% 98.75% 98.75% 98.80% 98.80% 98.73%
WS Precision 98.93% 98.74% 98.76% 98.75% 98.85% 98.84% 98.71%
== Recall 98.91% 98.73% 98.75% 98.75% 98.84% 98.86% 98.83%
. F]Score 98.91% 98.84% 98.86% 98.34% 98.84% 98.83% 98.71%
Table 8

MLP model classification results with SMOTEENN technique

subsequent dense layers had 2024, 2000, 1000, 500, and 200 neurons,
each with batch normalization and dropout. The output layer contained
eight neurons and an activation function softmax. Training the
MLP model involves Adam optimizer, 0.00001 learning rate value,
categorical cross-entropy loss, and accuracy metrics, 50 epochs,
and 128 batch sizes. It achieved an accuracy of 98.90% and showed
consistent performance with precision, F1 score, and recall at 99%.

Classification reports, shown in Table 8, revealed no bias across
classes, providing valuable insights into dataset fairness.

Figure 4 shows the accuracy and loss curves of MLP on multi-
class classification.

4.3. Experiment 3: demonstrating DDoS attack detec-
tion and classification using sample workflow

In order to show how the top-performing deep learning model
might function in a real-world application, the study tried to demonstrate
the workflow for DDoS attack detection, classification, and mitigation.
Integrating MLP model into network security devices for DDoS attack
detection and classification is a robust approach. Once a DDoS attack
is detected and classified, a mitigation strategy can be implemented.
Figure 5 illustrates a simple flowchart outlining the steps to follow
for the mitigation strategies of identified DDoS attacks in a network-
computing environment.

The DDoS detection and classification model is trained to
classify incoming network traffic data based on a comprehensive set
of 67 features. Users can upload a CSV file, enabling predictions for
multi-class classifications, that is, it helps users effectively identify
and categorize data into one of eight target classes. For binary
classification, it assists users by classifying network traffic as either

Classes Precision  Recall  F1 score Support benign or DDoS. This functionality may enhance the security and
Benign 1.00 1.00 1.00 30,431 reliability of network systems. The MSC thesis served as the source
DrDoS LDAP 0.95 0.98 0.97 28.822 of the manuscript’s contents, including the workflow for DDoS attack
- ’ detection, classification, and mitigation of proposed model illustrated
DrDDoS_MSSQL 0.98 0.95 0.96 28,709 in Figure 5. Both the thesis supervisors and the examining committees
DrDDoS NTP 1.00 1.00 1.00 29,447 evaluated and gave encouraging comments about the workflow during
DrDDoS_UDP 100 100 1.0 29,654  the MSC thesis defense.
Syn 1.00 1.00 1.00 21,086 . . R
4 5. Discussions on Key Research Findings
TFTP 1.00 1.00 1.00 28,801
The study rigorously reviewed recent research works on detecting
UDP-lag 0.99 1.00 1.00 19,669 DDoS attacks utilizing deep learning approaches, specifically from
Accuracy 99 216619 2019 to 2024, and used structured guidelines to locate current research
Macro Avg 99 99 99 216619 gaps and suggest viable solutions. These research works were retrieved
. using the PRISMA guidelines from reputed academic databases.
Weighted Avg it » » 216619 The dataset used for the study was the CICDDo0S2019, provided by
Figure 4
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Figure 5

Workflow for DDoS attack detection, classification, and mitigation of the proposed model
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the Canadian Institute for Cybersecurity (CIC). It was selected due
to its recent release and importance within the intrusion detection
system (IDS) field. Its widespread use in other studies allows for valid
comparisons with existing research. CICDD0S2019 dataset consists
of the various types of DDoS attacks categorized into reflection and
exploitation-based attacks [36]. The study included exploitation-based
attacks, such as SYN, UDP-lag, and UDP, and reflection-based attacks,
such as TFTP, NTP, MSSQL, and LDAP [22, 36].

Seven popular deep learning models were utilized to detect
DDoS attacks in the context of multi-class classification. These models
include MLP, DNN, DCNN, LSTM, BiLSTM, CNN-LSTM, and DNN-
AE. To enhance each model’s performance, different tasks were carried
out, such as feature scaling, encoding, data cleaning, dataset balancing,
model fine-tuning, and partitioning the dataset into training, testing, and
validation splits. Various data partitioning strategies were implemented
on the proposed model, including splits of 80/10/10, 70/20/10, and
60/20/20, to ensure model capability on unobserved data. Notably, the
70/20/10 split consistently demonstrated optimal performance in the
context of multi-class classification.

Although SMOTEENN technique significantly improved the
accuracy of each deep learning model, it did not reduce the train-test
computational times for each model. Even though MLP and CNN-LSTM
achieved the first and second accuracy, 98.9% and 98.82%, respectively,
the experimental results show that BiLSTM is comparatively the
fastest DDoS attack detection model, with the third-best accuracy of
98.8%, while CNN-LSTM and DNN-AE models are the slowest when
compared to MLP, LSTM, and DCNN models. Because CNN-LSTM
and DNN-AE are hybrid models or combine the computational times
of two models, they become slower. Reducing the computational time
of deep learning models requires the application of relevant feature
selection strategies [27]. Despite being 0.63% more accurate than the
accuracy achieved by Kumar et al. [11], LSTM achieved the lowest
accuracy in our analysis (98.63%) when compared to MLP, BiLSTM,

CNN-LSTM, DNN, DNN-AE, and DCNN.

The model is said to be successful when lowering the false
negative rate (FNR) and false positive rate (FPR). In this study, FPR
indicates that benign traffic was mistakenly classified as DDoS attacks,
whereas FNR indicates that DDoS attack traffic was mistakenly
classified as benign traffic. According to our experimental results, the
SMOTEENN technique reduces the FNR and FPR for models like DNN
and BILSTM. While slightly increasing the FPR, the SMOTEENN
technique lowers FNR for the majority of models, including MLP,
LSTM, DCNN, CNN-LSTM, and DNN-AE.

Numerous studies have been conducted in this field. The review
findings reveal that most studies did not reveal each experimental
detail for the reproducibility of research findings. Specifically, most
studies used imbalanced datasets and did not reveal dataset size,
fine-tuned model hyperparameters, and train-test-validation split
ratios. For instance, references [1, 8, 21-27] used the same dataset
CICDDo0S2019 with our study despite references [10, 11, 21, 24,
28] not revealing dataset size, references [11, 23, 25, 27-29] not
revealing train-test-validation split ratios, references [21, 24, 29] not
revealing number of top predictive features used, and references [25,
26, 28] not revealing fine-tuned model hyperparameters. The study
aims to address these issues. When assessing the effectiveness of
various models, the proposed deep learning approaches consistently
outperform many existing methods. This success can be attributed
to the careful selection of methodologies, including data balancing
techniques, normalization techniques, missing values, removing
irrelevant features, encoding techniques for converting categorical
values to numerical values, and model optimization techniques.
Based on extensive research, this study presents a comparative
analysis of model performance alongside the most relevant preceding
studies, highlighting the advancements in DDoS attack detection
and classification through deep learning approaches as illustrated in
Table 9.
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Table 9
Comparative performance analysis with the related works on CICDD0S2019 dataset
Top-performing Accuracy
Related study model Domains Classification types Dataset Dataset ratios (%)
[10] LSTM IDS Multi-class CICDDo02019 Imbalanced 99.4
[11] LST™M IDS Binary CICDDo02019 Balanced using random 98
sampling techniques

[2] MLP-AE IDS Multi-class CICDDo0S2019  Imbalanced 98.34
[6] DNN IDS Multi-class CICDDo0S2019  Balanced by using RUS 94.57
[13] LSTM IDS Multi-class CICDDo02019 Imbalanced 74.42
[8] IDCNN-LSTM IDS Binary and multi-class CICDD02019 Imbalanced 99.76
[23] DNN IDS Binary CICDDo0S2019  Imbalanced 99
Our proposed MLP IDS Multi-Class CICDDo0S2019 SMOTTEEN 98.90
model

6. Limitations of the Study and Future Research Di-
rections

Despite its contributions to science and literature, the study
has the following limitations. To find research articles from reliable
sources, the study used keyword-based search strategies, such as
DDoS attack detection OR distributed denial-of-service detection
AND deep learning. Different research articles may be retrieved using
different keywords. Including model explainability and assessing the
model’s resistance to adversarial attacks are left for future work. The
future work will compare model performances on binary and multi-
class classifications. The CICDD0S2019 dataset was chosen due to its
popularity in the examined research works, wide and diverse feature
set, and recentness. Even though each deep learning model’s train-
test computational times increased, the SMOTEENN approach was
utilized to handle class imbalance issues and significantly improve
each model’s accuracy. In order to solve problems related to model
computational time, future research would employ pertinent feature
selection strategies. To guarantee model performance consistency, it is
anticipated that the model performance will be compared across several
DDoS datasets, including the CICIDS2017, NSL-KDD, and UNSW
2018 datasets.

7. Conclusions

Many researchers have sought to address DDoS attack issues
using various techniques despite these attacks continuing to rise. This
emphasizes the need for beating DDoS attacks using accurate, reliable,
and adaptive models. Our study highlights recent studies conducted
between 2019 and 2024 on the use of deep learning techniques for DDoS
attack detection to identify the gaps, formulate research methodology,
and offer workable answers. The review findings reveal that most
studies used imbalanced datasets and did not reveal dataset size, fine-
tuned model hyperparameters, and train-test-validation split ratios for
replication and revalidation of their research findings. Our research
findings reveal that none of the reviewed studies use the SMOTEENN
dataset balancing strategy on the CICDDo0S2019 dataset, considering
its potential benefits. Even though model performance varies when
using different train-test split ratios, the majority of reviewed papers
only use one dataset split to train deep learning models. The study aims
to address these issues.

The study assessed the performances of diverse deep learning
algorithms, including MLP, DNN, DCNN, LSTM, BiLSTM,
CNN-LSTM, and DNN-AE. To obtain better results, rigorous data
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preprocessing methods like feature scaling, encoding, removing
duplicate features, dataset balancing strategy, proper train-test-
validation dataset splits, and fine-tuning of model hyperparameters
were conducted. The experimental findings show that all models
achieved remarkable accuracy rates of above 98.69% on the test dataset
following the application of the SMOTEENN dataset balancing strategy
and the combination of the MLP model with the SMOTEENN dataset
strategy outperform the remaining deep learning models in detection
and classification of the DDoS attack.

Although SMOTEENN technique significantly improved the
accuracy of each deep learning model, it did not reduce the train-test
computational times for each model. According to our experimental
results, the SMOTEENN technique reduces the FNR and FPR for
models like DNN and BiLSTM. While slightly increasing the FPR,
the SMOTEENN technique lowers FNR for the majority of models,
including MLP, LSTM, DCNN, CNN-LSTM, and DNN-AE.

Although not considered in the reviewed research works, our
study developed the DDoS attack detection and classification workflows
to categorize incoming network traffic data using a wide range of
features or classify data into one of eight target classifications. Future
researchers from many fields may find it easier to identify research gaps
with the help of the structured evaluation parameters we utilized in our
study to evaluate various research works.
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