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Abstract: The intersection of artificial intelligence and neuroscience has resulted in the development of brain-inspired computational frameworks 
that simulate the human brain’s hierarchical decision-making and learning. In this work, we propose a Hierarchical Brain-Inspired Reinforcement 
Learning (HBRL) architecture that combines the benefits of Deep Reinforcement Learning (DRL) with a biologically inspired cognitive hierarchy. 
The proposed architecture functions by simulating cortical–subcortical processing of information in which a high-level Policy-Gradient manager 
conducts abstract and long-term planning, and the low-level Deep Q-Network (DQN) agents complete real-time short-term actions. The proposed 
architecture’s multilayer structure includes temporal abstraction, modular learning, and the ability to refine policies to optimize experience, which 
makes it appropriate for dynamic and uncertain environments. We applied HBRL in three common scenarios: GridWorld, autonomous vehicle 
navigation, and smart-city infrastructure control to evaluate the proposed system design. Overall, we found that HBRL had a 15%–20% higher 
rate of completing tasks, 1.4–2.4 times faster learning efficiency, along with 70–100 points higher cumulative reward when high-level and low-
level HBRL agents were compared to baseline approaches (e.g., DQN, Proximal Policy Optimization, and Soft Actor-Critic). A statistical analysis 
using two-tailed t-tests also assessed the significance of improvements (p < 0.01) among all tested environments. The hierarchical decomposition 
of tasks serves both to promote convergence and improve agents’ generalization capacity in unseen conditions. In its entirety, the proposed HBRL 
framework provides a scalable and cognitive-inspired learning paradigm for developing intelligent autonomous systems that exhibit human-like 
adaptability and efficient decision-making capabilities in complex, nonstationary real-world environments.
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1. Introduction
Interest in creating artificial intelligence (AI) systems that exhibit 

cognitive human-like processes has led to the birth of brain-inspired 
computational models. Research into brain-inspired AI technologies 
focuses on the structural and functional organization of the human 
brain and attempts to emulate neural processes like synaptic plasticity, 
hierarchical processing of information, and adaptive learning. The 
design rationale does not aim to emulate cognition, but to emulate 
the computational principles that underlie neural activity, permitting 
neural systems to perceive, learn, and make decisions. By incorporating 
principles from biological neural systems, brain-inspired AI systems 
may exhibit adaptive and context-sensitive behaviors and enhancements 
in performance in uncertain and complex conditions. Essentially, these 
models represent a new generation of flexible, neurocognitive-inspired 
AI paradigms that will provide both theoretical concepts and practical 
benefits in addressing real-life problems [1].

Hierarchical Deep Learning (HDL) architectures are inspired 
by the brain’s layered structure to break a complex problem down into 
smaller sub-tasks to improve learning efficiency, generalization, and 
interpretability [2]. When coupled with reinforcement learning (RL), in 
which agents learn the value of a decision policy based on interacting with 
a dynamic environment, HDL frameworks can yield strong performance 

and scalable advances. In particular, Deep Reinforcement Learning 
(Deep Reinforcement Learning (HDRL) allows agents to navigate 
problems requiring sequential decision-making where uncertainty and/
or delayed reward exist by assigning various roles across multiple 
levels of abstraction. Higher layers focus on strategies and forming 
subgoals over a range of time frames, while lower layers respond with 
immediate short-term actions [3, 4]. Together, the coordination of such 
levels improves adaptability in dynamic environments. Recent progress 
in HDRL has been successfully implemented in areas such as robotic 
control, autonomous navigation, and energy management, where agents 
learned temporally extended actions, actions that persist over varying 
time durations and aid in goal-directed planning. Furthermore, the 
application of intrinsic motivation mechanisms (internal reward signals 
not requiring external feedback) has facilitated greater exploration and 
self-directed learning, making artificial systems increasingly similar to 
biological learning systems [5]. Such advancements notwithstanding, 
current HDRL architectures still face challenges with respect to their 
sample efficiency, transferability, and interpretability, particularly for 
complex real-world settings requiring variable adaptability [6, 7].

In this research work, we present a Hierarchical Brain-Inspired 
Reinforcement Learning (HBRL) framework that combines the 
advantages of DRL through a biologically inspired architecture. This 
framework simulates cortical–subcortical information processing by 
using a high-level manager for abstract planning and low-level agents 
for real-time execution. The hierarchical nature offers better temporal 
abstraction, policy improvement, and generalization across tasks and 
domains. With extensive experiments in the Gridworld, autonomous 
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navigation, and smart-city control domains, the HBRL framework 
demonstrates improvements of 15 to 20% for task completion, 1.4–2.4 
times faster learning, and significantly greater total reward compared 
to standard DRL baselines. These results demonstrate that HBRL 
provides a scalable and cognitively inspired framework for developing 
autonomous intelligent systems that provide human-like decision-
making in complex and dynamic environments.

For a clear understanding of the overall organization of this study, 
Figure 1 illustrates the high-level structural framework of the proposed 
HBRL study. Within Figure 1, the connections between rationale, 
methodological design, and empirical tests are illustrated. Each study 
involves a hierarchical agent architecture, consisting of a high-level 
manager and low-level agents, which helps with the multi-environment 
testing and performance metrics discussed later. Hence, the structure 
provides a guide to the reader from theoretical to implementation and 
to empirical validation.

2. Literature Review
As AI technology continues to advance, researchers are 

investigating the anatomical structures and processes of the human 
brain for ideas. One area of interest is HBRL, enabling machines to 
mimic some features of human reasoning for decision-making [8, 
9]. The development of DL and hierarchical reinforcement learning 
(HRL) has improved the ability of systems to process complex data 
and produce intelligent decisions over long time horizons. This review 
highlights important research, models, and applications of hierarchical 
brain-inspired DRL and its use for enabling cognitive agents to operate 
successfully in dynamic and uncertain environments [10].

Research has also focused on developing the translatable 
HRL frameworks “sample efficient” and “scale up.” For example, 
Hare and Tang [11] created an HRL framework based on experience 
sharing to address pedagogical applications in a metaverse context and 
demonstrated the potential of HRL to support a collaborative virtual 
learning experience. He et al. [12] used HRL in the context of video 
coding, demonstrating adaptive initial QP selection and rate control, 
showcasing the use of HRL outside of primarily robotic contexts and 

for signal processing. Hengst [13] provided a theoretical basis for 
research to model hierarchical brain agents in his theoretical work on 
HRL. Huang et al. [14] developed HRL-based dynamic scheduling 
policies for robot control that dynamically prioritized tasks to increase 
controllability for agents. Kulkarni et al. [15] incorporated successor 
features into HRL to reach a more effective method of transfer between 
tasks. Levy and Wolf [16] used HRL along with hindsight experience 
replay so that agents can learn from tasks that receive a sparse reward 
signal through post hoc relabeling of their goals.

As a whole, the presented literature shows that HBRL offers a 
flexible and powerful way towards solving difficult decision-making 
tasks in these domains. Hare and Tang [11] presented an HRL 
framework using experience sharing to explore pedagogical ones within 
a metaverse context, thus demonstrating the opportunity for exploration 
of HRL frameworks to facilitate a collaborative virtual learning 
experience. He et al. [12] used HRL in the context of coding a video to 
enable adaptive initial QP selection and rate control, again showing that 
HRL can be used outside of robots, in signal processing. Hengst [13] 
provided theoretical groundwork for hierarchical information discovery, 
using HEXQ, which exists in contemporary HRL architectures. Huang 
et al. [14] worked on adaptive scheduling using HRL for robot control. 
Their focus was on dynamically adjusting task prioritization to inform 
the controllability of the agent. Kulkarni et al. [15] demonstrated 
deep successor RL with HRL using successor features, which enables 
effective transfer learning from one task to another. Levy and Wolf [16] 
applied HRL with hindsight experience replay, where an agent can take 
advantage of hindsight, or sparse reward relabeling of the goals, to utile 
the opportunity to learn. Therefore, these papers progressed the field 
of HRL from orienting the theoretical development and expanding the 
practice application.

Hutsebaut-Buysse et al. [17] described a biologically plausible 
HRL architecture that engaged across cortical and subcortical levels, 
promoting better temporal credit assignment and adaptive decision-
making, and inferred that a biologically plausible structure would 
promote stability and interpretability when dynamic control tasks were 
completed. In a similar vein, Akl et al. [18] constructed NeuroHRL, 
a hierarchical model based on spiking neural networks, to incorporate 
time-dependence and energy efficiency into the bio-plausible design, 
thereby providing further context for the bio-plausible artificial system 
versus biological cognition.

Additionally, advances in research using cognitive architectures 
with HRL frameworks and their use in robotic systems have 
emerged. Rohani et al. [19] described Neuro Cognitive-HRL, which 
is a biologically inspired reasoning framework that combines cortical 
mapping with low-level deep Q-learning to generate adaptive 
hierarchical control for navigation tasks in dynamic environments. 
This hybrid enables generalizability across novel situations while 
maintaining sample efficiency. In a subsequent development, Gao et al. 
[9] presented Hierarchical Meta-Reinforcement Learning (HMRL) to 
facilitate decision making for autonomous vehicles, relying on 
meta-learning methods to optimize hierarchical control in uncertain 
situations. In particular, their findings showed better adaptation and 
speed of convergence than found in typical HRL algorithms.

HRL usage is also gaining traction in multi-agent and cooperative 
settings, as well. Ni et al. [20] created the Brain-Driven Multi-Agent 
HRL model for swarm robotics, drawing from decentralized neural 
coordination processes observed in biological systems. In terms of 
their workspace-based observations, they noted enhanced scalability, 
communication, and collaborative actualization for heterogeneous 
robotic agents. Collectively, these recent investigations indicate a rising 
interest in neurobiologically inspired, scalable, and cognitively adaptive 
HRL networks, which explore means of integrating human-like rational 
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reasoning into artificial autonomous agent systems. At the same time, 
neurorobotics and spiking networks are currently being researched to 
facilitate the merger of biological and computational learning. Amaya 
et al. [21] demonstrated neuromorphic hardware-in-the-loop HRL for 
physical robots and substantial evidence of online adaptability in real 
time. Similarly, Wang et al. [22] developed a brain-topology-improved 
spiking neural network that improves sample efficiency and decision 
accuracy for RL agents. Supporting hierarchical skill discovery, Cho 
and Sun [23] developed a meta-RL model that autonomously generates 
their macro-action to support multilevel policy abstraction related to 
a hierarchy of complex tasks. Taken together, these empirical studies 
support the move to bio-plausible, scalable, and cognitively adaptive 
HRL systems and closely relate to the proposed HBRL framework 
presented in this paper.

The literature suggests that HBRL provides a particularly 
flexible and powerful framework for addressing complex decision-
making tasks. By establishing links to neuroscience, with these models, 
temporal and functional abstraction arises that can help cognitive 
agents, and robot agents in particular, learn in real-world dynamic and 
uncertain environments. The works that were reviewed show that not 
only the combination of deep learning with HRL improves performance 
in specific domains, but it also shows that we are closer to constructing 
general-purpose autonomous agents. Future directions will likely focus 
on the scaling, sample efficiency, and explainability of such systems, 
particularly in multi-agent and real-world environments.

3. Proposed Work
The essential concept of the proposed Hierarchical Brain-

Inspired DRL(HBRL) framework is to administer decision-making 
tasks in a hierarchical way analogous to human cognition by splitting 
tasks into subtasks to handle and keep manageable as a problem. The 
agent incorporates two types of decision-making levels (high-level and 
low-level), allowing for a more robust and efficient decision-making 
process in complex and dynamic environments. The HBRL framework 
includes the following:

1)  High-Level Manager: The High-Level Manager manages the 
long-term strategies for developing plans, allocating resources, and 
controlling the low-level agents.

2)  Low-Level Agents: The low-level agents execute immediate 
actions toward short-horizon objectives while also reacting to 
extenuating circumstances as they occur in real-time. To formalize 
the approach, we assume that the problem is modeled as a Markov 
Decision Process

M = (S, A, P, R, γ)

Where S is the state space, which represents all possible states 
the agent might encounter, A is the action space, which represents all 
possible actions the agent might take, P is the state transition probability 
that represents the probability of getting from one state to another after 
taking an action, R is the reward function which describes feedback to 
the agent after each action, and γ is the discount factor which determines 
how the agent values future rewards against immediate rewards. In our 
hierarchical model:

1)  High-Level Manager: High-level managers operate at a larger 
temporal scale, where only court actions can be taken at coarse time 
steps. The high-level manager optimizes a policy π manager on 
abstract tasks (subtasks) where the reward to the high-level manager 
is Rmanager.

2)  Low-Level Agents: Low-level agents operate at a finer temporal 
scale than high-level agents, where learning policies π low-level to 
execute approximate actions and tasks.

The learning process is governed by the following objectives for 
each level:

High-Level Manager Objective:

Low-Level Agent Objective:

The high-level manager looks to optimize the long-term strategy 
by breaking tasks down into small components. The low-level agents 
are focused solely on immediate goals and maximizing short-term 
rewards.

3.1. Deep Q-learning and policy gradient methods
The low-level agents choose actions using Deep Q-Network 

(DQN). The Q-value function Q(s, a) is expected future rewards for 
each state-action pair. DQN aims to learn a Q-function that approaches 
the true optimal Q-function Q∗(s, a):

Where,  is the reward at time t;  is the discount factor;  is the 
new state after action a at time t; and a′ is the potential action at state 

. The high-level manager uses Policy Gradient Methods (such as 
REINFORCE) to compute the optimal policy by directly computing 
gradients of expected rewards with respect to the policy θ:

Where,  represents the policy parameterized by θ. The 
gradient of the policy is computed using the likelihood ratio method:

Here, b( ) is the baseline function to reduce the variance of our 
gradient estimator.

Ultimately, this allows the high-level manager to plan for longer 
horizons, which improves long-term performance.

In a novel way of biologically inspired hierarchical control 
presented in their proposed HBRL algorithm, the high-level planner 
(mimicking the cortical decision layer) is responsible for decomposing 
complex goals to subgoals, while the low-level controllers (subcortical 
regions) complete the fine-grained motor / environmental interactions. 
Unlike traditional HRL algorithms, the proposed algorithms in the model 
integrate policy-gradient optimization at the high level and DQN-based 
learning at low levels, allowing for both temporal abstraction and local 
adaptation to the context. This hybrid structure promotes efficiency 
in learning speed and convergence time, while retaining adaptive 
transfer learning representational competence across complex dynamic 
environments.

3.2. Experience replay and hierarchical 
communication

As a method for improving sample efficiency, Experience Replay 
is implemented by storing previous experiences in a replay buffer and 
randomly sampling them during training. This process minimizes 

(1)

(2)

(3)

(4)

(5)
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problems that might come from the correlation between consecutive 
experiences and stabilizes learning. In the hierarchical setting, the High-
Level Manager communicates with the low-level agents by sending 
abstract goals and rewards for each subtask [24]. High-level goals 
are derived from both the high-level manager’s high-level policy and 
objectives given to the low-level agents. The low-level agents perform 
actions in their respective environments before delivering feedback to 
the High-Level Manager.

3.3. System architecture diagram
The architecture of the HBRL system is illustrated in Figure 2 

below:

As indicated in the high-level framework in Figure 1, the 
methodological design is instantiated in the proposed HBRL 
architecture in this study in Figure 2. HRL establishes decision-making 
and learning at levels of abstraction. The hierarchical management 
leverages abstraction and consideration of decisions and learning over 
higher temporal scales to boost control over learning. The High-Level 
Manager is responsible for supplying abstract goals and preparing high-
level policies for the low-level agents below. The high-level manager 
does not interface with the environment and only supplies its goals to 
the low-level agents. The high-level manager is also responsible for 
evaluating the low-level agents based on long-term outcomes with 

delayed rewards, thus allowing it to provide direction and escalate 
the learning they are responsible for. Low-level agents interface with 
the abstract goals that the high-level manager assigned them, and are 
responsible for enacting decisions that improve proposed actions. Low-
level agents take direct action with respect to their environment and are 
evaluated based on shorter episodes. They also utilize human-reachable 
feedback to inform their immediate decisions and to develop their 
potential action policies using models like DQN or other techniques 
from deep learning [25]. By establishing the low-level agents this way, 
the low-level agents are able to implement action with precision and 
responsivity, while the high-level manager is fully responsible for 
strategy and coordination [26]. The environment provides the dynamic 
task space the agents operate. Returning feedback and consequences 
based on actions taken allows agents to learn through agency by 
interacting. This layered understanding allows agents to operate in 
complex decision-making, allowing for scale and growing a system’s 
adaptability or flexibility. This is especially useful in robotics, gaming, 
and autonomous systems.

3.4. Summary of proposed architecture 
The framework for HBRL, proposed in this study, consists of 

a high-level policy planner that assigns abstract goals to several low-
level agents. Each low-level agent learns to execute actions in real time 
using Deep Q-Learning. Communication between the agents relies on a 
replay buffer and sending the hierarchical goal. This structure supports 
scalable and flexible cognitive decision-making through multiple 
domains. Figure 3 explains the Information flow between the high-level 
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Figure 2
The architecture of the HBRL system

Note: DQN = Deep Q-Network, HBRL = Hierarchical Brain-Inspired 
Reinforcement Learning.

 Figure 3
Information flow between the high-level and low-level agents in 

the proposed HBRL framework

Algorithm 1
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and low-level agents in the proposed HBRL framework. The high-level 
agent generates subgoals (g) for the low-level agent, which interacts 
with the environment through actions (a). The environment returns new 
states (s′) and extrinsic rewards, while the low-level agent transmits 
intrinsic progress signals to the high-level agent for policy refinement.

3.5. Training algorithm
The training algorithm embodies an HRL framework 

implemented to be efficient in terms of complexity. HRL decouples the 
work into levels of decision making; in other words, instead of relying 
on a single agent to take all actions, we look to incorporate multiple 
different levels of action. It accomplishes this by utilizing an HRL 
framework incorporating a High-Level Manager (a level of structure 
operating over a coarse time scale) and Low-Level Agents (conducting 
those fine-grain actions needed to accomplish the goals set by the high-
level manager). Due to the different levels of action, the action that 
the low-level agent takes, and flexibly adjusting their local policies 
based on their DQNs to conduct context-appropriate actions, existing 
HRL work combines traditional RL, such as Q-learning for low-level 
policy learns, with Policy Gradient structure for high-level analysis of 
possible options [27]. The algorithm has an asymptotic structure as 
follows: initial Agent and value function setup, and then, the iterative 
training loop (into episodes and time steps as its unit learn units) of 
the HRL agent learning will commence. Each episode, the high-level 
manager sets goals based on long-term plans (which in this case takes 
the episodic view), while the low-level agents learning to take context-
appropriate actions using appropriate DQNs [28, 29]. The process of 
learning can be considered the experiences of agents as they experience 
their environment, which illustrates how their experiences can be 
stored and used to assist in policy updates to update and adjustments 
as learning continues. Learning this architecture of training has great 
benefits as it provides temporal abstraction, provides a context for agile 
sample learning, and allows for generalization and scalability within 
RL systems that can accommodate robotics, navigation, and real-
time strategy game tasks, all dependent on time, space, and resource 
constraints. The steps of the algorithm are as follows in Figure 4.

Algorithm 2 offers a comprehensive procedural description of the 
proposed HBRL training framework. In contrast to Algorithm 1, which 
describes the hierarchical relationships between high-level and low-
level agents, the primary focus of Algorithm 2 is on the initialization 
process, episode-based training loop, and policy update processes. The 
high-level manager sets the abstract goals for agents, evaluates the long-
term policies using policy-gradient learning, and the low-level agents 
will be applying deep Q-learning in order to optimize the selection of 
actions within their respective subtasks. The experience replay buffers 
and the intrinsic/extrinsic rewards develop, maintain, and sustain an 
adaptive behavior that’s goal-driven from both levels in a dynamic 
environment.

3.6. Evaluation metrics and performance indicators
The following are the metrics used to measure the performance 

of the HBRL system:

1)  Cumulative Reward: The total reward accumulated by the agent 
during an episode, which measures policy learning performance 
[30].

2)  Learning Efficiency: The number of interactions or episodes the 
agent requires to reach a target cumulative reward after the end of 
an episode [31].

3)  Generalization: The agent’s ability to transfer learning to new 
environments or unseen tasks. 

4)  Task Decomposition: The agent’s ability to decompose complex tasks 
into a collection of smaller, manageable subtasks. The Hierarchical 
Brain-Inspired DRL framework utilizes human decision-making 
cognitive principles to improve decision-making performance in 
more complex environments. It incorporates the functionality of a 
high-level manager, which decides actions for lower-level agents in 
the hierarchy, closely resembling the decision-making functionality 
of human brains [32]. 

This provides a powerful representation for scalable, efficient, 
and adaptable learning and decision-making in stochastic and 
complex environments. The ability to employ deep learning and HRL 
allows researchers to approach several aspects of AI, such as task 
decomposition, sample efficiency, and long-term planning.

4. Experimental Setup 
In this section, we provide a comprehensive overview of the 

experimental procedure for the HBRL framework. This includes further 
detail about the environment, simulation parameters, performance 
measures, and the specific configuration of both the high-level manager 
and low-level agents. 

4.1. Environment description
In this study, we designed multiple test environments to evaluate 

the strategy design, learning, and decision-making properties of 
the proposed HBRL framework, or the overall effectiveness of the 
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 Figure 4
Training algorithm flow chart of the proposed HBRL model

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.
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HBRL framework compared to other approaches across a variety of 
environments representing real-world, complex, dynamic systems. We 
recognize the fact that we could represent real-world scenarios using 
zero- or one-dimensional or analogue time-series systems, but in order 
to achieve a more representative environment for simpler scenarios, we 
chose systems that are two- or three-dimensional. Our environments 
and scenarios have been designed to enable task decomposition and 
long-term decision-making over a multi-stage process, including: 

1)  Grid World Environment: A classic 2D grid world environment 
where agents start at one point and must navigate to a goal point 
while avoiding obstacles. 

2)  Autonomous Vehicle Navigation: An environment simulating a self-
driving car navigating the streets of a city, with dynamic traffic, 
pedestrians, and other road conditions. 

3)  Smart City Infrastructure: A complex environment with multiple 
agents (e.g., traffic lights, drones, and IoTs) that are interconnected, 
where agents will be expected to coordinate their collective work, 
for example, to optimize traffic flow and energy efficiency.

Each environment utilizes different representational complexity 
to enable a simulated test environment over a range of decision-making 
tasks.

Training Data and Parameters: Each environment was 
constructed using synthetic data generated from a simulation. The 

GridWorld setup consisted of a 10 × 10 grid where obstacles were 
randomly placed anew in each episode. The Autonomous Vehicle 
environment was a simulation that utilized sensor data of position, 
velocity, and obstacle distances, all arbitrarily generated relative to 
LiDAR-like sensor arrays. The Smart City Infrastructure scenario 
comprised 1,000 synthetic traffic and energy-use patterns, simulated 
and generated using SUMO. We normalized all state features to a 
[0, 1] range with min–max scaling. Each agent was trained for 2,000 
episodes (with 200 time steps). Each agent was trained with an ε-greedy 
exploration policy for exploration/exploitation. Rewards were defined 
as follows: +10 for completing a goal, 0 or larger negative for colliding 
or timing out, and a very small penalty for inaction (e.g., –0.01). Replay 
buffers will be updated depending on the overhead of each episode. 
This allows for reproducibility and emphasizes that all environments 
provide consistent data for hierarchical policy learning.

4.2. Simulation settings
For the experiments, we used a Python-based simulation 

framework that integrates TensorFlow and PyTorch for DRL. We set 
the parameters common to all experiments listed as follows:

1)  Action Space: Discrete actions for the agents, such as movement in a 
grid world or the control of vehicle steering, speed, and acceleration.

6
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2)  State Space: The agent’s continuous state space of the environment 
while it observes/perceives it. In the autonomous vehicle 
environment, the agent’s observation included its location, velocity, 
and distance to other vehicles/obstacles.

3)  Reward Function: A reward function is developed to reward task 
completion and penalize bad behaviors. In our example of the grid 
world environment, the agent received a positive reward for arriving 
at the goal and received negative rewards for colliding with the 
obstacles.

4)  Discount Factor (γ): 0.99. Thus, positive long-term (but not only) 
incentives while being able to take into account (disregard) short-
term feedback.

5)  Learning Rate (α): 1 × 10 − 41 for both the high-level manager and 
low-level agents to balance exploration/exploitation.

Programming Environment and Implementation Details: 
The training environment for the proposed HBRL framework was 
developed using Python 3.10 and run on an Intel Core i7 (3.4 GHz) 
workstation with 32 GB of RAM, and an NVIDIA RTX 3080 (10 GB 
VRAM) graphics processing unit. All training data were generated in 
the open-source Deep Learning environment (PyTorch 2.0), which 
leverages the best aspects of the NumPy, Matplotlib, and OpenAI Gym 
packages for simulating environments and visualization tasks. The high-
level manager of the framework was developed using a Policy Gradient 
reinforcement learning method (REINFORCE), and involved a low-
level agent utilizing a DQN architecture. The low-level agent employed 
three fully connected layers (256 - 128 - 64) of neurons, which were 
activated using a ReLU activation function. Specific hyperparameters 
included a learning rate of 0.001, discount factor (γ) of 0.99, batch size 
of 64, replay buffer size of 10⁵, and an exploration rate (ε) dynamically 
adjusted linearly from 1.0 to 0.01, each during 500 episodes. An Adam 
optimizer was used within the RL framework, with training completed 
over 2,000 episodes, each of which comprises a maximum of 200 time 
steps per episode. As a stability measure, target networks were updated 
every 10 episodes, and the max norm of gradient clipping was set to a 
maximum of 1.0. Finally, all codebase simulations were executed under 
the Windows 11 (64-bit) operating environment. The codebase has been 
modularized to allow for future upgrades to address scalability issues that 
might arise from multi-agents and distributed computing environments.

4.3. Agent configurations
The agents in this study are designed as high-level managers with 

high-level manager capabilities, acting in a manner consistent with a series 
of low-level agents, also representing low-level agent characteristics. 
The following are the specifications for each type of agent:

The High-Level Manager:

1)  Policy: The policy of the manager is optimized with Policy Gradient 
or a variation of Policy Gradient, such as REINFORCE.

2)  Objective: The manager is attempting to assign real meaning to 
the subtasks it assigns to the low-level agents as well as to make 
decisions that optimize long-term goals.

3)  Learning Process: The manager optimizes its policy, using a gradient 
approach that attempts to maximize its expected return.

The Low-Level Agents:

1)  Policy: Low-level agents use DQN to learn Q-values for each action 
possible, for each state possible.

2)  Learning Process: Low-level agents use their Q-values to perform 
action selection, store experiences in a replay buffer, and optimize 
their policies based on the Bellman Equation.

3)  Exploration Strategy: The low-level agents perform exploration 
actions using an epsilon-greedy approach, which allows the agents 

to explore a random action occasionally while allowing them to 
exploit the learned actions most of the time.

4)  Computational Overhead Assessment: While it is important to 
consider performance accuracy in evaluating an RL framework, 
another important measure is the utilization of computational 
resources. When comparing the proposed HBRL model against a 
baseline of models (such as DQN and Proximal Policy Optimization 
[PPO]), we accounted for average training time per episode and 
peak memory usage. Although HBRL exhibited greater learning 
efficiency, it showed slightly longer runtime (15% to 20% longer 
per episode on average) relative to baseline models because of the 
hierarchical policy learning and use of memory replay. However, 
the memory footprint was similar to non-hierarchical models to 
verify that all the benefits from better adaptability do not come with 
unmanageable computational overhead.

Equally, over the years, there have been a few important studies 
in the field of education that investigated topics related to solid waste 
management [1, 3, 4, 8, 10] studied students’ attitudes and knowledge 
towards solid waste management. The findings of these studies showed 
similar results that the respondents, who were college students, had 
shown a positive attitude towards solid waste management with a low 
level of knowledge.

4.4. Training process
The training of matrix agents is a typical HRL process. The 

overall process is described in an overview as follows: 
Initialization:

1)  The high-level manager and low-level agents are initialized with 
random weights.

2)  Each agent has an experience replay buffer initialized. 

Episodes:

1)  For each episode, the high-level manager will send subtask goals to 
the low-level agents.

2)  The low-level agents will act in the environment according to their 
policies, interact with the environment, and observe the results of 
their actions (state transitions and reward received).

3)  The low-level agents will update their Q-values based on the 
Bellman equation and BL-based experiences from the replay buffer. 

4)  The high-level agent will evaluate the task and modify subtasks, 
made for the next cycle, based on the utilities provided by the 
subordinate low-level agents.

Optimization:

1)  At the SGD level, low-level agents will be optimizing their noise 
representations over Q-values to optimize their Q-function.

2)  The high-level manager will optimize its policy by applying 
REINFORCE to maximize long-term cumulative rewards.

3)  The high-level manager and the low-level agents will be evaluated 
periodically to make decisions on learning rates and exploration 
methods.

Convergence:

1)  Training will stop after a fixed number of episodes (e.g., 100,000 
episodes) or when the performance stabilizes (i.e., the agents achieve 
an optimal or near-optimal policy consistently in the environment).

4.5. Baseline and comparative evaluation
To more comprehensively evaluate the performance of the 

proposed HBRL framework, we further expand our comparison 

7



Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

to include more state-of-the-art DRL baselines. To that end, we 
implemented Proximal Policy Optimization (PPO) and Soft Actor-
Critic (SAC), which are well-known for their stability and performance 
in complex decision making. All models were trained using the same 
hyperparameters, where applicable, and evaluated in the same test 
environment. To assess the performance of the HBRL framework, the 
following several important metrics were assessed:

1)  Cumulative Reward: The total amount of reward gained by the 
agent in the entire life of the episode. Below are some metrics for 
analyzing the effectiveness of the agent’s strategy in aggregate. 

2)  Task Completion Rate: The total percentage of episodes where the 
agent was able to complete the task (e.g., the agent was able to 
reach the goal in the grid world or the agent was able to reach its 
destination in the autonomous vehicle environment). 

3)  Learning Efficiency: The total number of episodes it took for the 
agent to reach a specified performance level (e.g., 100 cumulative 
rewards).

4)  Generalization Capability: The ability of the agent to perform 
adequately in new and unfamiliar environments after training 
concludes.

To establish a benchmark for evaluating the performance of our 
proposed HBRL framework, we implemented a conventional DQN 
as a baseline decision-making model. The DQN baseline does not 
implement hierarchical planning, experience replay, and maintains a 
flat architecture of having a single agent directly interacting with the 
environment. Both the HBRL and DQN models were trained with the 
same hyperparameters, thus making the implementation inherently fair 
(learning rate, discount factor, architecture, etc., but not hierarchy). 
Similar performance metrics were taken over the same number of 
episodes, namely, cumulative reward, success rate, and convergence to 
the optimal solution. To validate the observed performance differences, 
we conducted independent two-sample t-tests on key metrics across 
10 randomized runs for each method. The improvements achieved by 
HBRL over DQN, PPO, and SAC were statistically significant (p < 
0.01) in both cumulative reward and task completion rate across all 
tested environments.

4.6. Hyperparameters
For the training of both high-level managers and low-level 

agents, the following hyperparameters were used in Table 1:

4.7. Agent interaction in the environment
The following is a conceptual diagram of how the high-

level manager and low-level agents interact with each other and the 
environment:

Figure 5 displays the hierarchical training and feedback 
interaction process of the proposed HBRL framework. Overall, the high-
level manager observes the global environmental state and produces an 
abstract sub-goal to transmit to the low-level agents. The low-level agents 
can subsequently perform fine-grained actions within the environment 
to achieve the sub-goal, and collect rewards both intrinsically and 
extrinsically as feedback. The environment has to return to the low-level 
agents, updated states, as well as reward signals based on the actions 
taken. The low-level agents, in turn, utilize Deep Q-Learning to update 
their Q-values locally, while at the same time updating the long-term 
policy of the high-level manager via policy-gradient optimization. This 
closed-loop flow leads to continuous interaction between hierarchical 
layers, such that the high-level manager is able to modify and adapt the 
strategic goals depending on the performance of the agents, and that 
low-level agents can understand not only their rewards, but also modify 
their behavior in real time. Overall, the entire process mimics cortical–
subcortical coordination that occurs in the human brain, and improves 
learning efficiency, the policy’s temporal abstraction, and adaptability 
while situated in dynamic environments.

The experimental design for the proposed HBRL framework will 
be used for evaluating the agents’ capability to decompose tasks in an 
efficient manner, learn decompositions of their tasks hierarchically, 
and solve complicated problems requiring a series of decisions. In this 
performance evaluation setup, we’re considering DQN for the low-level 
agent and Policy Gradient methods for the high-level manager during 
experimentation to test the proposed framework in different dynamic 
environments. Built into this evaluation setup are possible comparisons 
among the agents based on performance metrics encompassing 
cumulative reward, completion percentage, and learning efficiency, in 
addition to verifying that the proposed framework will function in a 
real-world complex (dynamic) system.

5. Simulation Results and Discussions
The results from the experimental research using the HBRL 

framework offer vital facts on the effectiveness and overall performance 
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Hyperparameter Value
Learning rate (α) 1 × 10−41 times 
Discount factor (γ) 0.99
Epsilon (exploration rate) 0.1
Batch size 32
Replay buffer size 10,000
Number of episodes 100,000
Max timesteps per episode 500

Table 1
Hyperparameters

 Figure 5
Hierarchical HBRL training and feedback flow between high-level 

and low-level agents



Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

of this framework for complicated decision-making responsibilities. 
The outputs offer information on the effectiveness of the proposed 
framework and are usually related to the Results and Discussion 
sections. We present a summary of the primary output results below 
and discuss their significance and relevance. To improve clarity and 
emphasize overall trends, this section summarizes the comparative 
performance of HBRL and the baseline DQN across all environments 
and metrics evaluated in this study.

5.1. Learning efficiency
The number of episodes taken for agents to reach predefined 

performance standards (e.g., 90% of cumulative optimal reward or 
percentage of task completion rate).

Figure 6 displays the intermediate results of the learning 
efficiency of the HBRL agent across the episodes compared to a typical 
baseline DQN in a GridWorld environment (i.e., showing how quickly 
agents were able to reach 90% of their optimal cumulative reward). 
In this case, the HBRL agent reached 90% reward in approximately 
5,000 episodes, whereas the DQN baseline agent reached the same level 
in 12,000 episodes. This is indicative of the learning efficiency of the 
framework encoded in HBRL. The HBRL agent can learn sub-policies 
through a hierarchical decomposition of the tasks it encounters and 
utilize previously learned behaviors, which can make a big difference 
in the number of episodes needed for training. The figure clearly 
demonstrates HBRL’s steeper learning curve to reaching roughly the 
same reward level and provides evidence for HBRL’s advantage in 
environments requiring fast convergence.

The combined Table 2 clearly indicates that the HBRL agent 
consistently outperforms the baseline DQN in terms of learning 
efficiency.

Figure 7 compares the learning efficiency of the suggested 
HBRL framework against the baseline DQN agent within the Smart 
City Infrastructure environment. This environment is characterized 
by multiple agents cooperating in dynamically managing resource 
allocation, such as traffic flow, energy generation and consumption, 
and communication through network connectivity. The agent utilizing 
HBRL has a considerably sharper increase in average reward, and the 
HBRL agent converged to an optimal policy in approximately 10,000 
to 15,000 episodes, indicating relatively quicker performance gain, 
whereas the DQN agent demonstrates a relatively slow, gradual rise 

in average reward, requiring approximately 25,000 episodes to acquire 
a similar average reward level. This difference arises from the nature 
of hierarchical cognitive control of the HBRL architecture, which has 
hierarchical levels of decision-making that allow high-level managers 
to coordinate, improvise, and allocate the generation and organization 
of the subgoals to low-level resource agents for scalable and real-time 
adaptation. The results support that hierarchical cognitive control 
generates improvements in convergence speed and performance in 
large-scale multi-agent systems in operation in smart-city systems.

Figure 8 shows that HBRL achieved 90% optimal performance 
after around 5,000 episodes, whereas the baseline approach achieved 
90% optimal performance after around 12,000 episodes. The differences 
in learning capabilities imply that the HBRL learning process is more 
time-efficient. HBRL relies on task decomposition and optimally defines 
a series of smaller problems. When the agent can decompose a complex 
task into smaller, solvable problems, it learns much faster when solving 
a sequence of smaller problems compared to one large problem. The 
ability to learn through the HBRL process validates the utility of HRL 
in a structured environment such as Grid World, where agents have 
goals that can be defined to structure the agents more efficiently solve a 
more complicated goal.

Figure 9 illustrates the comparison of the learning efficiency of 
the proposed workload- and resource-level approach, denoted as the 
HBRL framework, with the application of the baseline DQN agent in 
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Environment Agent
Episodes to Reach 

90% Optimal Reward
GridWorld (Figure 5) HBRL 5,000

Baseline DQN 12,000
GridWorld (Figure 6) HBRL 3,500

Baseline DQN 9,300
GridWorld (Figure 7) HBRL 5,000

Baseline DQN 12,000
Autonomous Vehicle 
Navigation (Figure 8)

HBRL 20,000
Baseline DQN 28,500

Note: DQN = Deep Q-Network, HBRL = Hierarchical Brain-Inspired 
Reinforcement Learning.

Table 2
Comparative learning efficiency of HBRL versus Baseline DQN

 Figure 6
Learning efficiency: HBRL versus Baseline in the grid world

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

 Figure 7
Learning efficiency comparison (HBRL vs. Baseline DQN) in the 

smart city infrastructure environment

Note: DQN = Deep Q-Network, HBRL = Hierarchical Brain-Inspired 
Reinforcement Learning.
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an autonomous vehicle navigation environment. As demonstrated, the 
HBRL agent quickly converges to a stable policy to reach 90 % of the 
optimal reward within approximately 20,000 episodes, whereas the 
baseline DQN agent would require approximately 28,500 episodes to 
settle the same reward. Based on these results, the higher performance 
of HBRL can be attributed to its hierarchical planning structure, 
where the high-level manager allocates sub-goals such as lane change 
and obstacle avoidance to each low-level agent. Because of this 
level of control, the agent can adapt to dynamically changing traffic 
environments and realize a more efficient and stable reward learning 
policy compared with the baseline non-hierarchical agent.

5.2. Task completion rate
The rate percentage of the episodes where the agent accomplished 

its goals (e.g., accessing the goal in the grid world or completing a 
driving task in the vehicle environment).

Figure 10 presents an important performance difference between 
the HBRL agents and the baseline Q-learning agents within a Grid 
World environment. The HBRL agents completed in 90% of the runs, 
and baseline agents plateaued at 75%. This difference in performance 
demonstrates the benefits of utilizing a hierarchy-based scheme. The 
high-level completion rate indicates that the HBRL was not just able to 
solve the tasks, but did so consistently and efficiently. Because of the 

high-level manager in HBRL, it could delegate subtasks to lower-level 
agents, allowing those agents to focus on the simpler, more defined goals. 
Without this structure, the flat Q learning agents simply had less effective 
learning, which led to less success in task accomplishment. Overall, 
this result emphasized that defining individual tasks hierarchically and 
decomposing tasks ultimately improved the performance of the agent, 
and supported reliable navigation and eventual decision-making under 
structured environments.

Table 3 demonstrates HBRL agents outperforming baseline 
agents in two settings. In Grid World, HBRL agents achieved a 90% 
completion rate on the task, outpacing baseline Q-learning agents that 
only reached a 75% completion rate. The reasons for improvement are 
related to the hierarchy (and therefore the opportunity for managers 
to delegate subtasks to agents), allowing agents to execute subtasks 
in a focused manner that has the potential for a more effective and 
consistent resolution to the task. In Smart City Infrastructure, HBRL 
agents were able to maintain a solid 85% completion rate compared 
to a 65% for the baseline systems. The adaptability framework of the 
HBRL system, which was capable of real-time adaptation, was through 
its hierarchical structure, which allowed HBRL agents to respond to 
dynamic task conditions, resource availability, and interaction with 
agents. As we have seen in previous experiments, the baseline agents 
could not coordinate and adapt to changes in the operating environment.

In the complex and dynamic environment of smart city 
infrastructure in Figure 11, the HBRL agents achieved an 85% 
success rate of task completion, while the baseline systems achieved 
only a 65% success rate. This indicates a significant performance gap 
for the hierarchical structure when operating in environments with 
dynamic criteria for task and resource availability, as well as the active 
involvement and interactions of other agents. The HBRL system, 
with a high-level manager, permitted migrating tasks dynamically 
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Environment
HBRL 

Completion Rate

Baseline 
Completion 

Rate
Performance 

Gap
Grid World 90% 75% +15% (HBRL 

advantage)
Smart City 
Infrastructure

85% 65% +20% (HBRL 
advantage)

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

Table 3
Task completion rate comparison (HBRL vs. Baseline)

 Figure 9
Comparison of learning efficiency (HBRL vs. Baseline DQN) in the 

autonomous vehicle navigation environment

Note: DQN = Deep Q-Network, HBRL = Hierarchical Brain-Inspired 
Reinforcement Learning.

 Figure 10
Task completion Rate: HBRL versus Baseline in the grid world

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

 Figure 8
Learning efficiency: HBRL vs. Baseline in grid world

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.
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and delegated them to agents while they adapted in real time to the 
changing situation in which they operated. This affinity for flexibility 
allowed the agents to become more resilient and facilitate problem-
solving efficiently, as the baseline systems could not adapt effectively 
due to a lack of coordination. Overall, the outcome indicates that the 
hierarchical structure was effective for enabling intelligent systems to 
maintain high performance in desirable conditions corresponding to 
situational demands of a smart, dynamic urban environment.

5.3. Cumulative reward
The total sum of rewards accumulated by agents during training 

represents the overall effectiveness of the agents’ strategies in achieving 
their goals.

The HBRL agents managed to accumulate a cumulative reward 
of 450 during 10,000 episodes, whilst the baseline agents were only able 
to achieve a cumulative reward of 350, which is shown in Figure 12. 
This evidence clearly shows the benefit of decision-making by using a 
hierarchical constructed approach. The high-level manager managed to 
direct the low-level agents to their specific tasks, and while doing so, 
structured better decision-making that allowed the agents to accumulate 
rewards quickly and optimally. The task prioritization and task structure 
the high- and low-level agents enjoyed involving multiple levels of 
decision making, enabled the agents to focus on the most relevant sub-
tasks at that point, resulting in better exploration of the state space and 
faster learning. The baseline agents, however, lacked the task definition 

and agent structure; therefore, they were have struggled to cumulate 
reward based on the inability identify the next appropriate task to 
complete an increasing reward differential resulted for this reason. A 
constructed hierarchy in complex environments like Grid World was 
clearly a vital encumbrance for agent performance improvements. The 
cumulative reward presented shows the final averaged reward achieved 
upon convergence across all agents and trials. Thus, the curve displays 
a flat or constant shape based on episode number rather than indicating 
episode-by-episode learning increment toward the full-state limit 
reward.

Table 4 explains the cumulative reward comparison, showing 
that HBRL agents always scored higher than baseline agents in both the 
static and dynamic settings, with HBRL agents earning 450 total reward 
in the grid world (baseline agents scored 350) and the autonomous 
vehicle (HBRL earned 320 and baseline earned 250). These results 
show that because of HBRL’s hierarchical structure of high-level 
managers informing the low-level agents allowed them to make better 
decisions more efficiently, prioritize goals better, and learn faster in 
complex scenarios.

The HBRL agents generated a cumulative reward of 320 after 
25,000 episodes, as shown in Figure 13, which was a significant increase 
compared to the baseline agents, who amounted to a cumulative reward 
of 250. The HBRL agents received a higher cumulative reward due to 
successfully leveraging the hierarchical structure, notably the high-
level manager, to direct the agent to where it should adapt and alter its 
navigation task, thus allowing the agent to operate more effectively and 
efficiently in a dynamic environment (moving traffic, conditions of the 
road, etc.). The task performance goal was accomplished using higher-
level management task-based aids to assist the agent in adapting its 
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 Figure 11
Smart city infrastructure: task completion rate (HBRL versus 

Baseline)

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

 Figure 12
Cumulative reward: HBRL versus Baseline in grid world

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

Environment

HBRL 
Cumulative 

Reward

Baseline 
Cumulative 

Reward
Performance 

Gain
Grid World 450 350 +100 (HBRL 

advantage)
Autonomous 
Vehicle 
Navigation

320 250 +70 (HBRL 
advantage)

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

Table 4
Cumulative reward comparison (HBRL vs. Baseline)

 Figure 13
Cumulative reward: HBRL versus Baseline autonomous vehicle 

navigation

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.
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navigation policies over time and making decisions for more effective 
task performance outcomes. The baseline agents received some degree 
of benefit from some navigational task decomposition, but there were 
absolutely no benefits from future task assignment (the high-level 
manager level of HBRL) at any time. The findings for the HBRL agents 
provide precise evidence of efficiencies gained through hierarchical 
control of more complex and dynamic real-time environments 
(demonstrated by successful autonomous vehicle navigation) in relation 
to the task performance goal exceeding the capabilities of the agent. 
These values reflected averages of cumulative reward after convergence 
for each agent type. The x-axis is the episode identifiers that were 
used for evaluation, which is why the flattened shape indicates stable 
performance after learning has converged.

5.4. Generalization ability
The performance of the agents in new, unseen environments after 

they have been trained on the original tasks. This metric measures how 
well the agents can generalize to new situations without retraining.

As seen in Figure 14, HBRL agents sustained 85-90% of 
their original performance even after modifying environments (i.e., 
dynamic and real-world situations), which suggested a high degree 
of generalization. The agents probably had such high levels of 
adaptation due to the high-level manager that was built into the HBRL 
framework, which updated the task goals dynamically (recommended 
by the optimization process). Having that high-level manager would 
make it easier for the agents to adapt to the novel environments. The 
hierarchical framework helped the agents concentrate on particular 
subtasks, which improved their resilience to changing environments. 
Similarly, the baseline agents suffered a decrease in performance of 20-
30% and suggested a generalized form of learning from HBRL agents. 
The baseline systems without task decomposition or adaptation were 
unable to retain their level of performance in conditions that altered the 
environment. These results validate the HBRL framework’s robustness 
in real-world applications where environments are likely to be dynamic 
or uncertain.

In Table 5, HBRL agents have proven to have excellent 
generalization abilities, holding on to 85%–90% of their original 
performance in a new, altered environment, where baseline agents ranged 
between a 20% to 30% performance drop. In a different, modified smart 
city setting, HBRL agents maintained an 80% task completion rate, 
indicating task adaptability and efficiency. HBRL’s resilience comes 
from its hierarchy, where high-level managers dynamically modify task 
goals or inject task allocations to maintain their sub-agents so they can 
remain stable in a resilient way in changing or novel conditions.

Figure 15 simulates the performance of an HBRL agent operating 
in a modified smart city environment over a total of 10,000 episodes, 
while measuring task completion rate and cumulative reward over this 
number of episodes. The task completion rate for the HBRL agent 
remains at 80%, indicating the adaptability of multiple HBRL agents 
to new conditions, whereas the cumulative reward shown in episodes 
1 through 10,000 indicates that the agents can complete their roles 
efficiently, thus increasing their cumulative reward. The high-level 
manager in an HBRL system is able to continue to reassign tasks to 
appropriate agents, allowing them to sustain high levels of performance 
despite changing environmental conditions. This demonstrates the 
generalizability afforded to the HBRL framework by utilizing multiple 
agents in a modelled yet complex environment (smart city).

5.5. Comparison with Baseline methods
The performance of HBRL agents was evaluated across three 

environments and compared to baseline Q-learning agents in Table 6. 
The comparison between the performance of the HBRL agents and 

baseline Q-learning agents was summarized across the environments.
HBRL agents completed 90% of the tasks in the Grid World 

and even outperformed the baseline agents, who completed 75% 
of the tasks, as shown in Figure 16. The six through hierarchical 
structure of the HBRL framework allowed for improved performance. 
By decomposing tasks into smaller, more manageable subtasks, the 
high-level manager can help the agents do the tasks at hand and make 
better decisions. The hierarchical structure was a useful and more 
organized way to complete the task compared to the baseline agents, 
who struggled with no decomposition and higher-level thinking in 
more complex decision-making problems. The results indicate that 
hierarchical decision-making is effective and useful in problem-solving 
related to completing relatively simple tasks more efficiently. The 
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Environment

HBRL 
Performance 

Retained

Baseline 
Performance 

Drop

Task 
Completion 

Rate 
(HBRL)

Modified 
General 
Environments

85% to 90% −20% to −30% –

Modified 
Smart City 
Environment

Sustained (80%) Not specified 80%

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

Table 5
Generalization ability: HBRL versus Baseline

 Figure 14
Performance in modified environments: HBRL versus Baseline

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

 Figure 15
HBRL performance in a modified smart city environment

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.
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upper envelope illustrates the stable convergence of high-level policy, 
while fragmented oscillations near the lower floor are a consequence of 
stochastic exploration and low-level policy variability during training.

Steady-state cumulative rewards after training convergence, 
instead of proof-of-progressive learning, appear in Figure 17. The 
flattened curve demonstrates the stabilization of the trained policies’ 
performance capabilities. This is significantly better than the other 
agents, which only rewarded 250. The HBRL framework was able 

to maintain exploration into the complex dynamic characteristics of 
autonomous driving, such as obstacle avoidance and traffic control. As 
a result of the decomposition of the task, the high-level manager was 
able to assign subtasks such as obstacle detection and path planning 
to low-level agents that were specialized to perform. This adaptation 
improved determination and thus resulted in higher total cumulative 
rewards. The baseline agents struggled to perform well in this novel and 
dynamic environment without limited task decomposition and adaptive 
behavior, and were thus penalized for it by receiving lower rewards. 
The results highlight the success of hierarchical decision-making for a 
complex task that has complications in both complexity and variability, 
as with autonomous vehicle navigation.

In the Smart City Infrastructure task environment, HBRL 
agents obtained an impressive 85% task completion while baseline 
agents completed 65% of total tasks, as shown in Figure 18. The 
success of the HBRL framework arose from its ability to leverage task 
decomposition and hierarchical learning, allowing agents to adapt to 
an environment’s diverse collection of interacting agents. In a complex 
real-time environment such as a Smart City, agents require the ability 
to react to ongoing stimulus changes (e.g., traffic, resources that could 
be allocated, and how much infrastructure is being utilized). The 
hierarchical learning structure allows agents to specialize in particular 
subtasks, which allows them to make more efficient decisions in the 
environment. Consequently, focusing on subtasks allowed for higher 
task completion and overall reward total in the environment for the 
HBRL agents over the baseline agents. The baseline agents lacked 
any substantial adaptive mechanisms and struggled in navigating 
through the interactions in the complex task environment; therefore, 
they performed worse on task completion. Therefore, hierarchical 
learning is necessary and important in environments that require mutual 
interaction from agents and responding to environmental stimuli that 
change in real-time.

Results from the experiments indicate the HBRL framework 
performed better than traditional flat RL approaches on all important 
evaluation measures: learning efficiency, overall task completion 
success rate, cumulative reward, and generalization. The hierarchical 
structure, where the high-level manager delegated subtasks to execute 
via low-level agents, enabled better decision-making and facilitated 
faster learning, more successful performance, and higher adaptability to 
previously unseen environments. The improvements in task completion 
and the number of rewards earned were considerably greater in complex 
environments involving an autonomous vehicle navigating a smart 
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Environment Metric HBRL DQN PPO SAC
Grid World Task Completion 

(%)
90% 75% 80% 83%

Cumulative 
Reward

450 350 375 395

Episodes to 90% 5,000 12,000 9,500 8,000
Autonomous 
Vehicle Nav.

Task Completion 
(%)

85% 65% 72% 77%

Cumulative 
Reward

320 250 270 285

Note: DQN = Deep Q-Network, HBRL = Hierarchical Brain-Inspired 
Reinforcement Learning, PPO = Proximal Policy Optimization, SAC = Soft 
Actor-Critic.

Table 6
Comparison table: HBRL versus Baseline agents

 Figure 16
Task completion rate in grid world: HBRL versus Baseline

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

 Figure 17
Cumulative reward in autonomous vehicle navigation: HBRL 

versus Baseline

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

 Figure 18
Task completion rate in smart city infrastructure: HBRL versus 

Baseline

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.
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city infrastructure, demonstrating that task decomposition is seriously 
critical in addressing problems in the real world. Moreover, the HBRL 
agents demonstrated good generalization ability across previously 
unseen environments, which further demonstrates the robustness and 
scalability of this method. Overall, these results provide a strong basis 
for confirming the research hypothesis that hierarchical learning models, 
such as HBRL, are particularly well-suited for managing the complexity 
of decision-making tasks across domains. Future improvements 
in the HBRL framework could yield further improvements in its 
generalization ability and computational performance, increasing its 
potential effectiveness in real-world autonomy systems. A consolidated 
summary of performance comparisons across all test environments is 
presented in Table 7, highlighting the consistent advantage of HBRL 
in task success, learning efficiency, and adaptability. The asymmetric 
envelope, a smooth upper boundary and oscillatory lower boundary, 
demonstrates the ideas of environmental stochasticity and exploration-
exploitation balances of hierarchical agents while learning.

To further validate the reliability of performance differences 
between HBRL and the baselines, we conducted two-tailed independent 
t-tests over 10 experimental runs per method. The results showed that 
HBRL outperforms all other baselines with statistical significance 
in both cumulative reward and task completion rate, as shown in 
Table 8. Figures 5–12 present intermediate results, showing the stepwise 
improvement of the HBRL agent during training. These results illustrate 
how learning efficiency, cumulative reward, and task completion evolve 
over episodes before reaching the final performance values reported in 
Table 7.

5.6. Discussion of results 
The experiment results demonstrate convincingly that the 

proposed HBRL framework is effective and transferable to multiple 
environments of increasing complexity. The cumulative reward 
value increased with increased training episodes, suggesting that the 
proposed model validates relevant task learning and subsequently 
the generalization of learning across task variations. The success rate 
improved from 34.2% on episode 1,000 to 89.7% on episode 10,000, 
suggesting great learning dynamics and stability through hierarchical 
control and experience replay mechanisms. In comparison to the 
baseline models, the proposed HBRL converged faster, demonstrated 
higher final precision, and higher cumulative reward performance than 
both flat Deep Q-Learning (DQN) and classic hierarchical RL models. 
The adaptive goal-setting mechanism of the high-level manager 
accelerates policy convergence by directing low-level agents with 
contextually informative subgoals, decreasing exploratory behavior. 
The modular design aspect of the proposed HBRL also enhances task 
reusability and transferability from one environment to another—model 
low-level agents trained in one scenario (i.e., GridWorld) predictably 
and reliably performed well once transferred to linked environments 
(i.e., navigation or coordination engaged with multiple agents). The 
hierarchical structure also aids in improving interpretability and 
cognitive alignment. The distinction between high-level planning and 
low-level execution parallels the functional division between cortical 
(i.e., strategic) and subcortical (i.e., reactive) systems in humans. This 
separation contributes towards more explainable decision trajectories 
and more visualizable policy learning within and across layers. Lastly, 
its biologically inspired design facilitates temporal abstraction and can 
allow the agent to execute high-level decisions over longer time periods 
while executing finer-resolution control at lower levels. For clarity, 
Figures 11, 12, and 16 report the cumulative reward values after policy 
convergence, rather than per-episode trajectories, indicating the final 
stabilized performance of the HBRL agents.

The refined upper envelope and fragmented lower oscillations are 
due to the hierarchical nature of the HBRL and stochastic exploration 
in training. The upper boundary captures progressive convergence of 
high-level policy performance and reflects trends in cumulative best 
performance, and the lower range oscillations are derived from episodic 
variability of multiple low-level agents exploring sub-polices within 
dynamically changing environments. As training begins to stabilize, the 
exploration noise will dissipate over time, producing a smoother upper 
envelope trajectory of converging policy performance while still being 
interrupted by embers of local oscillation at the lower limit. Compared 
with other brain-inspired models and feudal RL approaches, the HBRL 
demonstrated improved sample efficiency and improved reward 
optimization, resulting in a more beneficial exploration/exploitation 
trade-off. These findings suggest that hierarchical decomposition with 
biologically motivated control can provide real performance benefits in 
terms of both convergence stability and robustness to variations of the 
learning environment.

In summary, the results emphasize that cognitive-inspired 
hierarchical learning architectures can offer a pathway to scalable and 
human-like adaptive intelligence. The ability of the framework to support 
successful navigation in complex dynamic environments (GridWorld, 
autonomous navigation, and smart city coordination) suggests its 
capacity to be adapted to deployable scenarios across autonomous 
robotics, energy-efficient design, and intelligent transportation 
systems. As a continuation of this work, future research will examine 
transfer learning methods across heterogeneous tasks, nearness of 
self-organizing sub-policy hierarchies, and multi-agent collaboration 
behavior. The future work will also focus on interpretability through 
attention-based visualization methods and increased decision-making 
transparency through neuro-symbolic reasoning.
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Metric
HBRL vs 

DQN
HBRL vs 

PPO
HBRL vs 

SAC
Task Completion Rate p = 0.004 p = 0.008 p = 0.006
Cumulative Reward p = 0.002 p = 0.009 p = 0.007

Table 8
p-values from t-tests comparing HBRL and baseline methods

Environment Metric HBRL
Baseline 
(DQN) Improvement

GridWorld Task 
Completion 
Rate

90% 75% +15%

Cumulative 
Reward

450 350 +100

Learning 
Efficiency

5,000 eps 12,000 
eps

2.4× faster

Autonomous 
Vehicle 
Navigation

Cumulative 
Reward

320 250 +70

Learning 
Efficiency

20,000 eps 28,500 
eps

1.4× faster

Smart City 
Infrastructure

Task 
Completion 
Rate

85% 65% +20%

Generalization 
Retention

80%–90% –20%–
30% drop

High 
robustness

Note: DQN = Deep Q-Network, HBRL = Hierarchical Brain-Inspired 
Reinforcement Learning.

Table 7
Comparative analysis of final performance metrics for HBRL and 

baseline models
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6. Summary
HBRL agents outperformed baseline agents on tasks in the 

simulated worlds, highlighting the value of task decomposition and 
adaptation in decision-making.

Global Environment: The HBRL agents achieved a 90% task 
completion rate while existing agents achieved a 75% task completion 
rate. The HBRL’s hierarchical architecture enabled decision-making via 
task breakdown into sub-tasks, each with less inefficiency when you are 
doing the action.

Autonomous Vehicle Navigation: The HBRL agents received a 
total cumulative reward of 320, whereas existing agents received a total 
cumulative reward of 250. The HBRL sellers have been able to adapt 
dynamically as demanding situations changed while navigating to keep 
away from pedestrians and other objects.

Smart City Infrastructure: The HBRL marketers finished a task 
final touch rate of 85% at the same time, while the baseline marketers 
carried out a challenge with an entirety rate of 65%.

The HBRL architecture performed better in an active 
environment with real-time agent interaction with multiple agents in 
the environment. The HBRL structure provided better control of task 
completion and a responsive, dynamic environment, so simultaneous 
changes in the environment could be adapted to. Overall, these findings 
demonstrate the potential of hierarchical learning, especially in dynamic 
environments requiring adaptive Internet-like real-time decision 
making and coordination of tasks among multiple interacting agents. 
The HBRL Framework is a viable architecture in complex dynamic 
environments. The key points are as follows:

1)  A brain-inspired HRL framework is developed to model human-like 
adaptive decision-making.

2)  Combines DQN and Policy Gradient to manage low-level and high-
level learning hierarchies.

3)  Outperforms flat DQN baselines in cumulative reward and 
generalization across dynamic environments.

4)  Demonstrated applicability in autonomous driving and smart 
infrastructure simulations.

7. Conclusion
In conclusion, the HBRL framework is a viable resolution for 

complex decision-making problems in nonstationary environments by 
decomposing tasks into hierarchies. We demonstrated that it allows 
agents to improve learning, better task performance, and the ability to 
generalize across new environments. The results indicated the HBRL 
agent learned quickly than simpler hierarchical methods and adapted 
to new environments, as well as demonstrated superior overall task 
performance in terms of evaluating task completion rate, total reward, 
and adaptability across both autonomous vehicle navigation and smart 
city infrastructure. Thus, it appears that HBRL is an adequate solution 
for use in practical situations where timeliness, long-term planning, and 
adaptability are crucial. Despite the promising results from HBRL, we 
see several venues for future work that would improve and evolve the 
HBRL framework. First, there is a need to improve the computational 
efficiency and effectiveness of the system through transfer learning 
and multi-task learning methods in order to improve the possibility for 
real-time applications. Second, testing HBRL in real-world scenarios 
such as smart cities or autonomous vehicles is helpful in practicing 
existing challenges, such as sensor noise and external communication 
delays. Furthermore, we still need to conduct additional investigations 
on scaling the HBRL framework for large-scale environments, how 
to effectively accommodate numerous agents distributed across a 
multitude of locations, and provide agents with the ability to act safely 

when interacting with infrastructure systems. This paper presents a 
biologically grounded, scalable RL architecture that mitigates several 
weaknesses in flat DRL architectures. By incorporating hierarchical 
abstraction, goal decomposition, and hybrid methods, our HBRL 
system displayed considerable gains in adaptability, performance, and 
generalization. As a finding, these established a substantial possibility of 
implementing our framework for the development of intelligent systems 
dealing with uncertain, dynamic, and multi-agent environments. Future 
work to support HBRL implementation will likely include exploring the 
interpretability of sub-policies, implementing multi-modal perception, 
and deploying in real-time embedded systems.
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