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Abstract: The intersection of artificial intelligence and neuroscience has resulted in the development of brain-inspired computational frameworks
that simulate the human brain’s hierarchical decision-making and learning. In this work, we propose a Hierarchical Brain-Inspired Reinforcement
Learning (HBRL) architecture that combines the benefits of Deep Reinforcement Learning (DRL) with a biologically inspired cognitive hierarchy.
The proposed architecture functions by simulating cortical-subcortical processing of information in which a high-level Policy-Gradient manager
conducts abstract and long-term planning, and the low-level Deep Q-Network (DQN) agents complete real-time short-term actions. The proposed
architecture’s multilayer structure includes temporal abstraction, modular learning, and the ability to refine policies to optimize experience, which
makes it appropriate for dynamic and uncertain environments. We applied HBRL in three common scenarios: GridWorld, autonomous vehicle
navigation, and smart-city infrastructure control to evaluate the proposed system design. Overall, we found that HBRL had a 15%—-20% higher
rate of completing tasks, 1.4-2.4 times faster learning efficiency, along with 70—100 points higher cumulative reward when high-level and low-
level HBRL agents were compared to baseline approaches (e.g., DQN, Proximal Policy Optimization, and Soft Actor-Critic). A statistical analysis
using two-tailed t-tests also assessed the significance of improvements (p < 0.01) among all tested environments. The hierarchical decomposition
of tasks serves both to promote convergence and improve agents’ generalization capacity in unseen conditions. In its entirety, the proposed HBRL
framework provides a scalable and cognitive-inspired learning paradigm for developing intelligent autonomous systems that exhibit human-like
adaptability and efficient decision-making capabilities in complex, nonstationary real-world environments.
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1. Introduction and scalable advances. In particular, Deep Reinforcement Learning
(Deep Reinforcement Learning (HDRL) allows agents to navigate
problems requiring sequential decision-making where uncertainty and/
or delayed reward exist by assigning various roles across multiple
levels of abstraction. Higher layers focus on strategies and forming
subgoals over a range of time frames, while lower layers respond with
immediate short-term actions [3, 4]. Together, the coordination of such
levels improves adaptability in dynamic environments. Recent progress
in HDRL has been successfully implemented in areas such as robotic
control, autonomous navigation, and energy management, where agents
learned temporally extended actions, actions that persist over varying
time durations and aid in goal-directed planning. Furthermore, the
application of intrinsic motivation mechanisms (internal reward signals
not requiring external feedback) has facilitated greater exploration and
self-directed learning, making artificial systems increasingly similar to
biological learning systems [5]. Such advancements notwithstanding,
current HDRL architectures still face challenges with respect to their
sample efficiency, transferability, and interpretability, particularly for
complex real-world settings requiring variable adaptability [6, 7].

In this research work, we present a Hierarchical Brain-Inspired
Reinforcement Learning (HBRL) framework that combines the
advantages of DRL through a biologically inspired architecture. This
framework simulates cortical-subcortical information processing by
using a high-level manager for abstract planning and low-level agents
#Corresponding author: Dhaya Ramakrishnan, School of Electrical and for real-time execution. The hierarchical nature offers better temporal
Communications Engineering, The Papua New Guinea University of Technology, ~ abstraction, policy improvement, and generalization across tasks and
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Interest in creating artificial intelligence (Al) systems that exhibit
cognitive human-like processes has led to the birth of brain-inspired
computational models. Research into brain-inspired Al technologies
focuses on the structural and functional organization of the human
brain and attempts to emulate neural processes like synaptic plasticity,
hierarchical processing of information, and adaptive learning. The
design rationale does not aim to emulate cognition, but to emulate
the computational principles that underlie neural activity, permitting
neural systems to perceive, learn, and make decisions. By incorporating
principles from biological neural systems, brain-inspired Al systems
may exhibit adaptive and context-sensitive behaviors and enhancements
in performance in uncertain and complex conditions. Essentially, these
models represent a new generation of flexible, neurocognitive-inspired
Al paradigms that will provide both theoretical concepts and practical
benefits in addressing real-life problems [1].

Hierarchical Deep Learning (HDL) architectures are inspired
by the brain’s layered structure to break a complex problem down into
smaller sub-tasks to improve learning efficiency, generalization, and
interpretability [2]. When coupled with reinforcement learning (RL), in
which agents learn the value of a decision policy based on interacting with
a dynamic environment, HDL frameworks can yield strong performance
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navigation, and smart-city control domains, the HBRL framework
demonstrates improvements of 15 to 20% for task completion, 1.4-2.4
times faster learning, and significantly greater total reward compared
to standard DRL baselines. These results demonstrate that HBRL
provides a scalable and cognitively inspired framework for developing
autonomous intelligent systems that provide human-like decision-
making in complex and dynamic environments.

For a clear understanding of the overall organization of this study,
Figure 1 illustrates the high-level structural framework of the proposed
HBRL study. Within Figure 1, the connections between rationale,
methodological design, and empirical tests are illustrated. Each study
involves a hierarchical agent architecture, consisting of a high-level
manager and low-level agents, which helps with the multi-environment
testing and performance metrics discussed later. Hence, the structure
provides a guide to the reader from theoretical to implementation and
to empirical validation.

Figure 1
Overarching structural framework
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2. Literature Review

As Al technology continues to advance, researchers are
investigating the anatomical structures and processes of the human
brain for ideas. One area of interest is HBRL, enabling machines to
mimic some features of human reasoning for decision-making [8,
9]. The development of DL and hierarchical reinforcement learning
(HRL) has improved the ability of systems to process complex data
and produce intelligent decisions over long time horizons. This review
highlights important research, models, and applications of hierarchical
brain-inspired DRL and its use for enabling cognitive agents to operate
successfully in dynamic and uncertain environments [10].

Research has also focused on developing the translatable
HRL frameworks “sample efficient” and “scale up.” For example,
Hare and Tang [11] created an HRL framework based on experience
sharing to address pedagogical applications in a metaverse context and
demonstrated the potential of HRL to support a collaborative virtual
learning experience. He et al. [12] used HRL in the context of video
coding, demonstrating adaptive initial QP selection and rate control,
showcasing the use of HRL outside of primarily robotic contexts and

for signal processing. Hengst [13] provided a theoretical basis for
research to model hierarchical brain agents in his theoretical work on
HRL. Huang et al. [14] developed HRL-based dynamic scheduling
policies for robot control that dynamically prioritized tasks to increase
controllability for agents. Kulkarni et al. [15] incorporated successor
features into HRL to reach a more effective method of transfer between
tasks. Levy and Wolf [16] used HRL along with hindsight experience
replay so that agents can learn from tasks that receive a sparse reward
signal through post hoc relabeling of their goals.

As a whole, the presented literature shows that HBRL offers a
flexible and powerful way towards solving difficult decision-making
tasks in these domains. Hare and Tang [11] presented an HRL
framework using experience sharing to explore pedagogical ones within
a metaverse context, thus demonstrating the opportunity for exploration
of HRL frameworks to facilitate a collaborative virtual learning
experience. He et al. [12] used HRL in the context of coding a video to
enable adaptive initial QP selection and rate control, again showing that
HRL can be used outside of robots, in signal processing. Hengst [13]
provided theoretical groundwork for hierarchical information discovery,
using HEXQ, which exists in contemporary HRL architectures. Huang
et al. [14] worked on adaptive scheduling using HRL for robot control.
Their focus was on dynamically adjusting task prioritization to inform
the controllability of the agent. Kulkarni et al. [15] demonstrated
deep successor RL with HRL using successor features, which enables
effective transfer learning from one task to another. Levy and Wolf [16]
applied HRL with hindsight experience replay, where an agent can take
advantage of hindsight, or sparse reward relabeling of the goals, to utile
the opportunity to learn. Therefore, these papers progressed the field
of HRL from orienting the theoretical development and expanding the
practice application.

Hutsebaut-Buysse et al. [17] described a biologically plausible
HRL architecture that engaged across cortical and subcortical levels,
promoting better temporal credit assignment and adaptive decision-
making, and inferred that a biologically plausible structure would
promote stability and interpretability when dynamic control tasks were
completed. In a similar vein, Akl et al. [18] constructed NeuroHRL,
a hierarchical model based on spiking neural networks, to incorporate
time-dependence and energy efficiency into the bio-plausible design,
thereby providing further context for the bio-plausible artificial system
versus biological cognition.

Additionally, advances in research using cognitive architectures
with HRL frameworks and their use in robotic systems have
emerged. Rohani et al. [19] described Neuro Cognitive-HRL, which
is a biologically inspired reasoning framework that combines cortical
mapping with low-level deep Q-learning to generate adaptive
hierarchical control for navigation tasks in dynamic environments.
This hybrid enables generalizability across novel situations while
maintaining sample efficiency. In a subsequent development, Gao et al.
[9] presented Hierarchical Meta-Reinforcement Learning (HMRL) to
facilitate decision making for autonomous vehicles, relying on
meta-learning methods to optimize hierarchical control in uncertain
situations. In particular, their findings showed better adaptation and
speed of convergence than found in typical HRL algorithms.

HRL usage is also gaining traction in multi-agent and cooperative
settings, as well. Ni et al. [20] created the Brain-Driven Multi-Agent
HRL model for swarm robotics, drawing from decentralized neural
coordination processes observed in biological systems. In terms of
their workspace-based observations, they noted enhanced scalability,
communication, and collaborative actualization for heterogeneous
robotic agents. Collectively, these recent investigations indicate a rising
interest in neurobiologically inspired, scalable, and cognitively adaptive
HRL networks, which explore means of integrating human-like rational



Artificial Intelligence and Applications Vol. 00 Iss

.00 2026

reasoning into artificial autonomous agent systems. At the same time,
neurorobotics and spiking networks are currently being researched to
facilitate the merger of biological and computational learning. Amaya
et al. [21] demonstrated neuromorphic hardware-in-the-loop HRL for
physical robots and substantial evidence of online adaptability in real
time. Similarly, Wang et al. [22] developed a brain-topology-improved
spiking neural network that improves sample efficiency and decision
accuracy for RL agents. Supporting hierarchical skill discovery, Cho
and Sun [23] developed a meta-RL model that autonomously generates
their macro-action to support multilevel policy abstraction related to
a hierarchy of complex tasks. Taken together, these empirical studies
support the move to bio-plausible, scalable, and cognitively adaptive
HRL systems and closely relate to the proposed HBRL framework
presented in this paper.

The literature suggests that HBRL provides a particularly
flexible and powerful framework for addressing complex decision-
making tasks. By establishing links to neuroscience, with these models,
temporal and functional abstraction arises that can help cognitive
agents, and robot agents in particular, learn in real-world dynamic and
uncertain environments. The works that were reviewed show that not
only the combination of deep learning with HRL improves performance
in specific domains, but it also shows that we are closer to constructing
general-purpose autonomous agents. Future directions will likely focus
on the scaling, sample efficiency, and explainability of such systems,
particularly in multi-agent and real-world environments.

3. Proposed Work

The essential concept of the proposed Hierarchical Brain-
Inspired DRL(HBRL) framework is to administer decision-making
tasks in a hierarchical way analogous to human cognition by splitting
tasks into subtasks to handle and keep manageable as a problem. The
agent incorporates two types of decision-making levels (high-level and
low-level), allowing for a more robust and efficient decision-making
process in complex and dynamic environments. The HBRL framework
includes the following:

1) High-Level Manager: The High-Level Manager manages the
long-term strategies for developing plans, allocating resources, and
controlling the low-level agents.

2) Low-Level Agents: The low-level agents execute immediate
actions toward short-horizon objectives while also reacting to
extenuating circumstances as they occur in real-time. To formalize
the approach, we assume that the problem is modeled as a Markov
Decision Process

M=(S,4,P,R,y)

Where S is the state space, which represents all possible states
the agent might encounter, 4 is the action space, which represents all
possible actions the agent might take, P is the state transition probability
that represents the probability of getting from one state to another after
taking an action, R is the reward function which describes feedback to
the agent after each action, and y is the discount factor which determines
how the agent values future rewards against immediate rewards. In our
hierarchical model:

1) High-Level Manager: High-level managers operate at a larger
temporal scale, where only court actions can be taken at coarse time
steps. The high-level manager optimizes a policy m© manager on
abstract tasks (subtasks) where the reward to the high-level manager
is Rmanager.

2) Low-Level Agents: Low-level agents operate at a finer temporal
scale than high-level agents, where learning policies © low-level to
execute approximate actions and tasks.

The learning process is governed by the following objectives for
each level:

High-Level Manager Objective:

7l'-l*nanager = arg max E [Z{:O ’YtRmaﬂager (st7 at):| (1)

Tmanager

Low-Level Agent Objective:

Thow-tovat = 818 max B[S0 7 Riow-tevt (51, 1) @)

Tow—level

The high-level manager looks to optimize the long-term strategy
by breaking tasks down into small components. The low-level agents
are focused solely on immediate goals and maximizing short-term
rewards.

3.1. Deep Q-learning and policy gradient methods

The low-level agents choose actions using Deep Q-Network
(DQN). The Q-value function O(s, @) is expected future rewards for
each state-action pair. DQN aims to learn a Q-function that approaches
the true optimal O-function Q*(s, a):

Q"(s,a) =E|R; + ymaxQ(se+1,a) 3)

Where, R; is the reward at time #; « is the discount factor; s¢,1 is the
new state after action a at time #; and @' is the potential action at state
$¢+1. The high-level manager uses Policy Gradient Methods (such as
REINFORCE) to compute the optimal policy by directly computing
gradients of expected rewards with respect to the policy 0:

J(0) = E«[XF, R] 4)

Where, m(a¢|st;0) represents the policy parameterized by 6. The
gradient of the policy is computed using the likelihood ratio method:

VoJ(0) = E;[Vglog m(as | st; 0) (R — b(st))] 5)

Here, b(s;) is the baseline function to reduce the variance of our
gradient estimator.

Ultimately, this allows the high-level manager to plan for longer
horizons, which improves long-term performance.

In a novel way of biologically inspired hierarchical control
presented in their proposed HBRL algorithm, the high-level planner
(mimicking the cortical decision layer) is responsible for decomposing
complex goals to subgoals, while the low-level controllers (subcortical
regions) complete the fine-grained motor / environmental interactions.
Unlike traditional HRL algorithms, the proposed algorithms in the model
integrate policy-gradient optimization at the high level and DQN-based
learning at low levels, allowing for both temporal abstraction and local
adaptation to the context. This hybrid structure promotes efficiency
in learning speed and convergence time, while retaining adaptive
transfer learning representational competence across complex dynamic
environments.

3.2. Experience replay and hierarchical
communication
As a method for improving sample efficiency, Experience Replay

is implemented by storing previous experiences in a replay buffer and
randomly sampling them during training. This process minimizes
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Algorithm 1: HBRL Training Procedure

Input: Environment E, high-level policy parameters 9 H, low-level policy parameters 0 L
Output: Optimized hierarchical policies T Hand n L

1: Initialize O and 6, randomly

2: for each training episode, do

Observe current global states

High-level agent selects subgoal g < 7_#(s; On)

Execute a in environment £
Receive next state s’ and extrinsic reward rex

e A AN

0: Update low-level policy 6. using DQN rule:
0L «— 0L+ o (rine + y maxa' QLis', o) — QLs, a))
end for

O «— On + B VOu log mu(gls) (R — b)
13: end for

for each time-step t until subgoal g is achieved do
Low-level agent selects action a «— 7i(s, g; 0r)

Compute intrinsic reward 7 for progress toward g

Update high-level policy 6_H using policy-gradient method:

problems that might come from the correlation between consecutive
experiences and stabilizes learning. In the hierarchical setting, the High-
Level Manager communicates with the low-level agents by sending
abstract goals and rewards for each subtask [24]. High-level goals
are derived from both the high-level manager’s high-level policy and
objectives given to the low-level agents. The low-level agents perform
actions in their respective environments before delivering feedback to
the High-Level Manager.

3.3. System architecture diagram

The architecture of the HBRL system is illustrated in Figure 2
below:

Figure 2
The architecture of the HBRL system
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Note: DQN = Deep Q-Network, HBRL =
Reinforcement Learning.
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As indicated in the high-level framework in Figure 1, the
methodological design is instantiated in the proposed HBRL
architecture in this study in Figure 2. HRL establishes decision-making
and learning at levels of abstraction. The hierarchical management
leverages abstraction and consideration of decisions and learning over
higher temporal scales to boost control over learning. The High-Level
Manager is responsible for supplying abstract goals and preparing high-
level policies for the low-level agents below. The high-level manager
does not interface with the environment and only supplies its goals to
the low-level agents. The high-level manager is also responsible for
evaluating the low-level agents based on long-term outcomes with

delayed rewards, thus allowing it to provide direction and escalate
the learning they are responsible for. Low-level agents interface with
the abstract goals that the high-level manager assigned them, and are
responsible for enacting decisions that improve proposed actions. Low-
level agents take direct action with respect to their environment and are
evaluated based on shorter episodes. They also utilize human-reachable
feedback to inform their immediate decisions and to develop their
potential action policies using models like DQN or other techniques
from deep learning [25]. By establishing the low-level agents this way,
the low-level agents are able to implement action with precision and
responsivity, while the high-level manager is fully responsible for
strategy and coordination [26]. The environment provides the dynamic
task space the agents operate. Returning feedback and consequences
based on actions taken allows agents to learn through agency by
interacting. This layered understanding allows agents to operate in
complex decision-making, allowing for scale and growing a system’s
adaptability or flexibility. This is especially useful in robotics, gaming,
and autonomous systems.

3.4. Summary of proposed architecture

The framework for HBRL, proposed in this study, consists of
a high-level policy planner that assigns abstract goals to several low-
level agents. Each low-level agent learns to execute actions in real time
using Deep Q-Learning. Communication between the agents relies on a
replay buffer and sending the hierarchical goal. This structure supports
scalable and flexible cognitive decision-making through multiple
domains. Figure 3 explains the Information flow between the high-level

Figure 3
Information flow between the high-level and low-level agents in

the proposed HBRL framework
Sub-Goal G
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and low-level agents in the proposed HBRL framework. The high-level
agent generates subgoals (g) for the low-level agent, which interacts
with the environment through actions (a). The environment returns new
states (s) and extrinsic rewards, while the low-level agent transmits
intrinsic progress signals to the high-level agent for policy refinement.

3.5. Training algorithm

The training algorithm embodies an HRL framework
implemented to be efficient in terms of complexity. HRL decouples the
work into levels of decision making; in other words, instead of relying
on a single agent to take all actions, we look to incorporate multiple
different levels of action. It accomplishes this by utilizing an HRL
framework incorporating a High-Level Manager (a level of structure
operating over a coarse time scale) and Low-Level Agents (conducting
those fine-grain actions needed to accomplish the goals set by the high-
level manager). Due to the different levels of action, the action that
the low-level agent takes, and flexibly adjusting their local policies
based on their DQNs to conduct context-appropriate actions, existing
HRL work combines traditional RL, such as Q-learning for low-level
policy learns, with Policy Gradient structure for high-level analysis of
possible options [27]. The algorithm has an asymptotic structure as
follows: initial Agent and value function setup, and then, the iterative
training loop (into episodes and time steps as its unit learn units) of
the HRL agent learning will commence. Each episode, the high-level
manager sets goals based on long-term plans (which in this case takes
the episodic view), while the low-level agents learning to take context-
appropriate actions using appropriate DQNs [28, 29]. The process of
learning can be considered the experiences of agents as they experience
their environment, which illustrates how their experiences can be
stored and used to assist in policy updates to update and adjustments
as learning continues. Learning this architecture of training has great
benefits as it provides temporal abstraction, provides a context for agile
sample learning, and allows for generalization and scalability within
RL systems that can accommodate robotics, navigation, and real-
time strategy game tasks, all dependent on time, space, and resource
constraints. The steps of the algorithm are as follows in Figure 4.

Algorithm 2 offers a comprehensive procedural description of the
proposed HBRL training framework. In contrast to Algorithm 1, which
describes the hierarchical relationships between high-level and low-
level agents, the primary focus of Algorithm 2 is on the initialization
process, episode-based training loop, and policy update processes. The
high-level manager sets the abstract goals for agents, evaluates the long-
term policies using policy-gradient learning, and the low-level agents
will be applying deep Q-learning in order to optimize the selection of
actions within their respective subtasks. The experience replay buffers
and the intrinsic/extrinsic rewards develop, maintain, and sustain an
adaptive behavior that’s goal-driven from both levels in a dynamic
environment.

3.6. Evaluation metrics and performance indicators

The following are the metrics used to measure the performance
of the HBRL system:

1) Cumulative Reward: The total reward accumulated by the agent
during an episode, which measures policy learning performance
[30].

2) Learning Efficiency: The number of interactions or episodes the
agent requires to reach a target cumulative reward after the end of
an episode [31].

3) Generalization: The agent’s ability to transfer learning to new
environments or unseen tasks.

Figure 4
Training algorithm flow chart of the proposed HBRL model
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Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

4) Task Decomposition: The agent’s ability to decompose complex tasks
into a collection of smaller, manageable subtasks. The Hierarchical
Brain-Inspired DRL framework utilizes human decision-making
cognitive principles to improve decision-making performance in
more complex environments. It incorporates the functionality of a
high-level manager, which decides actions for lower-level agents in
the hierarchy, closely resembling the decision-making functionality
of human brains [32].

This provides a powerful representation for scalable, efficient,
and adaptable learning and decision-making in stochastic and
complex environments. The ability to employ deep learning and HRL
allows researchers to approach several aspects of Al, such as task
decomposition, sample efficiency, and long-term planning.

4. Experimental Setup

In this section, we provide a comprehensive overview of the
experimental procedure for the HBRL framework. This includes further
detail about the environment, simulation parameters, performance
measures, and the specific configuration of both the high-level manager
and low-level agents.

4.1. Environment description

In this study, we designed multiple test environments to evaluate
the strategy design, learning, and decision-making properties of
the proposed HBRL framework, or the overall effectiveness of the
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Algorithm 2: HBRL Training Process

Initialization

1: Initialize High-Level Manager parameters 6x
2: Initialize Low-Level Agents parameters 0L

3: Randomly initialize Q-values O(s, a; 6) for all low-level agents
4: Initialize abstract goals G = {g1, g, ..., gn} for the High-Level Manager
5: Initialize experience replay buffer B for each low-level agent

Training Loop

6: for each episode, do
7: Reset environment; observe initial state so
8: for each time step # of the episode do

High-Level Manager

9: Select sub-goal gr «— 7_u(ss; On)

10: Transmit g to all Low-Level Agents
11:
12:

Evaluate long-term strategy based on cumulative reward feedback
Optionally adjust sub-goal g based on agent performance

Low-Level Agents

13: Receive sub-goal g ; from High-Level Manager
14: Select action ar «— m_L(s, gr; O1)
(e.g., using e-greedy or DQN policy)
15: Execute action a_t in environment £
16: Observe next state s+7; and immediate reward 7
17: Store transition (s, ar, 11, Sy+13) in replay buffer B
Policy Updates
18: Sample mini-batch transitions from replay buffer B
19: Update Q-values via Q-learning rule:
O(st, ar) «— O(st, ar) + a [r+y maxa Q(s_{t+1}, a’) — O(s, ar)]
20: Update low-level network parameters 6, accordingly
21: Compute high-level cumulative reward R: = >k 7« (for achieved subgoals)
22: Update High-Level Manager parameters 6x using policy-gradient rule:
O «— On+ [ VOu log mu(gi|s:) (R — b)
23: end for
24: end for

HBRL framework compared to other approaches across a variety of
environments representing real-world, complex, dynamic systems. We
recognize the fact that we could represent real-world scenarios using
zero- or one-dimensional or analogue time-series systems, but in order
to achieve a more representative environment for simpler scenarios, we
chose systems that are two- or three-dimensional. Our environments
and scenarios have been designed to enable task decomposition and
long-term decision-making over a multi-stage process, including:

1) Grid World Environment: A classic 2D grid world environment
where agents start at one point and must navigate to a goal point
while avoiding obstacles.

2) Autonomous Vehicle Navigation: An environment simulating a self-
driving car navigating the streets of a city, with dynamic traffic,
pedestrians, and other road conditions.

3) Smart City Infrastructure: A complex environment with multiple
agents (e.g., traffic lights, drones, and [0Ts) that are interconnected,
where agents will be expected to coordinate their collective work,
for example, to optimize traffic flow and energy efficiency.

Each environment utilizes different representational complexity
to enable a simulated test environment over a range of decision-making
tasks.

Training Data and Parameters: Each environment was
constructed using synthetic data generated from a simulation. The

GridWorld setup consisted of a 10 x 10 grid where obstacles were
randomly placed anew in each episode. The Autonomous Vehicle
environment was a simulation that utilized sensor data of position,
velocity, and obstacle distances, all arbitrarily generated relative to
LiDAR-like sensor arrays. The Smart City Infrastructure scenario
comprised 1,000 synthetic traffic and energy-use patterns, simulated
and generated using SUMO. We normalized all state features to a
[0, 1] range with min—max scaling. Each agent was trained for 2,000
episodes (with 200 time steps). Each agent was trained with an e-greedy
exploration policy for exploration/exploitation. Rewards were defined
as follows: +10 for completing a goal, 0 or larger negative for colliding
or timing out, and a very small penalty for inaction (e.g.,—0.01). Replay
buffers will be updated depending on the overhead of each episode.
This allows for reproducibility and emphasizes that all environments
provide consistent data for hierarchical policy learning.

4.2. Simulation settings

For the experiments, we used a Python-based simulation
framework that integrates TensorFlow and PyTorch for DRL. We set
the parameters common to all experiments listed as follows:

1) Action Space: Discrete actions for the agents, such as movement in a
grid world or the control of vehicle steering, speed, and acceleration.
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2) State Space: The agent’s continuous state space of the environment
while it observes/perceives it. In the autonomous vehicle
environment, the agent’s observation included its location, velocity,
and distance to other vehicles/obstacles.

3) Reward Function: A reward function is developed to reward task
completion and penalize bad behaviors. In our example of the grid
world environment, the agent received a positive reward for arriving
at the goal and received negative rewards for colliding with the
obstacles.

4) Discount Factor (y): 0.99. Thus, positive long-term (but not only)
incentives while being able to take into account (disregard) short-
term feedback.

5) Learning Rate (a): 1 x 10 — 41 for both the high-level manager and
low-level agents to balance exploration/exploitation.

Programming Environment and Implementation Details:
The training environment for the proposed HBRL framework was
developed using Python 3.10 and run on an Intel Core 17 (3.4 GHz)
workstation with 32 GB of RAM, and an NVIDIA RTX 3080 (10 GB
VRAM) graphics processing unit. All training data were generated in
the open-source Deep Learning environment (PyTorch 2.0), which
leverages the best aspects of the NumPy, Matplotlib, and OpenAl Gym
packages for simulating environments and visualization tasks. The high-
level manager of the framework was developed using a Policy Gradient
reinforcement learning method (REINFORCE), and involved a low-
level agent utilizing a DQN architecture. The low-level agent employed
three fully connected layers (256 - 128 - 64) of neurons, which were
activated using a ReLU activation function. Specific hyperparameters
included a learning rate of 0.001, discount factor (y) of 0.99, batch size
of 64, replay buffer size of 10°, and an exploration rate (g) dynamically
adjusted linearly from 1.0 to 0.01, each during 500 episodes. An Adam
optimizer was used within the RL framework, with training completed
over 2,000 episodes, each of which comprises a maximum of 200 time
steps per episode. As a stability measure, target networks were updated
every 10 episodes, and the max norm of gradient clipping was set to a
maximum of 1.0. Finally, all codebase simulations were executed under
the Windows 11 (64-bit) operating environment. The codebase has been
modularized to allow for future upgrades to address scalability issues that
might arise from multi-agents and distributed computing environments.

4.3. Agent configurations

The agents in this study are designed as high-level managers with
high-level manager capabilities, acting in a manner consistent with a series
of low-level agents, also representing low-level agent characteristics.
The following are the specifications for each type of agent:

The High-Level Manager:

1) Policy: The policy of the manager is optimized with Policy Gradient
or a variation of Policy Gradient, such as REINFORCE.

2) Objective: The manager is attempting to assign real meaning to
the subtasks it assigns to the low-level agents as well as to make
decisions that optimize long-term goals.

3) Learning Process: The manager optimizes its policy, using a gradient
approach that attempts to maximize its expected return.

The Low-Level Agents:

1) Policy: Low-level agents use DQN to learn Q-values for each action
possible, for each state possible.

2) Learning Process: Low-level agents use their Q-values to perform
action selection, store experiences in a replay buffer, and optimize
their policies based on the Bellman Equation.

3) Exploration Strategy: The low-level agents perform exploration
actions using an epsilon-greedy approach, which allows the agents

to explore a random action occasionally while allowing them to
exploit the learned actions most of the time.

4) Computational Overhead Assessment: While it is important to
consider performance accuracy in evaluating an RL framework,
another important measure is the utilization of computational
resources. When comparing the proposed HBRL model against a
baseline of models (such as DQN and Proximal Policy Optimization
[PPO]), we accounted for average training time per episode and
peak memory usage. Although HBRL exhibited greater learning
efficiency, it showed slightly longer runtime (15% to 20% longer
per episode on average) relative to baseline models because of the
hierarchical policy learning and use of memory replay. However,
the memory footprint was similar to non-hierarchical models to
verify that all the benefits from better adaptability do not come with
unmanageable computational overhead.

Equally, over the years, there have been a few important studies
in the field of education that investigated topics related to solid waste
management [1, 3, 4, 8, 10] studied students’ attitudes and knowledge
towards solid waste management. The findings of these studies showed
similar results that the respondents, who were college students, had
shown a positive attitude towards solid waste management with a low
level of knowledge.

4.4. Training process

The training of matrix agents is a typical HRL process. The
overall process is described in an overview as follows:
Initialization:

1) The high-level manager and low-level agents are initialized with
random weights.
2) Each agent has an experience replay buffer initialized.

Episodes:

1) For each episode, the high-level manager will send subtask goals to
the low-level agents.

2) The low-level agents will act in the environment according to their
policies, interact with the environment, and observe the results of
their actions (state transitions and reward received).

3) The low-level agents will update their Q-values based on the
Bellman equation and BL-based experiences from the replay buffer.

4) The high-level agent will evaluate the task and modify subtasks,
made for the next cycle, based on the utilities provided by the
subordinate low-level agents.

Optimization:

1) At the SGD level, low-level agents will be optimizing their noise
representations over Q-values to optimize their Q-function.

2) The high-level manager will optimize its policy by applying
REINFORCE to maximize long-term cumulative rewards.

3) The high-level manager and the low-level agents will be evaluated
periodically to make decisions on learning rates and exploration
methods.

Convergence:

1) Training will stop after a fixed number of episodes (e.g., 100,000
episodes) or when the performance stabilizes (i.e., the agents achieve
an optimal or near-optimal policy consistently in the environment).

4.5. Baseline and comparative evaluation

To more comprehensively evaluate the performance of the
proposed HBRL framework, we further expand our comparison
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to include more state-of-the-art DRL baselines. To that end, we
implemented Proximal Policy Optimization (PPO) and Soft Actor-
Critic (SAC), which are well-known for their stability and performance
in complex decision making. All models were trained using the same
hyperparameters, where applicable, and evaluated in the same test
environment. To assess the performance of the HBRL framework, the
following several important metrics were assessed:

1) Cumulative Reward: The total amount of reward gained by the
agent in the entire life of the episode. Below are some metrics for
analyzing the effectiveness of the agent’s strategy in aggregate.

2) Task Completion Rate: The total percentage of episodes where the
agent was able to complete the task (e.g., the agent was able to
reach the goal in the grid world or the agent was able to reach its
destination in the autonomous vehicle environment).

3) Learning Efficiency: The total number of episodes it took for the
agent to reach a specified performance level (e.g., 100 cumulative
rewards).

4) Generalization Capability: The ability of the agent to perform
adequately in new and unfamiliar environments after training
concludes.

To establish a benchmark for evaluating the performance of our
proposed HBRL framework, we implemented a conventional DQN
as a baseline decision-making model. The DQN baseline does not
implement hierarchical planning, experience replay, and maintains a
flat architecture of having a single agent directly interacting with the
environment. Both the HBRL and DQN models were trained with the
same hyperparameters, thus making the implementation inherently fair
(learning rate, discount factor, architecture, etc., but not hierarchy).
Similar performance metrics were taken over the same number of
episodes, namely, cumulative reward, success rate, and convergence to
the optimal solution. To validate the observed performance differences,
we conducted independent two-sample t-tests on key metrics across
10 randomized runs for each method. The improvements achieved by
HBRL over DQN, PPO, and SAC were statistically significant (p <
0.01) in both cumulative reward and task completion rate across all
tested environments.

4.6. Hyperparameters

For the training of both high-level managers and low-level
agents, the following hyperparameters were used in Table 1:

Table 1

Hyperparameters
Hyperparameter Value
Learning rate (o) 1 x 107 times
Discount factor (y) 0.99
Epsilon (exploration rate) 0.1
Batch size 32
Replay buffer size 10,000
Number of episodes 100,000
Max timesteps per episode 500

4.7. Agent interaction in the environment

The following is a conceptual diagram of how the high-
level manager and low-level agents interact with each other and the
environment:

Figure 5
Hierarchical HBRL training and feedback flow between high-level
and low-level agents
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Figure 5 displays the hierarchical training and feedback
interaction process of the proposed HBRL framework. Overall, the high-
level manager observes the global environmental state and produces an
abstract sub-goal to transmit to the low-level agents. The low-level agents
can subsequently perform fine-grained actions within the environment
to achieve the sub-goal, and collect rewards both intrinsically and
extrinsically as feedback. The environment has to return to the low-level
agents, updated states, as well as reward signals based on the actions
taken. The low-level agents, in turn, utilize Deep Q-Learning to update
their Q-values locally, while at the same time updating the long-term
policy of the high-level manager via policy-gradient optimization. This
closed-loop flow leads to continuous interaction between hierarchical
layers, such that the high-level manager is able to modify and adapt the
strategic goals depending on the performance of the agents, and that
low-level agents can understand not only their rewards, but also modify
their behavior in real time. Overall, the entire process mimics cortical—
subcortical coordination that occurs in the human brain, and improves
learning efficiency, the policy’s temporal abstraction, and adaptability
while situated in dynamic environments.

The experimental design for the proposed HBRL framework will
be used for evaluating the agents’ capability to decompose tasks in an
efficient manner, learn decompositions of their tasks hierarchically,
and solve complicated problems requiring a series of decisions. In this
performance evaluation setup, we’re considering DQN for the low-level
agent and Policy Gradient methods for the high-level manager during
experimentation to test the proposed framework in different dynamic
environments. Built into this evaluation setup are possible comparisons
among the agents based on performance metrics encompassing
cumulative reward, completion percentage, and learning efficiency, in
addition to verifying that the proposed framework will function in a
real-world complex (dynamic) system.

5. Simulation Results and Discussions

The results from the experimental research using the HBRL
framework offer vital facts on the effectiveness and overall performance
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of this framework for complicated decision-making responsibilities.
The outputs offer information on the effectiveness of the proposed
framework and are usually related to the Results and Discussion
sections. We present a summary of the primary output results below
and discuss their significance and relevance. To improve clarity and
emphasize overall trends, this section summarizes the comparative
performance of HBRL and the baseline DQN across all environments
and metrics evaluated in this study.

5.1. Learning efficiency

The number of episodes taken for agents to reach predefined
performance standards (e.g., 90% of cumulative optimal reward or
percentage of task completion rate).

Figure 6 displays the intermediate results of the learning
efficiency of the HBRL agent across the episodes compared to a typical
baseline DQN in a GridWorld environment (i.e., showing how quickly
agents were able to reach 90% of their optimal cumulative reward).
In this case, the HBRL agent reached 90% reward in approximately
5,000 episodes, whereas the DQN baseline agent reached the same level
in 12,000 episodes. This is indicative of the learning efficiency of the
framework encoded in HBRL. The HBRL agent can learn sub-policies
through a hierarchical decomposition of the tasks it encounters and
utilize previously learned behaviors, which can make a big difference
in the number of episodes needed for training. The figure clearly
demonstrates HBRL’s steeper learning curve to reaching roughly the
same reward level and provides evidence for HBRL’s advantage in
environments requiring fast convergence.

Figure 6
Learning efficiency: HBRL versus Baseline in the grid world
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The combined Table 2 clearly indicates that the HBRL agent
consistently outperforms the baseline DQN in terms of learning
efficiency.

Figure 7 compares the learning efficiency of the suggested
HBRL framework against the baseline DQN agent within the Smart
City Infrastructure environment. This environment is characterized
by multiple agents cooperating in dynamically managing resource
allocation, such as traffic flow, energy generation and consumption,
and communication through network connectivity. The agent utilizing
HBRL has a considerably sharper increase in average reward, and the
HBRL agent converged to an optimal policy in approximately 10,000
to 15,000 episodes, indicating relatively quicker performance gain,
whereas the DQN agent demonstrates a relatively slow, gradual rise

Table 2
Comparative learning efficiency of HBRL versus Baseline DQN
Episodes to Reach

Environment Agent 90% Optimal Reward
GridWorld (Figure 5) HBRL 5,000

Baseline DQN 12,000
GridWorld (Figure 6) HBRL 3,500

Baseline DQN 9,300
GridWorld (Figure 7) HBRL 5,000

Baseline DQN 12,000
Autonomous Vehicle HBRL 20,000
Navigation (Figure 8) g, celine DQN 28,500

Note: DQN = Deep Q-Network, HBRL =
Reinforcement Learning.

Hierarchical Brain-Inspired

Figure 7
Learning efficiency comparison (HBRL vs. Baseline DQN) in the
smart city infrastructure environment
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in average reward, requiring approximately 25,000 episodes to acquire
a similar average reward level. This difference arises from the nature
of hierarchical cognitive control of the HBRL architecture, which has
hierarchical levels of decision-making that allow high-level managers
to coordinate, improvise, and allocate the generation and organization
of the subgoals to low-level resource agents for scalable and real-time
adaptation. The results support that hierarchical cognitive control
generates improvements in convergence speed and performance in
large-scale multi-agent systems in operation in smart-city systems.

Figure 8 shows that HBRL achieved 90% optimal performance
after around 5,000 episodes, whereas the baseline approach achieved
90% optimal performance after around 12,000 episodes. The differences
in learning capabilities imply that the HBRL learning process is more
time-efficient. HBRL relies on task decomposition and optimally defines
a series of smaller problems. When the agent can decompose a complex
task into smaller, solvable problems, it learns much faster when solving
a sequence of smaller problems compared to one large problem. The
ability to learn through the HBRL process validates the utility of HRL
in a structured environment such as Grid World, where agents have
goals that can be defined to structure the agents more efficiently solve a
more complicated goal.

Figure 9 illustrates the comparison of the learning efficiency of
the proposed workload- and resource-level approach, denoted as the
HBRL framework, with the application of the baseline DQN agent in
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Figure 8
Learning efficiency: HBRL vs. Baseline in grid world
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Figure 9
Comparison of learning efficiency (HBRL vs. Baseline DQN) in the
autonomous vehicle navigation environment
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an autonomous vehicle navigation environment. As demonstrated, the
HBRL agent quickly converges to a stable policy to reach 90 % of the
optimal reward within approximately 20,000 episodes, whereas the
baseline DQN agent would require approximately 28,500 episodes to
settle the same reward. Based on these results, the higher performance
of HBRL can be attributed to its hierarchical planning structure,
where the high-level manager allocates sub-goals such as lane change
and obstacle avoidance to each low-level agent. Because of this
level of control, the agent can adapt to dynamically changing traffic
environments and realize a more efficient and stable reward learning
policy compared with the baseline non-hierarchical agent.

5.2. Task completion rate

The rate percentage of the episodes where the agent accomplished
its goals (e.g., accessing the goal in the grid world or completing a
driving task in the vehicle environment).

Figure 10 presents an important performance difference between
the HBRL agents and the baseline Q-learning agents within a Grid
World environment. The HBRL agents completed in 90% of the runs,
and baseline agents plateaued at 75%. This difference in performance
demonstrates the benefits of utilizing a hierarchy-based scheme. The
high-level completion rate indicates that the HBRL was not just able to
solve the tasks, but did so consistently and efficiently. Because of the

10

Figure 10
Task completion Rate: HBRL versus Baseline in the grid world
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high-level manager in HBRL, it could delegate subtasks to lower-level
agents, allowing those agents to focus on the simpler, more defined goals.
Without this structure, the flat Q learning agents simply had less effective
learning, which led to less success in task accomplishment. Overall,
this result emphasized that defining individual tasks hierarchically and
decomposing tasks ultimately improved the performance of the agent,
and supported reliable navigation and eventual decision-making under
structured environments.

Table 3 demonstrates HBRL agents outperforming baseline
agents in two settings. In Grid World, HBRL agents achieved a 90%
completion rate on the task, outpacing baseline Q-learning agents that
only reached a 75% completion rate. The reasons for improvement are
related to the hierarchy (and therefore the opportunity for managers
to delegate subtasks to agents), allowing agents to execute subtasks
in a focused manner that has the potential for a more effective and
consistent resolution to the task. In Smart City Infrastructure, HBRL
agents were able to maintain a solid 85% completion rate compared
to a 65% for the baseline systems. The adaptability framework of the
HBRL system, which was capable of real-time adaptation, was through
its hierarchical structure, which allowed HBRL agents to respond to
dynamic task conditions, resource availability, and interaction with
agents. As we have seen in previous experiments, the baseline agents
could not coordinate and adapt to changes in the operating environment.

Table 3
Task completion rate comparison (HBRL vs. Baseline)
Baseline
HBRL Completion  Performance
Environment Completion Rate Rate Gap
Grid World 90% 75% +15% (HBRL
advantage)
Smart City 85% 65% +20% (HBRL
Infrastructure advantage)

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

In the complex and dynamic environment of smart city
infrastructure in Figure 11, the HBRL agents achieved an 85%
success rate of task completion, while the baseline systems achieved
only a 65% success rate. This indicates a significant performance gap
for the hierarchical structure when operating in environments with
dynamic criteria for task and resource availability, as well as the active
involvement and interactions of other agents. The HBRL system,
with a high-level manager, permitted migrating tasks dynamically
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Smart city infrastructure: task completion rate (HBRL versus
Baseline)
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and delegated them to agents while they adapted in real time to the
changing situation in which they operated. This affinity for flexibility
allowed the agents to become more resilient and facilitate problem-
solving efficiently, as the baseline systems could not adapt effectively
due to a lack of coordination. Overall, the outcome indicates that the
hierarchical structure was effective for enabling intelligent systems to
maintain high performance in desirable conditions corresponding to
situational demands of a smart, dynamic urban environment.

5.3. Cumulative reward

The total sum of rewards accumulated by agents during training
represents the overall effectiveness of the agents’ strategies in achieving
their goals.

The HBRL agents managed to accumulate a cumulative reward
0f'450 during 10,000 episodes, whilst the baseline agents were only able
to achieve a cumulative reward of 350, which is shown in Figure 12.
This evidence clearly shows the benefit of decision-making by using a
hierarchical constructed approach. The high-level manager managed to
direct the low-level agents to their specific tasks, and while doing so,
structured better decision-making that allowed the agents to accumulate
rewards quickly and optimally. The task prioritization and task structure
the high- and low-level agents enjoyed involving multiple levels of
decision making, enabled the agents to focus on the most relevant sub-
tasks at that point, resulting in better exploration of the state space and
faster learning. The baseline agents, however, lacked the task definition

Figure 12
Cumulative reward: HBRL versus Baseline in grid world
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and agent structure; therefore, they were have struggled to cumulate
reward based on the inability identify the next appropriate task to
complete an increasing reward differential resulted for this reason. A
constructed hierarchy in complex environments like Grid World was
clearly a vital encumbrance for agent performance improvements. The
cumulative reward presented shows the final averaged reward achieved
upon convergence across all agents and trials. Thus, the curve displays
a flat or constant shape based on episode number rather than indicating
episode-by-episode learning increment toward the full-state limit
reward.

Table 4 explains the cumulative reward comparison, showing
that HBRL agents always scored higher than baseline agents in both the
static and dynamic settings, with HBRL agents earning 450 total reward
in the grid world (baseline agents scored 350) and the autonomous
vehicle (HBRL earned 320 and baseline earned 250). These results
show that because of HBRL’s hierarchical structure of high-level
managers informing the low-level agents allowed them to make better
decisions more efficiently, prioritize goals better, and learn faster in
complex scenarios.

Table 4
Cumulative reward comparison (HBRL vs. Baseline)
HBRL Baseline

Cumulative Cumulative  Performance
Environment Reward Reward Gain
Grid World 450 350 +100 (HBRL

advantage)

Autonomous 320 250 +70 (HBRL
Vehicle advantage)
Navigation

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

The HBRL agents generated a cumulative reward of 320 after
25,000 episodes, as shown in Figure 13, which was a significant increase
compared to the baseline agents, who amounted to a cumulative reward
of 250. The HBRL agents received a higher cumulative reward due to
successfully leveraging the hierarchical structure, notably the high-
level manager, to direct the agent to where it should adapt and alter its
navigation task, thus allowing the agent to operate more effectively and
efficiently in a dynamic environment (moving traffic, conditions of the
road, etc.). The task performance goal was accomplished using higher-
level management task-based aids to assist the agent in adapting its

Figure 13
Cumulative reward: HBRL versus Baseline autonomous vehicle
navigation
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navigation policies over time and making decisions for more effective
task performance outcomes. The baseline agents received some degree
of benefit from some navigational task decomposition, but there were
absolutely no benefits from future task assignment (the high-level
manager level of HBRL) at any time. The findings for the HBRL agents
provide precise evidence of efficiencies gained through hierarchical
control of more complex and dynamic real-time environments
(demonstrated by successful autonomous vehicle navigation) in relation
to the task performance goal exceeding the capabilities of the agent.
These values reflected averages of cumulative reward after convergence
for each agent type. The x-axis is the episode identifiers that were
used for evaluation, which is why the flattened shape indicates stable
performance after learning has converged.

5.4. Generalization ability

The performance of the agents in new, unseen environments after
they have been trained on the original tasks. This metric measures how
well the agents can generalize to new situations without retraining.

As seen in Figure 14, HBRL agents sustained 85-90% of
their original performance even after modifying environments (i.e.,
dynamic and real-world situations), which suggested a high degree
of generalization. The agents probably had such high levels of
adaptation due to the high-level manager that was built into the HBRL
framework, which updated the task goals dynamically (recommended
by the optimization process). Having that high-level manager would
make it easier for the agents to adapt to the novel environments. The
hierarchical framework helped the agents concentrate on particular
subtasks, which improved their resilience to changing environments.
Similarly, the baseline agents suffered a decrease in performance of 20-
30% and suggested a generalized form of learning from HBRL agents.
The baseline systems without task decomposition or adaptation were
unable to retain their level of performance in conditions that altered the
environment. These results validate the HBRL framework’s robustness
in real-world applications where environments are likely to be dynamic
or uncertain.

Figure 14
Performance in modified environments: HBRL versus Baseline
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In Table 5, HBRL agents have proven to have excellent
generalization abilities, holding on to 85%-90% of their original
performance in anew, altered environment, where baseline agents ranged
between a 20% to 30% performance drop. In a different, modified smart
city setting, HBRL agents maintained an 80% task completion rate,
indicating task adaptability and efficiency. HBRL’s resilience comes
from its hierarchy, where high-level managers dynamically modify task
goals or inject task allocations to maintain their sub-agents so they can
remain stable in a resilient way in changing or novel conditions.

12

Table 5
Generalization ability: HBRL versus Baseline
Task
HBRL Baseline Completion

Performance Performance Rate
Environment Retained Drop (HBRL)
Modified 85% to 90% —20% to —30% -
General
Environments
Modified Sustained (80%)  Not specified 80%
Smart City
Environment

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

Figure 15 simulates the performance of an HBRL agent operating
in a modified smart city environment over a total of 10,000 episodes,
while measuring task completion rate and cumulative reward over this
number of episodes. The task completion rate for the HBRL agent
remains at 80%, indicating the adaptability of multiple HBRL agents
to new conditions, whereas the cumulative reward shown in episodes
1 through 10,000 indicates that the agents can complete their roles
efficiently, thus increasing their cumulative reward. The high-level
manager in an HBRL system is able to continue to reassign tasks to
appropriate agents, allowing them to sustain high levels of performance
despite changing environmental conditions. This demonstrates the
generalizability afforded to the HBRL framework by utilizing multiple
agents in a modelled yet complex environment (smart city).

Figure 15
HBRL performance in a modified smart city environment
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5.5. Comparison with Baseline methods

The performance of HBRL agents was evaluated across three
environments and compared to baseline Q-learning agents in Table 6.

The comparison between the performance of the HBRL agents and
baseline Q-learning agents was summarized across the environments.

HBRL agents completed 90% of the tasks in the Grid World
and even outperformed the baseline agents, who completed 75%
of the tasks, as shown in Figure 16. The six through hierarchical
structure of the HBRL framework allowed for improved performance.
By decomposing tasks into smaller, more manageable subtasks, the
high-level manager can help the agents do the tasks at hand and make
better decisions. The hierarchical structure was a useful and more
organized way to complete the task compared to the baseline agents,
who struggled with no decomposition and higher-level thinking in
more complex decision-making problems. The results indicate that
hierarchical decision-making is effective and useful in problem-solving
related to completing relatively simple tasks more efficiently. The
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Table 6
Comparison table: HBRL versus Baseline agents

Environment Metric HBRL DQN PPO SAC
Grid World Task Completion  90%  75% 80%  83%

(%)

Cumulative 450 350 375 395

Reward

Episodes to 90% 5,000 12,000 9,500 8,000
Autonomous  Task Completion  85%  65% 72%  77%
Vehicle Nav. (%)

Cumulative 320 250 270 285

Reward
Note: DQN = Deep Q-Network, HBRL = Hierarchical Brain-Inspired

Reinforcement Learning, PPO = Proximal Policy Optimization, SAC = Soft
Actor-Critic.

Figure 16
Task completion rate in grid world: HBRL versus Baseline
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upper envelope illustrates the stable convergence of high-level policy,
while fragmented oscillations near the lower floor are a consequence of
stochastic exploration and low-level policy variability during training.
Steady-state cumulative rewards after training convergence,
instead of proof-of-progressive learning, appear in Figure 17. The
flattened curve demonstrates the stabilization of the trained policies’
performance capabilities. This is significantly better than the other
agents, which only rewarded 250. The HBRL framework was able

Figure 17
Cumulative reward in autonomous vehicle navigation: HBRL
versus Baseline
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to maintain exploration into the complex dynamic characteristics of
autonomous driving, such as obstacle avoidance and traffic control. As
a result of the decomposition of the task, the high-level manager was
able to assign subtasks such as obstacle detection and path planning
to low-level agents that were specialized to perform. This adaptation
improved determination and thus resulted in higher total cumulative
rewards. The baseline agents struggled to perform well in this novel and
dynamic environment without limited task decomposition and adaptive
behavior, and were thus penalized for it by receiving lower rewards.
The results highlight the success of hierarchical decision-making for a
complex task that has complications in both complexity and variability,
as with autonomous vehicle navigation.

In the Smart City Infrastructure task environment, HBRL
agents obtained an impressive 85% task completion while baseline
agents completed 65% of total tasks, as shown in Figure 18. The
success of the HBRL framework arose from its ability to leverage task
decomposition and hierarchical learning, allowing agents to adapt to
an environment’s diverse collection of interacting agents. In a complex
real-time environment such as a Smart City, agents require the ability
to react to ongoing stimulus changes (e.g., traffic, resources that could
be allocated, and how much infrastructure is being utilized). The
hierarchical learning structure allows agents to specialize in particular
subtasks, which allows them to make more efficient decisions in the
environment. Consequently, focusing on subtasks allowed for higher
task completion and overall reward total in the environment for the
HBRL agents over the baseline agents. The baseline agents lacked
any substantial adaptive mechanisms and struggled in navigating
through the interactions in the complex task environment; therefore,
they performed worse on task completion. Therefore, hierarchical
learning is necessary and important in environments that require mutual
interaction from agents and responding to environmental stimuli that
change in real-time.

Figure 18

Task completion rate in smart city infrastructure: HBRL versus
Baseline

£ 0.80

©

o

S

8 0.75

kal

[=%

£

8 0.70

>

©

F 0.65{

o0l 0
0 2,000 4,000 6,000 8,000 10,000
Episodes

—— HBRL Agents (Final: 84%)
—— Baseline Agents (Final: 62%)
----- HBRL Target (85%)

----- Baseline Target (65%)

Note: HBRL = Hierarchical Brain-Inspired Reinforcement Learning.

Results from the experiments indicate the HBRL framework
performed better than traditional flat RL approaches on all important
evaluation measures: learning efficiency, overall task completion
success rate, cumulative reward, and generalization. The hierarchical
structure, where the high-level manager delegated subtasks to execute
via low-level agents, enabled better decision-making and facilitated
faster learning, more successful performance, and higher adaptability to
previously unseen environments. The improvements in task completion
and the number of rewards earned were considerably greater in complex
environments involving an autonomous vehicle navigating a smart
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city infrastructure, demonstrating that task decomposition is seriously
critical in addressing problems in the real world. Moreover, the HBRL
agents demonstrated good generalization ability across previously
unseen environments, which further demonstrates the robustness and
scalability of this method. Overall, these results provide a strong basis
for confirming the research hypothesis that hierarchical learning models,
such as HBRL, are particularly well-suited for managing the complexity
of decision-making tasks across domains. Future improvements
in the HBRL framework could yield further improvements in its
generalization ability and computational performance, increasing its
potential effectiveness in real-world autonomy systems. A consolidated
summary of performance comparisons across all test environments is
presented in Table 7, highlighting the consistent advantage of HBRL
in task success, learning efficiency, and adaptability. The asymmetric
envelope, a smooth upper boundary and oscillatory lower boundary,
demonstrates the ideas of environmental stochasticity and exploration-
exploitation balances of hierarchical agents while learning.

Table 7
Comparative analysis of final performance metrics for HBRL and
baseline models

Baseline
Environment Metric HBRL (DQN) Improvement
GridWorld Task 90% 75% +15%
Completion
Rate
Cumulative 450 350 +100
Reward
Learning 5,000 eps 12,000 2.4x faster
Efficiency eps
Autonomous Cumulative 320 250 +70
Vehicle Reward
Navigation Learning 20,000 eps 28,500 1.4% faster
Efficiency eps
Smart City ~ Task 85% 65% +20%
Infrastructure Completion
Rate
Generalization 80%—-90% —20%— High
Retention 30% drop  robustness

Note: DQN = Deep Q-Network, HBRL = Hierarchical Brain-Inspired
Reinforcement Learning.

To further validate the reliability of performance differences
between HBRL and the baselines, we conducted two-tailed independent
t-tests over 10 experimental runs per method. The results showed that
HBRL outperforms all other baselines with statistical significance
in both cumulative reward and task completion rate, as shown in
Table 8. Figures 5—12 present intermediate results, showing the stepwise
improvement of the HBRL agent during training. These results illustrate
how learning efficiency, cumulative reward, and task completion evolve
over episodes before reaching the final performance values reported in
Table 7.

Table 8
p-values from t-tests comparing HBRL and baseline methods
HBRL vs HBRL vs HBRL vs
Metric DQN PPO SAC
Task Completion Rate p =0.004 p=0.008 p =0.006
Cumulative Reward p=0.002 p=0.009 p =0.007
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5.6. Discussion of results

The experiment results demonstrate convincingly that the
proposed HBRL framework is effective and transferable to multiple
environments of increasing complexity. The cumulative reward
value increased with increased training episodes, suggesting that the
proposed model validates relevant task learning and subsequently
the generalization of learning across task variations. The success rate
improved from 34.2% on episode 1,000 to 89.7% on episode 10,000,
suggesting great learning dynamics and stability through hierarchical
control and experience replay mechanisms. In comparison to the
baseline models, the proposed HBRL converged faster, demonstrated
higher final precision, and higher cumulative reward performance than
both flat Deep Q-Learning (DQN) and classic hierarchical RL models.
The adaptive goal-setting mechanism of the high-level manager
accelerates policy convergence by directing low-level agents with
contextually informative subgoals, decreasing exploratory behavior.
The modular design aspect of the proposed HBRL also enhances task
reusability and transferability from one environment to another—model
low-level agents trained in one scenario (i.e., GridWorld) predictably
and reliably performed well once transferred to linked environments
(i.e., navigation or coordination engaged with multiple agents). The
hierarchical structure also aids in improving interpretability and
cognitive alignment. The distinction between high-level planning and
low-level execution parallels the functional division between cortical
(i.e., strategic) and subcortical (i.e., reactive) systems in humans. This
separation contributes towards more explainable decision trajectories
and more visualizable policy learning within and across layers. Lastly,
its biologically inspired design facilitates temporal abstraction and can
allow the agent to execute high-level decisions over longer time periods
while executing finer-resolution control at lower levels. For clarity,
Figures 11, 12, and 16 report the cumulative reward values after policy
convergence, rather than per-episode trajectories, indicating the final
stabilized performance of the HBRL agents.

The refined upper envelope and fragmented lower oscillations are
due to the hierarchical nature of the HBRL and stochastic exploration
in training. The upper boundary captures progressive convergence of
high-level policy performance and reflects trends in cumulative best
performance, and the lower range oscillations are derived from episodic
variability of multiple low-level agents exploring sub-polices within
dynamically changing environments. As training begins to stabilize, the
exploration noise will dissipate over time, producing a smoother upper
envelope trajectory of converging policy performance while still being
interrupted by embers of local oscillation at the lower limit. Compared
with other brain-inspired models and feudal RL approaches, the HBRL
demonstrated improved sample efficiency and improved reward
optimization, resulting in a more beneficial exploration/exploitation
trade-off. These findings suggest that hierarchical decomposition with
biologically motivated control can provide real performance benefits in
terms of both convergence stability and robustness to variations of the
learning environment.

In summary, the results emphasize that cognitive-inspired
hierarchical learning architectures can offer a pathway to scalable and
human-like adaptive intelligence. The ability of the framework to support
successful navigation in complex dynamic environments (GridWorld,
autonomous navigation, and smart city coordination) suggests its
capacity to be adapted to deployable scenarios across autonomous
robotics, energy-efficient design, and intelligent transportation
systems. As a continuation of this work, future research will examine
transfer learning methods across heterogeneous tasks, nearness of
self-organizing sub-policy hierarchies, and multi-agent collaboration
behavior. The future work will also focus on interpretability through
attention-based visualization methods and increased decision-making
transparency through neuro-symbolic reasoning.
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6. Summary

HBRL agents outperformed baseline agents on tasks in the
simulated worlds, highlighting the value of task decomposition and
adaptation in decision-making.

Global Environment: The HBRL agents achieved a 90% task
completion rate while existing agents achieved a 75% task completion
rate. The HBRL’s hierarchical architecture enabled decision-making via
task breakdown into sub-tasks, each with less inefficiency when you are
doing the action.

Autonomous Vehicle Navigation: The HBRL agents received a
total cumulative reward of 320, whereas existing agents received a total
cumulative reward of 250. The HBRL sellers have been able to adapt
dynamically as demanding situations changed while navigating to keep
away from pedestrians and other objects.

Smart City Infrastructure: The HBRL marketers finished a task
final touch rate of 85% at the same time, while the baseline marketers
carried out a challenge with an entirety rate of 65%.

The HBRL architecture performed better in an active
environment with real-time agent interaction with multiple agents in
the environment. The HBRL structure provided better control of task
completion and a responsive, dynamic environment, so simultaneous
changes in the environment could be adapted to. Overall, these findings
demonstrate the potential of hierarchical learning, especially in dynamic
environments requiring adaptive Internet-like real-time decision
making and coordination of tasks among multiple interacting agents.
The HBRL Framework is a viable architecture in complex dynamic
environments. The key points are as follows:

1) A brain-inspired HRL framework is developed to model human-like
adaptive decision-making.

2) Combines DQN and Policy Gradient to manage low-level and high-
level learning hierarchies.

3) Outperforms flat DQN baselines in cumulative reward and
generalization across dynamic environments.

4) Demonstrated applicability in autonomous driving and smart
infrastructure simulations.

7. Conclusion

In conclusion, the HBRL framework is a viable resolution for
complex decision-making problems in nonstationary environments by
decomposing tasks into hierarchies. We demonstrated that it allows
agents to improve learning, better task performance, and the ability to
generalize across new environments. The results indicated the HBRL
agent learned quickly than simpler hierarchical methods and adapted
to new environments, as well as demonstrated superior overall task
performance in terms of evaluating task completion rate, total reward,
and adaptability across both autonomous vehicle navigation and smart
city infrastructure. Thus, it appears that HBRL is an adequate solution
for use in practical situations where timeliness, long-term planning, and
adaptability are crucial. Despite the promising results from HBRL, we
see several venues for future work that would improve and evolve the
HBRL framework. First, there is a need to improve the computational
efficiency and effectiveness of the system through transfer learning
and multi-task learning methods in order to improve the possibility for
real-time applications. Second, testing HBRL in real-world scenarios
such as smart cities or autonomous vehicles is helpful in practicing
existing challenges, such as sensor noise and external communication
delays. Furthermore, we still need to conduct additional investigations
on scaling the HBRL framework for large-scale environments, how
to effectively accommodate numerous agents distributed across a
multitude of locations, and provide agents with the ability to act safely

when interacting with infrastructure systems. This paper presents a
biologically grounded, scalable RL architecture that mitigates several
weaknesses in flat DRL architectures. By incorporating hierarchical
abstraction, goal decomposition, and hybrid methods, our HBRL
system displayed considerable gains in adaptability, performance, and
generalization. As a finding, these established a substantial possibility of
implementing our framework for the development of intelligent systems
dealing with uncertain, dynamic, and multi-agent environments. Future
work to support HBRL implementation will likely include exploring the
interpretability of sub-policies, implementing multi-modal perception,
and deploying in real-time embedded systems.
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