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Abstract: Wireless Mesh Networks (WMNSs) have been widely analyzed through conventional performance metrics such as throughput, delay, and
connectivity. However, these classical approaches often overlook the deeper structural properties that determine the robustness and efficiency of
network communication. This paper proposes a novel analytical framework based on spectral graph theory to represent and evaluate WMNs
through their topological and functional characteristics. By computing and examining the eigenvalues and eigenvectors of the graph Laplacian,
the proposed method reveals intrinsic patterns in network connectivity, algebraic connectivity, spectral radius, and resilience to signal
degradation. A dedicated software tool was developed to model WMN topologies, compute spectral metrics, and evaluate how variations in
signal strength influence network robustness. The results demonstrate that algebraic connectivity increases when signal strength is optimized
between critical nodes identified by the Fiedler vector, while minimizing the spectral radius enhances resilience to failures and attacks. This
spectral perspective enables systematic visualization, diagnosis, and optimization of WMN structures, providing actionable guidelines for
efficient network design. The approach contributes to both theoretical understanding and practical optimization of wireless networks, offering a

scalable foundation for applications in IoT, smart cities, and next-generation communication systems.
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1. Overview of Wireless Mesh Networks and
Spectral Graph Theory

A wireless mesh network [1] (WMN) is a mesh network consisting
of nodes (wireless access points) that are installed locally, which is a
decentralized type of wireless network. Such a network can be
represented in the form of a graph, which can be analyzed by spectral
graph theory.

Spectral graph theory is closely related to artificial intelligence
(AD) in several ways.

One important connection between spectral graph theory and Al
is the use of graph convolutional neural networks [2] (GCNNs) for
graph classification and representation learning tasks. GCNNs are a
type of neural network that operate directly on graphs, and they make
use of spectral graph theory concepts such as graph Laplacians and
graph Fourier transforms.

Another connection between spectral graph theory and Al is the use
of graph embeddings for representation learning. Graph embeddings are
low-dimensional vector representations of graph structures that can be
used as input to machine learning algorithms. Spectral graph theory
methods, such as the graph Laplacian and its eigenvectors, are often
used to generate graph embeddings that capture the structure and
properties of the graph.

In addition, spectral graph theory is used in Al applications such
as graph partitioning and graph clustering [3], which are important
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for tasks such as community detection in social networks and
network analysis. It is also used in Al applications that involve
optimization on graphs, such as graph-based semi-supervised
learning and graph-based reinforcement learning.

Overall, spectral graph theory is a powerful tool that is widely
used in Al and machine learning for tasks involving graph data.

Many spectral methods are developed in the past period of time
which can be applied on area of theory of graph, virtualization,
machine learning, computer graphic, social networks, communication
networks, etc. Generally, spectral methods resolve the problems using
or manipulating their eigenvalues, eigenvectors, eigenspace projection,
or the combination of this parameters.

The article by Elaraby and Abuelenin [4] discusses two different
graph-based methods for Vehicular ad hoc networks (VANETS)
connectivity analysis showing that they capture the same behavior as
estimated using probabilistic models. The study is, then, extended to
include the case of directed Vehicular ad hoc networks (VANETS),
resulting from the utilization of different communication ranges by
different vehicles.

The characteristic of mesh technology networking is quicker and
easier access to the computer network. Benefits of this technology of
networking are easier expansion, development, upgrade, and reliability
with very few interruptions. Mesh network are made of clients (end
devices) and routers, respectively nodes for forwarding packages.

Mesh networks are often used not only in wireless networks
(WMN) but also in all other types of networks [5].

A WMN is a very popular technology that can provide
broadband Internet access, wireless local area network coverage,
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and network connectivity for network operators and users. Due to the
low cost, as well as the rapid development and popularity of wireless
technologies, wireless networks (WMN) is increasingly attractive to
Internet service providers [6].

Routing mesh network consists of two stages. The first step
involves determining the cost of communications, paths, and the
second stage routing information obtained in the distribution
network. In general, we can say that the routing of mesh routers is
formed from the mesh clients and the mesh received services.
Mesh routers are divided into two categories: gateways and
backbone. Gateway routers are connected to a wired network.

Today, there are a number of different algorithms used to route
packets through a mesh network, and some of the most well-known
are Destination Sequenced Distance Vector (DSDV), Optimized
Link State Routing (OLSR), Dynamic Source Routing (DSR), and
Link Quality Source Routing Algorithm (LQSR) [7].

In this paper, we have analyzed WMN routing protocols. A
software system for calculating the parameters of spectral graph
theory has been implemented [8]. The observed mesh network is
represented by a suitable graph, and then the resulting graph is
analyzed using spectral graph theory techniques.

2. Spectral Graph Theory for Analyzing Wireless
Mesh Networks

The basis of the spectral graph theory is to find the appropriate
matrices associated with a given graph, especially the adjacency matrix
and the Laplacian matrix. After that, it is necessary to determine the
eigenvalues and eigenvectors of those matrices and connect the
obtained values with the topological properties of the observed graph [9].

In spectral graph theory, each graph is analyzed using the
eigenvalues of the corresponding matrix that describes that graph. The
matrices used in that analysis are adjacency matrix A, the Laplace
matrix L, and the distance matrix D. Also, normalized matrices are used.

This method has an important role in the study of complex
networks such as Internet search, image processing, shape
recognition, and clustering. The application gives significant results
in the interconnection of networks, social networks, mathematical
chemistry, economics, and other sciences [10, 11].

Spectral theory of graphs is based on their eigenvalues and
eigenvectors.

An eigenvalue is a scalar value that is associated with a linear
transformation. Given a linear transformation represented by a matrix
A, an eigenvalue of A is a scalar A [12] that satisfies the equation:

Ax = Ax (1)

where x is a non-zero vector, called the eigenvector. The equation says
that when the matrix A is applied to the eigenvector x, the result is a
scalar multiple of the original vector x. Matrix A is the adjacency matrix.
Eigenvalues and eigenvectors have many important applications in
mathematics and physics. They are used, for example, to study the
stability of equilibrium points in dynamical systems, to diagonalize
matrices, and to understand the structure of certain types of graphs.
Spectrum of the graph G is defined by the eigenvalues of the
matrix A for given graph.
To obtain certain information about the graph, spectral graph
theory uses the following matrices:
1) Adjacency matrix,
2) Laplacian matrix, and
3) Normalized Laplacian matrix.

For a given graph, the adjacency matrix is calculated as follows:

Ay = { 1, if there is a branch from i to j @

0, other

If the graph is weighted, then adjacency matrix is determined in the
following way:

A — w(i,j), if there is a branch from i to j 3)
N 0, other
Normalized adjacency matrix is calculated as follows:
A= VD 'AVD! (4)
The eigenvalues of the adjacency matrix A are denoted by 4y, 45, .. .,
A, and represent the spectrum of the matrix A.
MZr2o.Z2r g 2 A =0 5)

In graph theory, the degree matrix of a graph D is a diagonal matrix
that represents the degree of each vertex in the graph. The degree of a
vertex is the number of edges incident to it, and the degree matrix is a
diagonal matrix with the degrees of the vertices on the main diagonal.

The degree matrix is often used in the definition of the graph
Laplacian matrix, which is a matrix that encodes the structure of
the graph. The Laplacian matrix is defined as the difference
between the degree matrix and the adjacency matrix of the graph,
where the adjacency matrix is a matrix that represents the
connections between the vertices. The Laplacian matrix is a useful
tool for analyzing the structure and properties of a graph.

L=D-A (6)
Eigenvalues of the matrix L are called Laplacian eigenvalues:
T R T T (7

For graphs without isolated vertices, the normalized Laplacian has
the following relationship to L, 4, and D [13]:
Laplacian matrix is calculated as follows:

Lnorm =D —1/2AD —1/2 (8)

3. Performance Evaluation Using Spectral Graph
Metrics

Based on the created topology, software for spectral analysis of
graph is starting and compatible graph is generated (picture 3). Graph
branches correspond to characteristics of the links given in the
topology. Created topology has characteristics of real WMN.

The structural features of graphs can be used to study
connectivity, and they have a significant impact on various
processes in complex networks, so the analysis of these networks
is based on the use of metrics that can be expressed using
observed topological features [14].

Graph characteristics can be studied through graph topology.
The topology of the graph defines the connection, as well as the
relationships between the nodes.

Each node in the graph can be represented by some characteristics.
Each branch of the graph can be specified as a set of weight functions.
A characteristic can be, for example, processing time. A branch can
represent, for example, delay, bandwidth, packet loss, etc.
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Metrics is a topological, if it’s possible to calculate only with
adjacency matrix. Topological metrics can be classified on matrix
based on distance, connectivity, and graph spectrum [14].

The following topological metrics are used in the analysis of
complex networks using spectral graph theory:

1) Fidler vector

2) Algebraic connectivity
3) Spectral radius

4) Principal eigenvector.

3.1. Fiedler’s vector

In graph theory, a Fiedler’s vector is a special kind of
eigenvector of the graph Laplacian matrix. The Fiedler’s vector of
a graph is defined as the eigenvector corresponding to the second
smallest eigenvalue (also known as the Fiedler’s eigenvalue) of
the graph Laplacian matrix [10]. This eigenvalue is known as the

Figure 1
Topology graph
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algebraic connectivity of the graph, and the corresponding
eigenvector is known as the Fiedler’s vector.

The Fiedler’s vector can be used to partition a graph into two
clusters by finding a “cut” through the graph such that the vertices
on one side of the cut have relatively small values in the Fiedler’s
vector, and the vertices on the other side have relatively large
values [14]. The idea is that this cut will divide the graph into two
connected components with a relatively small number of edges
between them, resulting in a “good” partition of the graph.

If the Fielder’s vector is x,.;, then the clusterization starts
between nodes that correspond to positive values of vector x,.;
and they are joined to the first cluster, then nodes that correspond
to negative values of vector x,,; are joined to second cluster [15, 16].

3.2. Algebraic connectivity

Algebraic connectivity is a measure of the connectedness of a
graph, which is a mathematical structure used to represent pairwise
relationships between objects. It is defined as the second smallest
eigenvalue [10] of the Laplacian matrix of the graph. The algebraic
connectivity of a graph is a measure of how well connected the
graph is, and it is closely related to the number of paths between
pairs of nodes in the graph. A graph with a high algebraic
connectivity is said to be well connected, while a graph with a low
algebraic connectivity is said to be poorly connected. Algebraic
connectivity is an important concept in graph theory and has
numerous applications in fields such as computer science,
engineering, and physics. It is used for analysis of the robustness
and synchronizability of the networks [15].

3.3. Spectral radius

The spectral radius of a matrix is the maximum absolute value
of its eigenvalues.

1Zizaltil

p= ®

Itis a measure of how large the eigenvalues of a matrix are in
magnitude. The spectral radius is also known as the matrix norm,
and it is closely related to the operator norm. The spectral radius
is often used as a measure of the stability of a system, and it plays
an important role in the analysis of dynamical systems. In
particular, the spectral radius of the matrix representing the
linear part of a system’s dynamics determines the stability of
the system. If the spectral radius is less than 1, the system is
stable, while if the spectral radius is greater than 1, the system

Figure 2
Eigenvalues and eigenvectors of the Laplacian matrix for the graph in Figure 1
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Figure 3
Fiedler vector chart
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is unstable. The spectral radius is also used in the analysis of
network systems, where it is related to the connectivity and
robustness of the network.

Smaller spectral radius corresponds to greater robustness in the
network regarding the spreading of the viruses, also the greater
protection from viruses can be achieved with the minimization of
spectral radius [11, 15, 17].

3.4. Principal eigenvector
The principal eigenvector of a matrix is the eigenvector

corresponding to the largest eigenvalue of the matrix [18]. The
principal eigenvector is often of particular interest because it

382

corresponds to the direction in which the matrix has the greatest
effect. It is also known as the dominant eigenvector or leading
eigenvector. The principal eigenvector is often used in the
analysis of networks, where it can provide insight into the
centrality or importance of different nodes in the network [11].
It is also used in machine learning and data analysis, where it
can be used to identify patterns in data.

Google’s PageRank algorithm is using the variation of
principal eigenvector in order to indicate the importance of the
web page [19]. Analyzing of the coefficient of Laplacian
characteristic polynomial and biggest eigenvalue of distance
matrix, and also two invariants which are based on the graph
spectrum — energy and Estrada index.
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Table 3
Dependence of change of the spectral radius from ratio (x;({) * xy(j))
Lis L L;s Lis Lss Li4 Lass L3 La L34 Lis Ls¢ Lj¢ L3¢ Las
A 64.829 64.761 64.761 64.737 64.737 64.675 64.675 64.664 64.61 64.571 64.401 64.401 64.312 64.281 64.199
x1() * x1(j) 0.139 0.145 0.145 0.148 0.148 0.154 0.154 0.155 0.161 0.164 0.183 0.183 0.191 0.195 0.203

3.5. Analysis: signal strength influence on the
algebraic connectivity WMN

Mesh nodes are shown like graph nodes; OLSR matrix value
which represents signal strength between WMN nodes is shown
with branches of graph (Figure 1).

Possibility of modification of graph is considered, respectively
WMN:s, in relation to changes in signal strength between some nodes
so optimization of robustness inside network.

The method of eigenvalues is described, which determines
whether the entities are connected as one network, as well as the
adjacency exponent method, which determines whether there is a
path between two entities [4].

Robustness of the network is shown with spectral parameters,
such as algebraic connectivity.

Here, it will be shown how to establish the connection between
the algebraic connectivity and the value of the Fiedler’s vector.

For the mesh network, which is represented by the graph in
Figure 1, the corresponding adjacency matrices, eigenvalues,
and eigenvectors, as well as the Laplacian matrix are shown in
Figure 2.

The idea is to analyze changes in the algebraic connectivity of
mesh networks depending on the change in signal strength between
the corresponding nodes.

Special software has been developed for this purpose. It can
be used to analyze complex networks using spectral graph
theory. Specific topological features of graphs are used to
characterize connectivity and have a significant impact on
dynamic processes in complex networks, and spectral graph
theory studies the relationship between graphs and eigenvalues
and eigenvectors [20].

Table 1 shows the dependence of algebraic connectivity
depending on the change in signal strength between different
nodes for a constant value.

Value of algebraic connectivity for graph from the picture 1 is
u5 =66,339. By changing the signal strength for value 5, algebraic
connectivity is changed from 66,339, when L,_s is changed from 12
to 17, until 68,684, when L,_s is changed from 10 to 15 or L is
changed from 10 to 15 (Figure 1).

The values of the algebraic connectivity correspond to the
second eigenvector, so it can be seen from Figure 2 that the
corresponding values for the algebraic connectivity are —0.435,
0.598, —0.220, 0.462, —0.435, and 0.031.

Based on the experimental results, the conclusion is:

1) If the signal strength in network is increased, the value of
algebraic connectivity is also increased or stays the same.

2) Algebraic connectivity will not be changed if the signal strength
is changed between the nodes which have the same Fiedler’s
vector values (Figure 3).

3) If the signal strength is changed between the nodes with the min
or max values of Fiedler’s vector, maximum increase of algebraic
connectivity can be seen.

3.6. Analysis: signal strength influence on spectral
radius of WMN

Eigenvalues of vectors that correspond to the spectral
radius are (0.373, 0.390, 0.398, 0.414, 0.373, 0.491)
(Figure 4).

Table 2 shows dependence of spectral radius from the signal
strength between different nodes for constant value.

Based on the experimental results, the conclusion is:

1) Spectral radius is changed if the signal strength inside the
network is changed in accordance with the change of value
x1(7) * x1(j), where x; represents principal eigenvector which
corresponds to the biggest eigenvalue (spectral radius)
(Table 3).

2) If the signal strength is decreasing, the value of spectral radius is
reduced also.

The main goal is that algebraic connectivity be as big as
possible and spectral radius as low as possible. This opposed
demand is possible to accomplish by reducing the signal strength
between nodes for which the value of Fiedler’s vector remains
the same.

4. Conclusions

In conclusion, this study demonstrated the utility of spectral
graph theory for analyzing WMNSs.

The algebraic connectivity and spectral radius of the mesh
network are examined in relation to changes in signal strength
between nodes.

It was found that when the signal strength increased between
nodes with minimum or maximum values of the Fiedler’s vector,
the algebraic connectivity reached its maximum. On the other
hand, no change in algebraic connectivity was observed when the
signal strength between nodes with the same values as the Fiedler
vector changed.

Also, it has been shown that the spectral radius is changed if the
signal strength in the network is changed in accordance with the
change of value of the principal eigenvector which corresponds to
the largest eigenvalue.

By increasing or decreasing the signal strength between the
corresponding nodes in the network, it is possible to directly
influence the values of the spectral radius, as well as the
algebraic connections, and thus influence the specific
topological characteristics of the graph, that is, the dynamic
processes in WMN.

Our simulations and experiments validated the usefulness
of spectral graph theory as a tool for understanding and
optimizing the performance of WMNs. Our results can inform
the design and deployment of WMNs for various
applications, such as Internet access, disaster response, and
military communication.
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