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Abstract:Wirelessmesh networks (WMNs) are a type ofwireless network that can be used for various applications, such as Internet access, disaster
response, and military communication. These networks consist of mesh routers that can communicate with each other and form a mesh topology,
allowing them to provide connectivity even if some of the routers fail or are out of range. In this study, we used spectral graph theory to analyze the
performance of a WMN. For the analysis process, software was developed to calculate the topological characteristics of the graph representing the
WMN. The correlation between the values of the parameters of spectral graph theory and the topological characteristics of the observed network is
analyzed. First, an analysis of the influence of the change in signal strength, in the observedWMN, on the algebraic connectivitywas performed, and
then the change in the spectral radius was also analyzed. The analysis was performed using special software, which was developed for that purpose.
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1. Introduction

Awireless mesh network (Staub et al., 2009) (WMN) is a mesh
network consisting of nodes (wireless access points) that are installed
locally, which is a decentralized type of wireless network. Such a
network can be represented in the form of a graph, which can be
analyzed by spectral graph theory.

Spectral graph theory is closely related to artificial intelligence
(AI) in several ways.

One important connection between spectral graph theory andAI
is the use of graph convolutional neural networks (Awujoola et al.,
2022) (GCNNs) for graph classification and representation learning
tasks. GCNNs are a type of neural network that operate directly on
graphs, and they make use of spectral graph theory concepts such as
graph Laplacians and graph Fourier transforms.

Another connection between spectral graph theory and AI
is the use of graph embeddings for representation learning.
Graph embeddings are low-dimensional vector representations of graph
structures that can be used as input to machine learning algorithms.
Spectral graph theory methods, such as the graph Laplacian and its
eigenvectors, are often used to generate graph embeddings that capture
the structure and properties of the graph.

In addition, spectral graph theory is used in AI applications such
as graph partitioning and graph clustering (Mukherji et al., 2022),
which are important for tasks such as community detection in social
networks and network analysis. It is also used in AI applications
that involve optimization on graphs, such as graph-based semi-
supervised learning and graph-based reinforcement learning.

Overall, spectral graph theory is a powerful tool that is widely
used in AI and machine learning for tasks involving graph data.

Many spectral methods are developed in the past period of time
which can be applied on area of theory of graph, virtualization,

machine learning, computer graphic, social networks, communication
networks, etc. Generally, spectral methods resolve the problems using
or manipulating their eigenvalues, eigenvectors, eigenspace projection,
or the combination of this parameters.

The article (Elaraby & Abuelenin, 2021) discusses two different
graph-based methods for Vehicular ad hoc networks (VANETs)
connectivity analysis showing that they capture the same behavior as
estimated using probabilistic models. The study is, then, extended to
include the case of directed Vehicular ad hoc networks (VANETs),
resulting from the utilization of different communication ranges by
different vehicles.

The characteristic of mesh technology networking is quicker and
easier access to the computer network. Benefits of this technology of
networking are easier expansion, development, upgrade, and reliability
with very few interruptions. Mesh network are made of clients (end
devices) and routers, respectively nodes for forwarding packages.

Mesh networks are often used not only in wireless networks
(WMN) but also in all other types of networks (Deng et al., 2017).

A WMN is a very popular technology that can provide
broadband Internet access, wireless local area network coverage,
and network connectivity for network operators and users. Due to
the low cost, as well as the rapid development and popularity of
wireless technologies, wireless networks (WMN) is increasingly
attractive to Internet service providers (Seyedzadegan et al., 2011).

Routing mesh network consists of two stages. The first step
involves determining the cost of communications, paths, and the
second stage routing information obtained in the distribution
network. In general, we can say that the routing of mesh routers is
formed from the mesh clients and the mesh received services.
Mesh routers are divided into two categories: gateways and
backbone. Gateway routers are connected to a wired network.

Today, there are a number of different algorithms used to route
packets through a mesh network, and some of the most well-known
are Destination Sequenced Distance Vector (DSDV), Optimized

*Corresponding author: Nenad M. Jovanovic, Faculty of Technical Sciences,
University of Pristina, Serbia. Email: nenad.jovanovic@pr.ac.rs

Artificial Intelligence and Applications
2023, Vol. 00(00) 1–7

DOI: 10.47852/bonviewAIA3202613

© The Author(s) 2023. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

mailto:nenad.jovanovic@pr.ac.rs
https://doi.org/10.47852/bonviewAIA3202613
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Link State Routing (OLSR), Dynamic Source Routing (DSR), and
Link Quality Source Routing Algorithm (LQSR) (Zehni et al., 2017).

In this paper, we have analyzed WMN routing protocols. A
software system for calculating the parameters of spectral graph
theory has been implemented (Jovanovic, 2022). The observed
mesh network is represented by a suitable graph, and then the
resulting graph is analyzed using spectral graph theory techniques.

2. Spectral Graph Theory

The basis of the spectral graph theory is to find the appropriate
matrices associated with a given graph, especially the adjacency
matrix and the Laplacian matrix. After that, it is necessary to
determine the eigenvalues and eigenvectors of those matrices and
connect the obtained values with the topological properties of the
observed graph (Nica, 2016).

In spectral graph theory, each graph is analyzed using the
eigenvalues of the corresponding matrix that describes that graph. The
matrices used in that analysis are adjacency matrix A, the Laplace
matrix L, and the distance matrix D. Also, normalized matrices are used.

This method has an important role in the study of complex networks
suchas Internet search, imageprocessing, shape recognition, andclustering.
The application gives significant results in the interconnection of networks,
social networks, mathematical chemistry, economics, and other sciences
(Cvetkovic et al., 1995; Jovanović & Zakić, 2018).

Spectral theory of graphs is based on their eigenvalues and
eigenvectors.

An eigenvalue is a scalar value that is associated with a linear
transformation. Given a linear transformation represented by a
matrix A, an eigenvalue of A is a scalar λ (Beezer, 2021) that
satisfies the equation:

Ax ¼ λx (1)

where x is a non-zero vector, called the eigenvector. The equation
says that when the matrix A is applied to the eigenvector x, the
result is a scalar multiple of the original vector x. Matrix A is the
adjacency matrix.

Eigenvalues and eigenvectors have many important applications in
mathematics and physics. They are used, for example, to study the
stability of equilibrium points in dynamical systems, to diagonalize
matrices, and to understand the structure of certain types of graphs.

Spectrum of the graph G is defined by the eigenvalues of the
matrix A for given graph.

To obtain certain information about the graph, spectral graph
theory uses the following matrices:

• Adjacency matrix,
• Laplacian matrix, and
• Normalized Laplacian matrix.

For a given graph, the adjacency matrix is calculated as follows:

Ai;j ¼ 1; if there is a branch from i to j
0; other

�
(2)

If the graph is weighted, then adjacency matrix is determined in the
following way:

Ai;j ¼ w i; jð Þ; if there is a branch from i to j
0; other

�
(3)

Normalized adjacency matrix is calculated as follows:

Â ¼
ffiffiffiffiffiffiffiffi
D�1

p
A

ffiffiffiffiffiffiffiffi
D�1

p
(4)

The eigenvalues of the adjacencymatrix A are denoted by λ1, λ2, : : : ,
λn and represent the spectrum of the matrix A.

λ1 � λ2 � . . . � λn�1 � λn ¼ 0 (5)

In graph theory, the degree matrix of a graph D is a diagonal matrix
that represents the degree of each vertex in the graph. The degree of a
vertex is the number of edges incident to it, and the degree matrix is a
diagonal matrix with the degrees of the vertices on themain diagonal.

The degree matrix is often used in the definition of the graph
Laplacian matrix, which is a matrix that encodes the structure of
the graph. The Laplacian matrix is defined as the difference
between the degree matrix and the adjacency matrix of the graph,
where the adjacency matrix is a matrix that represents the
connections between the vertices. The Laplacian matrix is a useful
tool for analyzing the structure and properties of a graph.
Laplacian matrix is calculated as follows:

L ¼ D� A (6)

Eigenvalues of the matrix L are called Laplacian eigenvalues:

µ1 � µ2 � � � � � µn�1 � µn (7)

For graphs without isolated vertices, the normalized Laplacian has
the following relationship to L, A, and D (Cavers, 2010):

Lnorm ¼ D� 1=2AD� 1=2 (8)

3. Analysis of WMN

Based on the created topology, software for spectral analysis of
graph is starting and compatible graph is generated (picture 3). Graph
branches correspond to characteristics of the links given in the
topology. Created topology has characteristics of real WMN.

The structural features of graphs can be used to study
connectivity, and they have a significant impact on various
processes in complex networks, so the analysis of these networks
is based on the use of metrics that can be expressed using
observed topological features (Jovanović et al., 2016).

Graph characteristics can be studied through graph topology.
The topology of the graph defines the connection, as well as the
relationships between the nodes.

Each node in the graph can be represented by some characteristics.
Each branch of the graph can be specified as a set of weight functions.
A characteristic can be, for example, processing time. A branch can
represent, for example, delay, bandwidth, packet loss, etc.

Metrics is a topological, if it’s possible to calculate only with
adjacency matrix. Topological metrics can be classified on matrix
based on distance, connectivity, and graph spectrum (Jovanović
et al., 2016).

The following topological metrics are used in the analysis of
complex networks using spectral graph theory:

• Fidler vector
• Algebraic connectivity
• Spectral radius
• Principal eigenvector.
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3.1. Fiedler’s vector

In graph theory, a Fiedler’s vector is a special kind of
eigenvector of the graph Laplacian matrix. The Fiedler’s vector of
a graph is defined as the eigenvector corresponding to the second
smallest eigenvalue (also known as the Fiedler’s eigenvalue) of
the graph Laplacian matrix (Cvetkovic et al., 1995). This
eigenvalue is known as the algebraic connectivity of the graph,
and the corresponding eigenvector is known as the Fiedler’s vector.

The Fiedler’s vector can be used to partition a graph into two
clusters by finding a “cut” through the graph such that the vertices
on one side of the cut have relatively small values in the Fiedler’s
vector, and the vertices on the other side have relatively large
values (Fiedler, 1973). The idea is that this cut will divide the graph

into two connected components with a relatively small number of
edges between them, resulting in a “good” partition of the graph.

If the Fielder’s vector is xn-1, then the clusterization starts
between nodes that correspond to positive values of vector xn-1
and they are joined to the first cluster, then nodes that correspond
to negative values of vector xn-1 are joined to second cluster
(Jovanović et al., 2017; Verma & Meila, 2003).

3.2. Algebraic connectivity

Algebraic connectivity is a measure of the connectedness of a
graph, which is a mathematical structure used to represent pairwise
relationships between objects. It is defined as the second smallest
eigenvalue (Cvetkovic et al., 1995) of the Laplacian matrix of the
graph. The algebraic connectivity of a graph is a measure of how
well connected the graph is, and it is closely related to the number
of paths between pairs of nodes in the graph. A graph with a high
algebraic connectivity is said to be well connected, while a graph
with a low algebraic connectivity is said to be poorly connected.
Algebraic connectivity is an important concept in graph theory
and has numerous applications in fields such as computer
science, engineering, and physics. It is used for analysis of the
robustness and synchronizability of the networks (Jovanović
et al., 2017).

3.3. Spectral radius

The spectral radius of a matrix is the maximum absolute value
of its eigenvalues.

ρ ¼ max
1�i�n λij j (9)

It is a measure of how large the eigenvalues of a matrix are in
magnitude. The spectral radius is also known as the matrix norm,
and it is closely related to the operator norm. The spectral radius
is often used as a measure of the stability of a system, and it plays
an important role in the analysis of dynamical systems. In
particular, the spectral radius of the matrix representing the
linear part of a system’s dynamics determines the stability of
the system. If the spectral radius is less than 1, the system is
stable, while if the spectral radius is greater than 1, the system
is unstable. The spectral radius is also used in the analysis of
network systems, where it is related to the connectivity and
robustness of the network.

Figure 1
Topology graph

Figure 2
Eigenvalues and eigenvectors of the Laplacian matrix for the graph in Figure 1
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Smaller spectral radius corresponds to greater robustness in the
network regarding the spreading of the viruses, also the greater
protection from viruses can be achieved with the minimization of
spectral radius (Jovanović & Zakić, 2018; Jovanović et al., 2017;
Van Mieghem et al., 2011).

3.4. Principal eigenvector

The principal eigenvector of a matrix is the eigenvector
corresponding to the largest eigenvalue of the matrix (Cioaba &
Gregory, 2007). The principal eigenvector is often of particular
interest because it corresponds to the direction in which the
matrix has the greatest effect. It is also known as the dominant
eigenvector or leading eigenvector. The principal eigenvector is
often used in the analysis of networks, where it can provide
insight into the centrality or importance of different nodes in the
network (Jovanović & Zakić, 2018). It is also used in machine
learning and data analysis, where it can be used to identify
patterns in data.

Google’s PageRank algorithm is using the variation of
principal eigenvector in order to indicate the importance of the
web page (Langville & Meyer, 2011). Analyzing of the
coefficient of Laplacian characteristic polynomial and biggest
eigenvalue of distance matrix, and also two invariants which
are based on the graph spectrum – energy and Estrada index.

3.5. Analysis: Signal strength influence on the
algebraic connectivity WMN

Mesh nodes are shown like graph nodes; OLSR matrix value
which represents signal strength between WMN nodes is shown
with branches of graph (Figure 1).

Possibility of modification of graph is considered, respectively
WMNs, in relation to changes in signal strength between some nodes
so optimization of robustness inside network.

The method of eigenvalues is described, which determines
whether the entities are connected as one network, as well as the
adjacency exponent method, which determines whether there is a
path between two entities (Elaraby & Abuelenin, 2021).

Robustness of the network is shown with spectral parameters,
such as algebraic connectivity.

Here, it will be shown how to establish the connection between
the algebraic connectivity and the value of the Fiedler’s vector.

For the mesh network, which is represented by the graph in
Figure 1, the corresponding adjacency matrices, eigenvalues,
and eigenvectors, as well as the Laplacian matrix are shown in
Figure 2.

The idea is to analyze changes in the algebraic connectivity of
mesh networks depending on the change in signal strength between
the corresponding nodes.

Special software has been developed for this purpose. It can be
used to analyze complex networks using spectral graph theory.
Specific topological features of graphs are used to characterize
connectivity and have a significant impact on dynamic processes
in complex networks, and spectral graph theory studies the
relationship between graphs and eigenvalues and eigenvectors
(Software for Analysis of Complex Networks Using the Spectral
Graph Theory).

Table 1 shows the dependence of algebraic connectivity
depending on the change in signal strength between different
nodes for a constant value.
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Value of algebraic connectivity for graph from the picture 1 is
μ5= 66,339. By changing the signal strength for value 5, algebraic
connectivity is changed from 66,339, when L1-5 is changed from 12
to 17, until 68,684, when L2-5 is changed from 10 to 15 or L1-2 is
changed from 10 to 15 (Figure 1).

The values of the algebraic connectivity correspond to the
second eigenvector, so it can be seen from Figure 2 that the
corresponding values for the algebraic connectivity are −0.435,
0.598, −0.220, 0.462, −0.435, and 0.031.

Based on the experimental results, the conclusion is
(1) If the signal strength in network is increased, the value of

algebraic connectivity is also increased or stays the same.
(2) Algebraic connectivity will not be changed if the signal strength

is changed between the nodes which have the same Fiedler’s
vector values (Figure 3).

(3) If the signal strength is changed between the nodes with the min
or max values of Fiedler’s vector, maximum increase of
algebraic connectivity can be seen.

Figure 3
Fiedler vector chart

Figure 4
Adjacency matrix, eigenvalues, and eigenvectors
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3.6. Analysis: Signal strength influence on spectral
radius of WMN

Eigenvalues of vectors that correspond to the spectral
radius are (0.373, 0.390, 0.398, 0.414, 0.373, 0.491)
(Figure 4).

Table 2 shows dependence of spectral radius from the signal
strength between different nodes for constant value.

Based on the experimental results, the conclusion is

1. Spectral radius is changed if the signal strength inside the
network is changed in accordance with the change of value
x1(i) * x1(j), where x1 represents principal eigenvector which
corresponds to the biggest eigenvalue (spectral radius)
(Table 3).

2. If the signal strength is decreasing, the value of spectral radius is
reduced also.

The main goal is that algebraic connectivity be as big as
possible and spectral radius as low as possible. This opposed
demand is possible to accomplish by reducing the signal strength
between nodes for which the value of Fiedler’s vector remains
the same.

5. Conclusions

In conclusion, this study demonstrated the utility of spectral
graph theory for analyzing WMNs.

The algebraic connectivity and spectral radius of the mesh
network are examined in relation to changes in signal strength
between nodes.

It was found that when the signal strength increased between
nodes with minimum or maximum values of the Fiedler’s vector,
the algebraic connectivity reached its maximum. On the other
hand, no change in algebraic connectivity was observed when the
signal strength between nodes with the same values as the Fiedler
vector changed.

Also, it has been shown that the spectral radius is changed if the
signal strength in the network is changed in accordance with the
change of value of the principal eigenvector which corresponds to
the largest eigenvalue.

By increasing or decreasing the signal strength between the
corresponding nodes in the network, it is possible to directly
influence the values of the spectral radius, as well as the
algebraic connections, and thus influence the specific
topological characteristics of the graph, that is, the dynamic
processes in WMN.

Our simulations and experiments validated the usefulness
of spectral graph theory as a tool for understanding and
optimizing the performance of WMNs. Our results can
inform the design and deployment of WMNs for various
applications, such as Internet access, disaster response, and
military communication.
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Dependence of change of the spectral radius from ratio (x1(i) * x1(j))

L1-5 L1-2 L2-5 L1-3 L3-5 L1-4 L4-5 L2-3 L2-4 L3-4 L1-6 L5-6 L2-6 L3-6 L4-6
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