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Abstract: The most commonly used staple in the world, rice, is integral to daily living and working. Among diseases that attack rice plants,
bacterial leaf blight, blast, brown spot, and false smut are the diseases affecting both the agricultural productivity and the quality of life of
the people relying on it. Pesticides that are used in large quantities to treat these diseases are harmful to human health and disturb the natural
balance. This study focuses on an automated machine learning-based approach that applies image processing techniques for accurate detection
and classification of common rice leaf diseases. Convolutional neural networks were employed for high-accuracy classification, given that the
processing, such as feature identification and noise reduction, was carried out within preprocessing phases. Our proposed model performed better
compared to traditional deep learning architectures with an accuracy of 97.68% and precision, recall, and F1-score of 98%. In addition, we further
examined the model using explainable Al. The results provide a cost-effective, scalable solution for early disease diagnosis with the ability to
enable management to reduce crop loss. This study underscores the transformative potential of Al-powered precision agriculture technology in

revolutionizing sustainable agriculture practices and boosting food security.
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1. Introduction

Rice is one of the staple food sources of more than 50% of the
global population, and its production is a crucial component for the
world's food security [1]. However, diseases such as bacterial blight,
brown spot, and blast can significantly reduce production and quality.
Formerly, manual inspection was the reliance of farmers to identify
these diseases, as other procedures are expensive, time-consuming,
and can also have false positives. Disease detection is important as
late detection could lead to substantial agricultural losses. Nowadays,
advance in technology offers the possibility of automated solutions
with the use of computerized vision and neural networks (NNs), which
allow the rapid and precise diagnosis of rice leaf diseases. Plant disease
identification is considered an image classification problem; deep
learning models, in particular deep NN, are shown to be very effective
in image analysis of leaf images, feature extraction, and disease
classification [2]. However, when [oT devices are integrated with Al-
based methods and mobile applications, it boosts accessibility even
more for farmers. These technological solutions can help cut production
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costs, encourage sustainable agricultural practices, and do away with
the need to use chemical pesticides. This project intends to develop an
efficient automated rice leaf disease detection system for optimizing the
system of early detection, for improving crop health and agricultural
production. The growing necessity for the prevention of crop losses and
food security was a motivation behind this study. Conventional detection
methods are ineffective, which in turn leads to late treatment and low
yields. In addition to this, an intelligent, accurate, and efficient disease-
detection system is critically needed, which, if deployed appropriately,
can guide the proper decision-making of farmers at the right time.
The project tries to use the development of Al, computer vision, and
deep learning to construct an intelligent detection model to offer early
disease prediction and assist the farmer in using cost-effective tools to
adjust the crop management or ensure a stable food supply. In the use of
artificial intelligence in the classification of rice leaf disease, although
it has achieved some success, there are a lot of gaps in research.
Most of the research has been conducted under controlled conditions
and simulations in the laboratory; therefore, it may not apply when
deployed under real conditions in which leaves may overlap, there will
be weather conditions, and changes in the light conditions [3]. The low
dimensionality and local specificity of the available datasets provide
no generality of models and thus, the need for extensive and diverse
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datasets covering different rice varieties and diseases [4]. Furthermore,
some of the research works have not made any direct comparison
between different models, that is, Random Forest/convolutional NN
(CNN) and principal component analysis-extreme learning machine,
on a single dataset, which therefore made it difficult to ascertain the
most appropriate approach. Among them, most of the deep learning
models are also computationally expensive, making them inaccessible
for small-scale farmers and prompting the need for lightweight portable
models that can work with low power devices [4 — 6]. In addition, most
available systems only diagnose diseases once visible symptoms have
occurred, missing opportunities for early intervention, which could
help limit crop losses using predictive methods such as hyperspectral
imaging. These limitations are constraints for a stronger, more practical
machine learning solution that may be applied to identify rice leaf
disease. This work breaks these limitations by learning a model that
is competent at tackling a wider range of diseases, generalizes well to
challenging cases such as overlapping leaves, is more explainable, and
can learn from larger and more diverse datasets. We have trained state-
of-the-art CNN-based deep learning models, as well as our proposed
CNN model, and generated a comparison report so that one can select
a suitable model for the considered tasks. By bridging these gaps, the
research will generate an automated algorithm that is accurate and
interpretable, and deployable in farm fields, and will enable farmers to
minimize their economic losses and maximize rice productivity.

2. Literature Review

Some studies have focused on the application of deep learning,
machine learning, and ensemble learning for rice leaf disease detection.
In addition, multiple CNN-based architectures have been proposed,
such as VGG-16 [7], KNN [8], DenseNet [9], and Inception-ResNet-V2
[10], which all obtain a high classification accuracy. To optimize the
rice leaf disease classification, many studies have applied the image
processing methods, such as segmentation and RGB to HSV conversion
[7-10]. There is some research work that got comparative accuracy by
integrating feature extraction algorithms and classical machine learning
algorithms, such as SVM and XGBoost [11]. YOLOvS5 [13] and
YOLOV4 [12] are two recently published object detection algorithms
that were applied in identifying rice leaf diseases on leaves with
varying sizes. Despite these developments, there are still a number of
shortcomings, such as the current architecture, the lack of different types
of data, and the lack of explainable Als (XAls) for interpretability [14].
Recent studies have not sufficiently investigated novel loss functions,
such as yet another novel object loss, YOLOvS, with EloU and a-loU
loss functions, in order to obtain the best model performance [15].
Besides, some models, such as NuSVM [16], suffered from the lack of
reliable validation accuracy, and hence, there is a need for additional
stable feature extraction and classification approaches. Although these
problems have recently been tackled by designing custom architectures
based on the CNN [17] and deep models SqueezeNet [ 18], which have
achieved more than 93.3% accuracy, there are still some problems with
the limitations of datasets and environmental conditions. The major
research gaps in rice leaf disease detection are the need for models
having better generalization ability on different datasets, the poor
application of XAl for interpretability, and the lack of research into
optimization techniques. A number of studies have been carried out
with both traditional machine learning and deep learning models for
plant and rice disease detection, with different degrees of achievements
in terms of accuracy. Islam et al. [19] used CNN-based architectures
such as VGG16, ResNet50, and DenseNet121, with an accuracy of
91.63%. Similarly, Bharanidhara et al. [20] used a traditional k nearest
neighbor (KNN) classifier with an accuracy of 90%, which indicates
the good performance of the simpler model in some special scenarios.
Tejaswini et al. [21] tried more than one CNN method, such as VGG16,

VGG19, Xception, ResNet, custom 5- layer CNN with relatively less
accuracy of 78.20% as compared to other works. In another work, Tariq
et al. [22] extended VGG16 using Layer-wise Relevance Propagation in
order to increase interpretability and obtained 94.67% accuracy. Souvik
et al. [23] implemented pretrained models, namely ResNet50 and
VGG16, with the highest accuracy of 95.49% and Chiranjit Pal et al.
[24] incorporated ResNet50 and InceptionV3 along with a custom CNN
model and obtained one of the highest reported accuracies of 96.8%.
Likewise, Abasi et al. [25] tested a proposed CNN model, InceptionV3,
and EfficientNetB2 to attain an accuracy index of 95.7%. At the same
time, tests were also carried out by V. Sai et al. [26]. Multiple CNN-
based models, validation of the convolutional network with LIME,
best accuracy 91.60%. These results highlight the benefits of using pre-
tasked CNNs and hybrid strategies compared to traditional approaches
for plant disease detection.

This research is able to move past the above shortcomings by
extracting deep learning models, such as CNN, VGG16, and InceptionV3
based on the Kaggle “Rice Leaf Disease Detection” dataset with the
aim of enhancing the classification accuracy and explainability. The
research aims at early disease detection and sustainable rice cultivation
practices. This research states that the deep learning technique, CNN,
can be used for rice leaf disease detection to enhance the precision and
accuracy of the detection relative to conventional human inspection.
Al-based models will probably be able to discern trends in disease
more accurately and accelerate crop diagnosis to allow better crop
health management. Moreover, automatic detection of rice leaf diseases
facilitates the early detection of this disease, which will reduce the crop
loss and increase the efficacy of pesticides used for crop protection,
thus helping to improve the agricultural production and sustainability.
Leaf disease has tremendous impacts on both rice yield and food
safety issues, and a rapid, precise, and large-scale detection system is
greatly needed. Traditional manual inspection methods are generally
time consuming, slow, and prone to human errors, and thus have poor
effectiveness for real-time disease detection. Improvements in artificial
intelligence, and in particular deep learning methods such as CNNs,
have the potential to develop automated systems to produce accurate,
real-time diagnoses. This project aims to help farmers make timely,
informed decisions by using the Al-based models, thereby minimizing
the wastage of pesticides, reducing crop losses, and ultimately leading
to sustainable agriculture practices and food security. The comparison
between existing research and our proposed methodology is presented
in Table 1.

Table 1
The comparison between existing works

Author(s) Technique Algorithm used  Accuracy
Yuliany et al. [5] CNN CNN 77.33%
Wildah et al. [6] Custom CNN Custom CNN 98.86%
Ghosal etal. [7]  VGG16, CNN VGG16, CNN 92.46%
Ramesh et al. [8] KNN Model KNN 92.6%
Chen et al. [9] CNN-based DenseNet, Imagenet, 98.63%
models Inception
Islam et al. [10] CNN Models CNN based 92.68%
pretrained models
Azimetal. [11] Machine Learning XGB, DT 86.58%




Artificial Intelligence and Applications Vol. 00 Iss. 00 2025
. . attempts to surpass these limitations by improving the interpretability
II:;:tli(;::zlapruk YOL[‘(e)?::g::ques Y()A:(g)(t:tl\l(l?)::;\(/lgn A;;‘;gz/zy as well as the accuracy, using CNN, VGG-16, agd'lnceptionV3. Going
> > : forward, the research has to focus more on combining datasets to create
etal. [12] YOLOVS, ]?l' more meaningful machine learning models, enhancing the structure
NO-5scale Swin-L, of models, and applying XAI to make the models more accurate and
and Co-DINO-5scale more practically helpful. CNN: CNN is an artificial NN that is applied
Swin-L models for processing and analyzing visual information, such as movies and
M. E. Haque et YOLOV5 YOLOV5 76% images. CNNs have shown great capabilities in object recognition,
al. [13] (mAP) classification, and image recognition. We used almost all of the deep
o learning models, such as EfficientNetB4, VGG19, VGG16, ResNet50,
Ethiraj etal. [14] DNet-SVM: XAl DNet-SVM 53.81%  InceptionV3, and Xception, to make a good model for finding rice leaf
Trinh et al. [15] Improved YOLOVS with EloU  89.90%  disease. We suggest a new CNN model for classifying rice leaf diseases
YOLOVS & a-IoU loss in addition to the pretrained models. This research utilized a labeled
dataset comprising images of rice leaves affected by variousdiseases,
Setiawan et al., Nu-SVM Nu-SVM 52.12%- sourced from Kaggle.
[16] 53.81% To enhance classification accuracy, we devised an innovative
Kulkarni et al. CNN CNN 95% CNN architecture for the classification of rice leaf disease. Our model
[17] uses several convolution layers with batch normalization, max pooling,
and ReLU activation to find important features. To find different types
A. Kaur, et al. SqueezeNet ~ VGG16, SqueezeNet, 93.3%  of diseases, a softmax activation layer was used with fully connected
[18] InceptionV3 layers. A global average pooling layer was added to reduce overfitting.
Islam et al. [19] CNN Model VGG16, ResNet50,  91.67% Changing some of the parameters, such as the number of filters, the
and DenseNet121 sizes of the kernels, the dropout, and the optimizer, will make the
. . . architecture better. Transfer Learning: The top layers of the pretrained
Bharanidharan et Machine learning - KNN, RFC, LDAC, 90% deep learning models are fine-tuned and trained on the rice leaf dataset.
al. [20] models HGBC Hyperparameter tuning is done on both the suggested CNN and the
Tejaswini et al. CNN models VGG16 58.4% pretrained models. This increases the learning rate, batch size, and
[21] number of epochs. We used a number of evaluation metrics, such as
accuracy, precision, recall, and Fl-score, to compare how well the
Souvik et al. CNN-based pre- ResNet50 and 95.49%  models worked.
[23] trained model VGGl6 Comparison and Optimization: We compared how well the
Chiranjit Pal et CNN-based ResNet50, Inception ~ 96.8% proposed CNN model worked with how well pretrained models, such
al. [24] pretrained model V3, and proposed as InceptionV3, VGG19, and EfficientNetB4, worked. To enhance
and custom CNN CNN model classification accuracy, we aimed to investigate ensemble learning
model techniques to evaluate the efficacy of various models in detecting illness
Ammar Kamal CNN-based Inception V3, Effi- 95.7% patterns: Lastly, the mod.el has been 1mpr.oved, and the .results qf this
Abasi etal. [25]  pretrained model cientNetB2, and Pro- study Wlll be used. asa gulQe for other studies on automatic crop disease
and custom CNN posed CNf\I model detection for precision agriculture.
model .
V. Sai et al. [26] CNN-based model CNN-based model  91.60% 3.1. Pretrained CNN models
with LIME Pretrained models, such as EfficientNetB4, VGG19, VGGI16,
Our proposed CNN-based EfficientNetB4 97.68% ResNet50, InceptionV3, and EfficientNetB0, are frequently used
model pretrained model ~ VGG19 VGGlé for image classification because of their potent feature extraction
and custom CNN ResNetS, 0 Incep: capabilities. These models undergo transfer learning, in which the final
model tionV3, an d’EPﬁcient- classification layers are adjusted using the rice leaf disease dataset,

NetBO

Note: CNN: convolutional neural network.

3. Methodology

Rice leaf disease detection representation has been greatly
improved due to a number of image processing methods. Some
studies have implemented CNN architectures, such as VGG-16,
ResNet, DenseNet, and Inception, for better accuracy rates, but some
have also used a combination of object detection models, such as
YOLOvV4 and YOLOVS. Previous researchers applied some traditional
machine learning methods, such as SVM, XGBoost, and KNN, with
different levels of success. Despite these advancements, there are some
drawbacks, such as a lack of availability of XAl methods for the majority
of the studies, uncertainty in the environment, as well as access to the
dataset. Our approach for “Rice Leaf Disease Detection” Kaggle dataset

but not the first layers, which are in charge of obtaining fundamental
characteristics, such as edges, textures, and shapes. Every model has
special advantages, such as the following:

1) EfficientNetB4 and EfficientNetBO maintain excellent accuracy
while optimizing computational economy.

2) Although they need additional parameters, the deep networks
VGG16 and VGG19 are capable of extracting extensive hierarchical
information.

3) By employing factorized convolutions, InceptionV3 improves
accuracy while lowering computing costs.

4) ResNet50 (Residual Network with 50 layers) is a deep CNN
designed to overcome the vanishing gradient problem in very deep
networks.

This research paper utilized models that have been pretrained
as the base feature extractor for the diagnosis of rice leaf diseases,
illustrated in Figure 1. All layers of this base model were set untrainable
to retain the weights learned from ImageNet, thus retaining the features
learned in pretraining and only training the custom classifier layers on
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the rice leaf dataset. The classifier includes a global average pooling
layer, a dropout layer with a rate of 0.2, and a dense output layer of six
neurons using a softmax activation for multiclass classification.

To prevent overfitting, early stopping was used during training
by using a callback, which tracked the validation loss (val loss) and
stopped the training whenever there was no improvement over the past
eight epochs. This ensured that the model training stopped at the optimal
point, retaining the best generalization performance. By freezing the
convolutional feature bases and only training the classifier layers with
early stopping, the model achieved efficient training and effectively
performed on the rice leaf disease dataset.

Figure 1
Proposed methodology flow diagram
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Note: CNN: convolutional neural network.

Only the newly added top layers of the pretrained model are
trained using the pictures of the damaged rice leaves from our dataset;
the convolutional base module is not employed. Specifically, to
preserve the pretrained weights acquired on ImageNet, the basic layers
of the pretrained models are frozen. The photos of rice leaves were used
to train just the top classifier layers, which are made up of the global
average pooling layer, dropout layer, and dense output layer with six
neurons and softmax activation. Using this approach, the pre-learned
characteristics are preserved while the model learns to classify rice leaf
diseases, which will not interfere with the usage of the dataset.

3.1.1. EfficientNetB4

EfficientNetB4 is a deep learning model employed in image
classification that has both efficiency and accuracy balanced.
EfficientNetB4 employs a compound scaling technique by fairly
balancing all three dimensions, in contrast to conventional CNNs that
scale width, depth, or resolution separately. As a result, the model
can handle increasingly intricate image features without incurring
undue computational costs. Each version (B0 to B7) is scaled in size
and performance, starting with the baseline EfficientNet model. For
applications requiring high accuracy but with acceptable training and
inference speed, EfficientNetB4 is a particularly good compromise
between small, fast models and very large, computationally intensive

models. The network can learn more important features thanks to its
architecture, which uses squeeze-and-excitation optimization with
inverted residual blocks to cut out pointless calculations. In summary,
EfficientNetB4 is a powerful model that balances efficiency and
accuracy, making it appropriate for real-world image recognition
applications. The EfficientNetB4 architecture is shown in Figure 2.

3.1.2. EfficientNetB0

EfficientNetBO is the baseline model in the EfficientNet family.
Its goal is to provide robust performance while preserving the speed and
leanness of the model. Because of the compound scaling method used
in its design, depth, width, and resolution scale in a correlated manner
rather than improving one dimension. It makes the model strong
enough without making it extremely large or slow. The network is built
upon mobile inverted bottleneck blocks with squeeze-and-excitation
layers so that it can preserve important image details while filtering out
less important information. Owing to its compactness and efficiency,
EfficientNetBO can be utilized effectively in situations where the
computing resource is constrained, that is, real-time systems or mobile
applications. Even though EfficientNetBO is the smallest model from
the EfficientNet family, it provides tolerable accuracy relative to more
complex and larger models, thereby making it an efficient alternative
when speed and accuracy are both prime concerns. Figure 3 depicts the
architecture of EfficientNetBO0.

Figure 2
Architecture of EfficientNetB4
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3.1.3. VGG19

VGG19 is a deep CNN that became popular due to its simplicity
and strong performance in image recognition tasks. The model is built
according to a simple design principle, stacking a sequence of a number
of small 3 x 3 convolutional layers topped by one after another, instead
of using larger kernels. This device allows the network to capture fine
details and complex patterns without raising the number of parameters.
VGG19 contains 19 weight layers, which are convolutional and fully
connected layers, and in between them are pooling layers that gradually
reduce spatial dimensions and highlight key features. One of its most
salient strengths is that the regular architecture is simple to understand
and extend to other problem types, such as classification, feature
extraction, and transfer learning. However, VGG19 is very large in
size and imposes very heavy computational requirements compared
to newer models. However, it is still utilized as a baseline model for
computer vision because of its ease of use, strong representational
capability, and effectiveness on a vast range of different tasks. Figure 4
depicts the architecture of VGG19.

Figure 3
Architecture of EfficientNetB0
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\ 4
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Output shape: (None, 224, 224, 3) Parameters: 0

\ 4

efficientnetb0
(Functional)

to progressively capture more and more sophisticated patterns from
input images. Pooling layers are inserted at intervals in cutting the
dimensions when the retaining the layer's most important information,
and the final fully connected layers handle classification. The uniform
use of small convolutional kernels throughout the network helps it
extract detailed features without requiring excessively large filters,
making the model easier to generalize and adapt. Although VGG16 is
computationally heavy and requires a lot of memory compared to newer
models, it is more impactful in computer vision. Its clear architecture
and strong performance have also made it a popularchoice for transfer
learning, where pretrained features are reused for different image-based
tasks. Figure 5 shows the architecture of VGG16.

Figure 4
Architecture of VGG19
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3.1.4. VGGI6

VGG16 is a widely used CNN emphasizing depth as well as
simplicity of architecture. It has 16 layers of weights, which are mainly
made up of repeated stacks of 3 x 3 convolutional filters, used repeatedly
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3.1.5. ResNet50

ResNet50 is a deep CNN that addresses the challenges of
training very deep models by introducing the concept of residual
learning. In traditional deep networks, adding more layers usually leads
to vanishing gradients and lower accuracy, but ResNet50 mitigates
this through the use of shortcut connections, or skip connections.
Because of the connections, the network can transfer data directly
between layers, making training easier and lowering the possibility
of performance degradation as depth increases. Convolutional blocks
and identity blocks that continuously use residual mapping are used
to build the model's 50 layers. The network learns both high-level and
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low-level features more effectively thanks to this structure. In addition
to its excellent classification performance, ResNet50 is widely used as
the basis for object detection, segmentation, and other computer vision
problems. Its ability to balance efficiency and depth makes it one of the
most potent architectures for developing deep learning research. Figure
6 displays the ResNet50 architecture.

3.1.6. InceptionV3

Figure 5
Architecture of VGG16
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InceptionV3 is a deep CNN that uses Inception modules and
aims to achieve high accuracy at a low computational cost. Instead of
choosing a single filter size for convolutions, an independent module
uses multiple sizes in parallel, such as 1 x 1, 3 x 3, and 5 x 5, and
the outputs are summed. The network can learn more contextual
information and finer details in the same layer thanks to this design.
Additionally, InceptionV3 employs methods such as breaking down
larger convolutions into smaller ones, employing batch normalization
for training stabilization, and utilizing auxiliary classifiers to enhance
gradient flow in deeper layers. As a 48-layer model, it effectively
handles large-scale image classification problems because it strikes a
balance between depth and efficacy. Because of its capacity to capture
dense and multi-scale features without compromising model size or

computational requirements, it has also emerged as a solid foundation
for transfer learning and other vision tasks. The InceptionV3 architecture
is shown in Figure 7.

3.1.7. Proposed custom CNN model

Figure 6
Architecture of ResNet50
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We propose a specific CNN model to detect rice leaf disease in
this study. It takes 224 x 224 x 3 input images and is optimized to extract
and combine hierarchical features required for precise illness detection
efficiently. It starts with an input layer, then there are four convolutional
layers with progressively bigger filter sizes of 32, 64, 128, and 256,
each of which applies ReLU activation to include non-linearity and
detect intricate patterns. MaxPooling layers are applied after every
convolution block to compress spatial dimensions without sacrificing
essential features. The generated feature maps are then flattened and
transferred to a fully connected dense layer of 256 units with ReLU
activation. The technique suggested in Figure 8. To lessen the risk
of overfitting, a Dropout layer with a rate of 0.2 is used. Six neurons
using softmax activation make up the final output layer, which enables
multiclass classification for six distinct rice leaf disease categories.
Stable and effective learning is ensured by the model's construction
using the Adam optimizer and categorical cross-entropy loss function.
This special CNN is designed to address the problem of automated
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Figure 7 Figure 8
Architecture of InceptionV3 Proposed methodology
u input_layer_6
InPUt_Iayer_1 (InputLayer)
(InputLayer) Output shape: (None, 224, 224, 3) Parameters: 0
. : \ 4
Output shape: (None, 224, 224, 3) Parameters: 0 oA
' (Conv2D)
5 Output shape: (None, 222, 222, 32) Parameters: 896
sequential v
(Sequential) max_pooling2d_31
(MaxPooling2D)
Output shape: (None, 224, 224, 3) Parameters: 0 Output shape: (None, 111, 111, 32) mm—
conv2d_32
true_divide (ConvD)
(TrueDivide) Output shape: (None, 109, 109, 64) Parameters: 18,496
Output shape: (None, 224, 224, 3) Parameters: 0 max_pooling2d_32
v (MaxPooling2D)
Output shape: (None, 54, 54, 64) Parameters: 0
subtract \ 4
(Subtract) conv2d. 33
(Conv2D)
Output shape: (None, 224, 224, 3) Parameters: 0 Output shape: (None, 52, 52, 64) Parameters: 36,928
v max_pooling2d_33
inception v3 (MaxPooling2D)
: - Output shape: (None, 26, 26, 64) Parameters: 0
(Functional)
v
Output shape: (None, 7, 7, 2048) Parameters: 21,802,784 conv2d_34
(Conv2D)
v Output shape: (None, 24, 24, 128) Parameters: 73,856
. A 4
gIobaI_average_pqungd P
(GlobalAveragePooling2D) (MaxPooling2D)
Output shape: (None, 2048) Parametars10 Output shape: (None, 12, 12;28) Parameters: 0
v conv2d_35
(Conv2D)
drOPOUt Output shape: (None, 10, 10, 128) Parameters: 147,584
(Dropout) A 4
max_pooling2d_35
Output shape: (None, 2048) Parameters: 0 (g:xpoonnggm)_
v Output shape: (None, 5, 5, 128) Parameters: 0
dense conv2d_36
(Dense) (Conv2D)
Output shape: (None, 3, 3, 256) Parameters: 295,168
Output shape: (None, 6) Parameters: 12,294 ) 4
max_pooling2d_36
(MaxPooling2D)
Output shape: (None, 1, 1, 256) P ters: 0
Total params: 21,815,078 (83.22 MB) —- B
Trainable params: 12,294 (48.02 KB) flatten_6
(Flatten)
Nontrainable params: 21,802,784 (83 17 MB) Output shape: (None, 256) Parameters: 0
\ 4
dense_12
(Dense)
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image classification tasks. Figure 8 depicts the suggested process. dr(gf:)::;)-s
The suggested model presents a bespoke deep CNN architecture Output shape: (Nons, 256) P
tailored for the detection of rice leaf diseases. As opposed to traditional \ 4
pretrained networks, our model uses a number of max-pooling layers dense_13
and convolutional layers with increasingly larger filter sizes (32 — 256), (Bense)
followed by fully connected layers with dropout to reduce overfitting. Sdp et o) el
The network can effectively capture both detailed and abstract
information thanks to this architecture, which is intended for feature Jotalpdrams: £40.262 (2 L1ND)
. . . . . Trainable params: 640,262 (2.44 MB)
extraction from images of rice leaves. The model architecture, which o 0(0.008)

goes beyond simple model amalgamation or parameter adjustment, is
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customized for our particular dataset and includes layer depth, filter
quantity, and dropout rate.

This study used a methodical trial-and-error approach to modify
the hyperparameters of the suggested CNN model, namely learning
rate, batch size, dropout rate, and optimizer selection. To identify the
configuration that resulted in the highest validation accuracy while
minimizing overfitting, a variety of combinations were empirically
assessed. The batch size was chosen to optimize training efficiency
and generalization, the learning rate was modified to guarantee stable
convergence, and dropout rates were calibrated to minimize overfitting
while maintaining model capacity. The Adam optimizer was selected
because it continuously demonstrated superior convergence speed and
overall accuracy for our dataset of rice leaf diseases when compared to
other optimizers, such as SGD and RMSprop. This method made sure
the model was properly calibrated for the particular properties of the
data while preserving computational efficiency

4. Result Analysis

The dataset applied for this study was available on Kaggle (a
popular platform of publicly available machine learning and deep
learning datasets). Because it contains a large number of photos
of various diseases occurring on rice leaves, the “RICE CROP
DISEASES” dataset was selected. The data source is mentioned in the
data availability section. Three thousand eight hundred and 29 images
in the Rice Leaf Disease dataset were used to create six classes, namely,
636 images of Bacterial Leaf Blight, 646 images of Brown Spot, 653
images of Healthy Rice Leaf, 634 images of Leaf Blast, 628 images
of Leaf Scald, and 632 images of Sheath Blight. The model bias was
addressed by using the data augmentation techniques in the training. The
data balancing technique consisted of random horizontal flip, random
brightness adjusting (factor =0.2), and random contrast adjusting (factor
=0.2). These transformations artificially introduced a certain amount of
variability into the training data, which allowed for greatly improved
generalization to real-world scenarios such as changing lighting and
leaf orientation. A combination of augmentation techniques with a
balanced dataset was able to enhance the classification performance of
all disease classes of the model. These datasets guarantee wide and fair
access to good-quality annotated images grouped by different types of
diseases for proper model training and evaluation. Before being used
in deep learning models, the photos were preprocessed and directly
downloaded from Kaggle. Preprocessing was done using different
methods such as scaling, normalization, and augmentation for better
model functionality. A solid rice leaf disease recognition system should
be built up with an open-domain dataset guaranteeing repeatability and
comparability with previous research. Figure 9 shows the data sample
on rice leaf disease.

4.1. Data preprocessing

In deep learning, “picture preprocessing” refers to a range of

methods used to input images prior to their feeding into a NN. The
objectives are to ensure high-quality input data, increase model
performance, and improve training efficacy. In order to guarantee
network architecture compliance, it is common practice to reduce
photos to uniform dimensions. Normalization is frequently used to
move pixel values to a predetermined range, such as 0 to 1 or —1 to
1, in order to increase training stability and decrease the dominance
of individual characteristics. Mean subtraction and standardization
enhance the data, improving feature extraction and reducing the impact
of illumination variations by centering pixel values at zero and scaling
them to unit variance. Rotation, flipping, translation, zooming, and
cropping are examples of data augmentation techniques that artificially
increase the dataset's variety, which strengthens the model's capacity
for generalization. Filtering or denoising reduces noise, which enhances
image clarity and promotes better learning. Edge detection techniques,
such as the Canny or Sobel operators, highlight object boundaries,
making feature extraction and segmentation easier, whereas techniques,
such as histogram equalization, adjust pixel intensities to improve
contrast and make visual patterns more visible. Making changes to
color spaces, such as switching from RGB to grayscale or HSV, may
improve performance or reduce processing requirements. Typically, the
dataset was separated into three portions for training (80%), for testing
(10%), and the rest for validation (10%). To ensure successful model
training and accurate evaluation, preprocessing techniques, such as
scaling, normalization, and augmentation, are used.

4.2. Experiment and evaluation

Usually, one or more performance measures are used to assess the
performance of a machine learning or deep learning model. The ratio of
accurate forecasts to total predictions is an indication of accuracy that
may be directly measured by contrasting predicted and actual results.
Despite its simplicity and widespread usage, accuracy is deceptive when
used alone, particularly in cases when the data is uneven. Precision
focuses on the percentage of correct positive predictions and indicates
the model's degree of false positive mitigation, in contrast to recall,
which is concerned with how effectively the model catches the real
positives. The Fl1-score, which uses weighted harmonic averaging of
the sensitivity and specificity of the prediction outcomes, is a useful way
to measure model performance when the dataset is unbalanced [27-30].
To find any mistakes in the model, tools such as the confusion matrix
provide a thorough examination of the false positives, false negatives,
true positives, and true negatives. These metrics are often improved by
hyperparameter tuning, which is the act of modifying hyperparameters
such as learning rate, batch size, or number of network layers to
optimize performance. By elucidating model predictions and offering
the context for a particular outcome, a number of XAl approaches can
assist practitioners in analyzing model behavior more quickly. When
combined, these methods guarantee accurate models as well as an open
and reliable decision-making process. The study's result is shown in
Table 2.

Figure 9
Data sample of rice leaf disease

Healthy Rice_Leaf

Leaf Blast Sheath_Blight

Leaf scald




Artificial Intelligence and Applications Vol. 00

Iss. 00 2025

The efficacy of several deep learning models in identifying
rice leaf illnesses was assessed using four principal metrics. The
proposed model exhibited superior performance, with an accuracy of
97.68%, with Precision, Recall, and Fl-score all at 98%, indicating
its robust capacity to reliably differentiate between healthy and
sick leaves. Among the pretrained architectures, EfficientNetB0
achieved remarkable results, with 93.83% accuracy and 94% across
all assessment measures, underscoring the efficacy of its compound
scaling methodology for feature extraction in this challenge.
VGG16 and InceptionV3 demonstrated competitive but somewhat
inferior performance, achieving accuracies of 87.91% and 87.66%,
respectively, while sustaining balanced Precision and Recall near
88%, signifying dependable albeit less sophisticated detection skills in
comparison to the EfficientNet models. VGG19 achieved an accuracy
of 87.14%, demonstrating comparable metric values somewhat lower
than those of VGG16. EfficientNetB4 attained an accuracy of 88.68%,

Table 2
The result analysis of the deep learning model

Bacterial Leaf Blight

True lables

Healthy Rice Leaf-

Figure 10

The confusion matrix of the proposed model

Brown Spot -

Leaf Blast -

Leaf Scald - 0
Sheath Blight - 0
]
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@

©
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8

3]

©

o

Algorithms Accuracy Precision  Recall F1-score
VGGI19 87.14 88 87 87
VGG16 87.91 88 88 88
ResNet50 83.03 83 83 83
EfficientNetBO 93.83 94 94 94
EfficientNetB4 88.68 89 89 89
InceptionV3 87.66 89 88 88
Proposed model 97.68 98 98 98

surpassing VGG and Inception networks, while remaining inferior to
EfficientNetBO0, indicating that model complexity and hyperparameter
optimization considerably influence performance. ResNet50, although
widely utilized in computer vision, achieved the lowest performance
with an accuracy of 83.03% and matching Precision, Recall, and
Fl-score of 83%, suggesting that its residual connections were less
adept at detecting nuanced patterns in rice leaf diseases. These results
indicate that although conventional deep learning architectures exhibit
commendable performance, the Proposed Model distinctly provides
enhanced accuracy, resilience, and generalization in detecting rice leaf
diseases. Figures 10, 11, 12, and 13 illustrate the confusion matrix,
accuracy and loss curves, the classification report, and the GRAD-CAM
of the proposed model, respectively, offering more insight into model
performance.

5. Future Work

Future research can enhance the proposed rice leaf disease
detection model by integrating larger and more diverse datasets
sourced from various geographical regions, thereby improving the
model's generalizability across different environments. Creating
real-time detection apps for mobile devices or imaging systems
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Figure 12

The classification report for proposed model
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Figure 13
The GRAD CAM (XAI) for the proposed model
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based on drones could help farmers in the field in a timely manner.
Furthermore, by optimizing the model for low-resource devices using
techniques such as quantization or pruning, it may be possible to
lower computational requirements and enable wider deployment. By
improving the interpretation of the model's predictions, XAl techniques
would boost user trust. The system may be more advantageous for
sustainable agriculture if its ability to assess the severity of the disease
and recommend treatments is improved The simulation results show
that the proposed UNet method of this research has main advantages
for practical applications. In fact, in addition to having a basic and
standardized architecture, the proposed method UNet with attention
mechanism also has good accuracy. The results presented in the table
show that the proposed method has the highest accuracy. Also, the
proposed method is simulated on a standard dataset. However, this
method still has limitations; one of the most important limitations of the
proposed method is the lack of access to a large dataset. If this limitation
is removed, it is possible to examine the advantages and disadvantages
of the proposed method.

5. Conclusion and Future Works

The application of deep learning and image processing techniques
has greatly improved the detection of diseases of rice leaves. Research-
ers have examined a range of approaches, including CNN architectures,
such as VGG16, ResNet, DenseNet, and Inception, as well as object de-
tection models, such as YOLOv4 and YOLOVS5, with differing degrees
of success. Conventional machine learning techniques, such as SVM,
XGBoost, and KNN, have been used, but they have drawbacks, such as
poor explainability, variable environmental conditions, and limited ac-
cess to datasets. To improve interpretability and accuracy on the “Rice
Leaf Disease Detection” Kaggle dataset, we employ CNNs, VGG16,
and InceptionV3. To increase the accuracy and usefulness of rice dis-
ease detection systems for sustainable agriculture, future research must
focus on incorporating larger datasets, improving model architectures,
and applying explainable artificial intelligence techniques.

Recommendations

In future research, rice leaf illness classification is proposed
to create larger and more diverse datasets to better reflect realworld
environmental variations, enhancing deep learning model architectures
for greater robustness and generalization, and utilizing XAl techniques
to make model decisions more transparent and trustworthy for farmers
and agricultural experts. While optimizing lightweight models would
make deployment on mobile and edge devices easier for real-time field
applications, incorporating ensemble methods that combine multiple
models could further increase accuracy. These methods will improve
the accuracy, comprehensibility, and utility of rice disease detection
systems for sustainable agriculture.
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