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Abstract: The most commonly used staple in the world, rice, is integral to daily living and working. Among diseases that attack rice plants, 
bacterial leaf blight, blast, brown spot, and false smut are the diseases affecting both the agricultural productivity and the quality of life of 
the people relying on it. Pesticides that are used in large quantities to treat these diseases are harmful to human health and disturb the natural 
balance. This study focuses on an automated machine learning-based approach that applies image processing techniques for accurate detection 
and classification of common rice leaf diseases. Convolutional neural networks were employed for high-accuracy classification, given that the 
processing, such as feature identification and noise reduction, was carried out within preprocessing phases. Our proposed model performed better 
compared to traditional deep learning architectures with an accuracy of 97.68% and precision, recall, and F1-score of 98%. In addition, we further 
examined the model using explainable AI. The results provide a cost-effective, scalable solution for early disease diagnosis with the ability to 
enable management to reduce crop loss. This study underscores the transformative potential of AI-powered precision agriculture technology in 
revolutionizing sustainable agriculture practices and boosting food security.
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1. Introduction
Rice is one of the staple food sources of more than 50% of the 

global population, and its production is a crucial component for the 
world's food security [1]. However, diseases such as bacterial blight, 
brown spot, and blast can significantly reduce production and quality. 
Formerly, manual inspection was the reliance of farmers to identify 
these diseases, as other procedures are expensive, time-consuming, 
and can also have false positives. Disease detection is important as 
late detection could lead to substantial agricultural losses. Nowadays, 
advance in technology offers the possibility of automated solutions 
with the use of computerized vision and neural networks (NNs), which 
allow the rapid and precise diagnosis of rice leaf diseases. Plant disease 
identification is considered an image classification problem; deep 
learning models, in particular deep NNs, are shown to be very effective 
in image analysis of leaf images, feature extraction, and disease 
classification [2]. However, when IoT devices are integrated with AI-
based methods and mobile applications, it boosts accessibility even 
more for farmers. These technological solutions can help cut production 

costs, encourage sustainable agricultural practices, and do away with 
the need to use chemical pesticides. This project intends to develop an 
efficient automated rice leaf disease detection system for optimizing the 
system of early detection, for improving crop health and agricultural 
production. The growing necessity for the prevention of crop losses and 
food security was a motivation behind this study. Conventional detection 
methods are ineffective, which in turn leads to late treatment and low 
yields. In addition to this, an intelligent, accurate, and efficient disease-
detection system is critically needed, which, if deployed appropriately, 
can guide the proper decision-making of farmers at the right time. 
The project tries to use the development of AI, computer vision, and 
deep learning to construct an intelligent detection model to offer early 
disease prediction and assist the farmer in using cost-effective tools to 
adjust the crop management or ensure a stable food supply. In the use of 
artificial intelligence in the classification of rice leaf disease, although 
it has achieved some success, there are a lot of gaps in research. 
Most of the research has been conducted under controlled conditions 
and simulations in the laboratory; therefore, it may not apply when 
deployed under real conditions in which leaves may overlap, there will 
be weather conditions, and changes in the light conditions [3]. The low 
dimensionality and local specificity of the available datasets provide 
no generality of models and thus, the need for extensive and diverse 
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datasets covering different rice varieties and diseases [4]. Furthermore, 
some of the research works have not made any direct comparison 
between different models, that is, Random Forest/convolutional NN 
(CNN) and principal component analysis-extreme learning machine, 
on a single dataset, which therefore made it difficult to ascertain the 
most appropriate approach. Among them, most of the deep learning 
models are also computationally expensive, making them inaccessible 
for small-scale farmers and prompting the need for lightweight portable 
models that can work with low power devices [4 – 6]. In addition, most 
available systems only diagnose diseases once visible symptoms have 
occurred, missing opportunities for early intervention, which could 
help limit crop losses using predictive methods such as hyperspectral 
imaging. These limitations are constraints for a stronger, more practical 
machine learning solution that may be applied to identify rice  leaf 
disease. This work breaks these limitations by learning a model that 
is competent at tackling a wider range of diseases, generalizes well to 
challenging cases such as overlapping leaves, is more explainable, and 
can learn from larger and more diverse datasets. We have trained state-
of-the-art CNN-based deep learning models, as well as our proposed 
CNN model, and generated a comparison report so that one can select 
a suitable model for the considered tasks. By bridging these gaps, the 
research will generate an automated algorithm that is accurate and 
interpretable, and deployable in farm fields, and will enable farmers to 
minimize their economic losses and maximize rice productivity. 

2. Literature Review  
Some studies have focused on the application of deep learning, 

machine learning, and ensemble learning for rice leaf disease detection. 
In addition, multiple CNN-based architectures have been proposed, 
such as VGG-16 [7], KNN [8], DenseNet [9], and Inception-ResNet-V2 
[10], which all obtain a high classification accuracy. To optimize the 
rice leaf disease classification, many studies have applied the image 
processing methods, such as segmentation and RGB to HSV conversion 
[7-10]. There is some research work that got comparative accuracy by 
integrating feature extraction algorithms and classical machine learning 
algorithms, such as SVM and XGBoost [11]. YOLOv5 [13] and 
YOLOv4 [12] are two recently published object detection algorithms 
that were applied in identifying rice leaf diseases on leaves with 
varying sizes. Despite these developments, there are still a number of 
shortcomings, such as the current architecture, the lack of different types 
of data, and the lack of explainable AIs (XAIs) for interpretability [14]. 
Recent studies have not sufficiently investigated novel loss functions, 
such as yet another novel object loss, YOLOv8, with EIoU and a-IoU 
loss functions, in order to obtain the best model performance [15]. 
Besides, some models, such as NuSVM [16], suffered from the lack of 
reliable validation accuracy, and hence, there is a need for additional 
stable feature extraction and classification approaches. Although these 
problems have recently been tackled by designing custom architectures 
based on the CNN [17] and deep models SqueezeNet [18], which have 
achieved more than 93.3% accuracy, there are still some problems with 
the limitations of datasets and environmental conditions. The major 
research gaps in rice leaf disease detection are the need for models 
having better generalization ability on different datasets, the poor 
application of XAI for interpretability, and the lack of research into 
optimization techniques. A number of studies have been carried out 
with both traditional machine learning and deep learning models for 
plant and rice disease detection, with different degrees of achievements 
in terms of accuracy. Islam et al. [19] used CNN-based architectures 
such as VGG16, ResNet50, and DenseNet121, with an accuracy of 
91.63%. Similarly, Bharanidhara et al. [20] used a traditional k nearest 
neighbor (KNN) classifier with an accuracy of 90%, which indicates 
the good performance of the simpler model in some special scenarios. 
Tejaswini et al. [21] tried more than one CNN method, such as VGG16, 

VGG19, Xception, ResNet, custom 5- layer CNN with relatively less 
accuracy of 78.20% as compared to other works. In another work, Tariq 
et al. [22] extended VGG16 using Layer-wise Relevance Propagation in 
order to increase interpretability and obtained 94.67% accuracy. Souvik 
et al. [23] implemented pretrained models, namely ResNet50 and 
VGG16, with the highest accuracy of 95.49% and Chiranjit Pal et al. 
[24] incorporated ResNet50 and InceptionV3 along with a custom CNN 
model and obtained one of the highest reported accuracies of 96.8%. 
Likewise, Abasi et al. [25] tested a proposed CNN model, InceptionV3, 
and EfficientNetB2 to attain an accuracy index of 95.7%. At the same 
time, tests were also carried out by V. Sai et al. [26]. Multiple CNN-
based models, validation of the convolutional network with LIME, 
best accuracy 91.60%. These results highlight the benefits of using pre-
tasked CNNs and hybrid strategies compared to traditional approaches 
for plant disease detection. 

This research is able to move past the above shortcomings by 
extracting deep learning models, such as CNN, VGG16, and InceptionV3 
based on the Kaggle “Rice Leaf Disease Detection” dataset with the 
aim of enhancing the classification accuracy and explainability. The 
research aims at early disease detection and sustainable rice cultivation 
practices. This research states that the deep learning technique, CNN, 
can be used for rice leaf disease detection to enhance the precision and 
accuracy of the detection relative to conventional human inspection. 
AI-based models will probably be able to discern trends in disease 
more accurately and accelerate crop diagnosis to allow better crop 
health management. Moreover, automatic detection of rice leaf diseases 
facilitates the early detection of this disease, which will reduce the crop 
loss and increase the efficacy of pesticides used for crop protection, 
thus helping to improve the agricultural production and sustainability. 
Leaf disease has tremendous impacts on both rice yield and food 
safety issues, and a rapid, precise, and large-scale detection system is 
greatly needed. Traditional manual inspection methods are generally 
time consuming, slow, and prone to human errors, and thus have poor 
effectiveness for real-time disease detection. Improvements in artificial 
intelligence, and in particular deep learning methods such as CNNs, 
have the potential to develop automated systems to produce accurate, 
real-time diagnoses. This project aims to help farmers make timely, 
informed decisions by using the AI-based models, thereby minimizing 
the wastage of pesticides, reducing crop losses, and ultimately leading 
to sustainable agriculture practices and food security. The comparison 
between existing research and our proposed methodology is presented 
in Table 1.  
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Author(s) Technique Algorithm used Accuracy

Yuliany et al. [5] CNN CNN 77.33%

Wildah et al. [6] Custom CNN Custom CNN 98.86%

Ghosal et al. [7] VGG16, CNN VGG16, CNN 92.46%

Ramesh et al. [8] KNN Model KNN 92.6%

Chen et al. [9] CNN-based 
models

DenseNet, Imagenet, 
Inception

98.63%

Islam et al. [10] CNN Models CNN based  
pretrained models

92.68%

Azim et al. [11] Machine Learning XGB, DT 86.58%

Table 1
The comparison between existing works



Note: CNN: convolutional neural network.  

3. Methodology  
Rice leaf disease detection representation has been greatly 

improved due to a number of image processing methods. Some 
studies have implemented CNN architectures, such as VGG-16, 
ResNet, DenseNet, and Inception, for better accuracy rates, but some 
have also used a combination of object detection models, such as 
YOLOv4 and YOLOv5. Previous researchers applied some traditional 
machine learning methods, such as SVM, XGBoost, and KNN, with 
different levels of success. Despite these advancements, there are some 
drawbacks, such as a lack of availability of XAI methods for the majority 
of the studies, uncertainty in the environment, as well as access to the 
dataset. Our approach for “Rice Leaf Disease Detection” Kaggle dataset 

attempts to surpass these limitations by improving the interpretability 
as well as the accuracy, using CNN, VGG-16, and InceptionV3. Going 
forward, the research has to focus more on combining datasets to create 
more meaningful machine learning models, enhancing the structure 
of models, and applying XAI to make the models more accurate and 
more practically helpful. CNN: CNN is an artificial NN that is applied 
for processing and analyzing visual information, such as movies and 
images. CNNs have shown great capabilities in object recognition, 
classification, and image recognition. We used almost all of the deep 
learning models, such as EfficientNetB4, VGG19, VGG16, ResNet50, 
InceptionV3, and Xception, to make a good model for finding rice leaf 
disease. We suggest a new CNN model for classifying rice leaf diseases 
in addition to the pretrained models. This research utilized a labeled 
dataset comprising images of rice leaves affected by variousdiseases, 
sourced from Kaggle. 

To enhance classification accuracy, we devised an innovative 
CNN architecture for the classification of rice leaf disease. Our model 
uses several convolution layers with batch normalization, max pooling, 
and ReLU activation to find important features. To find different types 
of diseases, a softmax activation layer was used with fully connected 
layers. A global average pooling layer was added to reduce overfitting. 
Changing some of the parameters, such as the number of filters, the 
sizes of the kernels, the dropout, and the optimizer, will make the 
architecture better. Transfer Learning: The top layers of the pretrained 
deep learning models are fine-tuned and trained on the rice leaf dataset. 
Hyperparameter tuning is done on both the suggested CNN and the 
pretrained models. This increases the learning rate, batch size, and 
number of epochs. We used a number of evaluation metrics, such as 
accuracy, precision, recall, and F1-score, to compare how well the 
models worked. 

Comparison and Optimization: We compared how well the 
proposed CNN model worked with how well pretrained models, such 
as InceptionV3, VGG19, and EfficientNetB4, worked. To enhance 
classification accuracy, we aimed to investigate ensemble learning 
techniques to evaluate the efficacy of various models in detecting illness 
patterns. Lastly, the model has been improved, and the results of this 
study will be used as a guide for other studies on automatic crop disease 
detection for precision agriculture. 

3.1. Pretrained CNN models  
Pretrained models, such as EfficientNetB4, VGG19, VGG16, 

ResNet50, InceptionV3, and EfficientNetB0, are frequently used 
for image classification because of their potent feature extraction 
capabilities. These models undergo transfer learning, in which the final 
classification layers are adjusted using the rice leaf disease dataset, 
but not the first layers, which are in charge of obtaining fundamental 
characteristics, such as edges, textures, and shapes. Every model has 
special advantages, such as the following: 

1)	 EfficientNetB4 and EfficientNetB0 maintain excellent accuracy 
while optimizing computational economy.  

2)	 Although they need additional parameters, the deep networks 
VGG16 and VGG19 are capable of extracting extensive hierarchical 
information.  

3)	 By employing factorized convolutions, InceptionV3 improves 
accuracy while lowering computing costs.  

4)	 ResNet50 (Residual Network with 50 layers) is a deep CNN 
designed to overcome the vanishing gradient problem in very deep 
networks. 

This research paper utilized models that have been pretrained 
as the base feature extractor for the diagnosis of rice leaf diseases, 
illustrated in Figure 1. All layers of this base model were set untrainable 
to retain the weights learned from ImageNet, thus retaining the features 
learned in pretraining and only training the custom classifier layers on 
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Author(s) Technique Algorithm used Accuracy
Kiratiratanapruk 
et al. [12]

YOLO Techniques YOLOv4, YOLOv8n, 
YOLOv8l, DI-

NO-5scale Swin-L, 
and Co-DINO-5scale 

Swin-L models

93.20%

M. E. Haque et 
al. [13]

YOLOv5 YOLOv5 76% 
(mAP)

Ethiraj et al. [14] DNet-SVM: XAI DNet-SVM 53.81%

Trinh et al. [15] Improved 
YOLOv8 

YOLOv8 with EIoU 
& α-IoU loss

89.90%

Setiawan et al., 
[16]

Nu-SVM Nu-SVM 52.12%-
53.81%

Kulkarni et al. 
[17]

CNN CNN 95%

A. Kaur, et al. 
[18]

SqueezeNet VGG16, SqueezeNet, 
InceptionV3

93.3%

Islam et al. [19] CNN Model VGG16, ResNet50, 
and DenseNet121

91.67%

Bharanidharan et 
al. [20]

Machine learning 
models 

KNN, RFC, LDAC, 
HGBC

90%

Tejaswini et al. 
[21]

CNN models VGG16 58.4%

Souvik et al. 
[23] 

CNN-based pre-
trained model

ResNet50 and 
VGG16

95.49%

Chiranjit Pal et 
al. [24]

CNN-based 
pretrained model 
and custom CNN 

model

ResNet50, Inception 
V3, and proposed 

CNN model

96.8%

Ammar Kamal 
Abasi et al. [25]

CNN-based 
pretrained model 
and custom CNN 

model

Inception V3, Effi-
cientNetB2, and Pro-

posed CNN model

95.7%

V. Sai et al. [26] CNN-based model CNN-based model 
with LIME

91.60%

Our proposed 
model

CNN-based 
pretrained model 
and custom CNN 

model

EfficientNetB4, 
VGG19, VGG16, 
ResNet50, Incep-

tionV3, and Efficient-
NetB0

97.68%
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the rice leaf dataset. The classifier includes a global average pooling 
layer, a dropout layer with a rate of 0.2, and a dense output layer of six 
neurons using a softmax activation for multiclass classification. 

To prevent overfitting, early stopping was used during training 
by using a callback, which tracked the validation loss (val_loss) and 
stopped the training whenever there was no improvement over the past 
eight epochs. This ensured that the model training stopped at the optimal 
point, retaining the best generalization performance. By freezing the 
convolutional feature bases and only training the classifier layers with 
early stopping, the model achieved efficient training and effectively 
performed on the rice leaf disease dataset.  

Note: CNN: convolutional neural network.  

Only the newly added top layers of the pretrained model are 
trained using the pictures of the damaged rice leaves from our dataset; 
the convolutional base module is not employed. Specifically, to 
preserve the pretrained weights acquired on ImageNet, the basic layers 
of the pretrained models are frozen. The photos of rice leaves were used 
to train just the top classifier layers, which are made up of the global 
average pooling layer, dropout layer, and dense output layer with six 
neurons and softmax activation. Using this approach, the pre-learned 
characteristics are preserved while the model learns to classify rice leaf 
diseases, which will not interfere with the usage of the dataset.  

3.1.1. EfficientNetB4  

EfficientNetB4 is a deep learning model employed in image 
classification that has both efficiency and accuracy balanced.  
EfficientNetB4 employs a compound scaling technique by fairly 
balancing all three dimensions, in contrast to conventional CNNs that 
scale width, depth, or resolution separately. As a result, the model 
can handle increasingly intricate image features without incurring 
undue computational costs. Each version (B0 to B7) is scaled in size 
and performance, starting with the baseline EfficientNet model. For 
applications requiring high accuracy but with acceptable training and 
inference speed, EfficientNetB4 is a particularly good compromise 
between small, fast models and very large, computationally intensive 

models. The network can learn more important features thanks to its 
architecture, which uses squeeze-and-excitation optimization with 
inverted residual blocks to cut out pointless calculations. In summary, 
EfficientNetB4 is a powerful model that balances efficiency and 
accuracy, making it appropriate for real-world image recognition 
applications. The EfficientNetB4 architecture is shown in Figure 2.  

3.1.2. EfficientNetB0  

EfficientNetB0 is the baseline model in the EfficientNet family. 
Its goal is to provide robust performance while preserving the speed and 
leanness of the model. Because of the compound scaling method used 
in its design, depth, width, and resolution scale in a correlated manner 
rather than improving one dimension. It makes the model strong 
enough without making it extremely large or slow. The network is built 
upon mobile inverted bottleneck blocks with squeeze-and-excitation 
layers so that it can preserve important image details while filtering out 
less important information. Owing to its compactness and efficiency, 
EfficientNetB0 can be utilized effectively in situations where the 
computing resource is constrained, that is, real-time systems or mobile 
applications. Even though EfficientNetB0 is the smallest model from 
the EfficientNet family, it provides tolerable accuracy relative to more 
complex and larger models, thereby making it an efficient alternative 
when speed and accuracy are both prime concerns. Figure 3 depicts the 
architecture of EfficientNetB0.  
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Figure 1
Proposed methodology flow diagram

Figure 2
Architecture of EfficientNetB4
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3.1.3. VGG19  

VGG19 is a deep CNN that became popular due to its simplicity 
and strong performance in image recognition tasks. The model is built 
according to a simple design principle, stacking a sequence of a number 
of small 3 × 3 convolutional layers topped by one after another, instead 
of using larger kernels. This device allows the network to capture fine 
details and complex patterns without raising the number of parameters. 
VGG19 contains 19 weight layers, which are convolutional and fully 
connected layers, and in between them are pooling layers that gradually 
reduce spatial dimensions and highlight key features. One of its most 
salient strengths is that the regular architecture is simple to understand 
and extend to other problem types, such as classification, feature 
extraction, and transfer learning. However, VGG19 is very large in 
size and imposes very heavy computational requirements compared 
to newer models. However, it is still utilized as a baseline model for 
computer vision because of its ease of use, strong representational 
capability, and effectiveness on a vast range of different tasks. Figure 4 
depicts the architecture of VGG19.  

3.1.4. VGG16  

VGG16 is a widely used CNN emphasizing depth as well as 
simplicity of architecture. It has 16 layers of weights, which are mainly 
made up of repeated stacks of 3 × 3 convolutional filters, used repeatedly 

to progressively capture more and more sophisticated patterns from 
input images. Pooling layers are inserted at intervals in cutting the 
dimensions when the retaining the layer's most important information, 
and the final fully connected layers handle classification. The uniform 
use of small convolutional kernels throughout the network helps it 
extract detailed features without requiring excessively large filters, 
making the model easier to generalize and adapt. Although VGG16 is 
computationally heavy and requires a lot of memory compared to newer 
models, it is more impactful in computer vision. Its clear architecture 
and strong performance have also made it a popularchoice for transfer 
learning, where pretrained features are reused for different image-based 
tasks. Figure 5 shows the architecture of VGG16. 

 

3.1.5. ResNet50  

ResNet50 is a deep CNN that addresses the challenges of 
training very deep models by introducing the concept of residual 
learning. In traditional deep networks, adding more layers usually leads 
to vanishing gradients and lower accuracy, but ResNet50 mitigates 
this through the use of shortcut connections, or skip connections. 
Because of the connections, the network can transfer data directly 
between layers, making training easier and lowering the possibility 
of performance degradation as depth increases. Convolutional blocks 
and identity blocks that continuously use residual mapping are used 
to build the model's 50 layers. The network learns both high-level and 
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Figure 3
Architecture of EfficientNetB0

Figure 4
Architecture of VGG19
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low-level features more effectively thanks to this structure. In addition 
to its excellent  classification performance, ResNet50 is widely used as 
the basis for object detection, segmentation, and other computer vision  
problems. Its ability to balance efficiency and depth makes it one of the 
most potent architectures for developing deep learning  research. Figure 
6 displays the ResNet50 architecture.  

3.1.6. InceptionV3  

InceptionV3 is a deep CNN that uses Inception modules and 
aims to achieve high accuracy at a low computational cost.  Instead of 
choosing a single filter size for convolutions, an independent module 
uses multiple sizes in parallel, such as 1 × 1,  3 × 3, and 5 × 5, and 
the outputs are summed. The network can learn more contextual 
information and finer details in the same layer thanks to this design. 
Additionally, InceptionV3 employs methods such as breaking down 
larger convolutions into smaller ones, employing batch normalization 
for training stabilization, and utilizing auxiliary classifiers to enhance 
gradient flow in deeper layers. As a 48-layer model, it effectively 
handles large-scale image classification problems because it strikes a 
balance between depth and efficacy. Because of its capacity to capture 
dense and multi-scale features without compromising model size or 

computational requirements, it has also emerged as a solid foundation 
for transfer learning and other vision tasks. The InceptionV3 architecture 
is shown in Figure 7. 

3.1.7. Proposed custom CNN model  

We propose a specific CNN model to detect rice leaf disease in 
this study. It takes 224 × 224 × 3 input images and is optimized to extract 
and combine hierarchical features required for precise illness detection 
efficiently. It starts with an input layer, then there are four convolutional 
layers with progressively bigger filter sizes of 32, 64, 128, and 256, 
each of which applies ReLU activation to include non-linearity and 
detect intricate patterns. MaxPooling layers are applied after every 
convolution block to compress spatial dimensions without sacrificing 
essential features. The generated feature maps are then flattened and 
transferred to a fully connected dense layer of 256 units with ReLU 
activation. The technique suggested in Figure 8. To lessen the risk 
of overfitting, a Dropout layer with a rate of 0.2 is used. Six neurons 
using softmax activation make up the final output layer, which enables 
multiclass classification for six distinct rice leaf disease categories. 
Stable and effective learning is ensured by the model's construction 
using the Adam optimizer and categorical cross-entropy loss function. 
This special CNN is designed to address the problem of automated 
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Figure 6
Architecture of ResNet50

Figure 5
Architecture of VGG16
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rice leaf disease identification by providing a portable, accurate, and 
comprehensible solution that is especially well-suited for agricultural 
image classification tasks. Figure 8 depicts the suggested process.

The suggested model presents a bespoke deep CNN architecture 
tailored for the detection of rice leaf diseases. As opposed to traditional 
pretrained networks, our model uses a number of max-pooling layers 
and convolutional layers with increasingly larger filter sizes (32 → 256), 
followed by fully connected layers with dropout to reduce overfitting. 
The network can effectively capture both detailed and abstract 
information thanks to this architecture, which is intended for feature 
extraction from images of rice leaves. The model architecture, which 
goes beyond simple model amalgamation or parameter adjustment, is 

7

Figure 7
Architecture of InceptionV3

Figure 8
Proposed methodology
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customized for our particular dataset and includes layer depth, filter 
quantity, and dropout rate.  

This study used a methodical trial-and-error approach to modify 
the hyperparameters of the suggested CNN model, namely learning 
rate, batch size, dropout rate, and optimizer selection. To identify the 
configuration that resulted in the highest validation accuracy while 
minimizing overfitting, a variety of combinations were empirically 
assessed. The batch size was chosen to optimize training efficiency 
and generalization, the learning rate was modified to guarantee stable 
convergence, and dropout rates were calibrated to minimize overfitting 
while maintaining model capacity. The Adam optimizer was selected 
because it continuously demonstrated superior convergence speed and 
overall accuracy for our dataset of rice leaf diseases when compared to 
other optimizers, such as SGD and RMSprop. This method made sure 
the model was properly calibrated for the particular properties of the 
data while preserving computational efficiency  

4. Result Analysis  
The dataset applied for this study was available on Kaggle (a 

popular platform of publicly available machine learning and deep 
learning datasets). Because it contains a large number of photos 
of various diseases occurring on rice leaves, the “RICE CROP 
DISEASES” dataset was selected. The data source is mentioned in the 
data availability section. Three thousand eight hundred and 29 images 
in the Rice Leaf Disease dataset were used to create six classes, namely, 
636 images of Bacterial Leaf Blight, 646 images of Brown Spot, 653 
images of Healthy Rice Leaf, 634 images of Leaf Blast, 628 images 
of Leaf Scald, and 632 images of Sheath Blight. The model bias was 
addressed by using the data augmentation techniques in the training. The 
data balancing technique consisted of random horizontal flip, random 
brightness adjusting (factor = 0.2), and random contrast adjusting (factor 
= 0.2). These transformations artificially introduced a certain amount of 
variability into the training data, which allowed for greatly improved 
generalization to real-world scenarios such as changing lighting and 
leaf orientation. A combination of augmentation techniques with a 
balanced dataset was able to enhance the classification performance of 
all disease classes of the model. These datasets guarantee wide and fair 
access to good-quality annotated images grouped by different types of 
diseases for proper model training and evaluation. Before being used 
in deep learning models, the photos were preprocessed and directly 
downloaded from Kaggle. Preprocessing was done using different 
methods such as scaling, normalization, and augmentation for better 
model functionality. A solid rice leaf disease recognition system should 
be built up with an open-domain dataset guaranteeing repeatability and 
comparability with previous research. Figure 9 shows the data sample 
on rice leaf disease.  

4.1. Data preprocessing  
In deep learning, “picture preprocessing” refers to a range of 

methods used to input images prior to their feeding into a NN. The 
objectives are to ensure high-quality input data, increase model 
performance, and improve training efficacy. In order to guarantee 
network architecture compliance, it is common practice to reduce 
photos to uniform dimensions. Normalization is frequently used to 
move pixel values to a predetermined range, such as 0 to 1 or −1 to 
1, in order to increase training stability and decrease the dominance 
of individual characteristics. Mean subtraction and standardization 
enhance the data, improving feature extraction and reducing the impact 
of illumination variations by centering pixel values at zero and scaling 
them to unit variance. Rotation, flipping, translation, zooming, and 
cropping are examples of data augmentation techniques that artificially 
increase the dataset's variety, which strengthens the model's capacity 
for generalization. Filtering or denoising reduces noise, which enhances 
image clarity and promotes better learning. Edge detection techniques, 
such as the Canny or Sobel operators, highlight object boundaries, 
making feature extraction and segmentation easier, whereas techniques, 
such as histogram equalization, adjust pixel intensities to improve 
contrast and make visual patterns more visible. Making changes to 
color spaces, such as switching from RGB to grayscale or HSV, may 
improve performance or reduce processing requirements. Typically, the 
dataset was separated into three portions for training (80%), for testing 
(10%), and the rest for validation (10%). To ensure successful model 
training and accurate evaluation, preprocessing techniques, such as 
scaling, normalization, and augmentation, are used.  

4.2. Experiment and evaluation  
Usually, one or more performance measures are used to assess the 

performance of a machine learning or deep learning model. The ratio of 
accurate forecasts to total predictions is an indication of accuracy that 
may be directly measured by contrasting predicted and actual results. 
Despite its simplicity and widespread usage, accuracy is deceptive when 
used alone, particularly in cases when the data is uneven. Precision 
focuses on the percentage of correct positive predictions and indicates 
the model's degree of false positive mitigation, in contrast to recall, 
which is concerned with how effectively the model catches the real 
positives. The F1-score, which uses weighted harmonic averaging of 
the sensitivity and specificity of the prediction outcomes, is a useful way 
to measure model performance when the dataset is unbalanced [27–30]. 
To find any mistakes in the model, tools such as the confusion matrix 
provide a thorough examination of the false positives, false negatives, 
true positives, and true negatives. These metrics are often improved by 
hyperparameter tuning, which is the act of modifying hyperparameters 
such as learning rate, batch size, or  number of network layers to 
optimize performance. By elucidating model predictions and offering 
the context for a particular  outcome, a number of XAI approaches can 
assist practitioners in analyzing model behavior more quickly. When 
combined, these methods guarantee accurate models as well as an open 
and reliable decision-making process. The study's result is shown in 
Table 2.  
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Figure 9
Data sample of rice leaf disease
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The efficacy of several deep learning models in identifying 
rice leaf illnesses was assessed using four principal metrics. The 
proposed model exhibited superior performance, with an accuracy of 
97.68%, with Precision, Recall, and F1-score all at 98%, indicating 
its robust capacity to reliably differentiate between healthy and 
sick leaves. Among the pretrained architectures, EfficientNetB0 
achieved remarkable results, with 93.83% accuracy and 94% across 
all assessment measures, underscoring the efficacy of its compound 
scaling methodology for feature extraction in this challenge. 
VGG16 and InceptionV3 demonstrated competitive but somewhat 
inferior performance, achieving accuracies of 87.91% and 87.66%, 
respectively, while sustaining balanced Precision and Recall near 
88%, signifying dependable albeit less sophisticated detection skills in 
comparison to the EfficientNet models. VGG19 achieved an accuracy 
of 87.14%, demonstrating comparable metric values somewhat lower 
than  those of VGG16. EfficientNetB4 attained an accuracy of 88.68%, 

surpassing VGG and Inception networks, while remaining inferior to 
EfficientNetB0, indicating that model complexity and hyperparameter 
optimization considerably influence performance. ResNet50, although 
widely utilized in computer vision, achieved the lowest performance 
with an accuracy of 83.03% and matching Precision, Recall, and 
F1-score of 83%, suggesting that its residual connections were less 
adept at detecting nuanced patterns in rice leaf diseases. These results 
indicate that although conventional deep learning architectures exhibit 
commendable performance, the Proposed Model distinctly provides 
enhanced accuracy, resilience, and generalization in detecting rice leaf 
diseases. Figures 10, 11, 12, and 13 illustrate the confusion matrix, 
accuracy and loss curves, the classification report, and the GRAD-CAM 
of the proposed model, respectively, offering more insight into model 
performance.  

5. Future Work  
Future research can enhance the proposed rice leaf disease 

detection model by integrating larger and more diverse datasets 
sourced from various geographical regions, thereby improving the 
model's generalizability across different environments. Creating 
real-time detection apps for mobile devices or imaging systems 
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Algorithms Accuracy Precision Recall F1-score

VGG19 87.14 88 87 87

VGG16 87.91 88 88 88

ResNet50 83.03 83 83 83

EfficientNetB0 93.83 94 94 94

EfficientNetB4 88.68 89 89 89

InceptionV3 87.66 89 88 88

Proposed model 97.68 98 98 98

Table 2
The result analysis of the deep learning model

Figure 10
The confusion matrix of the proposed model

Figure 11
The accuracy and loss graph for the proposed model

Figure 12
The classification report for proposed model
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based on drones could help farmers in the field in a timely manner. 
Furthermore, by optimizing the model for low-resource devices using 
techniques such as quantization or pruning, it may be possible to 
lower computational requirements and enable wider deployment. By 
improving the interpretation of the model's predictions, XAI techniques 
would boost user trust. The system may be more advantageous for 
sustainable agriculture if its ability to assess the severity of the disease 
and recommend treatments is improved The simulation results show 
that the proposed UNet method of this research has main advantages 
for practical applications. In fact, in addition to having a basic and 
standardized architecture, the proposed method UNet with attention 
mechanism also has good accuracy. The results presented in the table 
show that the proposed method has the highest accuracy. Also, the 
proposed method is simulated on a standard dataset. However, this 
method still has limitations; one of the most important limitations of the 
proposed method is the lack of access to a large dataset. If this limitation 
is removed, it is possible to examine the advantages and disadvantages 
of the proposed method.

5. Conclusion and Future Works
The application of deep learning and image processing techniques 

has greatly improved the detection of diseases of rice leaves. Research-
ers have examined a range of approaches, including CNN architectures, 
such as VGG16, ResNet, DenseNet, and Inception, as well as object de-
tection models, such as YOLOv4 and YOLOv5, with differing degrees 
of success. Conventional machine learning techniques, such as SVM, 
XGBoost, and KNN, have been used, but they have drawbacks, such as 
poor explainability, variable environmental conditions, and limited ac-
cess to datasets. To improve interpretability and accuracy on the “Rice 
Leaf Disease Detection” Kaggle dataset, we employ CNNs, VGG16, 
and InceptionV3. To increase the accuracy and usefulness of rice dis-
ease detection systems for sustainable agriculture, future research must 
focus on incorporating larger datasets, improving model architectures, 
and applying explainable artificial intelligence techniques.

Recommendations
In future research, rice leaf illness classification is proposed 

to create larger and more diverse datasets to better reflect realworld 
environmental variations, enhancing deep learning model architectures 
for greater robustness and generalization, and utilizing XAI techniques 
to make model decisions more transparent and trustworthy for farmers 
and agricultural experts. While optimizing lightweight models would 
make deployment on mobile and edge devices easier for real-time field 
applications, incorporating ensemble methods that combine multiple 
models could further increase accuracy. These methods will improve 
the accuracy, comprehensibility, and utility of rice disease detection 
systems for sustainable agriculture.
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Figure 13
The GRAD CAM (XAI) for the proposed model

https://www.kaggle.com/datasets/anshulm257/rice-disease-dataset
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