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Abstract: The classification of fruits and leaves affected by bacteria, viruses, and fungi has made significant progress in the fields of artificial
intelligence and image processing. However, most methods focus on particular categories of fruit and leaf diseases, but not on both fruit and leaf
diseases caused by bacteria, viruses, and fungi. This study aimed to develop a model for the classification of the initial, intermediate, and final
stages of bacterial, viral, and fungal diseases, irrespective of fruit and leaf types. To achieve this goal, inspired by the accomplishments of the Swin
Transformer, the Swin Transformer V2-Tiny was explored for the classification of 10 classes, which included healthy and three stages of bacteria,
virus, and fungus images of fruits and leaves. The stages of Swin Transformer V2-Tiny divide the image into patches, namely, linear projection,
Window Multi-Head Self-Attention (W-MSA), and Shifted Window Multi-Head Self-Attention (SW-MSA) for local and global features, which
were adapted to perform the plant disease classification. Experiments on authors’ curated and standard datasets and a comparative study with recent
methods demonstrate effective classification and superiority over existing methods. To the best of our knowledge, this is the first study on the
classification of fruit and leaf pathogens caused by bacteria, viruses, and fungi based on their development stages. The proposed model achieved an
average classification rate of 91.04% on fruit datasets and 94.07% on leaf datasets, outperforming recent benchmark methods. It also demonstrated
strong generalization on unseen public datasets with over 93% accuracy.
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1. Introduction for bacteria, and white patches for fungi can differentiate diseases at
different levels, unpredictable shapes, structures, and varieties make
the classification problem more complex and challenging. Thus, the
classification of disease pathogens at different levels, irrespective of
fruit and leaf types, is an open challenge.

To address this challenge, this study explored the Swin
Transformer V2-Tiny model for the classification of fruit and leaf
images of bacteria, viruses, and fungi at initial, intermediate, and final
levels. Figures 1 and 2 show that the observations, namely, yellow,
dark, and white patches for viral, bacterial, and fungal infections,
respectively, are vital cues for successful classification. To extract
such observations, inspired by the elegant vision transformer, which
is a special model for visual feature extraction, the proposed method
adapts the Swin Transformer V2-Tiny [4-6]. Compared to the baseline,
the Swin Transformer, the Swin Transformer V2-Tiny is robust, easy
to adapt to different situations, and extracts features efficiently. This
motivated us to explore the Swin Transformer V2-Tiny in contrast to
the baseline Swin Transformer for the classification of healthy and
diseased pathogens of plants.

The key contributions of this study are as follows:

Plant diseases caused by bacterial, fungal, and viral infections
pose a significant threat to agricultural productivity. Therefore, the early
detection of these diseases at an early stage is crucial for implementing
timely interventions and reducing crop losses. In addition, it reduces
manpower and expenses, leading to cost effectiveness. Plant, fruit,
and leaf disease identification is not a new challenge, and we can find
several existing methods can be found in the literature [1-3]. Existing
methods use Convolutional Neural Networks (CNNs) and other deep
learning models.

However, as existing methods focus on a particular dataset and
disease, they are not robust enough to handle the stages of fruit and leaf
diseases caused by bacteria, viruses, and fungi. For example, sample
fruit and leaf images of the initial, intermediate, and final stages caused
by bacteria, viruses, and fungi are shown in Figures 1(a)—(i) and 2(a)—(i).
It is observed from Figures 1(a)—(i) and 2(a)—(i) that the difference
between samples of different diseases is minimal. This is because the
images share common observations. The same is true for the leaf images.
Although observations such as yellow patches for viruses, dark patches
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Figure 1
Sample images of virus, bacteria, and fungus at initial, intermediate, and final stages of fruits

(a)

(b)

2) Adapting the Swin Transformer V2-Tiny for the classification of
infected images, irrespective of fruit and leaf type.

The remainder of this paper is organized as follows:
Section 2 discusses related work on fruit and leaf disease classification
and identification. Section 3 presents details of the proposed
methodology, including the model architecture. Section 4 presents the
experimental results and evaluation metrics. Section 5 discusses the
findings and limitations of the study.

2. Related Work

If we consider the classification of bacteria, fungi-, and virus-
infected images as a general image classification problem, several
methods are available in the literature. For instance, the methods [4, 7]
were proposed for object detection and classification in images. Because
objects in images have unique shapes, these existing methods extract
features that represent the shapes of particular objects. However, in our
classification, the patches did not have any shape, and the images had
unpredictable shapes. Therefore, general image classification methods
may not work well for the classification of virus-, bacteria-, and fungus-
infected images based on their development stages.

2.1. General image classification

Li et al. [4] introduced PMST (Parallel and Miniature Swin
Transformer), a refined variant of the Swin Transformer tailored for
logo detection. By incorporating a bypass-parallelizable shift module

and a miniature window tandem shift strategy, the model enhances
feature fusion and information transfer between windows, addressing
challenges such as varying logo scales, diversity, and distortions in the
data. Similarly, He et al. [7] proposed Dual-branch Swin Transformer
with Asymmetric Attention Fusion (DST-A2F) for radar-based gait
recognition. This model extracts distinctive features from spectrogram
and cadence velocity diagram (CVD) representations, prioritizing more
informative spectrogram features using asymmetric attention fusion.
Furthermore, Hu et al. [8] developed MAFDet, a multi-attention
fusion network for small-object detection in drone imagery. This
method combines a Swin Transformer backbone, a multi-attention
focusing sub-network, and an anchor-free detection head, significantly
improving detection accuracy on datasets such as VisDrone and
UAVDT. Meanwhile, Hu et al. [5] presented VGG-TSwinformer, a deep
learning framework integrating VGG-16 and Swin Transformer for
early Alzheimer’s disease (AD) diagnosis using longitudinal MRI data.
Leveraging spatial and temporal attention mechanisms for classification.
Zeng et al. [6] introduced DTMINet, a Dual Swin-Transformer-based
Mutual Interactive Network for RGB-D salient object detection,
incorporating novel fusion mechanisms and outperforming state-of-
the-art techniques. Similarly, Zhang and Tu [9] proposed SwinFR,
a super-resolution model for remote sensing images that combines
SwinlR with Fast Fourier Convolution (FFC) to enhance low-frequency
information retention. Finally, Zhou et al. [10] presented an improved
YOLOvV7 model incorporating Modulated Deformable Convolution
and Swin Transformer to enhance object detection in fisheye images,
achieving superior performance on VOC-360 and ERP-360 datasets.
Pal et al. [11] provided a comprehensive review of text detection and
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Figure 2
Sample images of virus, bacteria, and fungus at initial, intermediate, and final stages of leaves

recognition methods in natural scene images, discussing various deep
learning approaches, including regression-based, segmentation-based,
and transformer-based models. This study highlights the strengths and
limitations of these techniques and identifies open challenges in handling
complex scenarios, such as low-light conditions and arbitrary motion.

Deep learning and ML-based classification methods have been
widely used in the medical and agricultural domains. Kang et al.
[12] successfully implemented machine learning models for COPD
classification, achieving high accuracy using decision-tree-based
classifiers. This methodology is relevant for plant disease classification,
where similar ML techniques can be used to distinguish between
bacterial, fungal, and viral infections.

Despite the advancements in Swin Transformer applications
across various fields, existing image classification techniques are not
designed to classify multiple domains, such as fruit and leaf infections
at different levels, caused by bacteria, fungi, and viruses. Therefore,
they may not be effective for specific tasks.

2.2. Fruit and leaf disease classification

Gupta and Tripathi [13] conducted a comprehensive survey
analyzing fruit and vegetable disease classification methods using
machine learning, deep learning, and loT-based technologies. Similarly,

Laimetal. [14] developed an automated fruit disease classification model
using the Scale-Invariant Feature Transform (SIFT), which extracts
key image features to enhance classification accuracy. Aboelenin et al.
[15] proposed a hybrid deep learning framework integrating CNN and
Vision Transformers (ViT) to detect plant leaf diseases, achieving state-
of-the-art accuracy on apple and corn leaf disease datasets.

Other notable works include Xu et al. [16] who introduced
PDNet, a parameter-efficient Vision Transformer model designed for
plant leaf disease identification. Their method utilized Overlapping
Patch Embedding (OPE) and Angular Softmax Loss (A-Softmax) for
refined disease classification, demonstrating superior performance
across multiple datasets. Additionally, Megalingam et al. [17]
developed a Vision Transformer-based approach for cowpea leaf
disease classification, achieving 96% accuracy. Further contributions
by Das et al. [18] provided an extensive review of deep learning
techniques for tomato leaf disease classification, whereas Wu et al. [19]
introduced an attention-based CNN (LBPAttNet) to improve tea leaf
disease identification.

2.3. Plant disease classification

Barman etal. [20] proposed ViT-SmartAgri, a Vision Transformer-
based model for plant disease detection, achieving 90.99% accuracy on
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smartphone-captured tomato leaf images. Hemalatha and Jaychandran
[21] introduced PDLC-ViT, a multi-task Vision Transformer model
for disease localization and classification, achieving state-of-the-art
performance on the Plant Village and PlantDoc datasets. Tunio et al. [22]
developed a Transformer-fused CNN model using Wasserstein domain
adaptation to improve generalization across plant disease datasets.
Additionally, Singh et al. [23] leveraged synthetic data augmentation
using LeafyGAN to enhance plant disease classification performance.
Liu and Zhang [24] introduced an Efficient Swin Transformer that
integrates selective token generation and feature fusion to improve
accuracy and reduce computational complexity. Subramanian et al.
[25] compared conventional and Al-driven intervention techniques
for Alzheimer’s disease. They discuss traditional methods such as
cognitive stimulation and reminiscence therapy, alongside Al-based
approaches such as deep learning, vision transformers, and NLP for
early diagnosis and personalized care. The study highlights the potential
of integrating both approaches to enhance the management of patients
with Alzheimer’s disease.

Balasundaram et al. [26] applied the Segment Anything Model
(SAM) in conjunction with deep convolutional neural networks for tea-
leaf disease detection, demonstrating improved segmentation-guided
classification performance under field conditions.

Hasan et al. [27] introduced a comprehensive smartphone image
dataset of radish plant leaves from Bangladesh to support automated
disease classification. This dataset enables effective benchmarking of
deep learning models and contributes to enhancing model generalization
in real-world agricultural conditions.

Ni et al. [28] demonstrated the use of FTIR (Fourier-transform
infrared) spectroscopy in combination with machine-learning methods
to diagnose corn leaf diseases, providing a spectral-based alternative to
conventional image-based classification approaches.

Petchiammal and Murugan [29] explored automated identification
of paddy leaf diseases using visual leaf images and compared nine
pre-trained deep-learning architectures (including VGG16, VGG19,
DenseNet variants, MobileNetV2, InceptionV3 and ResNet152V2) to
evaluate classification performance across multiple disease classes.

Akhter and Saxena [30] documented for the first time the co-
infection of papaya in Lucknow (India) by Catharanthus yellow mosaic
virus (CaYMV) together with a novel betasatellite they named Tomato
leaf curl Lucknow betasatellite (TOLCLB), expanding understanding of
the complex begomovirus—satellite combinations underlying Papaya
leaf curl disease (PaLCD) in Indian papaya.

Although these methods focus on plant disease identification,
they may not generalize well when classifying multiple types of
diseases in different plant species.

2.4. Virus, bacteria, and fungus disease classification

Saraswat et al. [1] developed an advanced method for detecting
fungal and bacterial diseases in plants using a modified deep neural
network (MDNN) combined with the Dynamic SURF (DSURF)
technique. Gaikwad et al. [2] introduced a deep CNN model for fungi-
affected fruit leaf disease classification using AlexNet and SqueezeNet.
Furthermore, Gaikwad et al. [3] focused on CNN-based identification
of fungi-infected guava leaves using SqueezeNet. Other contributions
include those of Priyanka et al. (2025) who analyzed papaya leaf
curl disease (PaLCD) caused by begomoviruses and identified novel
viral strains in India. Pakruddin and Hemavathy [31] introduced a
pomegranate disease dataset to aid the deep learning-based classification
of bacterial blight, anthracnose, and Alternaria fruit spot. Additionally,
Siripatrawan and Makino [32] utilized hyperspectral imaging (HSI)
with machine learning techniques to detect anthracnose in mangoes,
demonstrating the effectiveness of presymptomatic detection.

Table 1
Comparative overview of recent models and their performance in plant disease classification
Limitations/Research
Study Model/Method Dataset(s) Key techniques Advantages gaps
Aboelenin et al.  CNN + ViT Hybrid Apple & Corn Leaf CNN for feature extraction, High accuracy, better Dataset-specific, lacks
[15] Datasets VIiT for classification generalization than stage-wise disease
CNN alone classification

Xuetal. [16] PDNet (Transformer) Multiple Plant Leaf Overlapping Patch Embed- Efficient transformer Does not address

Datasets ding (OPE), A-Softmax loss design, fewer param- multi-stage disease

Tunio et al. [22]  Transformer-fused CNN PlantVillage, Plant-

Wasserstein domain adapta-

eters progression

Good cross-domain ~ No specialization for

+ Domain Adaptation Doc tion, hybrid fusion performance bacteria, virus, fungus
stages
Singh etal. [23] ViT + GAN Tomato Leaf Synthetic image generation, Works well with Not generalized across
(LeatyGAN) Dataset transformer-based classifier limited real data multiple crops/diseases
Hu et al. [9] MAFDet (Transform- ~ Drone imagery Multi-attention fusion, Effective for small Not focused on disease
er-based detector) datasets anchor-free detection object detection classification
Liu and Zhang Efficient Swin Trans- Custom Plant Dis-  Selective token generation, Reduced complexity, Limited to detection,
[24] former ease Dataset lightweight Swin blocks fast inference not detailed classifi-

Das et al. [18] Deep CNNs (Survey) Tomato Leaves

Barman et al. [20] ViT-SmartAgri Smartphone images

(Tomato)
This Work Swin Transformer Custom 10-Class +
V2-Tiny (Modified) ~NZDL-v1/v2

Review of multiple deep
learning methods

Vision Transformer, mobile
deployment

Local-global attention
(W-MSA + SW-MSA),
stage-wise classification,
modified classifier head

cation

Highlights state-of-
the-art models

Does not provide a
unified solution
Suitable for real-time
field applications

Single crop, lacks
stage-wise analysis
None—addresses
disease type + stage
classification in fruit
and leaf images

Handles multiple
diseases, all stages,
high accuracy, gener-
alizable
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While these studies address virus, bacteria, and fungus disease
identification in specific crops, none have focused on a unified
classification model for all three types. The lack of domain-independent
methods indicates that existing techniques are designed for specific
scenarios, limiting their applicability to diverse datasets.

Recent research has demonstrated the effectiveness of deep
learning in plant disease classification, with increasing attention on
Vision Transformers (ViT) and hybrid CNN-VIT architectures due to
their superior feature extraction capabilities. For instance, Aboelenin
et al. [15] proposed a hybrid CNN-ViT model achieving high accuracy
in detecting apple and corn leaf diseases. Xu et al. [16] introduced a
parameter-efficient ViT model using Overlapping Patch Embedding
and A-Softmax loss, enabling accurate disease identification with
fewer parameters. Similarly, Tunio et al. [22] developed a transformer-
fused CNN with Wasserstein domain adaptation, which improved
generalization across plant disease datasets. Singh et al. [23] applied
GAN-based synthetic augmentation to train vision transformers more
effectively on limited real data. While these methods highlight the
power of transformers, they are often tailored to specific crops, do not
generalize across disease stages, or overlook the early-stage variations
critical for effective disease control.

Table 1 presents a comparative summary of the recent models
and their effectiveness in plant disease classification.

In summary, from the literature review reported in Table 1, it
is evident that no existing models simultaneously classify images of
bacteria-, fungi-, and virus-infected fruit and leaves at different levels.
Consequently, there is a pressing need for an effective classification
model to address this issue. Hence, this study aims to develop such a
model to bridge this gap and provide a more comprehensive solution for
disease classification. Unlike existing models, the proposed Tiny Swin
Transformer V2 architecture is adapted to handle subtle inter-class
differences and high visual similarity across stages, making it suitable
for real-world, diverse datasets.

3. Proposed Methodology

As noted in the sample images in Figures 1 and 2, the yellow,
dark, and white patches are the key cues for differentiating fruit and leaf
images infected by viruses, bacteria, and fungi at different levels. These
observations were made by experts in the Biotechnology Department. It
was also observed that the size and thickness of the patches changed as
the levels changed (initial, intermediate, and final). These observations
motivated us to introduce a vision transformer to extract the features
that represent unique observations. Because the difference in the images
at different levels is marginal, the baseline vision transformer may not
be effective. Therefore, a robust Tiny Swin Transformer V2 model was
used for successful classification. Compared with the classical Swin
Transformer model, the Tiny Swin Transformer V2 is efficient, accurate
and adaptable to different situations. Hence, the proposed Method was

Figure 3
The block diagram of the proposed method
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explored for the classification of stages of viruses, bacteria, and fungi of
fruits and leaves. The block diagram of the proposed method is shown
in Figure 3.

Figure 3 shows the input images of different colors. The input
images were divided into patches and projected linearly to extract
features. The Swin Transformer extracts deep hierarchical features from
images. The extracted features were fed into the classification step to
classify the initial, intermediate, and final stages of virus, bacteria, and
fungus, along with a healthy class.

3.1. Classification

The Tiny Swin Transformer V2 model, a hierarchical vision
transformer, enhances feature extraction through its shift-window
mechanism, allowing it to efficiently capture both local and global
dependencies in images. Local Dependencies refer to short-range
relationships between neighboring patches or pixels in an image. These
capture fine-grained details, such as texture, edges, or small variations
in color, which are crucial for distinguishing subtle differences,
especially in early-stage disease symptoms. Global Dependencies refer
to long-range relationships between distant regions of the image. These
help in understanding the overall structure or patterns that span across
larger parts of the image, such as widespread lesions or disease spread
patterns. The proposed model applies transfer learning using Tiny Swin
Transformer V2, which was trained on augmented fruit and leaf image
data.

This 10-class classification framework utilizes the Tiny Swin
Transformer V2 model, as shown in Figure 4, a hierarchical vision
transformer pre-trained on ImageNet, to classify fruit and leaf diseases
caused by viruses, bacteria, and fungi at different infection stages
(initial, intermediate, and final). The pipeline begins with RGB dataset
images, which undergo data augmentation techniques such as resizing
(224 x 224) to match the input size of the model, random flipping
and rotation to introduce geometric variability, and color jittering to
enhance robustness against lighting variations. The images were then
normalized using ImageNet statistics and split into 80% training and
20% validation sets, ensuring balanced class representation. A PyTorch
Datal.oader was configured with a batch size of 16 to efficiently load the
images during training. The Swin Transformer processes input images
by first partitioning them into non-overlapping 4 x 4 patches, followed
by a linear embedding that transforms each patch into a 96-dimensional
feature vector.

The feature extraction pipeline consists of two hierarchical
stages, each containing two Swin Transformer blocks that utilize
Window Multi-Head Self-Attention (W-MSA) and Shifted Window
Multi-Head Self-Attention (SW-MSA) to capture both local and global
dependencies. Between stages, the patch merging layers (2 x 2—1)
progressively reduced the spatial dimensions while increasing the feature
depth, allowing the model to learn hierarchical representations. After
the final stage, Global Average Pooling (GAP) was applied to compress
the spatial information into a single feature vector. The classification
head consisted of a fully connected layer (Linear 768—256), followed
by a ReLU activation, Dropout (0.5) to prevent overfitting, and another
fully connected layer (Linear 256—10) that mapped the features to
10 class logits. The model was trained using mixed precision (AMP)
on CUDA or CPU, optimizing with CrossEntropyLoss, the Adam
optimizer, a StepLR scheduler (reducing the learning rate every 10
epochs by a factor of 0.1), and early stopping (patience = 5 epochs) to
prevent overfitting.

More details of the proposed method are presented below.

Patch Partitioning and Linear Embedding: The input RGB
images are resized and partitioned into non-overlapping patches
as mentioned earlier, resulting in a grid of 56 x 56 patches. Each
patch is flattened and passed through a linear projection to create a
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Figure 4
Swin Transformer Tiny-V2 architecture for classification of fruit and leaf
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96-dimensional embedding vector. These embeddings form the input
to the Swin Transformer blocks. Although Tiny Swin Transformer V2
begins by dividing the image into non-overlapping 4 X 4 patches, it
does not reassemble these patches into the original image in a spatial
sense. Instead, it preserves and reconstructs the global context through
a combination of two mechanisms:

Shifted Window Attention (SW-MSA): By shifting the
attention window across layers, the model ensures that each patch
interacts with its neighboring patches from adjacent windows. This
overlapping attention helps bridge patch boundaries and recovers
spatial relationships. Hierarchical Feature Aggregation: As the model
proceeds through its stages, the patch merging operations combine
adjacent patches and increase the receptive field. This forms a deep,
multi-scale representation of the entire image, allowing the model
to reason about both local and global structures. These mechanisms
allow the model to encode the entire image context without explicitly
reassembling the patches, thus ensuring that no critical information is
lost during the process.

Hierarchical Feature Extraction with Local and Global
Dependencies: Swin Transformer V2-Tiny employs a hierarchical
architecture with four stages. W-MSA enables the model to capture
local dependencies by applying self-attention within non-overlapping
windows of fixed size as discussed above. SW-MSA shifts the windows
between layers, facilitating cross-window interactions and thereby
capturing global dependencies without excessive computation. This
mechanism allows the network to model subtle variations in patch
shapes and textures across infection stages. Each stage is followed by

10-Class Classification

a Patch Merging layer, where adjacent 2 x 2 patches are concatenated
and passed through a linear layer. This reduces spatial resolution and
increases channel depth, allowing the model to build deep hierarchical
features from low-level edges to high-level semantic cues.

Modified Classifier Head: The default classifier head of the
pre-trained Swin V2-Tiny model is replaced with a task-specific fully
connected head: A linear layer reduces the feature dimension from 768
to 256 followed by a ReLU activation and Dropout (p = 0.5). Another
linear layer maps 256-dimensional features to the final 10-class logits.

This modification enhances the model’s capability to learn
disease-specific class boundaries in the high-dimensional feature space.

Training Enhancements and Implementation Details: To
ensure robustness, generalization, and reproducibility, the following
training strategies were employed: Transfer Learning: We initialized
the Tiny Swin Transformer V2 model with ImageNet-1K pretrained
weights and fine-tuned it on our 10-class dataset.

Loss Function: CrossEntropyLoss with label smoothing
(smoothing factor = 0.1) was used to prevent overconfidence and
improve generalization. The model was trained with the Adam optimizer
(learning rate = 3e—4, weight decay = le—5). A Step learning rate
scheduler reduced the learning rate by a factor of 0.5 every 5 epochs,
implemented with a patience of 10 epochs to prevent overfitting and
reduce training time, and enabled via PyTorch’s AMP (torch.cuda.amp)
to accelerate training and reduce memory usage on CUDA-compatible
GPUs with batch Size: 16, Epochs: 30, and Input Size: 224 x 224 pixels.

Data Augmentation: To increase model robustness and reduce
overfitting, we applied comprehensive augmentation techniques,
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Figure 5
(a) distribution of classes of fruits and (b) leaf disease
classification
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Note: B-F — Bacteria on fruit, F-F — Fungus on fruits, V-F — Virus on fruits,
B-L — Bacteria on leaf, F-L — Fungus on leaf, V-L — Virus on leaf.

namely, Resize (224 x 224), Random Horizontal Flip, Random
Rotation (£30°), Color Jitter (Brightness, Contrast, Saturation, Hue),
Random Affine Transformations (translation +10%), Normalization
with ImageNet Statistics with Mean = [0.485, 0.456, 0.406] and Std =
[0.229, 0.224, 0.225].

To visualize the effectiveness of the proposed model on
classification, the t-Distributed Stochastic Neighbor Embedding
(t-SNE) algorithm was used to map high-dimensional data to a lower-
dimensional space, as shown in Figure 5(a)—(b) for fruits and leaves.
The two t-SNE plots represent the feature embeddings of fruits and
leaves in Figure 5(a) and (b), where it is noted that the Swin Transformer
V2-Tiny t-SNE plot distinguishes almost all the classes with certain
overlapping for both fruit and leaf images. Owing to some overlap,
the performance of the proposed model degraded. This shows that this
classification of healthy and diseased fruits and leaves is a complex
problem. This indicates that there is scope for further improvement.

4. Experimental Results

We collected a dataset from the Biotechnology Department
of Davangere University, Karnataka, India, to evaluate the proposed
and existing methods. The main problem is that the images must be
manually labelled for experimentation. However, this manual process
requires more time; hence, it is difficult to handle a large variety of
images affected by different diseases using this method. The main goal
of this study is to integrate the proposed system with their devices to
assist their investigation. To make the collection as comprehensive and
representative as possible, images were collected from multiple sources,
areas, fields, and open spaces under various weather conditions. Sample
images illustrating the wide diversity of inputs are shown in Figures 6 and
7, where the effect of each disease pathogen can be observed. Although
we can see distinctions for each disease, the variation in terms of the
number and size of the patches and the unpredictable shapes of the fruits
and leaves make the classification task complex.

4.1. Dataset curation and evaluation

To ensure a diverse and representative dataset for training and
evaluation, a custom 10-class dataset was collected over a span of six
months (July to December 2024) from multiple agricultural fields,
experimental farms, and open environments across Karnataka, India.
This dataset comprises high-resolution RGB images of fruit and leaf
samples infected by bacterial, fungal, and viral pathogens at three
distinct infection stages: initial, intermediate, and final, along with
healthy samples.

Figure 6
Sample images of different diseases from our fruit datasets. These samples are classified successfully by the proposed method
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Figure 7
Sample images of different diseases from our leaf datasets. These samples are classified successfully by the proposed method

(a)
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Image Acquisition and Diversity: Images are captured using
smartphone cameras and digital SLRs with resolutions ranging from 12
to 24 MP, ensuring both clarity and variability in resolution. The camera-
to-subject distance ranged from 0.5 to 1 m, enabling consistent visibility
of disease symptoms such as patch color, size, and location. To represent
real-world diversity, data is collected under varying conditions, such
as natural daylight, shaded conditions, and overcast skies. Similarly,
images with different backgrounds, such as plain lab backgrounds and
cluttered field environments. Sample of overlapping leaves, stems, soil,
noise, blurring, and partial occlusions. This comprehensive capture
approach ensures the model is exposed to various real-world variations,
enhancing its robustness and generalization ability.

Annotation Protocol: All images are annotated and classified by
an expert from the Department of Biotechnology, Davangere University,
who has expertise in plant pathology and microbial disease symptoms
in horticultural crops. The expert labelled each image into one of ten
predefined classes (bacteria, fungus, virus — initial/intermediate/final,
and healthy). Visual features such as patch color (yellow for virus, dark
for bacteria, white for fungus), shape, and lesion spread were used as
key cues for labelling. The labelling process ensured high accuracy and
consistency due to the annotator’s domain expertise and familiarity
with disease progression characteristics.

Dataset Composition: Each of the ten classes includes 500 images,
resulting in a balanced dataset of 5000 samples. The dataset includes both
fruit and leaf samples, with balanced representation across all disease
types and stages. Augmentation techniques such as flipping, color jitter,
affine transformations, and rotations further increase sample variability.

NZDLPlantDisease-v1 dataset: This dataset includes images of
kiwifruit, apples, pears, avocados, and grapevines from New Zealand
agricultural fields. The dataset contains images of multiple diseases on
leaves, fruits, and stems under various environmental conditions. In
total, there were 1500 images in the bacteria class, 400 images in the
fungus class, 1500 images in the healthy class, and 648 images in the
virus class [33, 34].

NZDLPlantDisease-v2 dataset: This dataset comprises a diverse
collection of images of plant diseases found in New Zealand’s vegetables.
The bacteria, fungi, viruses, and healthy classes contained 1800, 652,
1800, and 648 images, respectively, yielding a total of 4900 samples.
This includes multiple disease categories that affect different vegetables
in diverse environmental conditions. Therefore, the high accuracy on
these benchmark datasets validates the generalization capability and
robustness of the proposed method [33, 34]. These two benchmark
datasets are used exclusively for testing purposes. The model is trained
and validated solely on the custom-curated dataset from Karnataka,
India. This separation ensures that the benchmark test results reflect true
out-of-distribution generalization performance. The proposed model is

Intermediate

®)

Initial Intermediate Final

Final

tested on both NZDL datasets without fine-tuning. High classification
accuracy on these datasets (ACR > 93%) supports the robustness and
adaptability of our model to unseen geographies and crop types.

To demonstrate that the proposed method is superior to existing
methods, we implemented four state-of-the-art methods for general
image classification [11] and plant disease classification [24]. The
methods of Rajalakshmi et al. [35] and Singaravelu and Perumal [36] are
developed for banana leaf and plant disease identification, respectively.
Zhang and Tu [9] developed a method for the classification of remote
sensing images based on Swin Transformer and the Fourier Transform.
Tunio et al. [22] proposed a method for plant disease classification based
on transformer-fused convolution and Wasserstein domain adaptation.
The method was chosen to show that the general image classification
method is not effective for the classification of bacteria, viruses, and
fungus-infected fruit and leaf images. Similarly, the method was chosen
to show that the existing plant disease classification methods may not
be robust enough to handle the complex 10-class classification problem.

To evaluate the proposed and existing methods, a confusion
matrix was generated, and the Average Classification Rate (ACR) was
calculated, which is the mean of the diagonal elements of the confusion
matrix.

Implementation Details: For our experiments, we employed the
following software and hardware components: Software: OS: Windows
10, Editor: VSCODE 1.97.2, Python: 3.12.9, Optimizer: Adam
optimizer, Training Method: Standard supervised learning, Number of
Epochs: 30, Hardware: Processor — AMD Ryzen 3200G @3.6 GHz,
RAM: 16 GB, HDD: 1 TB. All experiments were conducted using a
GPU-enabled environment. The models were trained and tested using
a CUDA-compatible device with automatic mixed precision (AMP) to
optimize performance.

Hyperparameter and Training Setup: The Tiny Swin Transformer
V2 model was implemented using the PyTorch deep learning framework
(v2.1.0) and initialized with ImageNet-1K pre-trained weights from the
TorchVision model repository. All experiments were conducted on a
system equipped with an NVIDIA RTX 3080 GPU (10 GB VRAM), Intel
Core 19 CPU, and 16 GB RAM. The input images were resized to 224 x
224 pixels and divided into non-overlapping 4 x 4 patches. A batch size of
16 was used for both training and validation. The model was trained for
10 epochs using the Adam optimizer with an initial learning rate of 3e—4
and a weight decay of 1e—5. A StepLR scheduler was used to reduce the
learning rate by a factor of 0.5 every 5 epochs to improve convergence.

To improve generalization, CrossEntropyLoss with label
smoothing (¢ =0.1) was used as the loss function. The classification head
of the model was modified to include a linear layer that maps the feature
vector (768 dimensions) to 256, followed by a ReL U activation, a dropout
layer with a rate of 0.5, and a final linear layer outputting logits for 10
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classes. Early stopping was employed with a patience of 10 epochs to
prevent overfitting. Training was performed using PyTorch’s Automatic
Mixed Precision (AMP) to accelerate computation and optimize GPU
memory usage. Batch normalization and layer normalization are
implicitly handled within the Swin Transformer architecture.

4.2. Ablation study

The framework of Swin Transformer V2-Tiny presented in
Section 3 comprises several components. To validate the effectiveness
and contribution of each component, we conducted experiments on the
fruit and leaf datasets and calculated the average classification rate. (i)—
(ii1) Use of color features: R, G, B, and Gray color spaces. (iv) Use of
augmentation to increase the number of samples and diversity to make
the model robust. (vi) Use of transfer learning to improve the model
performance. (vii) Compared with the baseline Swin Transformer V2-
Tiny model to show that the adapted Swin Transformer V2-Tiny is
better. (viii) Proposed model without a modified classifier layer. (ix)
Proposed model without W-MSA and SW-MSA. (x) Proposed method.
The results of all the above experiments are reported in Table 2 for both
the fruit and leaf datasets.

Table 2
Average Classification Rate (ACR) of the key steps of the proposed
method for fruit and leaf disease classification

As shown in Table 2, all steps contributed to achieving the best
results. The proposed method scored the highest average classification
rate compared to the individual key steps. This implies that the key
components mentioned above were effective. When we compared the
performance of different color spaces, the red color space contributed
more to both fruit and leaf pathogen classification than other color
spaces. This shows that the red color is effective for images of viruses,
bacteria, and fungi. A possible reason for this is that the causes or effects
of viruses, bacteria, and fungi can be noticed in red spaces compared
with other color spaces.

Augmentation techniques, such as flipping, rotation, color jitter,
and affine transformations, were used to increase the number of samples
and diversity, which helps the model generalize better to unseen data.
In addition, by artificially expanding the dataset and simulating real-
world conditions, augmentation reduces overfitting and improves the
robustness of the model.

Transfer learning is a crucial technique in deep learning that allows
models to leverage knowledge from previously learned tasks, leading to
faster training, improved performance, and a reduced risk of overfitting.
Instead of training a neural network from scratch, a pre-trained model,
such as Swin Transformer V2-Tiny trained on ImageNet, is fine-tuned
on a new dataset. This approach is especially beneficial when working
with limited data, as it enables the model to generalize well by utilizing
pre-learned features, such as edges, textures, and shapes. Additionally,
transfer learning significantly reduces computational costs by reusing
a well-trained feature extractor and modifying only the final layers to

SIno. Key steps Fruit Leaf . . . ’

- - fit the specific classification task. In our work, the Swin Transformer
@ R image 79.47 9329 V2-Tiny implementation, transfer learning was applied by loading a
(ii) G image 6721 81.27 pre-trained Swin Transformer V2-Tiny model and replacing its final
(iif) B image 5691 8991 classification layer to adapt to the 10-class problem, ensuring that the

: Grav i 6058 83.67 model retained useful features while specializing in the dataset.

(iv) r.ay fmage ) ’ ’ When input images were supplied directly to Swin Transformer
(v) Without augmentation 90.53  90.87 V2-Tiny for classification, the results were not as high as those of
(vi) Without transfer learning 13.57 27.79 the proposed method. Therefore, Swin Transformer V2-Tiny alone is
insufficient for achieving high Its. Similarly, if we test th

(vii) Input images to Swin Transformer 80.32 91.57 wspclent ot agtieving 1 & | restits Similarly, if we test the prop osed

V2-Tiny direct] model without the modified classifier layer, the results are not as high as

- my 1rec.: y ) those of the proposed method. This indicates that the proposed modified

(viii) W’th9ut mosilfymg tbe classifier head of ~ 69.88 ~ 92.92 classifier layer contributes to achieving high results. In summary, the

baseline Swin (classifier performance) above analysis showed that all the main steps mentioned in this study
(xi) Without W-MSA and SW-MSA 32.74 74.36 are effective and useful for obtaining high accuracy in the classification
x) Proposed method 91.04 94.07 of fruit and leaf diseases at different levels.

Table 3
Confusion matrix and ACR (in %) of the proposed method on fruit disease classification

Fruit class B-F B-Ini B-Int F-Ini F-F F-Int Healthy V-F V-Ini V-Int
B-F 93.47 0.41 0.41 5.30 0.41 0 0 0 0 0
B-Ini 577 84.61 3.85 0 3.85 0 0 0 1.92 0
B-Int 1.92 0 90.38 3.86 0 0 1.92 0 1.92 0
F-Ini 9.09 3.03 0 84.85 0 3.03 0 0 0 0
F-F 0 0 0 0 98.04 1.96 0 0 0 0
F-Int 1.88 0 0 0 7.55 90.57 0 0 0 0
Healthy 0 0 0 0 0 0 100 0 0 0
V-F 0 0 0 0 0 0 100 0 0

V-Ini 0 0 0 0 0 0 0 86.67 13.33
V-Int 0 0 0 0 0 0 0 18.18 0 81.82

ACR =91.04

Note: B-F: Bacteria final stage, B-Ini: Bacteria initial stage, B-Int: Bacteria intermediate stage, F-Ini: Fungus initial stage, F-F: Fungus final tsage, F-Int: Fungus
intermediate stage, Healthy class, V-F: Virus final stage, V-Ini: Virus initial stage, and V-Int: Virus intermediate stage.
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4.3. Experiments on fruit and leaf disease
classification

The confusion matrix and average classification rates of the
proposed and existing methods — SwinFR Tables 5 & 8 [9]; TFC-

WDA Tables 4 & 7 [22]; NDCNN Tables 9—10 [35]; and DCoS-WOR-
SNN Tables 11-12 [36]— for the fruit and leaf datasets are presented
in Tables 3—-12. As shown in Tables 3—12, the proposed method
outperforms the existing methods for both the fruit and leaf datasets
in terms of the average classification rate. The existing methods report

Table 4
Confusion matrix and ACR (in %) on fruit disease classification using TFC-WDA
Fruit class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 96.92 3.08 0 0 0 0 0 0 0 0
B-Ini 47.47 47.47 0 0 0 5.26 0 0 0 0
B-Int 95.45 4.55 0 0 0 0 0 0 0 0
F-Ini 48.15 22.22 0 0 0 29.63 0 0 0 0
F-F 3.51 0 0 0 89.47 7.02 0 0 0 0
F-Int 6.06 9.09 0 0 0 84.85 0 0 0 0
Healthy 0 0 0 0 0 0 100 0 0 0
V-F 42.86 14.29 0 0 0 35.71 7.14 0 0 0
V-Ini 6.25 25.00 0 0 0 62.50 6.25 0 0 0
V-Int 5.55 16.67 0 0 0 72.22 5.55 0 0 0
ACR =41.86
Table 5
Confusion matrix and ACR (in %) on fruit disease classification using SwinFR
Fruit class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 82.13 5.96 0 0 9.72 0.31 1.88 0 0 0
B-Ini 18.42 69.74 0 0 3.95 0 7.89 0 0 0
B-Int 40.84 23.94 7.05 0 18.31 5.63 4.23 0 0 0
F-Ini 40.00 37.5 7.5 0 7.5 0 7.5 0 0 0
F-F 40.32 0.77 0 0 37.98 8.53 12.40 0 0 0
F-Int 24.61 6.15 1.54 0 3231 23.08 12.31 0 0 0
Healthy 31.82 2.27 227 0 2.27 0 61.37 0 0 0
V-F 50.00 14.28 0 0 14.29 14.29 7.14 0 0 0
V-Ini 31.25 12.5 0 0 25.00 31.25 0 0 0
V-Int 33.33 1111 5.56 0 11.11 38.89 0 0 0
ACR =51.89
Table 6
Confusion matrix and ACR (in %) of the proposed method on leaf disease classification
Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 98.25 0 1.75 0 0 0 0 0 0 0
B-Ini 0 95.42 4.58 0 0 0 0 0 0 0
B-Int 0 1.40 98.60 0 0 0 0 0 0 0
F-F 0 0 0 93.33 2.22 4.45 0 0 0 0
F-Ini 0 0 0 0 81.40 11.63 0 0 6.97 0
F-Int 0 0 0 8.33 2.78 88.89 0 0 0 0
Healthy 0 0 0 0 0 0 100 0 0 0
V-F 2.27 0 0 0 0 0 97.73 0 0
V-Ini 0 0 0 0 5.71 0 0 91.43 2.85
V-Int 0 0 0 0 0 0 4.35 0 95.65
ACR =94.07
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Table 7
Confusion matrix and ACR (in %) on fruit disease classification using TFC-WDA
Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 94.74 0 0 2.63 0 0 0 2.63 0 0
B-Ini 0 100 0 0 0 0 0 0 0 0
B-Int 0.86 0 99.14 0 0 0 0 0 0 0
F-Ini 0 0 0 100 0 0 0 0 0 0
F-F 0 0 0 0 45.26 8.42 0 0 0 0
F-Int 0 0 1.06 38.30 8.51 52.13 0 0 0 0
Healthy 0 0 0 0 0 0 100 0 0 0
V-F 0 0 0 0 0 0 16.00 82.00 2.00 0
V-Ini 0 3.23 0 0 0 0 6.45 0 90.32 0
V-Int 0 0 0 0 0 0 94.74 5.26 0 0
ACR =176.36
Table 8
Confusion matrix and ACR (in %) on fruit disease classification using SwinFR
Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 4.11 0 93.83 1.03 0 0 0 1.03 0 0
B-Ini 0 40.12 58.45 0.14 0.72 0.29 0 0.14 0.14 0
B-Int 0 4.33 94.89 0.39 0 0 0 0.33 0 0.06
F-Ini 0 0 2.21 87.62 0 3.54 0 5.75 0 0.88
F-F 0 26.15 28.72 8.20 4.62 19.49 0 5.64 6.67 0.51
F-Int 0 5.31 24.15 19.81 0 37.68 0.97 10.63 0.48 0.97
Healthy 0 0 1.22 0 0 0 97.56 1.22 0 0
V-F 0 1.08 21.40 4.81 0.53 0.53 2.14 68.98 0 0.53
V-Ini 0 0.65 24.18 0.65 1.32 0.65 0 15.69 56.21 0.65
V-Int 0 0 6.19 4.12 0 0 9.28 0 0 80.41
ACR =57.22
Table 9
Confusion matrix and ACR (in %) on fruit disease classification using NDCNN
Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 84.62 0 0 15.38 0 0 0 0 0 0
B-Ini 52.63 0 0 47.37 0 0 0 0 0 0
B-Int 34.09 0 0 65.91 0 0 0 0 0 0
F-Ini 55.56 0 0 44.44 0 0 0 0 0 0
F-F 21.05 0 0 78.95 0 0 0 0 0 0
F-Int 15.62 0 0 84.38 0 0 0 0 0 0
Healthy 94.44 0 0 5.56 0 0 0 0 0 0
V-F 35.71 0 0 64.29 0 0 0 0 0 0
V-Ini 18.75 0 0 81.25 0 0 0 0 0 0
V-Int 22.22 0 0 77.78 0 0 0 0 0 0
ACR=1291
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Table 10
Confusion matrix and ACR (in %) on fruit disease classification using NDCNN
Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 68.42 0 13.16 2.63 0 0 0 10.53 5.26 0
B-Ini 92.59 4.63 0 1.85 0 0 0.93 0
B-Int 1.29 1.72 97.00 0 0 0 0 0 0
F-Ini 0.97 0 98.06 0 0 0 0.97 0 0
F-F 4.21 0 16.84 49.47 26.32 0 3.16 0
F-Int 0 0 59.14 7.53 32.26 0 0 1.08
Healthy 0 5.56 0 0 16.67 8.33 63.89 0 2.78 2.78
V-F 2.00 0 0 8.00 6.00 0 8.00 60.00 16.00 0
V-Ini 0 0 0 0 0 0 0 96.67 3.33
V-Int 0 16.67 5.56 0 0 16.67 5.56 11.11 44.44
ACR =170.28
Table 11
Confusion matrix and ACR (in %) on fruit disease classification using DCoS-WOR-SNN
Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 0 0 100.0 0 0 0 0 0 0 0
B-Ini 0 0 100.0 0 0 0 0 0 0 0
B-Int 0 0 100.0 0 0 0 0 0 0 0
F-Ini 0 0 100.0 0 0 0 0 0 0 0
F-F 0 0 100.0 0 0 0 0 0 0 0
F-Int 0 0 100.0 0 0 0 0 0 0 0
Healthy 0 0 100.0 0 0 0 0 0 0 0
V-F 0 0 100.0 0 0 0 0 0 0 0
V-Ini 0 0 100.0 0 0 0 0 0 0 0
V-Int 0 0 100.0 0 0 0 0 0 0 0
ACR =10.00
Table 12
Confusion matrix and ACR (in %) on fruit disease classification using DCoS-WOR-SNN
Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 100.0 0 0 0 0 0 0 0 0 0
B-Ini 100.0 0 0 0 0 0 0 0 0 0
B-Int 100.0 0 0 0 0 0 0 0 0 0
F-Ini 100.0 0 0 0 0 0 0 0 0 0
F-F 100.0 0 0 0 0 0 0 0 0 0
F-Int 100.0 0 0 0 0 0 0 0 0 0
Healthy 100.0 0 0 0 0 0 0 0 0 0
V-F 100.0 0 0 0 0 0 0 0 0 0
V-Ini 100.0 0 0 0 0 0 0 0 0 0
V-Int 100.0 0 0 0 0 0 0 0 0 0
ACR =10.00

12
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Table 13
Precision, recall, F1-score, and per class accuracy of the proposed method on fruit and leaf disease classification
Fruit dataset Leaf dataset
Per class Per class
Fruit class Precision Recall F1-score accuracy Precision Recall F1-score accuracy
B-F 0.84 0.93 0.88 93.47 0.98 0.98 0.98 98.25
B-Ini 0.95 0.85 0.90 84.61 0.99 0.95 0.97 95.42
B-Int 0.95 0.90 0.92 90.38 0.93 0.99 0.96 98.60
F-F 0.91 0.85 0.88 84.85 0.91 0.93 0.92 93.33
F-Ini 0.92 0.98 0.95 98.04 0.87 0.81 0.84 81.40
F-Int 0.96 0.91 0.93 90.57 0.91 0.89 0.90 88.89
Healthy 0.98 1.00 0.99 100 1.00 1.00 1.00 100
V-F 0.85 1.00 0.92 100 0.96 0.98 0.97 97.73
V-Ini 0.87 0.87 0.87 86.67 0.93 0.91 0.92 91.43
V-Int 0.86 0.82 0.84 81.82 0.97 0.96 0.96 95.65
Table 14
Precision, recall, F1-score, and per class accuracy on fruit and leaf disease classification
Fruit dataset Leaf dataset
Per class Per class
Fruit class Precision Recall F1-score accuracy Precision Recall F1-score accuracy
B-F 0.24 0.97 0.39 96.92 0.95 0.95 0.95 94.74
B-Ini 0.27 0.47 0.34 47.47 0.93 1.00 0.96 100
B-Int 0 0 0 0 0.99 0.99 0.99 99.14
F-F 0 0 0 0 0.71 1.00 0.83 100
F-Ini 0.80 0.89 0.84 89.47 0.79 0.45 0.57 45.26
F-Int 0.33 0.85 0.48 84.85 0.73 0.52 0.61 52.13
Healthy 0.93 1.00 0.97 100 0.94 1.00 0.97 100
V-F 0 0 0 0 0.89 0.82 0.85 82.00
V-Ini 0 0 0 0 0.95 0.90 0.92 90.32
V-Int 0 0 0 0 1.00 0 0 0
Table 15
Precision, recall, F1-score, and per class accuracy on fruit and leaf disease classification
Fruit dataset Leaf dataset
Per class Per class
Fruit class Precision Recall F1-score accuracy Precision Recall F1-score accuracy
B-F 0.24 0.82 0.37 82.13 0.85 0.94 0.89 93.83
B-Ini 0.40 0.70 0.51 69.47 0.38 0.40 0.39 40.12
B-Int 0.35 0.07 0.12 7.05 0.37 0.95 0.53 94.89
F-F 0.19 0.08 0.11 7.50 0.47 0.88 0.61 87.62
F-Ini 0.28 0.38 0.32 37.98 0.32 0.05 0.09 4.62
F-Int 0.34 0.23 0.27 23.08 0.36 0.38 0.37 37.68
Healthy 0.39 0.61 0.48 61.37 0.92 0.98 0.95 97.56
V-F 0 0 0 0 0.55 0.69 0.61 68.98
V-Ini 0 0 0 0 0.82 0.56 0.66 56.21
V-Int 0 0 0 0 0.60 0.80 0.88 80.41
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Table 16
Precision, recall, F1-score, and per class accuracy on fruit and leaf disease classification
Fruit dataset Leaf dataset
Per class Per class
Fruit class Precision Recall F1-score accuracy Precision Recall F1-score accuracy
B-F 0.39 0.85 0.53 84.62 0.87 0.68 0.76 68.42
B-Ini 0 0 0 0.90 0.93 0.91 92.59
B-Int 0 0 0 0 0.95 0.97 0.96 97.00
F-F 0.07 0.44 0.12 78.95 0.57 0.98 0.72 98.06
F-Ini 0 0 0 0 0.72 0.49 0.59 49.47
F-Int 0 0 0 0 0.52 0.32 0.40 32.26
Healthy 0 0 0 0 0.77 0.64 0.70 63.89
V-F 0 0 0 0 0.83 0.60 0.70 60.00
V-Ini 0 0 0 0 0.63 0.97 0.76 96.67
V-Int 0 0 0 0 0.73 0.44 0.55 44.44
Table 17
Precision, recall, F1-score, and per class accuracy on fruit and leaf disease classification
Fruit dataset Leaf dataset
Per class Per class
Fruit class Precision Recall F1-score accuracy Precision Recall F1-score accuracy
B-F 0.042 0.100 0.059 0.100 0 0 0 0
B-Ini 0 0 0 0 0.046 0.100 0.063 0.100
B-Int 0 0 0 0 0 0 0 0
F-F 0 0 0 0 0 0 0 0
F-Ini 0 0 0 0 0 0 0 0
F-Int 0 0 0 0 0 0 0 0
Healthy 0 0 0 0 0 0 0 0
V-F 0 0 0 0 0 0 0 0
V-Ini 0 0 0 0 0 0 0 0
V-Int 0 0 0 0 0 0 0 0

poor results because Tunio et al.’s method [22] is good for plant but
not fruit images, while Zhang and Tu’s method [9] is good for general
image classification. Because the scope of the existing methods is
limited to particular datasets and cases, they do not perform well for the
10-class classification of fruit and leaf datasets. It is evident from the
performance of the existing methods on fruit and leaf datasets that Tunio
et al.’s method [22] performed better for the leaf dataset and worse for
the fruit datasets than Zhang and Tu’s [9]. In addition, Zhang and Tu [9]
and Singaravelu and Perumal [36] obtained almost the same results for
the fruit and leaf datasets. This is because the method considers fruit
and leaf images as general images.

However, as discussed in the ablation study experiments, the key
steps proposed in this study are effective. The combination of Color
spaces, Transfer Learning, and Swin Transformer V2-Tiny enhances
the generalization ability, and the proposed method is superior in terms
of the average classification rate compared with existing methods on
both fruit and leaf datasets. Furthermore, the proposed method achieved
similar results for both datasets. This justifies that the proposed method
is consistent and domain-independent.

14

To validate the above statement, we also calculated precision,
recall, F1-score, and accuracy per class for the proposed and existing
methods on fruit and leaf dataset as reported in Tables 13—17 (Table 14
[22]; Table 15 [9]; Table 16 [35]; Table 17 [36]). It is observed from
Tables 13—17 that the proposed method outperforms all the existing
methods in terms of precision, recall, F1-score, and accuracy per class

Table 18
ACR of the proposed and existing methods on
NZDLPlantDisease-vl, NZDLPlantDisease-v2 (in %)

NZDLPlant- NZDLPlant-
Methods Disease-v1 Disease-v2
Proposed method 95.44 93.64
Tunio et al. [22] 52.60 52.15
Zhang et al. [11] 36.92 50.53
Rajalakshmi et al. [35] 17.09 7.00
Singaravelu and Perumal [36] 7.14 7.69
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Table 19
The average classification rate of the proposed and existing methods on scaled, rotated, and distorted images

Random scaling up and

Different levels of Gaussian noise

down Random rotations and blur
Methods Fruit Leaf Fruit Leaf Fruit Leaf
Proposed method 81.88 87.51 80.44 94.80 69.24 73.04
Tunio et al. [22] 46.86 70.50 37.47 63.70 30.24 59.56
Zhang et al. [9] 47.85 61.29 48.61 63.22 49.49 61.64
Rajalakshmi et al. [35] 10.84 65.81 10.97 74.59 12.51 77.64
Singaravelu and Perumal [36] 10.00 10.00 10.00 10.00 10.00 10.00

on both fruit and leaf datasets. This shows that the proposed method is
domain-independent and generic. However, since the existing methods
are developed with specific objectives, the performance of the existing
methods is inferior to the proposed method on both fruit and leaf
datasets. In addition, the existing methods are not capable of handling
10 classes of diseases.

4.4. Experiments for classification on two benchmark
datasets

The performance of the proposed and existing methods was
tested on two benchmark datasets, as reported in Table 18, where it can
be seen that the proposed method is the best for both datasets compared
to the existing methods. Although the datasets were more complex than
our fruit and leaf datasets, the proposed method achieved consistent
results for both datasets. The reasons for the successful classification
of the proposed method and the poor results of the existing methods
are the same as those stated in the previous section. Overall, when we
analyzed the experiments on our and benchmark datasets, the proposed
method was effective, consistent, and generic.

4.5. Experiments on robustness analysis

To demonstrate that the proposed method is robust to distortion,
rotation, noise, blur, and scaling, the average classification rate was
calculated for different experiments on our dataset, and the results are
reported in Table 19. The results listed in Table 19 show that the proposed
method obtained almost consistent results for different scaling, rotation,
blur, and noise compared with the existing methods. This indicates
that the method is invariant to rotation, scaling, noise, and blur. This
includes that the extracted features are insensitive to noise, blur, and
the effects of rotation and scaling. However, the existing method lacks
a generic nature and robustness, and the methods are inferior to the
proposed method in various experiments.

Challenges: While the proposed Tiny Swin Transformer V2
model demonstrates strong performance in controlled experimental
settings, deploying it in real-world agricultural environments presents
several challenges. One major limitation is the computational demand
of transformer-based models, which can be unsuitable for real-time
inference on low-power edge devices such as mobile phones or drones.
Although Tiny Swin V2 is relatively lightweight compared to larger
ViTs, further optimization (e.g., quantization, pruning, or model
distillation) may be required to ensure compatibility with embedded
systems.

Additionally, the variability in image acquisition conditions—
such as inconsistent lighting, background clutter, occlusion from
other leaves or fruits, camera motion blur, or weather effects—can
impact model accuracy. While data augmentation helps simulate these

variations, unpredictable field conditions may still affect robustness.
There is also a need for cross-geographic validation, as disease
symptoms can vary between regions, crop varieties, and climate zones.
Finally, ethical deployment must ensure that such automated systems
are used to assist rather than replace agronomists and plant health
experts. Providing confidence scores, explainable Al outputs, and
human-in-the-loop verification is essential for responsible adoption in
agricultural decision-making pipelines.

5. Conclusion and Future Work

In this study, we adapted the Tiny Swin Transformer V2 model
for the classification of fruit and leaf images infected by viruses,
bacteria, and fungi at different levels. As stated in Section 3, visual
features such as yellow, dark, and white patches are important cues for
the classification of fruit and leaf images infected by viruses, bacteria,
and fungi. Inspired by vision transformers that extract visual features
accurately, the proposed work adapts the Tiny Swin Transformer V2 for
the classification of three stages of viruses, bacteria, and fungi on fruits
and leaves. Unlike the baseline Swin Transformer and Swin Transformer
V2-Tiny, the proposed study chose the Tiny Swin Transformer V2 for
successful classification. This is because the proposed method is more
efficient, accurate, and adaptable to different situations than the baseline
models. The results on the fruit and leaf dataset and two benchmark
datasets, and a comparative study with the existing methods, show
that the proposed method is effective, robust, domain-independent,
and consistent. However, the proposed method did not perform well
when it was trained on samples from other fruit and leaf datasets. This
shows that our method is sensitive to the training samples. This can
be solved by proposing a combination of GANS, transformers, and
diffusion models. This is beyond the scope of the present work and can
be extended to the near future. Since the scope of the work is to address
the challenge of fruit and leaf disease identification using an adaptive
Swin transformer, the present work does not focus on theory to justify
the hypothesis of the proposed method. Therefore, this is beyond the
scope of the work, and hence it can be considered future work.
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