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Abstract: The classification of fruits and leaves affected by bacteria, viruses, and fungi has made significant progress in the fields of artificial 
intelligence and image processing. However, most methods focus on particular categories of fruit and leaf diseases, but not on both fruit and leaf 
diseases caused by bacteria, viruses, and fungi. This study aimed to develop a model for the classification of the initial, intermediate, and final 
stages of bacterial, viral, and fungal diseases, irrespective of fruit and leaf types. To achieve this goal, inspired by the accomplishments of the Swin 
Transformer, the Swin Transformer V2-Tiny was explored for the classification of 10 classes, which included healthy and three stages of bacteria, 
virus, and fungus images of fruits and leaves. The stages of Swin Transformer V2-Tiny divide the image into patches, namely, linear projection, 
Window Multi-Head Self-Attention (W-MSA), and Shifted Window Multi-Head Self-Attention (SW-MSA) for local and global features, which 
were adapted to perform the plant disease classification. Experiments on authors’ curated and standard datasets and a comparative study with recent 
methods demonstrate effective classification and superiority over existing methods. To the best of our knowledge, this is the first study on the 
classification of fruit and leaf pathogens caused by bacteria, viruses, and fungi based on their development stages. The proposed model achieved an 
average classification rate of 91.04% on fruit datasets and 94.07% on leaf datasets, outperforming recent benchmark methods. It also demonstrated 
strong generalization on unseen public datasets with over 93% accuracy. 
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1. Introduction
Plant diseases caused by bacterial, fungal, and viral infections 

pose a significant threat to agricultural productivity. Therefore, the early 
detection of these diseases at an early stage is crucial for implementing 
timely interventions and reducing crop losses. In addition, it reduces 
manpower and expenses, leading to cost effectiveness. Plant, fruit, 
and leaf disease identification is not a new challenge, and we can find 
several existing methods can be found in the literature [1–3]. Existing 
methods use Convolutional Neural Networks (CNNs) and other deep 
learning models. 

However, as existing methods focus on a particular dataset and 
disease, they are not robust enough to handle the stages of fruit and leaf 
diseases caused by bacteria, viruses, and fungi. For example, sample 
fruit and leaf images of the initial, intermediate, and final stages caused 
by bacteria, viruses, and fungi are shown in Figures 1(a)–(i) and 2(a)–(i). 
It is observed from Figures 1(a)–(i) and 2(a)–(i) that the difference 
between samples of different diseases is minimal. This is because the 
images share common observations. The same is true for the leaf images. 
Although observations such as yellow patches for viruses, dark patches 

for bacteria, and white patches for fungi can differentiate diseases at 
different levels, unpredictable shapes, structures, and varieties make 
the classification problem more complex and challenging. Thus, the 
classification of disease pathogens at different levels, irrespective of 
fruit and leaf types, is an open challenge.

To address this challenge, this study explored the Swin 
Transformer V2-Tiny model for the classification of fruit and leaf 
images of bacteria, viruses, and fungi at initial, intermediate, and final 
levels. Figures 1 and 2 show that the observations, namely, yellow, 
dark, and white patches for viral, bacterial, and fungal infections, 
respectively, are vital cues for successful classification. To extract 
such observations, inspired by the elegant vision transformer, which 
is a special model for visual feature extraction, the proposed method 
adapts the Swin Transformer V2-Tiny [4–6]. Compared to the baseline, 
the Swin Transformer, the Swin Transformer V2-Tiny is robust, easy 
to adapt to different situations, and extracts features efficiently. This 
motivated us to explore the Swin Transformer V2-Tiny in contrast to 
the baseline Swin Transformer for the classification of healthy and 
diseased pathogens of plants.

The key contributions of this study are as follows:

1)  Exploring the Swin Transformer V2-Tiny model for the classification 
of bacteria, virus, and fungus-infected fruit and leaf images at the 
initial, intermediate, and final levels. 

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/	
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2)  Adapting the Swin Transformer V2-Tiny for the classification of 
infected images, irrespective of fruit and leaf type. 

The remainder of this paper is organized as follows: 
Section 2 discusses related work on fruit and leaf disease classification 
and identification. Section 3 presents details of the proposed 
methodology, including the model architecture. Section 4 presents the 
experimental results and evaluation metrics. Section 5 discusses the 
findings and limitations of the study. 

2. Related Work
If we consider the classification of bacteria, fungi-, and virus-

infected images as a general image classification problem, several 
methods are available in the literature. For instance, the methods [4, 7] 
were proposed for object detection and classification in images. Because 
objects in images have unique shapes, these existing methods extract 
features that represent the shapes of particular objects. However, in our 
classification, the patches did not have any shape, and the images had 
unpredictable shapes. Therefore, general image classification methods 
may not work well for the classification of virus-, bacteria-, and fungus-
infected images based on their development stages. 

2.1. General image classification
Li et al. [4] introduced PMST (Parallel and Miniature Swin 

Transformer), a refined variant of the Swin Transformer tailored for 
logo detection. By incorporating a bypass-parallelizable shift module 

and a miniature window tandem shift strategy, the model enhances 
feature fusion and information transfer between windows, addressing 
challenges such as varying logo scales, diversity, and distortions in the 
data. Similarly, He et al. [7] proposed Dual-branch Swin Transformer 
with Asymmetric Attention Fusion (DST-A2F) for radar-based gait 
recognition. This model extracts distinctive features from spectrogram 
and cadence velocity diagram (CVD) representations, prioritizing more 
informative spectrogram features using asymmetric attention fusion. 

Furthermore, Hu et al. [8] developed MAFDet, a multi-attention 
fusion network for small-object detection in drone imagery. This 
method combines a Swin Transformer backbone, a multi-attention 
focusing sub-network, and an anchor-free detection head, significantly 
improving detection accuracy on datasets such as VisDrone and 
UAVDT. Meanwhile, Hu et al. [5] presented VGG-TSwinformer, a deep 
learning framework integrating VGG-16 and Swin Transformer for 
early Alzheimer’s disease (AD) diagnosis using longitudinal MRI data. 
Leveraging spatial and temporal attention mechanisms for classification. 
Zeng et al. [6] introduced DTMINet, a Dual Swin-Transformer-based 
Mutual Interactive Network for RGB-D salient object detection, 
incorporating novel fusion mechanisms and outperforming state-of-
the-art techniques. Similarly, Zhang and Tu [9] proposed SwinFR, 
a super-resolution model for remote sensing images that combines 
SwinIR with Fast Fourier Convolution (FFC) to enhance low-frequency 
information retention. Finally, Zhou et al. [10] presented an improved 
YOLOv7 model incorporating Modulated Deformable Convolution 
and Swin Transformer to enhance object detection in fisheye images, 
achieving superior performance on VOC-360 and ERP-360 datasets. 
Pal et al. [11] provided a comprehensive review of text detection and 
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Figure 1
Sample images of virus, bacteria, and fungus at initial, intermediate, and final stages of fruits
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recognition methods in natural scene images, discussing various deep 
learning approaches, including regression-based, segmentation-based, 
and transformer-based models. This study highlights the strengths and 
limitations of these techniques and identifies open challenges in handling 
complex scenarios, such as low-light conditions and arbitrary motion. 

Deep learning and ML-based classification methods have been 
widely used in the medical and agricultural domains. Kang et al. 
[12] successfully implemented machine learning models for COPD 
classification, achieving high accuracy using decision-tree-based 
classifiers. This methodology is relevant for plant disease classification, 
where similar ML techniques can be used to distinguish between 
bacterial, fungal, and viral infections.

Despite the advancements in Swin Transformer applications 
across various fields, existing image classification techniques are not 
designed to classify multiple domains, such as fruit and leaf infections 
at different levels, caused by bacteria, fungi, and viruses. Therefore, 
they may not be effective for specific tasks.

2.2. Fruit and leaf disease classification
Gupta and Tripathi [13] conducted a comprehensive survey 

analyzing fruit and vegetable disease classification methods using 
machine learning, deep learning, and IoT-based technologies. Similarly, 

Laim et al. [14] developed an automated fruit disease classification model 
using the Scale-Invariant Feature Transform (SIFT), which extracts 
key image features to enhance classification accuracy. Aboelenin et al. 
[15] proposed a hybrid deep learning framework integrating CNN and 
Vision Transformers (ViT) to detect plant leaf diseases, achieving state-
of-the-art accuracy on apple and corn leaf disease datasets.

Other notable works include Xu et al. [16] who introduced 
PDNet, a parameter-efficient Vision Transformer model designed for 
plant leaf disease identification. Their method utilized Overlapping 
Patch Embedding (OPE) and Angular Softmax Loss (A-Softmax) for 
refined disease classification, demonstrating superior performance 
across multiple datasets. Additionally, Megalingam et al. [17] 
developed a Vision Transformer-based approach for cowpea leaf 
disease classification, achieving 96% accuracy. Further contributions 
by Das et al. [18] provided an extensive review of deep learning 
techniques for tomato leaf disease classification, whereas Wu et al. [19] 
introduced an attention-based CNN (LBPAttNet) to improve tea leaf 
disease identification.

2.3. Plant disease classification
Barman et al. [20] proposed ViT-SmartAgri, a Vision Transformer-

based model for plant disease detection, achieving 90.99% accuracy on 
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Figure 2
Sample images of virus, bacteria, and fungus at initial, intermediate, and final stages of leaves
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smartphone-captured tomato leaf images. Hemalatha and Jaychandran 
[21] introduced PDLC-ViT, a multi-task Vision Transformer model 
for disease localization and classification, achieving state-of-the-art 
performance on the Plant Village and PlantDoc datasets. Tunio et al. [22] 
developed a Transformer-fused CNN model using Wasserstein domain 
adaptation to improve generalization across plant disease datasets. 
Additionally, Singh et al. [23] leveraged synthetic data augmentation 
using LeafyGAN to enhance plant disease classification performance. 
Liu and Zhang [24] introduced an Efficient Swin Transformer that 
integrates selective token generation and feature fusion to improve 
accuracy and reduce computational complexity. Subramanian et al. 
[25] compared conventional and AI-driven intervention techniques 
for Alzheimer’s disease. They discuss traditional methods such as 
cognitive stimulation and reminiscence therapy, alongside AI-based 
approaches such as deep learning, vision transformers, and NLP for 
early diagnosis and personalized care. The study highlights the potential 
of integrating both approaches to enhance the management of patients 
with Alzheimer’s disease.

Balasundaram et al. [26] applied the Segment Anything Model 
(SAM) in conjunction with deep convolutional neural networks for tea-
leaf disease detection, demonstrating improved segmentation-guided 
classification performance under field conditions.

Hasan et al. [27] introduced a comprehensive smartphone image 
dataset of radish plant leaves from Bangladesh to support automated 
disease classification. This dataset enables effective benchmarking of 
deep learning models and contributes to enhancing model generalization 
in real-world agricultural conditions.

Ni et al. [28] demonstrated the use of FTIR (Fourier-transform 
infrared) spectroscopy in combination with machine-learning methods 
to diagnose corn leaf diseases, providing a spectral-based alternative to 
conventional image-based classification approaches.

Petchiammal and Murugan [29] explored automated identification 
of paddy leaf diseases using visual leaf images and compared nine 
pre-trained deep-learning architectures (including VGG16, VGG19, 
DenseNet variants, MobileNetV2, InceptionV3 and ResNet152V2) to 
evaluate classification performance across multiple disease classes.

Akhter and Saxena [30] documented for the first time the co-
infection of papaya in Lucknow (India) by Catharanthus yellow mosaic 
virus (CaYMV) together with a novel betasatellite they named Tomato 
leaf curl Lucknow betasatellite (ToLCLB), expanding understanding of 
the complex begomovirus–satellite combinations underlying Papaya 
leaf curl disease (PaLCD) in Indian papaya.

Although these methods focus on plant disease identification, 
they may not generalize well when classifying multiple types of 
diseases in different plant species.

2.4. Virus, bacteria, and fungus disease classification
Saraswat et al. [1] developed an advanced method for detecting 

fungal and bacterial diseases in plants using a modified deep neural 
network (MDNN) combined with the Dynamic SURF (DSURF) 
technique. Gaikwad et al. [2] introduced a deep CNN model for fungi-
affected fruit leaf disease classification using AlexNet and SqueezeNet. 
Furthermore, Gaikwad et al. [3] focused on CNN-based identification 
of fungi-infected guava leaves using SqueezeNet. Other contributions 
include those of Priyanka et al. (2025) who analyzed papaya leaf 
curl disease (PaLCD) caused by begomoviruses and identified novel 
viral strains in India. Pakruddin and Hemavathy [31] introduced a 
pomegranate disease dataset to aid the deep learning-based classification 
of bacterial blight, anthracnose, and Alternaria fruit spot. Additionally, 
Siripatrawan and Makino [32] utilized hyperspectral imaging (HSI) 
with machine learning techniques to detect anthracnose in mangoes, 
demonstrating the effectiveness of presymptomatic detection.

4

Study Model/Method Dataset(s) Key techniques Advantages
Limitations/Research 

gaps
Aboelenin et al. 
[15]

CNN + ViT Hybrid Apple & Corn Leaf 
Datasets

CNN for feature extraction, 
ViT for classification

High accuracy, better 
generalization than 
CNN alone

Dataset-specific, lacks 
stage-wise disease 
classification

Xu et al. [16] PDNet (Transformer) Multiple Plant Leaf 
Datasets

Overlapping Patch Embed-
ding (OPE), A-Softmax loss

Efficient transformer 
design, fewer param-
eters

Does not address 
multi-stage disease 
progression

Tunio et al. [22] Transformer-fused CNN 
+ Domain Adaptation

PlantVillage, Plant-
Doc

Wasserstein domain adapta-
tion, hybrid fusion

Good cross-domain 
performance

No specialization for 
bacteria, virus, fungus 
stages

Singh et al. [23] ViT + GAN 
(LeafyGAN)

Tomato Leaf 
Dataset

Synthetic image generation, 
transformer-based classifier

Works well with 
limited real data

Not generalized across 
multiple crops/diseases

Hu et al. [9] MAFDet (Transform-
er-based detector)

Drone imagery 
datasets

Multi-attention fusion, 
anchor-free detection

Effective for small 
object detection

Not focused on disease 
classification

Liu and Zhang 
[24]

Efficient Swin Trans-
former

Custom Plant Dis-
ease Dataset

Selective token generation, 
lightweight Swin blocks

Reduced complexity, 
fast inference

Limited to detection, 
not detailed classifi-
cation

Das et al. [18] Deep CNNs (Survey) Tomato Leaves Review of multiple deep 
learning methods

Highlights state-of-
the-art models

Does not provide a 
unified solution

Barman et al. [20] ViT-SmartAgri Smartphone images 
(Tomato)

Vision Transformer, mobile 
deployment

Suitable for real-time 
field applications

Single crop, lacks 
stage-wise analysis

This Work Swin Transformer 
V2-Tiny (Modified)

Custom 10-Class + 
NZDL-v1/v2

Local-global attention 
(W-MSA + SW-MSA), 
stage-wise classification, 
modified classifier head

Handles multiple 
diseases, all stages, 
high accuracy, gener-
alizable

None—addresses 
disease type + stage 
classification in fruit 

and leaf images

Table 1
Comparative overview of recent models and their performance in plant disease classification
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While these studies address virus, bacteria, and fungus disease 
identification in specific crops, none have focused on a unified 
classification model for all three types. The lack of domain-independent 
methods indicates that existing techniques are designed for specific 
scenarios, limiting their applicability to diverse datasets.

Recent research has demonstrated the effectiveness of deep 
learning in plant disease classification, with increasing attention on 
Vision Transformers (ViT) and hybrid CNN-ViT architectures due to 
their superior feature extraction capabilities. For instance, Aboelenin 
et al. [15] proposed a hybrid CNN-ViT model achieving high accuracy 
in detecting apple and corn leaf diseases. Xu et al. [16] introduced a 
parameter-efficient ViT model using Overlapping Patch Embedding 
and A-Softmax loss, enabling accurate disease identification with 
fewer parameters. Similarly, Tunio et al. [22] developed a transformer-
fused CNN with Wasserstein domain adaptation, which improved 
generalization across plant disease datasets. Singh et al. [23] applied 
GAN-based synthetic augmentation to train vision transformers more 
effectively on limited real data. While these methods highlight the 
power of transformers, they are often tailored to specific crops, do not 
generalize across disease stages, or overlook the early-stage variations 
critical for effective disease control.

Table 1 presents a comparative summary of the recent models 
and their effectiveness in plant disease classification.

In summary, from the literature review reported in Table 1, it 
is evident that no existing models simultaneously classify images of 
bacteria-, fungi-, and virus-infected fruit and leaves at different levels. 
Consequently, there is a pressing need for an effective classification 
model to address this issue. Hence, this study aims to develop such a 
model to bridge this gap and provide a more comprehensive solution for 
disease classification. Unlike existing models, the proposed Tiny Swin 
Transformer V2 architecture is adapted to handle subtle inter-class 
differences and high visual similarity across stages, making it suitable 
for real-world, diverse datasets.

3. Proposed Methodology 
As noted in the sample images in Figures 1 and 2, the yellow, 

dark, and white patches are the key cues for differentiating fruit and leaf 
images infected by viruses, bacteria, and fungi at different levels. These 
observations were made by experts in the Biotechnology Department. It 
was also observed that the size and thickness of the patches changed as 
the levels changed (initial, intermediate, and final). These observations 
motivated us to introduce a vision transformer to extract the features 
that represent unique observations. Because the difference in the images 
at different levels is marginal, the baseline vision transformer may not 
be effective. Therefore, a robust Tiny Swin Transformer V2 model was 
used for successful classification. Compared with the classical Swin 
Transformer model, the Tiny Swin Transformer V2 is efficient, accurate 
and adaptable to different situations. Hence, the proposed Method was 

explored for the classification of stages of viruses, bacteria, and fungi of 
fruits and leaves. The block diagram of the proposed method is shown 
in Figure 3. 

Figure 3 shows the input images of different colors. The input 
images were divided into patches and projected linearly to extract 
features. The Swin Transformer extracts deep hierarchical features from 
images. The extracted features were fed into the classification step to 
classify the initial, intermediate, and final stages of virus, bacteria, and 
fungus, along with a healthy class. 

3.1. Classification
The Tiny Swin Transformer V2 model, a hierarchical vision 

transformer, enhances feature extraction through its shift-window 
mechanism, allowing it to efficiently capture both local and global 
dependencies in images. Local Dependencies refer to short-range 
relationships between neighboring patches or pixels in an image. These 
capture fine-grained details, such as texture, edges, or small variations 
in color, which are crucial for distinguishing subtle differences, 
especially in early-stage disease symptoms. Global Dependencies refer 
to long-range relationships between distant regions of the image. These 
help in understanding the overall structure or patterns that span across 
larger parts of the image, such as widespread lesions or disease spread 
patterns. The proposed model applies transfer learning using Tiny Swin 
Transformer V2, which was trained on augmented fruit and leaf image 
data. 

This 10-class classification framework utilizes the Tiny Swin 
Transformer V2 model, as shown in Figure 4, a hierarchical vision 
transformer pre-trained on ImageNet, to classify fruit and leaf diseases 
caused by viruses, bacteria, and fungi at different infection stages 
(initial, intermediate, and final). The pipeline begins with RGB dataset 
images, which undergo data augmentation techniques such as resizing 
(224 × 224) to match the input size of the model, random flipping 
and rotation to introduce geometric variability, and color jittering to 
enhance robustness against lighting variations. The images were then 
normalized using ImageNet statistics and split into 80% training and 
20% validation sets, ensuring balanced class representation. A PyTorch 
DataLoader was configured with a batch size of 16 to efficiently load the 
images during training. The Swin Transformer processes input images 
by first partitioning them into non-overlapping 4 × 4 patches, followed 
by a linear embedding that transforms each patch into a 96-dimensional 
feature vector. 

The feature extraction pipeline consists of two hierarchical 
stages, each containing two Swin Transformer blocks that utilize 
Window Multi-Head Self-Attention (W-MSA) and Shifted Window 
Multi-Head Self-Attention (SW-MSA) to capture both local and global 
dependencies. Between stages, the patch merging layers (2 × 2→1) 
progressively reduced the spatial dimensions while increasing the feature 
depth, allowing the model to learn hierarchical representations. After 
the final stage, Global Average Pooling (GAP) was applied to compress 
the spatial information into a single feature vector. The classification 
head consisted of a fully connected layer (Linear 768→256), followed 
by a ReLU activation, Dropout (0.5) to prevent overfitting, and another 
fully connected layer (Linear 256→10) that mapped the features to 
10 class logits. The model was trained using mixed precision (AMP) 
on CUDA or CPU, optimizing with CrossEntropyLoss, the Adam 
optimizer, a StepLR scheduler (reducing the learning rate every 10 
epochs by a factor of 0.1), and early stopping (patience = 5 epochs) to 
prevent overfitting. 

More details of the proposed method are presented below. 
Patch Partitioning and Linear Embedding: The input RGB 

images are resized and partitioned into non-overlapping patches 
as mentioned earlier, resulting in a grid of 56 × 56 patches. Each 
patch is flattened and passed through a linear projection to create a 
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 Figure 3
The block diagram of the proposed method
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96-dimensional embedding vector. These embeddings form the input 
to the Swin Transformer blocks. Although Tiny Swin Transformer V2 
begins by dividing the image into non-overlapping 4 × 4 patches, it 
does not reassemble these patches into the original image in a spatial 
sense. Instead, it preserves and reconstructs the global context through 
a combination of two mechanisms:

Shifted Window Attention (SW-MSA): By shifting the 
attention window across layers, the model ensures that each patch 
interacts with its neighboring patches from adjacent windows. This 
overlapping attention helps bridge patch boundaries and recovers 
spatial relationships. Hierarchical Feature Aggregation: As the model 
proceeds through its stages, the patch merging operations combine 
adjacent patches and increase the receptive field. This forms a deep, 
multi-scale representation of the entire image, allowing the model 
to reason about both local and global structures. These mechanisms 
allow the model to encode the entire image context without explicitly 
reassembling the patches, thus ensuring that no critical information is 
lost during the process.

Hierarchical Feature Extraction with Local and Global 
Dependencies: Swin Transformer V2-Tiny employs a hierarchical 
architecture with four stages. W-MSA enables the model to capture 
local dependencies by applying self-attention within non-overlapping 
windows of fixed size as discussed above. SW-MSA shifts the windows 
between layers, facilitating cross-window interactions and thereby 
capturing global dependencies without excessive computation. This 
mechanism allows the network to model subtle variations in patch 
shapes and textures across infection stages. Each stage is followed by 

a Patch Merging layer, where adjacent 2 × 2 patches are concatenated 
and passed through a linear layer. This reduces spatial resolution and 
increases channel depth, allowing the model to build deep hierarchical 
features from low-level edges to high-level semantic cues.

Modified Classifier Head: The default classifier head of the 
pre-trained Swin V2-Tiny model is replaced with a task-specific fully 
connected head: A linear layer reduces the feature dimension from 768 
to 256 followed by a ReLU activation and Dropout (p = 0.5). Another 
linear layer maps 256-dimensional features to the final 10-class logits.

This modification enhances the model’s capability to learn 
disease-specific class boundaries in the high-dimensional feature space.

Training Enhancements and Implementation Details: To 
ensure robustness, generalization, and reproducibility, the following 
training strategies were employed: Transfer Learning: We initialized 
the Tiny Swin Transformer V2 model with ImageNet-1K pretrained 
weights and fine-tuned it on our 10-class dataset. 

Loss Function: CrossEntropyLoss with label smoothing 
(smoothing factor = 0.1) was used to prevent overconfidence and 
improve generalization. The model was trained with the Adam optimizer 
(learning rate = 3e−4, weight decay = 1e−5). A Step learning rate 
scheduler reduced the learning rate by a factor of 0.5 every 5 epochs, 
implemented with a patience of 10 epochs to prevent overfitting and 
reduce training time, and enabled via PyTorch’s AMP (torch.cuda.amp) 
to accelerate training and reduce memory usage on CUDA-compatible 
GPUs with batch Size: 16, Epochs: 30, and Input Size: 224 × 224 pixels.

Data Augmentation: To increase model robustness and reduce 
overfitting, we applied comprehensive augmentation techniques, 
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 Figure 4
Swin Transformer Tiny-V2 architecture for classification of fruit and leaf 
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namely, Resize (224 × 224), Random Horizontal Flip, Random 
Rotation (±30°), Color Jitter (Brightness, Contrast, Saturation, Hue), 
Random Affine Transformations (translation ±10%), Normalization 
with ImageNet Statistics with Mean = [0.485, 0.456, 0.406] and Std = 
[0.229, 0.224, 0.225].

To visualize the effectiveness of the proposed model on 
classification, the t-Distributed Stochastic Neighbor Embedding 
(t-SNE) algorithm was used to map high-dimensional data to a lower-
dimensional space, as shown in Figure 5(a)–(b) for fruits and leaves. 
The two t-SNE plots represent the feature embeddings of fruits and 
leaves in Figure 5(a) and (b), where it is noted that the Swin Transformer 
V2-Tiny t-SNE plot distinguishes almost all the classes with certain 
overlapping for both fruit and leaf images. Owing to some overlap, 
the performance of the proposed model degraded. This shows that this 
classification of healthy and diseased fruits and leaves is a complex 
problem. This indicates that there is scope for further improvement.

4. Experimental Results
We collected a dataset from the Biotechnology Department 

of Davangere University, Karnataka, India, to evaluate the proposed 
and existing methods. The main problem is that the images must be 
manually labelled for experimentation. However, this manual process 
requires more time; hence, it is difficult to handle a large variety of 
images affected by different diseases using this method. The main goal 
of this study is to integrate the proposed system with their devices to 
assist their investigation. To make the collection as comprehensive and 
representative as possible, images were collected from multiple sources, 
areas, fields, and open spaces under various weather conditions. Sample 
images illustrating the wide diversity of inputs are shown in Figures 6 and 
7, where the effect of each disease pathogen can be observed. Although 
we can see distinctions for each disease, the variation in terms of the 
number and size of the patches and the unpredictable shapes of the fruits 
and leaves make the classification task complex.

4.1. Dataset curation and evaluation
To ensure a diverse and representative dataset for training and 

evaluation, a custom 10-class dataset was collected over a span of six 
months (July to December 2024) from multiple agricultural fields, 
experimental farms, and open environments across Karnataka, India. 
This dataset comprises high-resolution RGB images of fruit and leaf 
samples infected by bacterial, fungal, and viral pathogens at three 
distinct infection stages: initial, intermediate, and final, along with 
healthy samples.

7

 Figure 5
 (a) distribution of classes of fruits and (b) leaf disease 

classification

Note: B-F — Bacteria on fruit, F-F — Fungus on fruits, V-F — Virus on fruits, 
B-L — Bacteria on leaf, F-L — Fungus on leaf, V-L — Virus on leaf.

 Figure 6
Sample images of different diseases from our fruit datasets. These samples are classified successfully by the proposed method
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Image Acquisition and Diversity: Images are captured using 
smartphone cameras and digital SLRs with resolutions ranging from 12 
to 24 MP, ensuring both clarity and variability in resolution. The camera-
to-subject distance ranged from 0.5 to 1 m, enabling consistent visibility 
of disease symptoms such as patch color, size, and location. To represent 
real-world diversity, data is collected under varying conditions, such 
as natural daylight, shaded conditions, and overcast skies. Similarly, 
images with different backgrounds, such as plain lab backgrounds and 
cluttered field environments. Sample of overlapping leaves, stems, soil, 
noise, blurring, and partial occlusions. This comprehensive capture 
approach ensures the model is exposed to various real-world variations, 
enhancing its robustness and generalization ability.

Annotation Protocol: All images are annotated and classified by 
an expert from the Department of Biotechnology, Davangere University, 
who has expertise in plant pathology and microbial disease symptoms 
in horticultural crops. The expert labelled each image into one of ten 
predefined classes (bacteria, fungus, virus – initial/intermediate/final, 
and healthy). Visual features such as patch color (yellow for virus, dark 
for bacteria, white for fungus), shape, and lesion spread were used as 
key cues for labelling. The labelling process ensured high accuracy and 
consistency due to the annotator’s domain expertise and familiarity 
with disease progression characteristics.

Dataset Composition: Each of the ten classes includes 500 images, 
resulting in a balanced dataset of 5000 samples. The dataset includes both 
fruit and leaf samples, with balanced representation across all disease 
types and stages. Augmentation techniques such as flipping, color jitter, 
affine transformations, and rotations further increase sample variability.

NZDLPlantDisease-v1 dataset: This dataset includes images of 
kiwifruit, apples, pears, avocados, and grapevines from New Zealand 
agricultural fields. The dataset contains images of multiple diseases on 
leaves, fruits, and stems under various environmental conditions. In 
total, there were 1500 images in the bacteria class, 400 images in the 
fungus class, 1500 images in the healthy class, and 648 images in the 
virus class [33, 34]. 

NZDLPlantDisease-v2 dataset: This dataset comprises a diverse 
collection of images of plant diseases found in New Zealand’s vegetables. 
The bacteria, fungi, viruses, and healthy classes contained 1800, 652, 
1800, and 648 images, respectively, yielding a total of 4900 samples. 
This includes multiple disease categories that affect different vegetables 
in diverse environmental conditions. Therefore, the high accuracy on 
these benchmark datasets validates the generalization capability and 
robustness of the proposed method [33, 34]. These two benchmark 
datasets are used exclusively for testing purposes. The model is trained 
and validated solely on the custom-curated dataset from Karnataka, 
India. This separation ensures that the benchmark test results reflect true 
out-of-distribution generalization performance. The proposed model is 

tested on both NZDL datasets without fine-tuning. High classification 
accuracy on these datasets (ACR > 93%) supports the robustness and 
adaptability of our model to unseen geographies and crop types.

To demonstrate that the proposed method is superior to existing 
methods, we implemented four state-of-the-art methods for general 
image classification [11] and plant disease classification [24]. The 
methods of Rajalakshmi et al. [35] and Singaravelu and Perumal [36] are 
developed for banana leaf and plant disease identification, respectively. 
Zhang and Tu [9] developed a method for the classification of remote 
sensing images based on Swin Transformer and the Fourier Transform. 
Tunio et al. [22] proposed a method for plant disease classification based 
on transformer-fused convolution and Wasserstein domain adaptation. 
The method was chosen to show that the general image classification 
method is not effective for the classification of bacteria, viruses, and 
fungus-infected fruit and leaf images. Similarly, the method was chosen 
to show that the existing plant disease classification methods may not 
be robust enough to handle the complex 10-class classification problem.  

To evaluate the proposed and existing methods, a confusion 
matrix was generated, and the Average Classification Rate (ACR) was 
calculated, which is the mean of the diagonal elements of the confusion 
matrix.

Implementation Details: For our experiments, we employed the 
following software and hardware components: Software: OS: Windows 
10, Editor: VSCODE 1.97.2, Python: 3.12.9, Optimizer: Adam 
optimizer, Training Method: Standard supervised learning, Number of 
Epochs: 30, Hardware: Processor – AMD Ryzen 3200G @3.6 GHz, 
RAM: 16 GB, HDD: 1 TB. All experiments were conducted using a 
GPU-enabled environment. The models were trained and tested using 
a CUDA-compatible device with automatic mixed precision (AMP) to 
optimize performance. 

Hyperparameter and Training Setup: The Tiny Swin Transformer 
V2 model was implemented using the PyTorch deep learning framework 
(v2.1.0) and initialized with ImageNet-1K pre-trained weights from the 
TorchVision model repository. All experiments were conducted on a 
system equipped with an NVIDIA RTX 3080 GPU (10 GB VRAM), Intel 
Core i9 CPU, and 16 GB RAM. The input images were resized to 224 × 
224 pixels and divided into non-overlapping 4 × 4 patches. A batch size of 
16 was used for both training and validation. The model was trained for 
10 epochs using the Adam optimizer with an initial learning rate of 3e−4 
and a weight decay of 1e−5. A StepLR scheduler was used to reduce the 
learning rate by a factor of 0.5 every 5 epochs to improve convergence.

To improve generalization, CrossEntropyLoss with label 
smoothing (ε = 0.1) was used as the loss function. The classification head 
of the model was modified to include a linear layer that maps the feature 
vector (768 dimensions) to 256, followed by a ReLU activation, a dropout 
layer with a rate of 0.5, and a final linear layer outputting logits for 10 
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 Figure 7
Sample images of different diseases from our leaf datasets. These samples are classified successfully by the proposed method
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classes. Early stopping was employed with a patience of 10 epochs to 
prevent overfitting. Training was performed using PyTorch’s Automatic 
Mixed Precision (AMP) to accelerate computation and optimize GPU 
memory usage. Batch normalization and layer normalization are 
implicitly handled within the Swin Transformer architecture.

4.2. Ablation study 
The framework of Swin Transformer V2-Tiny presented in 

Section 3 comprises several components. To validate the effectiveness 
and contribution of each component, we conducted experiments on the 
fruit and leaf datasets and calculated the average classification rate. (i)–
(iii) Use of color features: R, G, B, and Gray color spaces. (iv) Use of 
augmentation to increase the number of samples and diversity to make 
the model robust. (vi) Use of transfer learning to improve the model 
performance. (vii) Compared with the baseline Swin Transformer V2-
Tiny model to show that the adapted Swin Transformer V2-Tiny is 
better. (viii) Proposed model without a modified classifier layer. (ix) 
Proposed model without W-MSA and SW-MSA. (x) Proposed method. 
The results of all the above experiments are reported in Table 2 for both 
the fruit and leaf datasets. 

As shown in Table 2, all steps contributed to achieving the best 
results. The proposed method scored the highest average classification 
rate compared to the individual key steps. This implies that the key 
components mentioned above were effective. When we compared the 
performance of different color spaces, the red color space contributed 
more to both fruit and leaf pathogen classification than other color 
spaces. This shows that the red color is effective for images of viruses, 
bacteria, and fungi. A possible reason for this is that the causes or effects 
of viruses, bacteria, and fungi can be noticed in red spaces compared 
with other color spaces. 

Augmentation techniques, such as flipping, rotation, color jitter, 
and affine transformations, were used to increase the number of samples 
and diversity, which helps the model generalize better to unseen data. 
In addition, by artificially expanding the dataset and simulating real-
world conditions, augmentation reduces overfitting and improves the 
robustness of the model. 

Transfer learning is a crucial technique in deep learning that allows 
models to leverage knowledge from previously learned tasks, leading to 
faster training, improved performance, and a reduced risk of overfitting. 
Instead of training a neural network from scratch, a pre-trained model, 
such as Swin Transformer V2-Tiny trained on ImageNet, is fine-tuned 
on a new dataset. This approach is especially beneficial when working 
with limited data, as it enables the model to generalize well by utilizing 
pre-learned features, such as edges, textures, and shapes. Additionally, 
transfer learning significantly reduces computational costs by reusing 
a well-trained feature extractor and modifying only the final layers to 
fit the specific classification task. In our work, the Swin Transformer 
V2-Tiny implementation, transfer learning was applied by loading a 
pre-trained Swin Transformer V2-Tiny model and replacing its final 
classification layer to adapt to the 10-class problem, ensuring that the 
model retained useful features while specializing in the dataset.

When input images were supplied directly to Swin Transformer 
V2-Tiny for classification, the results were not as high as those of 
the proposed method. Therefore, Swin Transformer V2-Tiny alone is 
insufficient for achieving high results. Similarly, if we test the proposed 
model without the modified classifier layer, the results are not as high as 
those of the proposed method. This indicates that the proposed modified 
classifier layer contributes to achieving high results. In summary, the 
above analysis showed that all the main steps mentioned in this study 
are effective and useful for obtaining high accuracy in the classification 
of fruit and leaf diseases at different levels. 
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Fruit class B-F B-Ini B-Int F-Ini F-F F-Int Healthy V-F V-Ini V-Int
B-F 93.47 0.41 0.41 5.30 0.41 0 0 0 0 0
B-Ini 5.77 84.61 3.85 0 3.85 0 0 0 1.92 0
B-Int 1.92 0 90.38 3.86 0 0 1.92 0 1.92 0
F-Ini 9.09 3.03 0 84.85 0 3.03 0 0 0 0
F-F 0 0 0 0 98.04 1.96 0 0 0 0
F-Int 1.88 0 0 0 7.55 90.57 0 0 0 0
Healthy 0 0 0 0 0 0 100 0 0 0
V-F 0 0 0 0 0 0 0 100 0 0
V-Ini 0 0 0 0 0 0 0 0 86.67 13.33
V-Int 0 0 0 0 0 0 0 18.18 0 81.82

ACR = 91.04
Note: B-F: Bacteria final stage, B-Ini: Bacteria initial stage, B-Int: Bacteria intermediate stage, F-Ini: Fungus initial stage, F-F: Fungus final tsage, F-Int: Fungus 
intermediate stage, Healthy class, V-F: Virus final stage, V-Ini: Virus initial stage, and V-Int: Virus intermediate stage.

Table 3
Confusion matrix and ACR (in %) of the proposed method on fruit disease classification

SI no. Key steps Fruit Leaf
(i) R image 79.47 93.29
(ii) G image 67.21 81.27
(iii) B image 56.91 89.91
(iv) Gray image 60.58 83.67
(v) Without augmentation 90.53 90.87
(vi) Without transfer learning 13.57 27.79
(vii) Input images to Swin Transformer 

V2-Tiny directly 
80.32 91.57

(viii) Without modifying the classifier head of 
baseline Swin (classifier performance)

69.88 92.92

(xi) Without W-MSA and SW-MSA 32.74 74.36
(x) Proposed method 91.04 94.07

Table 2
Average Classification Rate (ACR) of the key steps of the proposed 

method for fruit and leaf disease classification
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4.3. Experiments on fruit and leaf disease 
classification

The confusion matrix and average classification rates of the 
proposed and existing methods — SwinFR Tables 5 & 8 [9]; TFC-

WDA Tables 4 & 7 [22]; NDCNN Tables 9–10 [35]; and DCoS-WOR-
SNN Tables 11–12 [36]— for the fruit and leaf datasets are presented 
in Tables 3–12. As shown in Tables 3–12, the proposed method 
outperforms the existing methods for both the fruit and leaf datasets 
in terms of the average classification rate. The existing methods report 
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Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 98.25 0 1.75 0 0 0 0 0 0 0
B-Ini 0 95.42 4.58 0 0 0 0 0 0 0
B-Int 0 1.40 98.60 0 0 0 0 0 0 0
F-F 0 0 0 93.33 2.22 4.45 0 0 0 0
F-Ini 0 0 0 0 81.40 11.63 0 0 6.97 0
F-Int 0 0 0 8.33 2.78 88.89 0 0 0 0
Healthy 0 0 0 0 0 0 100 0 0 0
V-F 2.27 0 0 0 0 0 97.73 0 0
V-Ini 0 0 0 0 5.71 0 0 0 91.43 2.85
V-Int 0 0 0 0 0 0 0 4.35 0 95.65

ACR = 94.07

Table 6
Confusion matrix and ACR (in %) of the proposed method on leaf disease classification

Fruit class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 96.92 3.08 0 0 0 0 0 0 0 0
B-Ini 47.47 47.47 0 0 0 5.26 0 0 0 0
B-Int 95.45 4.55 0 0 0 0 0 0 0 0
F-Ini 48.15 22.22 0 0 0 29.63 0 0 0 0
F-F 3.51 0 0 0 89.47 7.02 0 0 0 0
F-Int 6.06 9.09 0 0 0 84.85 0 0 0 0
Healthy 0 0 0 0 0 0 100 0 0 0
V-F 42.86 14.29 0 0 0 35.71 7.14 0 0 0
V-Ini 6.25 25.00 0 0 0 62.50 6.25 0 0 0
V-Int 5.55 16.67 0 0 0 72.22 5.55 0 0 0

ACR = 41.86

Table 4
Confusion matrix and ACR (in %) on fruit disease classification using TFC-WDA

Fruit class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 82.13 5.96 0 0 9.72 0.31 1.88 0 0 0
B-Ini 18.42 69.74 0 0 3.95 0 7.89 0 0 0
B-Int 40.84 23.94 7.05 0 18.31 5.63 4.23 0 0 0
F-Ini 40.00 37.5 7.5 0 7.5 0 7.5 0 0 0
F-F 40.32 0.77 0 0 37.98 8.53 12.40 0 0 0
F-Int 24.61 6.15 1.54 0 32.31 23.08 12.31 0 0 0
Healthy 31.82 2.27 2.27 0 2.27 0 61.37 0 0 0
V-F 50.00 14.28 0 0 14.29 14.29 7.14 0 0 0
V-Ini 31.25 12.5 0 0 25.00 0 31.25 0 0 0
V-Int 33.33 11.11 5.56 0 11.11 0 38.89 0 0 0

ACR = 51.89

Table 5
Confusion matrix and ACR (in %) on fruit disease classification using SwinFR
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Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 4.11 0 93.83 1.03 0 0 0 1.03 0 0
B-Ini 0 40.12 58.45 0.14 0.72 0.29 0 0.14 0.14 0
B-Int 0 4.33 94.89 0.39 0 0 0 0.33 0 0.06
F-Ini 0 0 2.21 87.62 0 3.54 0 5.75 0 0.88
F-F 0 26.15 28.72 8.20 4.62 19.49 0 5.64 6.67 0.51
F-Int 0 5.31 24.15 19.81 0 37.68 0.97 10.63 0.48 0.97
Healthy 0 0 1.22 0 0 0 97.56 1.22 0 0
V-F 0 1.08 21.40 4.81 0.53 0.53 2.14 68.98 0 0.53
V-Ini 0 0.65 24.18 0.65 1.32 0.65 0 15.69 56.21 0.65
V-Int 0 0 6.19 4.12 0 0 9.28 0 0 80.41

ACR = 57.22

Table 8
Confusion matrix and ACR (in %) on fruit disease classification using SwinFR

Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 84.62 0 0 15.38 0 0 0 0 0 0
B-Ini 52.63 0 0 47.37 0 0 0 0 0 0
B-Int 34.09 0 0 65.91 0 0 0 0 0 0
F-Ini 55.56 0 0 44.44 0 0 0 0 0 0
F-F 21.05 0 0 78.95 0 0 0 0 0 0
F-Int 15.62 0 0 84.38 0 0 0 0 0 0
Healthy 94.44 0 0 5.56 0 0 0 0 0 0
V-F 35.71 0 0 64.29 0 0 0 0 0 0
V-Ini 18.75 0 0 81.25 0 0 0 0 0 0
V-Int 22.22 0 0 77.78 0 0 0 0 0 0

ACR = 12.91

Table 9
Confusion matrix and ACR (in %) on fruit disease classification using NDCNN

Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 94.74 0 0 2.63 0 0 0 2.63 0 0
B-Ini 0 100 0 0 0 0 0 0 0 0
B-Int 0.86 0 99.14 0 0 0 0 0 0 0
F-Ini 0 0 0 100 0 0 0 0 0 0
F-F 0 0 0 0 45.26 8.42 0 0 0 0
F-Int 0 0 1.06 38.30 8.51 52.13 0 0 0 0
Healthy 0 0 0 0 0 0 100 0 0 0
V-F 0 0 0 0 0 0 16.00 82.00 2.00 0
V-Ini 0 3.23 0 0 0 0 6.45 0 90.32 0
V-Int 0 0 0 0 0 0 94.74 5.26 0 0

ACR = 76.36

Table 7
Confusion matrix and ACR (in %) on fruit disease classification using TFC-WDA
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Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 0 0 100.0 0 0 0 0 0 0 0
B-Ini 0 0 100.0 0 0 0 0 0 0 0
B-Int 0 0 100.0 0 0 0 0 0 0 0
F-Ini 0 0 100.0 0 0 0 0 0 0 0
F-F 0 0 100.0 0 0 0 0 0 0 0
F-Int 0 0 100.0 0 0 0 0 0 0 0
Healthy 0 0 100.0 0 0 0 0 0 0 0
V-F 0 0 100.0 0 0 0 0 0 0 0
V-Ini 0 0 100.0 0 0 0 0 0 0 0
V-Int 0 0 100.0 0 0 0 0 0 0 0

ACR = 10.00

Table 11
Confusion matrix and ACR (in %) on fruit disease classification using DCoS-WOR-SNN

Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 100.0 0 0 0 0 0 0 0 0 0
B-Ini 100.0 0 0 0 0 0 0 0 0 0
B-Int 100.0 0 0 0 0 0 0 0 0 0
F-Ini 100.0 0 0 0 0 0 0 0 0 0
F-F 100.0 0 0 0 0 0 0 0 0 0
F-Int 100.0 0 0 0 0 0 0 0 0 0
Healthy 100.0 0 0 0 0 0 0 0 0 0
V-F 100.0 0 0 0 0 0 0 0 0 0
V-Ini 100.0 0 0 0 0 0 0 0 0 0
V-Int 100.0 0 0 0 0 0 0 0 0 0

ACR = 10.00

Table 12
Confusion matrix and ACR (in %) on fruit disease classification using DCoS-WOR-SNN

Leaf class B-F B-Ini B-Int F-F F-Ini F-Int Healthy V-F V-Ini V-Int
B-F 68.42 0 13.16 2.63 0 0 0 10.53 5.26 0
B-Ini 0 92.59 4.63 0 1.85 0 0 0 0.93 0
B-Int 1.29 1.72 97.00 0 0 0 0 0 0 0
F-Ini 0 0.97 0 98.06 0 0 0 0.97 0 0
F-F 0 4.21 0 16.84 49.47 26.32 0 0 3.16 0
F-Int 0 0 0 59.14 7.53 32.26 0 0 0 1.08
Healthy 0 5.56 0 0 16.67 8.33 63.89 0 2.78 2.78
V-F 2.00 0 0 8.00 6.00 0 8.00 60.00 16.00 0
V-Ini 0 0 0 0 0 0 0 0 96.67 3.33
V-Int 0 0 16.67 5.56 0 0 16.67 5.56 11.11 44.44

ACR = 70.28

Table 10
Confusion matrix and ACR (in %) on fruit disease classification using NDCNN
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Fruit dataset Leaf dataset

Fruit class Precision Recall F1-score
Per class 
accuracy Precision Recall F1-score

Per class 
accuracy 

B-F 0.84 0.93 0.88 93.47 0.98 0.98 0.98 98.25
B-Ini 0.95 0.85 0.90 84.61 0.99 0.95 0.97 95.42
B-Int 0.95 0.90 0.92 90.38 0.93 0.99 0.96 98.60
F-F 0.91 0.85 0.88 84.85 0.91 0.93 0.92 93.33
F-Ini 0.92 0.98 0.95 98.04 0.87 0.81 0.84 81.40
F-Int 0.96 0.91 0.93 90.57 0.91 0.89 0.90 88.89
Healthy 0.98 1.00 0.99 100 1.00 1.00 1.00 100
V-F 0.85 1.00 0.92 100 0.96 0.98 0.97 97.73
V-Ini 0.87 0.87 0.87 86.67 0.93 0.91 0.92 91.43
V-Int 0.86 0.82 0.84 81.82 0.97 0.96 0.96 95.65

Table 13
Precision, recall, F1-score, and per class accuracy of the proposed method on fruit and leaf disease classification

Fruit dataset Leaf dataset

Fruit class Precision Recall F1-score
Per class 
accuracy Precision Recall F1-score

Per class 
accuracy 

B-F 0.24 0.97 0.39 96.92 0.95 0.95 0.95 94.74
B-Ini 0.27 0.47 0.34 47.47 0.93 1.00 0.96 100
B-Int 0 0 0 0 0.99 0.99 0.99 99.14
F-F 0 0 0 0 0.71 1.00 0.83 100
F-Ini 0.80 0.89 0.84 89.47 0.79 0.45 0.57 45.26
F-Int 0.33 0.85 0.48 84.85 0.73 0.52 0.61 52.13
Healthy 0.93 1.00 0.97 100 0.94 1.00 0.97 100
V-F 0 0 0 0 0.89 0.82 0.85 82.00
V-Ini 0 0 0 0 0.95 0.90 0.92 90.32
V-Int 0 0 0 0 1.00 0 0 0

Table 14
Precision, recall, F1-score, and per class accuracy on fruit and leaf disease classification

Fruit dataset Leaf dataset

Fruit class Precision Recall F1-score
Per class 
accuracy Precision Recall F1-score

Per class 
accuracy 

B-F 0.24 0.82 0.37 82.13 0.85 0.94 0.89 93.83
B-Ini 0.40 0.70 0.51 69.47 0.38 0.40 0.39 40.12
B-Int 0.35 0.07 0.12 7.05 0.37 0.95 0.53 94.89
F-F 0.19 0.08 0.11 7.50 0.47 0.88 0.61 87.62
F-Ini 0.28 0.38 0.32 37.98 0.32 0.05 0.09 4.62
F-Int 0.34 0.23 0.27 23.08 0.36 0.38 0.37 37.68
Healthy 0.39 0.61 0.48 61.37 0.92 0.98 0.95 97.56
V-F 0 0 0 0 0.55 0.69 0.61 68.98
V-Ini 0 0 0 0 0.82 0.56 0.66 56.21
V-Int 0 0 0 0 0.60 0.80 0.88 80.41

Table 15
Precision, recall, F1-score, and per class accuracy on fruit and leaf disease classification
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poor results because Tunio et al.’s method [22] is good for plant but 
not fruit images, while Zhang and Tu’s method [9] is good for general 
image classification. Because the scope of the existing methods is 
limited to particular datasets and cases, they do not perform well for the 
10-class classification of fruit and leaf datasets. It is evident from the 
performance of the existing methods on fruit and leaf datasets that Tunio 
et al.’s method [22] performed better for the leaf dataset and worse for 
the fruit datasets than Zhang and Tu’s [9]. In addition, Zhang and Tu [9] 
and Singaravelu and Perumal [36] obtained almost the same results for 
the fruit and leaf datasets. This is because the method considers fruit 
and leaf images as general images. 

However, as discussed in the ablation study experiments, the key 
steps proposed in this study are effective. The combination of Color 
spaces, Transfer Learning, and Swin Transformer V2-Tiny enhances 
the generalization ability, and the proposed method is superior in terms 
of the average classification rate compared with existing methods on 
both fruit and leaf datasets. Furthermore, the proposed method achieved 
similar results for both datasets. This justifies that the proposed method 
is consistent and domain-independent.

To validate the above statement, we also calculated precision, 
recall, F1-score, and accuracy per class for the proposed and existing 
methods on fruit and leaf dataset as reported in Tables 13–17 (Table 14 
[22]; Table 15 [9]; Table 16 [35]; Table 17 [36]). It is observed from 
Tables 13–17 that the proposed method outperforms all the existing 
methods in terms of precision, recall, F1-score, and accuracy per class 
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Fruit dataset Leaf dataset

Fruit class Precision Recall F1-score
Per class 
accuracy Precision Recall F1-score

Per class 
accuracy 

B-F 0.042 0.100 0.059 0.100 0 0 0 0
B-Ini 0 0 0 0 0.046 0.100 0.063 0.100
B-Int 0 0 0 0 0 0 0 0
F-F 0 0 0 0 0 0 0 0
F-Ini 0 0 0 0 0 0 0 0
F-Int 0 0 0 0 0 0 0 0
Healthy 0 0 0 0 0 0 0 0
V-F 0 0 0 0 0 0 0 0
V-Ini 0 0 0 0 0 0 0 0
V-Int 0 0 0 0 0 0 0 0

Table 17
Precision, recall, F1-score, and per class accuracy on fruit and leaf disease classification

Fruit dataset Leaf dataset

Fruit class Precision Recall F1-score
Per class 
accuracy Precision Recall F1-score

Per class 
accuracy 

B-F 0.39 0.85 0.53 84.62 0.87 0.68 0.76 68.42
B-Ini 0 0 0 0 0.90 0.93 0.91 92.59
B-Int 0 0 0 0 0.95 0.97 0.96 97.00
F-F 0.07 0.44 0.12 78.95 0.57 0.98 0.72 98.06
F-Ini 0 0 0 0 0.72 0.49 0.59 49.47
F-Int 0 0 0 0 0.52 0.32 0.40 32.26
Healthy 0 0 0 0 0.77 0.64 0.70 63.89
V-F 0 0 0 0 0.83 0.60 0.70 60.00
V-Ini 0 0 0 0 0.63 0.97 0.76 96.67
V-Int 0 0 0 0 0.73 0.44 0.55 44.44

Table 16
Precision, recall, F1-score, and per class accuracy on fruit and leaf disease classification

Methods
NZDLPlant-
Disease-v1

NZDLPlant-
Disease-v2

Proposed method 95.44 93.64
Tunio et al. [22] 52.60 52.15
Zhang et al. [11] 36.92 50.53
Rajalakshmi et al. [35] 17.09 7.00
Singaravelu and Perumal [36] 7.14 7.69

Table 18
ACR of the proposed and existing methods on 

NZDLPlantDisease-v1, NZDLPlantDisease-v2 (in %)
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on both fruit and leaf datasets. This shows that the proposed method is 
domain-independent and generic. However, since the existing methods 
are developed with specific objectives, the performance of the existing 
methods is inferior to the proposed method on both fruit and leaf 
datasets. In addition, the existing methods are not capable of handling 
10 classes of diseases. 

4.4. Experiments for classification on two benchmark 
datasets

The performance of the proposed and existing methods was 
tested on two benchmark datasets, as reported in Table 18, where it can 
be seen that the proposed method is the best for both datasets compared 
to the existing methods. Although the datasets were more complex than 
our fruit and leaf datasets, the proposed method achieved consistent 
results for both datasets. The reasons for the successful classification 
of the proposed method and the poor results of the existing methods 
are the same as those stated in the previous section. Overall, when we 
analyzed the experiments on our and benchmark datasets, the proposed 
method was effective, consistent, and generic. 

4.5. Experiments on robustness analysis
To demonstrate that the proposed method is robust to distortion, 

rotation, noise, blur, and scaling, the average classification rate was 
calculated for different experiments on our dataset, and the results are 
reported in Table 19. The results listed in Table 19 show that the proposed 
method obtained almost consistent results for different scaling, rotation, 
blur, and noise compared with the existing methods. This indicates 
that the method is invariant to rotation, scaling, noise, and blur. This 
includes that the extracted features are insensitive to noise, blur, and 
the effects of rotation and scaling. However, the existing method lacks 
a generic nature and robustness, and the methods are inferior to the 
proposed method in various experiments. 

Challenges: While the proposed Tiny Swin Transformer V2 
model demonstrates strong performance in controlled experimental 
settings, deploying it in real-world agricultural environments presents 
several challenges. One major limitation is the computational demand 
of transformer-based models, which can be unsuitable for real-time 
inference on low-power edge devices such as mobile phones or drones. 
Although Tiny Swin V2 is relatively lightweight compared to larger 
ViTs, further optimization (e.g., quantization, pruning, or model 
distillation) may be required to ensure compatibility with embedded 
systems.

Additionally, the variability in image acquisition conditions—
such as inconsistent lighting, background clutter, occlusion from 
other leaves or fruits, camera motion blur, or weather effects—can 
impact model accuracy. While data augmentation helps simulate these 

variations, unpredictable field conditions may still affect robustness. 
There is also a need for cross-geographic validation, as disease 
symptoms can vary between regions, crop varieties, and climate zones. 
Finally, ethical deployment must ensure that such automated systems 
are used to assist rather than replace agronomists and plant health 
experts. Providing confidence scores, explainable AI outputs, and 
human-in-the-loop verification is essential for responsible adoption in 
agricultural decision-making pipelines.

5. Conclusion and Future Work 
In this study, we adapted the Tiny Swin Transformer V2 model 

for the classification of fruit and leaf images infected by viruses, 
bacteria, and fungi at different levels. As stated in Section 3, visual 
features such as yellow, dark, and white patches are important cues for 
the classification of fruit and leaf images infected by viruses, bacteria, 
and fungi. Inspired by vision transformers that extract visual features 
accurately, the proposed work adapts the Tiny Swin Transformer V2 for 
the classification of three stages of viruses, bacteria, and fungi on fruits 
and leaves. Unlike the baseline Swin Transformer and Swin Transformer 
V2-Tiny, the proposed study chose the Tiny Swin Transformer V2 for 
successful classification. This is because the proposed method is more 
efficient, accurate, and adaptable to different situations than the baseline 
models. The results on the fruit and leaf dataset and two benchmark 
datasets, and a comparative study with the existing methods, show 
that the proposed method is effective, robust, domain-independent, 
and consistent. However, the proposed method did not perform well 
when it was trained on samples from other fruit and leaf datasets. This 
shows that our method is sensitive to the training samples. This can 
be solved by proposing a combination of GANS, transformers, and 
diffusion models. This is beyond the scope of the present work and can 
be extended to the near future. Since the scope of the work is to address 
the challenge of fruit and leaf disease identification using an adaptive 
Swin transformer, the present work does not focus on theory to justify 
the hypothesis of the proposed method. Therefore, this is beyond the 
scope of the work, and hence it can be considered future work. 
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Methods

Random scaling up and 
down Random rotations

Different levels of Gaussian noise 
and blur

Fruit Leaf Fruit Leaf Fruit Leaf
Proposed method 81.88 87.51 80.44 94.80 69.24 73.04
Tunio et al. [22] 46.86 70.50 37.47 63.70 30.24 59.56
Zhang et al. [9] 47.85 61.29 48.61 63.22 49.49 61.64
Rajalakshmi et al. [35] 10.84 65.81 10.97 74.59 12.51 77.64
Singaravelu and Perumal [36] 10.00 10.00 10.00 10.00 10.00 10.00

Table 19
The average classification rate of the proposed and existing methods on scaled, rotated, and distorted images
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