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Abstract: Machine learning models, especially neural networks, are vulnerable to adversarial attacks, where inputs are purposefully altered 
to induce incorrect predictions. These adversarial inputs closely resemble benign (unaltered) inputs, making them difficult to detect, and pose 
significant security risks in critical applications, such as autonomous vehicles, medical diagnostics, and financial transactions. Several methods 
exist to improve the model’s performance against these adversarial attacks, which typically modify the network architecture or training procedure. 
Often times, these adversarial training techniques only provide robustness against specific attack types and/or require substantial computational 
resources, making them impractical for real-world applications with limited resources. In this work, we propose a computationally-efficient 
adversarial fine-tuning approach to enhance the robustness of Convolutional Neural Networks (CNNs) against adversarial attacks and attain the 
same level of performance as the conventional adversarial training. More specifically, we propose to identify specific parts of the neural network 
model that are more vulnerable to adversarial attacks. Our analysis reveals that only a small portion of these vulnerable components accounts 
for a majority of the model’s errors caused by adversarial attacks. As such, we propose to selectively fine-tune these vulnerable components 
using different adversarial training methods to develop an effective and resource-efficient approach to improve model robustness. We empirically 
validate our proposed approach with varying dataset and algorithm parameters. We demonstrate that our approach can achieve similar performance 
as the more resource-intensive conventional adversarial training method.
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1. Introduction
Deep neural networks have proven to be highly effective in 

solving complex machine learning tasks, such as image recognition 
[1–3], speech recognition [4], natural language processing [4], and 
even computer games [5, 6]. These networks have achieved remarkable 
success in recognizing images with accuracy levels close to (and 
sometimes exceeding) that of humans. However, researchers have 
recently discovered that these networks are prone to adversarial attacks. 
More specifically, these attacks intention ally perturb samples to 
simulate worst-case scenarios, leading the network to output incorrect 
results with high confidence levels.

Adversarial examples were first discovered in the image 
classification domain Mądry et al. [7]. Their research showed that it is 
possible to transform the classification output corresponding to an 
image by making minimal alterations to it. This means that given an 
input x and any target classification t, it is possible to discover a new 
input x̃ that is very similar to the original input x, but classified as the 
target t′ ≠ t. The quantity of change required is often so small that it is 
difficult for humans to detect, making it a significant challenge to use 
neural networks in security-sensitive areas. In other words, adversarial 
examples pose a significant concern, since they can limit the domains in 

which neural networks can be safely used. For example, using neural 
networks in self-driving vehicles can be risky because an attacker could 
exploit adversarial examples to cause the car to take actions that it is not 
supposed to take [8]. As a result, constructing robust neural networks, 
that are resistant to such attacks, is a top priority for researchers in the 
field.

Consequently, robust defense mechanisms against such attacks 
on modern machine learning (ML) models have been the topic of 
extensive research. Schölkopf et al. [9] has started the journey towards 
adversarial resistant models. Since then, numerous techniques have 
been proposed to enhance the robustness of neural networks against 
adversarial threats. These include approaches similar to adversarial 
training – where the model is trained on adversarial examples, 
defensive distillation methods — which aim to smooth the model’s 
decision boundaries [10], and certified defenses – which provide 
theoretical guarantees against specific attack types. However, existing 
solutions often have practical limitations, such as being tailored to 
specific attacks, requiring substantial computational resources, and 
offering incomplete protection against the wide range of possible 
adversarial attacks.

Our Contributions. In this work, we propose a novel and 
computationally efficient method for ensuring adversarial robustness 
of CNNs. We achieve this by proposing a selective adversarial fine-
tuning approach. More specifically, our proposed approach identifies 
the model components that are most vulnerable to adversarial 
perturbations, and then ensures the model’s robustness against 
adversarial attacks by selectively finetuning those components. To 
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this end, we identify the convolutional filters of a CNN model that are 
highly susceptible to adversarial attacks. We show that our proposed 
adversarial fine-tuning of these filters enables the resulting model to 
maintain a high accuracy on benign inputs, while exhibiting similar, 
if not better, resilience against adversarial inputs. Our contributions 
are summarized below:

1)  We show that the effect of first order adversarial attacks on a CNN 
model is neither uniform nor random. In fact, certain parts of the 
model are more susceptible to an attack, regardless of data class. We 
empirically show this by identifying the filters in the convolutional 
layers across different datasets. 

2)  Since certain specific components of the model are more vulnerable 
to adversarial attacks, we argue that focusing on those components 
are crucial for ensuring model robustness against those attacks. 
To this end, we propose to split the model into trainable and non-
trainable sections. We empirically demonstrate that performing 
adversarial fine-tuning of the vulnerable components in this way 
provides a model that performs just as well as existing adversarial 
training methods. Additionally, this enables a much simpler and 
computationally light adversarial training. 

3)  We demonstrate that increasing the fraction of trainable parts of 
the model does not significantly improve the model’s robustness. 
This re-enforces our claim that the whole model does not need to be 
trained for appropriate adversarial security

Notations. For vector, matrix, and scalar, we used bold lower-case 
letter (v), bold capital letter (V), and unbolded letter (M), respectively. 
We used the symbol vn for the n-th column of the matrix V; and vij 
denotes the (i, j)-th entry of matrix V. We sometimes denote the set {1, 
2, …, N} as [N]. Inequality V ≥ 0 apply entry-wise. We denoted L2 norm 
(Euclidean norm) with ||·||2, the L∞ norm with the ||·||∞, and the Frobenius 
norm with ||·||F.

2. Background and Related Works

2.1. Adversarial attacks on neural networks
Neural networks that are commonly used in practice, such as 

computer vision and speech recognition applications, are susceptible 
to adversarial attacks that manipulate the model into predicting 
the wrong output. Protection against such attacks has garnered 
particular research interest [11–14]. In computer vision, adversarial 
attacks are of particular interest as very small and undetectable 
perturbations can be added to an image to fool a model with high 
probability [15–17]. 

Ideally, for datasets with well-separated classes, it is expected for 
the classifier model to assign the same class to both the original input x 
and the adversarial input x̃ = x + η, as long as ||η||∞ ≤ ϵ, where ϵ is small 
enough to be discarded by the sensor or data storage device, which 
considers it to be noise or measurement error and not impact the 
classification decision [15, 18]. If w represents the weights of the linear 
model, then the dot product between w and adversarial example x̃ is 
w⊤x̃ = w⊤x + w⊤η. After going through the model, the previously 
imperceptible noise marker η causes the activation to grow by w⊤η. 
This increased activation can be maximized by assigning η = sign(w), 
while making sure the constraint on η still holds. For a weight vector 
containing elements with an average magnitude of m and having n 
dimension, this perturbation results in an activation increase of ϵmn. 
While the norm of the perturbation η does not grow with the 
dimensionality of the problem, the change in activation caused by the 
perturbation ϵ can grow linearly with the dimensionality. As a result, in 
high-dimensional problems, it is possible to make many infinitesimal 
changes to the input that add up to one large change in the output 
[7, 15, 18].

2.2. Theoretical framework of adversarial 
vulnerability

Adversarial vulnerability is not an incidental flaw but a direct 
consequence of a model’s reliance on “non-robust features” — 
patterns in the data distribution that are highly predictive for standard 
classification but are inherently brittle and unintelligible to human 
perception. Gradient-based attacks, such as FGSM and PGD (described 
below), are designed to exploit these very features by taking a step in 
the direction of the greatest change in the model’s loss function [15, 18]. 
The high gradient sensitivity of the model to these features means that 
a tiny, imperceptible perturbation to the input can cause a significant 
change in the output, which is what we empirically observe in the 
“dominant filters” in this work. 

We note that this sensitivity is systematically amplified through 
the CNN’s hierarchical structure, transforming a minute perturbation 
into a catastrophic error [19]. Filters in early convolutional layers, 
which are responsible for extracting foundational, low-level features 
like edges and textures, are directly susceptible to the high-frequency 
adversarial noise, which can corrupt these features at the base of the 
network’s representational hierarchy [20]. This initial error is then 
compounded as it propagates through subsequent layers, amplified by 
non-linear activation functions. The cumulative effect ensures that a 
minor perturbation at the input can lead to a significant distortion by the 
time it reaches the deeper layers, ultimately leading to misclassification.

2.3. Common adversarial attack methods
Fast Gradient Sign Method (FGSM). For a neural network 

model, let θ be the model parameters, y be the target associated with 
input sample x, and J(θ, x, y) be the cost function. Ilyas et al. [15] 
showed that the cost function can be linearized around the current θ 
value, obtaining an optimal max-norm constrained perturbation of 
η = ϵsign(∆ * J(θ, x, y)). Goodfellow referred this approach as the Fast 
Gradient Sign Method (FGSM) of generating adversarial perturbations, 
and thereby, adversarial samples. Primarily designed to be fast, instead 
of a close adversarial estimate, FGSM is optimized for L∞ distance 
metrics to ensure the amount of perturbation remains within the fixed 
bound of ϵ. Here, the L∞ norm measures the largest absolute difference 
between every element of an input and its perturbed counterpart. The 
adversarial example can be calculated as x̃ = x + ϵsign(∆ * J(θ, x, y)), 
where ϵ is often chosen to be small enough to be imperceptible to 
humans. FGSM is a simple one-step algorithm for maximizing the inner 
part of the saddle point formulation of the loss function [7, 21]. 

Projected Gradient Descent (PGD). Mądry et al. [7] proposed 
a multi-step variant of FGSM. The Projected Gradient Descent (PGD) 
scheme for generating adversarial examples is a more powerful 
iterative attack that performs multiple gradient descent steps to find the 
perturbation with maximum loss while ensuring that the adversarial input 
stays within the constraint typically imposed by the L∞ norm. It is shown 
to produce more effective attacks compared to FGSM. Instead of taking a 
single step of size ϵ in the direction of the gradient-sign, multiple smaller 
steps are taken. More specifically, at t-th iteration, the adversarial sample 
is given by xt + 1 = Πx + S(xt + αsign(∆xJ(θ, x, y))). Here, S is the set of 
allowed perturbations chosen such that it maintains perceptual similarities 
between an input and its perturbed counterpart, and α is the step size.

2.4. Adversarial defense mechanisms
Several defense mechanisms have been proposed to address the 

vulnerabilities, such as adversarial training [7, 21], feature squeezing 
[22], defensive distillation [10], and other detection methods [23]. 
Issaoui et al. [24] presented an approach of combining custom activation 
functions with adversarial training. However, the existing methods often 
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involve significant computational burden, measured by the number of 
trainable parameters, and practical limitations. For example, adversarial 
training improves robustness by retraining the entire model with 
adversarial examples, requiring a large number of trainable parameters. 
Defensive distillation aims to smooth decision boundaries by training a 
secondary model on softened class probabilities, but it has been shown 
to be less effective against stronger attacks [22]. Feature squeezing 
reduces adversarial effects by preprocessing inputs but often degrades 
benign accuracy and may not perform well against adaptive attacks. 

In recent years, some works have highlighted the need for 
efficient and robust defenses against adversarial attacks on a diverse 
range of neural networks. Research on audio perturbations demonstrates 
that speech recognition systems are highly vulnerable to selective and 
multi-targeted manipulations, which shows that attackers can force 
systems to misrecognize specific phrases [25, 26]. Similarly, works on 
text-based backdoor attacks reveal that adversaries can exploit trigger 
positions and word choices to induce targeted misrecognition, further 
stressing the fragility of NLP models [25]. In the graph domain, works 
on dual-targeted and discrepancy-based attacks expose the susceptibility 
of graph neural networks (GNNs) to adversarial perturbations that 
selectively manipulate predictions [25, 26]. To mitigate such threats, 
detection-focused efforts have been proposed, such as score-based 
anomaly detection for audio and text modification techniques for NLP 
[25, 26]. These works show promise in identifying adversarial inputs, 
and demonstrate that adversarial attacks are becoming increasingly 
sophisticated, multi-targeted, and domain-specific, encompassing 
speech, text, and graph data. The works of Luo et al. [27] and Peng et al. 
[28] share the idea of targeted adaptation — dynamically identifying the 
most influential parameters (or layers/tokens) and updating only those. 
These approaches yield strong task performance with far fewer trainable 
weights and lower runtime/energy use. However, pre- and mid-network 
filtering often degrade benign-sample accuracy and can be defeated by 
adaptive or learned attacks that reintroduce adversarial signal within the 
filter’s passband or exploit gradient obfuscation. Empirical studies show 
such filters may help against specific perturbations but provide limited, 
non-universal robustness across diverse, stronger threat models [29]. 

Advanced adversarial defense mechanisms have been proposed 
recently to enhance model robustness, while improving efficiency. 
Compressed Optimized Neural Networks integrate weight compression 
and multi-expert training to streamline deep neural networks — 
this improves both storage efficiency and adversarial robustness by 
introducing complexity that makes it more difficult for adversaries to 
exploit vulnerabilities while maintaining high accuracy and efficiency 
[30]. Similarly, Adversarial Feature-Level Fusion (or AFLF) strengthens 
model resilience by leveraging attention-based feature selection 
and adversarial feature learning, where robust feature extraction 
combined with a model-agnostic adversarial learning process improves 
classification robustness against a wide range of adversarial attacks 
[31]. Another approach, Robustness via-Synthesis, employs generative 
adversarial perturbations to enhance adversarial training, offering a 
significant advantage over traditional gradient-based adversarial training 
by synthesizing diverse perturbations using a generator network, thereby 
enabling more robust defenses against different types of attacks [32]. 

Our proposed selective adversarial fine-tuning compliments these 
recent advancements by focusing on optimizing the most vulnerable 
components of a neural network rather than retraining the entire model. 
By identifying and selectively fine-tuning specific convolutional 
filters that are highly susceptible to adversarial attacks, our method 
significantly reduces computational overhead, while maintaining 
robustness comparable to conventional adversarial training. This 
targeted approach provides a practical balance between efficiency 
and adversarial defense, making it a viable alternative for real-world 
deployment. We would like to emphasize that while prior works on 
parameter-efficient robustness (e.g., Luo et al. [27] and Peng et al. [28]) 

have shown benefits by tuning selected layers or subsets of parameters, 
these methods generally operate at a coarse level, updating entire layers 
or large parameter groups. In contrast, our approach identifies and fine-
tunes only the most adversarially vulnerable filters, a finer-grained 
strategy that avoids retraining redundant parameters and prevents loss 
of benign accuracy. Additionally, unlike pruning-based sparsification, 
which discards vulnerable filters entirely, our method retains these 
filters and strengthens them through targeted adversarial fine-tuning.

3. Proposed Approach Against Adversarial Attacks
Adversarial training is crucial for any neural network model 

deployed in applications, where security is a priority. Nevertheless, 
computation cost, model complexity and memory usage, and inference 
times are crucial factors that need to be considered during adversarial 
training. Moreover, the adversarial training of the model must be robust 
enough to minimize the effect of different adversarial attacks. Our work is 
motivated by such need for efficient and robust adversarial training scheme. 
More specifically, we focus on a CNN trained on the MNIST handwritten 
digits dataset [3]. To that end, we are interested in investigating: 

1)  Does an adversarial attack affect different parts of a network equally?
2)  If not, how can we take advantage of this while performing 

adversarial training of the network? 

We utilized the Cleverhans open-source library to generate 
the adversarial examples, and demonstrate the vulnerability of 
neural network models. The library offers a selection of attacks and 
countermeasures for testing how susceptible machine learning models 
are to adversarial examples.

3.1. Model
As mentioned before, we consider a CNN for image classification 

and trained the model on the MNIST dataset. After training, the CNN 
captures the spatial relationships present in an image fairly accurately. 
Because fewer parameters are needed and weights can be reused, 
this architecture yields superior results than fully-connected neural 
networks. We present the details of the model we used in Table 1. Except 
for the output layer, we have used the ReLU activation. The structure of 
the base model is shown in Figure 1. This model has a total of 120,042 
trainable parameters. Note that, the MNIST dataset’s training partition 
consists of 60,000 gray scale images of size 28 × 28 pixels, and the test 
partition consists of 10,000 gray scale images of the same size.

The model is trained with RMSprop algorithm and 0.001 learning 
rate. Early stopping is employed to prevent over-fitting by monitoring 
the accuracy of the set over a patient of 2 epochs. A dropout layer after 
every convolutional layer was used further prevent overfitting. The 
accuracy and loss plots of the training and validation set, as shown in 
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Layer Output shape Param #
Conv2D 28 × 28 × 32 832
MaxPooling2D 14 × 14 × 32 0
Dropout 14 × 14 × 32 0
Conv2D 14 × 14 × 64 18,496
MaxPooling2D 7 × 7 × 64 0
Dropout 7 × 7 × 64 0
Flatten 3136 0
Dense 32 100,384
Dense 10 330

Table 1
Details of the CNN model
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Figure 2, demonstrate that the model has managed to properly learn 
without overfitting to the dataset. Evaluating it against the test set gives 
us an accuracy of 99.33%.

3.2. Generating adversarial examples
To test the vulnerability of the model, adversarial examples are 

generated using both the FGSM and PGD approaches. Given a valid input 
data x and a target classification, t = C(x), it is possible to find a similar 
input x̃ such that C(x̃) = t. Here C(x) = arg max F(x) is the classifier 
function, and F(x) is the neural network loss. Additionally, x and x̃ are 
close with respect to some distance metric. The adversarial example x̃ 
with this property is known as a targeted adversarial example [7, 21]. A 
less powerful attack, or un-targeted attack, classifying x as a given target 
class searches only for a perturbed input x̃ so that C(x̃) ≠ C(x), and that x 
and x̃ are close spatially. Carlini and Wagner [33] considered three 
different approaches to choosing the target class in a targeted attack: 

1)  Average Case — target class selected uniformly at random among 
the incorrect labels 

2)  Best Case — targeting the class least difficult to attack 
3)  Worst Case — targeting the class most difficult to attack

3.3. Model behavior under FGSM and PGD attacks
As mentioned before, a dataset of adversarial examples using 

FGSM and PGD approaches is generated for the corresponding 
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Source 
Class

Target 
Class 0

Target 
Class 1

Target 
Class 2

Target 
Class 3

Target 
Class 4

Target 
Class 5

Target 
Class 6

Target 
Class 7

Target 
Class 8

Target 
Class 9

0 X X X X X ✓ X X X X
1 X X X X ✓ X X X X X
2 X X X X X X X X X X
3 X X X X X ✓ X X X X
4 X X X X X X X ✓ X ✓
5 X X X X X X X X X X
6 X X X X X X X X X X
7 X X X X ✓ X X X X X
8 X X X X X X X X X X
9 X X X X ✓ X X X X X

Table 2
Targeted FGSM attack

Figure 1
CNN model under consideration

Figure 2
Accuracy and loss plots of the base model.
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MNIST dataset with different ϵ values. We employ a white box 
targeted FGSM and PGD attack on the base model. Intuitively, higher ϵ 
values result in higher attack success rates, i.e., the model performance 
should have higher error rates. The model was evaluated using a test set 
of 10,000 adversarial examples for different values of ϵ. 

For the FGSM and PGD attacks, each image from a class is used 
to produce adversarial examples targeting the remaining classes. In 
Tables 2 and 3, we show whether an adversarial attack is successful with 
its intention when the perturbation is induced to output a predetermined 
target class. As evident from Table 2, targeted FGSM attacks do not 
provide as much success as targeted PGD attacks. More specifically, 
adversarial accuracy of the model for the same amount of perturbation 
drops down to 10.32% for targeted FGSM attacks and 21.26% for non-
targeted FGSM attacks on the test set. On the other hand, since PGD 
is a stronger attack, the targeted PGD attacks are more successful. We 
show the details of the targeted PGD attacks on our model in Table 3. 
For the same level of perturbation, the adversarial accuracy decreases 
to 9.78% for targeted PGD attacks and 0.58% for non-targeted PGD 
attacks on the test set.

To further test the effect of the magnitude of this perturbation of the 
model with a shallow and a deeper network, we built two more models 
trained on MNIST. The shallow model has two convolution layers with 
number of filters 16 and 32, respectively. The deeper network has one 
added convolutional layer, making it three convolutional layers with 
32, 64, and 128 filters. The other parameters of the networks are kept 
consistent with that of our base model. The results are summarized in 
Tables 4 and 5. As expected, all the models perform worse with higher 

perturbation attack. In Figure 3, we show the model performance on 
adversarial examples for different ϵ values. It is evident from this figure 
that PGD is the stronger attack approach of the two.
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Source 
Class

Target 
Class 0

Target 
Class 1

Target 
Class 2

Target 
Class 3

Target 
Class 4

Target 
Class 5

Target 
Class 6

Target 
Class 7

Target 
Class 8

Target 
Class 9

0 X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X

Table 3
Targeted PGD attack

Model type Value of ϵ = 0.1 Value of ϵ = 0.2 Value of ϵ = 0.3 Value of ϵ = 0.5
Shallow model 62.10% 21.10% 10.61% 6.71%
Base model 70.36% 34.01% 21.26% 16.75%
Deeper model 74.15% 25.88% 11.64% 6.98%

Table 4
Adversarial accuracy before adversarial training vs magnitude of perturbation of the FGSM attack

Model type Value of ϵ = 0.1 Value of ϵ = 0.2 Value of ϵ = 0.3 Value of ϵ = 0.5
Shallow model 60.00% 1.44% 0.89% 0.89%
Base model 64.34% 0.82% 0.58% 0.58%
Deeper model 67.95% 5.51% 1.20% 1.14%

Table 5
Adversarial accuracy before adversarial training vs magnitude of perturbation of the PGD attack

 Figure 3
Adversarial accuracy vs magnitude of perturbation
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3.4 Filter identification
We hypothesize that the adversarial examples are generated by 

exploiting particular filters in the convolution layers. In this section, 
we investigate this hypothesis and identify the filters more susceptible 
to be exploited during the FGSM or PGD attacks. We extract the 
output features of the convolutional layers of the model and observe 
their individual effects on different inputs. As such, the difference in 
output of the convolutional layer between a benign input image and the 
corresponding adversarial input image provides the relative effect of an 
adversarial attack on the layer. 

To systematically identify these vulnerable filters, we follow 
a structured approach. The process consists of three main steps: (i) 
generating adversarial images, (ii) extracting convolutional features, 
and (iii) identifying the most affected filters. This method is applied 
to all convolutional layers of the model to ensure that vulnerabilities 

are captured across different levels of feature abstraction. The entire 
process is outlined in Algorithm 1, where adversarial examples are 
first generated for each input, followed by feature extraction across 
convolutional layers. The difference in activation values between 
benign and adversarial images is computed to quantify the effect of 
adversarial perturbations. Finally, the most frequently affected filters in 
each layer are identified as dominant filters, which are highly susceptible 
to adversarial attacks. 

From the test set of the MNIST dataset, we selected 100 images 
from each class, and generated adversarial images corresponding to 
these benign images with a white box attack targeting the remaining 
nine classes with ϵ = 0.3. As a result, 900 targeted adversarial examples 
from the 100 images of each class (9 adversarial examples for a single 
image) are generated. We extracted the outputs of the convolutional 
layers, and calculated the difference in the output between a benign 
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image and its adversarial counterpart. As hypothesized, we observe that 
some filters are affected more than others. We selected the top 10% of the 
affected filters for each of the 900 benign-adversarial pairs. Frequency 
of the filters appearing in the top 10% of all the convolutional filters for 
the first convolutional layer for input class 0 on the MNIST dataset is 
plotted on a histogram shown in Figure 4. The x-axis labels are filter 
IDs, and y-axis labels are frequency of occurrence. As is clear from the 
results, some filters cause more difference in convolutional layer output. 
We repeat this investigation for all the other nine classes, and observed 
that the top 10% filters remain mostly the same. That is, the same filters 
in a convolutional layer are affected the most in an adversarial attack 
regardless of the input class, as can be seen from Figure 5. The second 
convolutional layer also exhibited a similar behavior. The identified 
filters for the second layer are shown in Figure 6. It is important to note 
that our approach differs fundamentally from pruning or conventional 
adversarial training. While pruning would discard these dominant 
filters, risking the loss of critical feature representations, our method 

instead fine-tunes them adversarially to strengthen their resilience. This 
selective correction leverages the empirical finding that a small subset 
of filters is consistently exploited across attack scenarios, thus enabling 
a more efficient yet equally robust alternative to full adversarial 
retraining.

Characteristics of Dominant Filters. It is evident from the 
aforementioned figures that the identified filters exhibit higher difference 
in activation for specific classes, and play a critical role in feature 
extraction. In other words, their sensitivity to small changes in the input 
makes them particularly susceptible to adversarial perturbations. Even 
when the degree of perturbation ϵ is changed, the identified vulnerable 
filters remain almost the same. In other words, first-order adversarial 
attacks target these filters, and exploit their high activation values (due 
to subliminal changes in the input image) to amplify the errors that 
propagate through the network. This evidently impacts the classification 
performance of the model under attack significantly. 

Source of Vulnerability. The heightened vulnerability of a 
few particular convolutional filters is closely tied to the hierarchical 
structure of the network. In general, convolutional filters in the initial 
layers, which are responsible for extracting foundational features (such 
as edges and textures), are affected as adversarial perturbations disrupt 
low-level feature extraction, and propagate errors to subsequent layers. 
On the other hand, convolutional filters in the intermediate layers 
aggregate and refine outputs from earlier layers. Therefore, adversarial 
perturbations distort mid-level feature representations in these filters, 
which further propagate the errors deeper into the network. Filters 
in the deeper layers rely heavily on the preceding layers to generate 
accurate outputs and to form high-level abstractions. Errors introduced 
in earlier layers are therefore amplified in these layers, making their 
filters particularly vulnerable to adversarial perturbations. We have 
empirically validated that these observations do not change with a 
change in the level of perturbation ϵ, and as a result, does not affect 
the identified dominant filters for a given model. Therefore, employing 
defensive measures on these particular filters should provide strong 
defense against adversarial attacks, while not sacrificing the model 
performance on benign inputs. Additionally, our proposed approach 
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 Figure 4
The frequency of the affected filters appearing in the top 10% of 

all the convolutional filters for the first layer

 Figure 5
The frequency of the affected filters appearing in the top 10% for the first convolutional layer for all input classes
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has the added advantage of achieving the same level of adversarial 
defense as the conventional approach [7], while re-training much less 
parameters, as will be shown in Section 4.

3.5. Model splitting and adversarial training 
The existing approach for defense against adversarial attacks 

is to re-train the model with adversarial samples accompanied by 
correct class labels. Training the model with a certain form of attack 
gives it the necessary defense for that attack and weaker (to some 
extent) attacks [7], but the training also makes the model lose some 
of its initial performance capabilities. We hypothesize that re-training 
the parts of the model that are exploited the most during adversarial 
attacks should provide a balanced outcome on both requirements. We 
term the most susceptible filters, as described in the previous section, 
as dominant filters. A potential approach to address the vulnerability 
of these filters is to apply pruning techniques, where these filters 
could be dropped entirely. However, pruning risks the loss of critical 
feature representations, which could degrade the model’s performance 
on benign data. Instead, we intend to re-train or fine-tune these filters, 

while keeping other parts of the model frozen, for defense against 
adversarial attacks. This can be accomplished with a split model, as 
shown in Figure 7. Note that, we are proposing an adversarial fine-
tuning method. In the proposed split model, each convolutional layer 
is divided into two parallel layers — one containing the dominant 
filters (which are identified as the most vulnerable filters to adversarial 
perturbations), and the other containing the non-dominant filters, as 
shown in Figure 7. The weights of the trained base model are transferred 
to this new split model, allowing it to leverage prior knowledge about 
benign data, while targeting specific vulnerabilities. During the fine-
tuning process, only the weights of the dominant filters are updated, 
while the non-dominant filters are kept frozen to preserve their original 
functionality. Afterwards, these parallel layers are reconstructed back 
into their original structure before proceeding to the pooling layer, 
ensuring the model’s architecture is restored without disrupting its 
baseline performance. By targeting only the most vulnerable filters, this 
method enhances adversarial robustness, while avoiding unnecessary 
retraining of non-critical parts of the network. Additionally, it retains 
the model’s pre-trained performance on benign data, as demonstrated 
in our experiments.
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 Figure 6
The frequency of the affected filters appearing in the top 10% for the second convolutional layer for all input classes

 Figure 7
Split model for adversarial fine-tuning of dominant filters
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We outline the structured process of model splitting and adversarial 
fine-tuning in Algorithm 2. The algorithm describes the initialization of 
the split model, separation of layers, adversarial fine-tuning, and final 
reconstruction of the model. Unlike conventional adversarial training, 
which modifies all model parameters, our method selectively updates 
only the most vulnerable filters. This leads to a more efficient defense 

mechanism with lower computational overhead. Furthermore, we 
ensure that the base model’s adversarial training follows the method 
outlined in ref. [7], reinforcing robustness against specific attack types. 
Our experimental results validate the effectiveness of this selective 
fine-tuning strategy, striking a balance between adversarial defense and 
performance retention on benign inputs.

9

Algorithm 2: Model splitting and adversarial training
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3.6. Computational complexity 
As discussed in Sections 3.4 and 3.5, our proposed selective 

adversarial fine-tuning approach involves two primary steps: i) 
identifying dominant filters, and ii) freezing non-dominant filters and 
selectively fine-tuning dominant filters. This methodology is designed 
to optimize computational efficiency, while maintaining robustness 
against adversarial attacks. 

Identification of Dominant Filters. For identifying dominant 
filters, we generate benign-adversarial image pairs, extract feature maps 
from the convolutional layers, compute feature level differences, rank 
filters according to the differences, and finally average across image 
pairs. The computational cost of this step is therefore O(LN + Lf log 
f + Lf d 2 + Lf d 2k 2 + θd 2N) ≈ O(Lf d 2k 2 + θd 2N) for an L layer neural 
network with θ total parameters. Here, we assumed the input image 
dimensions to be d × d, number of benign-adversarial image pairs N, 
number of filters f, and filter kernel size k × k.

Adversarial Fine-tuning. Now, the CNN model training has a 
computational complexity of O(Lf d 2k 2) [34]. Since we propose to fine-
tune only α fraction of the filters, our selective adversarial fine-tuning 
approach has a computational complexity of O(Lf d 2k 2 + θd 2N + αLf 
d 2k 2). It is evident that there is some overhead, i.e., O(Lf d 2k 2 + θd 2N), 
for identifying the dominant filters. However, one can choose α based 
on their performance requirement and computational capability.

4. Experimental Results 
As mentioned before, we generated adversarial images for the 

MNIST training set with ϵ = 0.3 using both FGSM and PGD. After the 
proposed adversarial fine-tuning of the split model, and conventional 
adversarial training of the base model, we evaluate the models for both 
benign accuracy and adversarial accuracy. We recall that the accuracy 
on adversarial images with ϵ = 0.3 for the base model was 21.26% for 
non-targeted FGSM and 0.58% for non-targeted PGD. 

For comparison, we consider three models: a shallow model 
consisting of two convolution layers with 16 and 32 filters, respectively; 
a base model featuring two convolution layers with 32 and 64 filters, 
respectively; and a dense model comprising three convolution layers 
with 32, 64, and 128 filters, respectively. In Tables 6 and 7, we show the 
performance of the three models under consideration for conventional 
adversarial training against FGSM and PGD attacks respectively. As 
mentioned before, we evaluate the models for both benign accuracy 
and adversarial accuracy. The adversarial accuracy increases, as 
expected, with adversarial training for both PGD and FGSM. But 
there is a drop in the benign accuracy for both cases, as can be seen 
in the fourth column for both adversarial training against FGSM 
and PGD attacks. To address this, Ilyas et al. [15] proposed using a 
training set containing a mixture of benign and adversarial images. 
We follow this approach as well — we take 42,000 benign images 
and their adversarial counterparts, and perform adversarial training of 
the models. After adversarial training, the adversarial accuracy of the 
models over an average of five training’s remains essentially the same 
for both FGSM and PGD attacks. For the base model, benign accuracy 
drops from 99.33% to 96.00% for FGSM training and from 99.33% 
to 87.79% for PGD training. If adversarial training is performed with 
a mixture of benign and adversarial training data, we can bring up 
the benign accuracy to satisfactory levels without having to sacrifice 
adversarial accuracy (see the fifth column). That is, for all models 
under consideration, the accuracy on benign images for both FGSM 
and PGD adversarial training can be attained near 99.00%.

In Tables 8 and 9, we show the performance of the models under 
consideration for our proposed adversarial fine-tuning training against 
FGSM and PGD attacks respectively. As we can observe from the table, 
our adversarial fine-tuning approach by splitting the model provides 
similar results as the conventional adversarial training, even though 
a smaller number of parameters were fine-tuned. As the conventional 
approach, performance of the proposed approach is better when the 
adversarial finetuning is done with a mixture of benign and adversarial 
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Model Test image type Before adversarial training Adversarial training with PGD
Adversarial training with 

benign + PGD
Shallow Benign 98.94% 95.94% 99.04%

Adv (PGD) 0.89% 98.78% 98.63%
Base Benign 99.33% 87.79% 99.13%

Adv (PGD) 0.58% 98.89% 98.86%
Dense Benign 99.36% 95.68% 99.05%

Adv (PGD) 1.20% 98.72% 98.59%

Table 7
Performance of the conventional adversarial training of the entire model (PGD)

Model Test image type Before adversarial training
Adversarial training with 

FGSM
Adversarial training with 

benign + FGSM
Shallow Benign 98.94% 93.00% 98.86%

Adv (FGSM) 10.61% 98.60% 98.60%
Base Benign 99.33% 96.00% 98.83%

Adv (FGSM) 21.26% 98.95% 98.98%
Dense Benign 99.36% 90.11% 98.67%

Adv (FGSM) 11.64% 98.91% 98.75%

Table 6
Performance of the conventional adversarial training of the entire model (FGSM)
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training data. For the base model, benign accuracy for both FGSM and 
PGD training is approximately 99.00%, and the adversarial accuracy is 
approximately 98.50% — this is essentially the same as the conventional 
adversarial training results on the base model. 

In Tables 6–9, we observe that adversarial training with a 
mixture of benign and adversarial samples provides approximately 98% 
accuracy, regardless of the model type. This indicates that the dominant 
filters are indeed the most vulnerable portion of the model and securing 
just those filters provides as good a result as conventional adversarial 
training. However, our proposed adversarial fine-tuning is more 
computation-friendly, since it involves a smaller amount of trainable 
parameters. We argue that the advantage of the proposed approach 
becomes greater with denser and more complex networks containing 
many trainable parameters, as shown in the following.

Thus far, we chose the top 10% filters as dominant filters. We 
investigate the effect of choosing more dominant (and therefore, 
trainable) filters. As shown in Tables 10 and 11, performance does 
not change noticeably for either the PGD or the FGSM. The accuracy 
findings show the benign and adversarial accuracies for the three models 
when the percentage of trainable filters in the convolutional layers are 

increased. On the last column for both tables, first value corresponds 
to FGSM fine-tuning, second value corresponds to Benign + FGSM 
fine-tuning. We argue that with this combination of dataset and attack 
model, the vulnerability of the model lies mostly within the top 10% of 
the dominant filters, which once again proves that adversarial training 
of the entire network is somewhat wasteful.

In Table 12, we show the percentage of trainable parameters 
is reduced when using the proposed adversarial fine-tuning of the 
split model. For the dense model, more than half of the model does 
not require adversarial training for achieving a robust performance 
against adversarial attacks. More specifically, the proposed method 
reduces trainable parameters by 64.07% for the top 10% dominant 
filters, 56.93% for 20%, and 35.73% for 50%, significantly decreasing 
computational costs. This reduction translates into lower memory usage 
and faster training times, particularly for larger models, making the 
method scalable to real-world applications. Compared to conventional 
adversarial training, which involves retraining of all parameters, our 
approach achieves comparable robustness while requiring substantially 
fewer trainable parameters, as shown in Tables 8 and 9. These results 
remain consistent across varying levels of perturbation in the attacking 
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Model
Test image 

type
Adversarial fine-tuning 

with FGSM
Percent difference with 

conventional
Adversarial fine-tuning 
with benign + FGSM

Percent difference with 
conventional

Shallow Benign 94.03% +1.11% 98.77% −0.09%
Adv (FGSM) 98.77% +0.17% 98.30% −0.30%

Base Benign 95.45% −0.57% 98.91% +0.08%
Adv (FGSM) 98.60% −0.35% 98.61% −0.37%

Dense Benign 64.67% −28.26% 98.89% +0.22%
Adv (FGSM) 98.20% −0.72% 98.00% −0.76%

Table 8
Performance of the proposed adversarial fine-tuning of the split model (FGSM)

Model
Test image 

type
Adversarial fine-tuning 

with PGD
Percent difference with 

conventional
Adversarial fine-tuning 

with benign + PGD
Percent difference with 

conventional
Shallow Benign 93.93% −2.10% 98.86% −0.18%

Adv (PGD) 98.15% −0.64% 97.75% −0.89%
Base Benign 94.11% +7.20% 99.01% −0.12%

Adv (PGD) 98.76% −0.13% 98.56% −0.30%
Dense Benign 76.97% −19.56% 98.01% −1.05%

Adv (PGD) 95.67% −3.09% 95.05% −3.59%

Table 9
Performance of the proposed adversarial fine-tuning of the split model (PGD)

Dominant filters Test image type
Adv. fine-tuning with 

FGSM
Adv. fine-tuning with 

benign + FGSM
Percent difference with 

10% baseline
10% Benign 95.99% 99.13% –

Adv (FGSM) 98.69% 98.53% –
20% Benign 96.33% 99.10% +0.35%/−0.03%

Adv (FGSM) 98.64% 98.52% −0.05%/−0.01%
50% Benign 95.92% 99.07% −0.07%/−0.06%

Adv (FGSM) 98.86% 98.77% +0.17%/+0.24%

Table 10
Effect of dominant filter percentage for FGSM along with percent difference with 10% baseline
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images, highlighting the computational efficiency of the proposed 
method in contrast to traditional approaches. 

4.1. Discussions
It is worth noting that our experimental findings can also be 

interpreted as an implicit ablation study of the proposed framework. 
In Section 3.4 (Figures 4–6), we showed that adversarial perturbations 
consistently exploit a small subset of convolutional filters across 
classes and perturbation magnitudes, effectively isolating the most 
critical vulnerable components. The subsequent experiments in 
Tables 10–12 further highlight that increasing the proportion of fine-
tuned filters beyond this vulnerable subset does not meaningfully 
improve robustness, indicating that the identification mechanism itself, 
rather than the number of updated parameters, is the key contributor 
to performance gains. Moreover, by comparing FGSM-based and 
PGD-based fine-tuning in Tables 6–9, we effectively assess the impact 
of different adversarial objectives: PGD fine-tuning yields stronger 
robustness that also transfers to FGSM attacks, whereas FGSM fine-
tuning provides weaker generalization. Together, these analyses clarify 
the contribution of each design choice: (i) filter-level vulnerability 
identification provides efficiency and robustness, and (ii) stronger 
adversarial objectives during fine-tuning enhance transferability. These 
results validate the central components of our framework without the 
need for additional experiments.

4.2. Remarks
Adversarial training may not be an one-shot approach for the 

model to be robust against future adversarial attacks. If the attackers get 
access to a model information; fully or partially; adversarial examples 
can be generated even if a model is trained against it. This is especially 
true for adversarial training against FGSM attacks, since FGSM is a 
one-step algorithm that computes the perturbation with a single step 
in the direction of the gradient of the loss function. It does not explore 
the gradient of the loss function in its entirety. Attackers can take 
advantage of this characteristic by computing new adversarial attacks 
the model is not trained against, if model information is revealed. Thus, 

a model trained against FGSM attacks may need further training if it 
is suspected that model information has been leaked. This underlines 
one advantage of our proposed split model fine-tuning, where we can 
achieve almost similar results using much lower computational burden. 
More specifically, for adaptive adversaries or transfer attacks in safety-
critical settings, such as autonomous driving or healthcare, our proposed 
scheme would provide a computational advantage over conventional 
adversarial re-training. Additionally, PGD training provides better 
defense since it takes an iterative approach to the gradient descent in 
order to maximize the loss. A stronger adversarial training, such as, with 
PGD adversarial images, will not only secure the model against PGD 
attacks, but also provide protection against other weaker attacks (such 
as FGSM) to a certain extent.

4.3. Future works
Despite the promising results, our method has several limitations 

that warrant further exploration. First, the effectiveness of dominant 
filter identification may vary depending on the underlying network 
architecture. For example, convolutional networks, with their structured 
and localized receptive fields, lend themselves more naturally to 
filter-level vulnerability analysis, whereas attention-based models 
may not exhibit the same clear filter dominance patterns. Second, 
dataset characteristics such as inter-class similarity and noise levels 
can influence how consistently adversarial vulnerabilities manifest 
across filters, potentially affecting the reliability of selective fine-
tuning. Finally, while our evaluation demonstrates robustness gains 
on the tested benchmarks, additional studies on larger-scale and more 
heterogeneous datasets are needed to assess the generalizability of the 
approach. Addressing these factors represents an important avenue for 
future research. 

More specifically, implementing our proposed method with 
second order adversarial attacks (i.e., the Carlini-Wagner [33] approach) 
is deferred for future research. Additionally, interesting directions of 
future works could be i) to extend our work to larger and more complex 
datasets, such as CIFAR-10, CIFAR-100, and Tiny ImageNet, ii) 
applying the proposed approach to advanced architectures, including 
VGG and ResNet, and iii) benchmarking the proposed approach against 
state-of-the-art defense mechanisms. Last but not the least, exploring the 
transferability of identified dominant filters across models with similar 
structures could be of independent interest, such as transitioning from a 
model with layers of (16, 32) to one with (16, 32, 64). These directions 
will help establish the scalability and versatility of our approach in real-
world scenarios.

5. Conclusion 
Adversarial attacks take advantage of the excess capacity of the 

neural network models in such a way that makes subliminal adjustments 
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Dominant filters Test image type Adv. fine-tuning with PGD
Adv. fine-tuning with 

benign + PGD
Percent difference with 

10% baseline
10% Benign 94.11% 99.01% –

Adv (PGD) 98.76% 98.56% –
20% Benign 93.40% 99.08% −0.75%/+0.07%

Adv (PGD) 98.70% 98.67% −0.06%/+0.11%
50% Benign 91.29% 99.17% −3.00%/+0.16%

Adv (PGD) 98.88% 99.00% +0.12%/+0.45%

Table 11
Effect of dominant filter percentage for PGD along with percent difference with 10% baseline

Dominant 
filters

Shallow 
model Base model Dense model

10% 7.96% 14.33% 64.07%
20% 7.08% 12.81% 56.93%
50% 4.54% 8.05% 35.73%

Table 12
Percentage of reduction in trainable parameters
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to the inputs (imperceptible to humans), and thereby causes the model 
to make inaccurate predictions. Since neural network-based models are 
deployed in several critical applications, strong defense mechanisms 
against such adversarial attacks are rightfully warranted. However, 
existing approach for attaining model robustness against adversarial 
attacks is adversarial training, which typically provides defense 
against specific attack types and requires substantial computational 
resources. In this work, we showed that by algorithmically identifying 
specific vulnerable parts of the neural network model, and performing 
adversarial fine-tuning of those parts, we can attain the same level of 
performance as the conventional adversarial training. Our analysis 
reveals that only a small portion of the vulnerable components 
accounts for a majority of the model’s errors caused by adversarial 
attacks. As such, we propose to selectively fine-tune these vulnerable 
components, which ensures significant computational-load savings. 
We empirically validate our proposed approach on the MNIST dataset, 
and demonstrate that our approach can achieve similar performance as 
the more resource-intensive conventional adversarial training method. 
Our results also demonstrate that robustness gains arise primarily 
from selectively fine-tuning adversarially vulnerable filters rather 
than retraining larger portions of the model, and from employing 
stronger adversarial objectives during fine-tuning. We note that a more 
efficient defense mechanism is crucial since neural network models 
are increasingly deployed in safety-critical and socially impactful 
applications — such as healthcare, finance, and autonomous systems, 
where adversarial attacks could lead to harmful consequences. 
Additionally, our proposed lightweight selective fine-tuning approach 
would certainly help reduce the computational and energy overhead of 
conventional adversarial training, contributing to more sustainable AI 
deployment.
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