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Abstract: Machine learning models, especially neural networks, are vulnerable to adversarial attacks, where inputs are purposefully altered
to induce incorrect predictions. These adversarial inputs closely resemble benign (unaltered) inputs, making them difficult to detect, and pose
significant security risks in critical applications, such as autonomous vehicles, medical diagnostics, and financial transactions. Several methods
exist to improve the model’s performance against these adversarial attacks, which typically modify the network architecture or training procedure.
Often times, these adversarial training techniques only provide robustness against specific attack types and/or require substantial computational
resources, making them impractical for real-world applications with limited resources. In this work, we propose a computationally-efficient
adversarial fine-tuning approach to enhance the robustness of Convolutional Neural Networks (CNNs) against adversarial attacks and attain the
same level of performance as the conventional adversarial training. More specifically, we propose to identify specific parts of the neural network
model that are more vulnerable to adversarial attacks. Our analysis reveals that only a small portion of these vulnerable components accounts
for a majority of the model’s errors caused by adversarial attacks. As such, we propose to selectively fine-tune these vulnerable components
using different adversarial training methods to develop an effective and resource-efficient approach to improve model robustness. We empirically
validate our proposed approach with varying dataset and algorithm parameters. We demonstrate that our approach can achieve similar performance
as the more resource-intensive conventional adversarial training method.
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1. Introduction which neural networks can be safely used. For example, using neural
networks in self-driving vehicles can be risky because an attacker could
. ; . . v exploit adversarial examples to cause the car to take actions that it is not
solving complex machine learning tasks, such as image recognition supposed to take [8]. As a result, constructing robust neural networks,

[1-3], speech recognition [4], natural language pro.cessing [4]. and  4hat are resistant to such attacks, is a top priority for researchers in the
even computer games [5, 6]. These networks have achieved remarkable g4

success in recognizing images with accuracy levels close to (and
sometimes exceeding) that of humans. However, researchers have
recently discovered that these networks are prone to adversarial attacks.
More specifically, these attacks intention ally perturb samples to
simulate worst-case scenarios, leading the network to output incorrect
results with high confidence levels.

Adversarial examples were first discovered in the image
classification domain Madry et al. [7]. Their research showed that it is
possible to transform the classification output corresponding to an
image by making minimal alterations to it. This means that given an
input x and any target classification ¢, it is possible to discover a new
input X that is very similar to the original input x, but classified as the
target ¢' # t. The quantity of change required is often so small that it is
difficult for humans to detect, making it a significant challenge to use
neural networks in security-sensitive areas. In other words, adversarial
examples pose a significant concern, since they can limit the domains in

Deep neural networks have proven to be highly effective in

Consequently, robust defense mechanisms against such attacks
on modern machine learning (ML) models have been the topic of
extensive research. Scholkopf et al. [9] has started the journey towards
adversarial resistant models. Since then, numerous techniques have
been proposed to enhance the robustness of neural networks against
adversarial threats. These include approaches similar to adversarial
training — where the model is trained on adversarial examples,
defensive distillation methods — which aim to smooth the model’s
decision boundaries [10], and certified defenses — which provide
theoretical guarantees against specific attack types. However, existing
solutions often have practical limitations, such as being tailored to
specific attacks, requiring substantial computational resources, and
offering incomplete protection against the wide range of possible
adversarial attacks.

Our Contributions. In this work, we propose a novel and
computationally efficient method for ensuring adversarial robustness
of CNNs. We achieve this by proposing a selective adversarial fine-
_ tuning approach. More specifically, our proposed approach identifies
*quresponding author: Hgﬁz ?mtiaz, Department of Electrical and Electronic  the model components that are most vulnerable to adversarial
Engineering, Bangladesh University of Engineering and Technology, Bangladesh. perturbations, and then ensures the model’s robustness against
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@ adversarial attacks by selectively finetuning those components. To
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this end, we identify the convolutional filters of a CNN model that are
highly susceptible to adversarial attacks. We show that our proposed
adversarial fine-tuning of these filters enables the resulting model to
maintain a high accuracy on benign inputs, while exhibiting similar,
if not better, resilience against adversarial inputs. Our contributions
are summarized below:

1) We show that the effect of first order adversarial attacks on a CNN
model is neither uniform nor random. In fact, certain parts of the
model are more susceptible to an attack, regardless of data class. We
empirically show this by identifying the filters in the convolutional
layers across different datasets.

2) Since certain specific components of the model are more vulnerable
to adversarial attacks, we argue that focusing on those components
are crucial for ensuring model robustness against those attacks.
To this end, we propose to split the model into trainable and non-
trainable sections. We empirically demonstrate that performing
adversarial fine-tuning of the vulnerable components in this way
provides a model that performs just as well as existing adversarial
training methods. Additionally, this enables a much simpler and
computationally light adversarial training.

3) We demonstrate that increasing the fraction of trainable parts of
the model does not significantly improve the model’s robustness.
This re-enforces our claim that the whole model does not need to be
trained for appropriate adversarial security

Notations. For vector, matrix, and scalar, we used bold lower-case
letter (v), bold capital letter (V), and unbolded letter (M), respectively.
We used the symbol v, for the n-th column of the matrix V; and vy
denotes the (7, j)-th entry of matrix V. We sometimes denote the set {1,
2, ..., N} as [N]. Inequality V > 0 apply entry-wise. We denoted L, norm
(Euclidean norm) with ||-||,, the L norm with the ||-|| , and the Frobenius
norm with [|-]| .

2. Background and Related Works

2.1. Adversarial attacks on neural networks

Neural networks that are commonly used in practice, such as
computer vision and speech recognition applications, are susceptible
to adversarial attacks that manipulate the model into predicting
the wrong output. Protection against such attacks has garnered
particular research interest [11-14]. In computer vision, adversarial
attacks are of particular interest as very small and undetectable
perturbations can be added to an image to fool a model with high
probability [15-17].

Ideally, for datasets with well-separated classes, it is expected for
the classifier model to assign the same class to both the original input x
and the adversarial input X = x + 1, as long as ||| <€, where € is small
enough to be discarded by the sensor or data storage device, which
considers it to be noise or measurement error and not impact the
classification decision [15, 18]. If w represents the weights of the linear
model, then the dot product between w and adversarial example X is
w'X = w'x + w'n. After going through the model, the previously
imperceptible noise marker n causes the activation to grow by w'n.
This increased activation can be maximized by assigning n = sign(w),
while making sure the constraint on 1 still holds. For a weight vector
containing elements with an average magnitude of m and having n
dimension, this perturbation results in an activation increase of emn.
While the norm of the perturbation m does not grow with the
dimensionality of the problem, the change in activation caused by the
perturbation € can grow linearly with the dimensionality. As a result, in
high-dimensional problems, it is possible to make many infinitesimal
changes to the input that add up to one large change in the output
[7, 15, 18].

2.2. Theoretical framework of adversarial
vulnerability

Adversarial vulnerability is not an incidental flaw but a direct
consequence of a model’s reliance on ‘“non-robust features” —
patterns in the data distribution that are highly predictive for standard
classification but are inherently brittle and unintelligible to human
perception. Gradient-based attacks, such as FGSM and PGD (described
below), are designed to exploit these very features by taking a step in
the direction of the greatest change in the model’s loss function [15, 18].
The high gradient sensitivity of the model to these features means that
a tiny, imperceptible perturbation to the input can cause a significant
change in the output, which is what we empirically observe in the
“dominant filters” in this work.

We note that this sensitivity is systematically amplified through
the CNN’s hierarchical structure, transforming a minute perturbation
into a catastrophic error [19]. Filters in early convolutional layers,
which are responsible for extracting foundational, low-level features
like edges and textures, are directly susceptible to the high-frequency
adversarial noise, which can corrupt these features at the base of the
network’s representational hierarchy [20]. This initial error is then
compounded as it propagates through subsequent layers, amplified by
non-linear activation functions. The cumulative effect ensures that a
minor perturbation at the input can lead to a significant distortion by the
time it reaches the deeper layers, ultimately leading to misclassification.

2.3. Common adversarial attack methods

Fast Gradient Sign Method (FGSM). For a neural network
model, let @ be the model parameters, y be the target associated with
input sample x, and J(0, x, y) be the cost function. Ilyas et al. [15]
showed that the cost function can be linearized around the current 0
value, obtaining an optimal max-norm constrained perturbation of
1 = esign(A * J(0, x, v)). Goodfellow referred this approach as the Fast
Gradient Sign Method (FGSM) of generating adversarial perturbations,
and thereby, adversarial samples. Primarily designed to be fast, instead
of a close adversarial estimate, FGSM is optimized for L distance
metrics to ensure the amount of perturbation remains within the fixed
bound of e. Here, the L norm measures the largest absolute difference
between every element of an input and its perturbed counterpart. The
adversarial example can be calculated as X = x + esign(A * J(0, x, »)),
where € is often chosen to be small enough to be imperceptible to
humans. FGSM is a simple one-step algorithm for maximizing the inner
part of the saddle point formulation of the loss function [7, 21].

Projected Gradient Descent (PGD). Madry et al. [7] proposed
a multi-step variant of FGSM. The Projected Gradient Descent (PGD)
scheme for generating adversarial examples is a more powerful
iterative attack that performs multiple gradient descent steps to find the
perturbation with maximum loss while ensuring that the adversarial input
stays within the constraint typically imposed by the Loo norm. It is shown
to produce more effective attacks compared to FGSM. Instead of taking a
single step of size € in the direction of the gradient-sign, multiple smaller
steps are taken. More specifically, at 7-th iteration, the adversarial sample
is given by x' "' = I1_+ S(x' + asign(A J(0, x, y))). Here, S is the set of
allowed perturbations chosen such that it maintains perceptual similarities
between an input and its perturbed counterpart, and « is the step size.

2.4. Adversarial defense mechanisms

Several defense mechanisms have been proposed to address the
vulnerabilities, such as adversarial training [7, 21], feature squeezing
[22], defensive distillation [10], and other detection methods [23].
Issaoui et al. [24] presented an approach of combining custom activation
functions with adversarial training. However, the existing methods often
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involve significant computational burden, measured by the number of
trainable parameters, and practical limitations. For example, adversarial
training improves robustness by retraining the entire model with
adversarial examples, requiring a large number of trainable parameters.
Defensive distillation aims to smooth decision boundaries by training a
secondary model on softened class probabilities, but it has been shown
to be less effective against stronger attacks [22]. Feature squeezing
reduces adversarial effects by preprocessing inputs but often degrades
benign accuracy and may not perform well against adaptive attacks.

In recent years, some works have highlighted the need for
efficient and robust defenses against adversarial attacks on a diverse
range of neural networks. Research on audio perturbations demonstrates
that speech recognition systems are highly vulnerable to selective and
multi-targeted manipulations, which shows that attackers can force
systems to misrecognize specific phrases [25, 26]. Similarly, works on
text-based backdoor attacks reveal that adversaries can exploit trigger
positions and word choices to induce targeted misrecognition, further
stressing the fragility of NLP models [25]. In the graph domain, works
on dual-targeted and discrepancy-based attacks expose the susceptibility
of graph neural networks (GNNs) to adversarial perturbations that
selectively manipulate predictions [25, 26]. To mitigate such threats,
detection-focused efforts have been proposed, such as score-based
anomaly detection for audio and text modification techniques for NLP
[25, 26]. These works show promise in identifying adversarial inputs,
and demonstrate that adversarial attacks are becoming increasingly
sophisticated, multi-targeted, and domain-specific, encompassing
speech, text, and graph data. The works of Luo et al. [27] and Peng et al.
[28] share the idea of targeted adaptation — dynamically identifying the
most influential parameters (or layers/tokens) and updating only those.
These approaches yield strong task performance with far fewer trainable
weights and lower runtime/energy use. However, pre- and mid-network
filtering often degrade benign-sample accuracy and can be defeated by
adaptive or learned attacks that reintroduce adversarial signal within the
filter’s passband or exploit gradient obfuscation. Empirical studies show
such filters may help against specific perturbations but provide limited,
non-universal robustness across diverse, stronger threat models [29].

Advanced adversarial defense mechanisms have been proposed
recently to enhance model robustness, while improving efficiency.
Compressed Optimized Neural Networks integrate weight compression
and multi-expert training to streamline deep neural networks —
this improves both storage efficiency and adversarial robustness by
introducing complexity that makes it more difficult for adversaries to
exploit vulnerabilities while maintaining high accuracy and efficiency
[30]. Similarly, Adversarial Feature-Level Fusion (or AFLF) strengthens
model resilience by leveraging attention-based feature selection
and adversarial feature learning, where robust feature extraction
combined with a model-agnostic adversarial learning process improves
classification robustness against a wide range of adversarial attacks
[31]. Another approach, Robustness via-Synthesis, employs generative
adversarial perturbations to enhance adversarial training, offering a
significant advantage over traditional gradient-based adversarial training
by synthesizing diverse perturbations using a generator network, thereby
enabling more robust defenses against different types of attacks [32].

Our proposed selective adversarial fine-tuning compliments these
recent advancements by focusing on optimizing the most vulnerable
components of a neural network rather than retraining the entire model.
By identifying and selectively fine-tuning specific convolutional
filters that are highly susceptible to adversarial attacks, our method
significantly reduces computational overhead, while maintaining
robustness comparable to conventional adversarial training. This
targeted approach provides a practical balance between efficiency
and adversarial defense, making it a viable alternative for real-world
deployment. We would like to emphasize that while prior works on
parameter-efficient robustness (e.g., Luo et al. [27] and Peng et al. [28])

have shown benefits by tuning selected layers or subsets of parameters,
these methods generally operate at a coarse level, updating entire layers
or large parameter groups. In contrast, our approach identifies and fine-
tunes only the most adversarially vulnerable filters, a finer-grained
strategy that avoids retraining redundant parameters and prevents loss
of benign accuracy. Additionally, unlike pruning-based sparsification,
which discards vulnerable filters entirely, our method retains these
filters and strengthens them through targeted adversarial fine-tuning.

3. Proposed Approach Against Adversarial Attacks

Adversarial training is crucial for any neural network model
deployed in applications, where security is a priority. Nevertheless,
computation cost, model complexity and memory usage, and inference
times are crucial factors that need to be considered during adversarial
training. Moreover, the adversarial training of the model must be robust
enough to minimize the effect of different adversarial attacks. Our work is
motivated by such need for efficient and robust adversarial training scheme.
More specifically, we focus on a CNN trained on the MNIST handwritten
digits dataset [3]. To that end, we are interested in investigating:

1) Does an adversarial attack affect different parts of a network equally?
2) If not, how can we take advantage of this while performing
adversarial training of the network?

We utilized the Cleverhans open-source library to generate
the adversarial examples, and demonstrate the vulnerability of
neural network models. The library offers a selection of attacks and
countermeasures for testing how susceptible machine learning models
are to adversarial examples.

3.1. Model

As mentioned before, we consider a CNN for image classification
and trained the model on the MNIST dataset. After training, the CNN
captures the spatial relationships present in an image fairly accurately.
Because fewer parameters are needed and weights can be reused,
this architecture yields superior results than fully-connected neural
networks. We present the details of the model we used in Table 1. Except
for the output layer, we have used the ReLU activation. The structure of
the base model is shown in Figure 1. This model has a total of 120,042
trainable parameters. Note that, the MNIST dataset’s training partition
consists of 60,000 gray scale images of size 28 x 28 pixels, and the test
partition consists of 10,000 gray scale images of the same size.

The model is trained with RMSprop algorithm and 0.001 learning
rate. Early stopping is employed to prevent over-fitting by monitoring
the accuracy of the set over a patient of 2 epochs. A dropout layer after
every convolutional layer was used further prevent overfitting. The
accuracy and loss plots of the training and validation set, as shown in

Table 1

Details of the CNN model
Layer Output shape Param #
Conv2D 28 x 28 x 32 832
MaxPooling2D 14 x 14 x 32 0
Dropout 14 x 14 x 32 0
Conv2D 14 x 14 x 64 18,496
MaxPooling2D 7 %7 x 64 0
Dropout 7 x 7 x 64 0
Flatten 3136 0
Dense 32 100,384
Dense 10 330
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Figure 1

CNN model under consideration

_gr——e O
1 7_ 7x64
Input x/x
Imag‘a /D: 11432 14x14x64
28x28x32 Convolution  Max pooling ~ 3136x32
28x28 Convolution Max pooling Padding = 1, Kernel = Flatten
Padding = 1, Kernel = 2x2, Kernel = 3x3, 2x2,
Kernel = 5x5, Stride=2 Stride=1 Stride=2
Stride=1 +
+ Relu
Relu
Figure 2 Figure 2, demonstrate that the model has managed to properly learn
Accuracy and loss plots of the base model. without overfitting to the dataset. Evaluating it against the test set gives
Model Accuracy us an accuracy of 99.33%.
100
_ 3.2. Generating adversarial examples
S 98
§ 97 To test the vulnerability of the model, adversarial examples are
5 % generated using both the FGSM and PGD approaches. Given a valid input
< %» data x and a target classification, # = C(x), it is possible to find a similar
94 input X such that C(X) = ¢. Here C(x) = arg max F(x) is the classifier
3 function, and F(x) is the neural network loss. Additionally, x and X are
0 10 15 20 25 . . . . ~
Epoch close with respect to some distance metric. The adversarial example X
with this property is known as a targeted adversarial example [7, 21]. A
Model Loss less powerful attack, or un-targeted' attack, classifying x as a given target
class searches only for a perturbed input X so that C(X) # C(x), and that x
20 and X are close spatially. Carlini and Wagner [33] considered three
15 different approaches to choosing the target class in a targeted attack:
S
w10 1) Average Case — target class selected uniformly at random among
S the incorrect labels
5 2) Best Case — targeting the class least difficult to attack
0 3) Worst Case — targeting the class most difficult to attack
0 10 15 20 25
Epoch
—e Train 3.3. Model behavior under FGSM and PGD attacks
i Test As mentioned before, a dataset of adversarial examples using
FGSM and PGD approaches is generated for the corresponding
Table 2
Targeted FGSM attack
Source Target Target Target Target Target Target Target Target Target Target
Class Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9
0 X X X X X v X X X X
1 X X X X v X X X X X
2 X X X X X X X X X X
3 X X X X X v X X X X
4 X X X X X X X v X v
5 X X X X X X X X X X
6 X X X X X X X X X X
7 X X X X v X X X X X
8 X X X X X X X X X X
9 X X X X v X X X X X
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Table 3

Targeted PGD attack

Source Target Target Target Target Target Target Target Target Target Target
Class Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9
0 X v v v v v v v v v
1 v X v v v v v v v v
2 v v X v v v v v v v
3 v v v X v v v v v v
4 v v v v X v v v v v
5 v v v v v X v v v v
6 v v v v v v X v v v
7 v v v v v v v X v v
8 v v v v v v v v X v
9 v v v v v v v v v X

Table 4

Adversarial accuracy before adversarial training vs magnitude of perturbation of the FGSM attack

Model type Value of € = 0.1 Value of € =0.2 Value of € = 0.3 Value of ¢ =0.5
Shallow model 62.10% 21.10% 10.61% 6.71%
Base model 70.36% 34.01% 21.26% 16.75%
Deeper model 74.15% 25.88% 11.64% 6.98%

Table §

Adversarial accuracy before adversarial training vs magnitude of perturbation of the PGD attack

Model type Value of € = 0.1

Value of ¢ =0.2

Value of €= 0.3 Value of € = 0.5

60.00%
64.34%
67.95%

Shallow model
Base model

Deeper model

1.44%
0.82%
5.51%

0.89%
0.58%
1.20%

0.89%
0.58%
1.14%

MNIST dataset with different ¢ values. We employ a white box
targeted FGSM and PGD attack on the base model. Intuitively, higher €
values result in higher attack success rates, i.e., the model performance
should have higher error rates. The model was evaluated using a test set
of 10,000 adversarial examples for different values of ¢.

For the FGSM and PGD attacks, each image from a class is used
to produce adversarial examples targeting the remaining classes. In
Tables 2 and 3, we show whether an adversarial attack is successful with
its intention when the perturbation is induced to output a predetermined
target class. As evident from Table 2, targeted FGSM attacks do not
provide as much success as targeted PGD attacks. More specifically,
adversarial accuracy of the model for the same amount of perturbation
drops down to 10.32% for targeted FGSM attacks and 21.26% for non-
targeted FGSM attacks on the test set. On the other hand, since PGD
is a stronger attack, the targeted PGD attacks are more successful. We
show the details of the targeted PGD attacks on our model in Table 3.
For the same level of perturbation, the adversarial accuracy decreases
to 9.78% for targeted PGD attacks and 0.58% for non-targeted PGD
attacks on the test set.

To further test the effect of the magnitude of'this perturbation of the
model with a shallow and a deeper network, we built two more models
trained on MNIST. The shallow model has two convolution layers with
number of filters 16 and 32, respectively. The deeper network has one
added convolutional layer, making it three convolutional layers with
32, 64, and 128 filters. The other parameters of the networks are kept
consistent with that of our base model. The results are summarized in
Tables 4 and 5. As expected, all the models perform worse with higher

Figure 3
Adversarial accuracy vs magnitude of perturbation

100+

80

60+

Accuracy(%)

201

030 035 040 045 050

Epsilon

010 015 020 0.25

—8— NO-ATTACK
—A— FGSM-ATTACK
—A— PGD-ATTACK

perturbation attack. In Figure 3, we show the model performance on
adversarial examples for different € values. It is evident from this figure
that PGD is the stronger attack approach of the two.
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3.4 Filter identification

We hypothesize that the adversarial examples are generated by
exploiting particular filters in the convolution layers. In this section,
we investigate this hypothesis and identify the filters more susceptible
to be exploited during the FGSM or PGD attacks. We extract the
output features of the convolutional layers of the model and observe
their individual effects on different inputs. As such, the difference in
output of the convolutional layer between a benign input image and the
corresponding adversarial input image provides the relative effect of an
adversarial attack on the layer.

To systematically identify these vulnerable filters, we follow
a structured approach. The process consists of three main steps: (i)
generating adversarial images, (ii) extracting convolutional features,
and (iii) identifying the most affected filters. This method is applied
to all convolutional layers of the model to ensure that vulnerabilities

are captured across different levels of feature abstraction. The entire
process is outlined in Algorithm 1, where adversarial examples are
first generated for each input, followed by feature extraction across
convolutional layers. The difference in activation values between
benign and adversarial images is computed to quantify the effect of
adversarial perturbations. Finally, the most frequently affected filters in
each layer are identified as dominant filters, which are highly susceptible
to adversarial attacks.

From the test set of the MNIST dataset, we selected 100 images
from each class, and generated adversarial images corresponding to
these benign images with a white box attack targeting the remaining
nine classes with € = 0.3. As a result, 900 targeted adversarial examples
from the 100 images of each class (9 adversarial examples for a single
image) are generated. We extracted the outputs of the convolutional
layers, and calculated the difference in the output between a benign

Algorithm 1: Filter identification process

Step 1: Generate Adversarial Examples

for each image x in the selected class

end 1if
end for

end for

(limit to num images) do
for each target class t in range(num classes) do
if t is not the original class of x then
X.qv « GenerateAdversarialExample (x, t)

Store benign-adversarial image pair

(Xr Xadv)

Step 2: Extract Convolutional Features
for each convolutional layer 1 in CNN do
for each (x,Xagv)

Fpenign,1 « ForwardPassCNN (x,

Fagv,1 « ForwardPassCNN (X.q4y,

end for

end for

in benign-adversarial pairs do
layer=1)
layer=1)

D; « ComputeRMSDifference (Fpenign,1s Faav,1)

Step 3: Identify Most Affected Filters

for each convolutional layer 1 in CNN do

end for

S, « SelectTopKFilters(D;, top filters per layer)

Step 4: Identify top 10% most frequently affected filters in layer | as dominant filters
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image and its adversarial counterpart. As hypothesized, we observe that
some filters are affected more than others. We selected the top 10% of the
affected filters for each of the 900 benign-adversarial pairs. Frequency
of the filters appearing in the top 10% of all the convolutional filters for
the first convolutional layer for input class 0 on the MNIST dataset is
plotted on a histogram shown in Figure 4. The x-axis labels are filter
IDs, and y-axis labels are frequency of occurrence. As is clear from the
results, some filters cause more difference in convolutional layer output.
We repeat this investigation for all the other nine classes, and observed
that the top 10% filters remain mostly the same. That is, the same filters
in a convolutional layer are affected the most in an adversarial attack
regardless of the input class, as can be seen from Figure 5. The second
convolutional layer also exhibited a similar behavior. The identified
filters for the second layer are shown in Figure 6. It is important to note
that our approach differs fundamentally from pruning or conventional
adversarial training. While pruning would discard these dominant
filters, risking the loss of critical feature representations, our method

Figure 4
The frequency of the affected filters appearing in the top 10% of
all the convolutional filters for the first layer

800
600
400
200

0

123456 7 8 91011121314151617 18192021 222324252627 2829 303132

instead fine-tunes them adversarially to strengthen their resilience. This
selective correction leverages the empirical finding that a small subset
of filters is consistently exploited across attack scenarios, thus enabling
a more efficient yet equally robust alternative to full adversarial
retraining.

Characteristics of Dominant Filters. It is evident from the
aforementioned figures that the identified filters exhibit higher difference
in activation for specific classes, and play a critical role in feature
extraction. In other words, their sensitivity to small changes in the input
makes them particularly susceptible to adversarial perturbations. Even
when the degree of perturbation € is changed, the identified vulnerable
filters remain almost the same. In other words, first-order adversarial
attacks target these filters, and exploit their high activation values (due
to subliminal changes in the input image) to amplify the errors that
propagate through the network. This evidently impacts the classification
performance of the model under attack significantly.

Source of Vulnerability. The heightened vulnerability of a
few particular convolutional filters is closely tied to the hierarchical
structure of the network. In general, convolutional filters in the initial
layers, which are responsible for extracting foundational features (such
as edges and textures), are affected as adversarial perturbations disrupt
low-level feature extraction, and propagate errors to subsequent layers.
On the other hand, convolutional filters in the intermediate layers
aggregate and refine outputs from earlier layers. Therefore, adversarial
perturbations distort mid-level feature representations in these filters,
which further propagate the errors deeper into the network. Filters
in the deeper layers rely heavily on the preceding layers to generate
accurate outputs and to form high-level abstractions. Errors introduced
in earlier layers are therefore amplified in these layers, making their
filters particularly vulnerable to adversarial perturbations. We have
empirically validated that these observations do not change with a
change in the level of perturbation ¢, and as a result, does not affect
the identified dominant filters for a given model. Therefore, employing
defensive measures on these particular filters should provide strong
defense against adversarial attacks, while not sacrificing the model
performance on benign inputs. Additionally, our proposed approach

Figure 5
The frequency of the affected filters appearing in the top 10% for the first convolutional layer for all input classes
For Class: 0 For Class: 1 For Class: 2 For Class: 3 For Class: 4
800 800 800 800 800 1
600 600 600 600 4 600 4
400 400 400 400 4 400 4
200 200 200 2004 2004
0 0 0 0 0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
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Figure 6
The frequency of the affected filters appearing in the top 10% for the second convolutional layer for all input classes
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has the added advantage of achieving the same level of adversarial
defense as the conventional approach [7], while re-training much less
parameters, as will be shown in Section 4.

3.5. Model splitting and adversarial training

The existing approach for defense against adversarial attacks
is to re-train the model with adversarial samples accompanied by
correct class labels. Training the model with a certain form of attack
gives it the necessary defense for that attack and weaker (to some
extent) attacks [7], but the training also makes the model lose some
of its initial performance capabilities. We hypothesize that re-training
the parts of the model that are exploited the most during adversarial
attacks should provide a balanced outcome on both requirements. We
term the most susceptible filters, as described in the previous section,
as dominant filters. A potential approach to address the vulnerability
of these filters is to apply pruning techniques, where these filters
could be dropped entirely. However, pruning risks the loss of critical
feature representations, which could degrade the model’s performance
on benign data. Instead, we intend to re-train or fine-tune these filters,

while keeping other parts of the model frozen, for defense against
adversarial attacks. This can be accomplished with a split model, as
shown in Figure 7. Note that, we are proposing an adversarial fine-
tuning method. In the proposed split model, each convolutional layer
is divided into two parallel layers — one containing the dominant
filters (which are identified as the most vulnerable filters to adversarial
perturbations), and the other containing the non-dominant filters, as
shown in Figure 7. The weights of the trained base model are transferred
to this new split model, allowing it to leverage prior knowledge about
benign data, while targeting specific vulnerabilities. During the fine-
tuning process, only the weights of the dominant filters are updated,
while the non-dominant filters are kept frozen to preserve their original
functionality. Afterwards, these parallel layers are reconstructed back
into their original structure before proceeding to the pooling layer,
ensuring the model’s architecture is restored without disrupting its
baseline performance. By targeting only the most vulnerable filters, this
method enhances adversarial robustness, while avoiding unnecessary
retraining of non-critical parts of the network. Additionally, it retains
the model’s pre-trained performance on benign data, as demonstrated
in our experiments.

Figure 7
Split model for adversarial fine-tuning of dominant filters
Dominant Dominant F
/ Filters Filters S
1 D o
Input Trainable Reconstruct [ Maxpool Trainable Reconstruct b Maxpool L| a —1 e [— f
1 2
t n t
m
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We outline the structured process of model splitting and adversarial
fine-tuning in Algorithm 2. The algorithm describes the initialization of
the split model, separation of layers, adversarial fine-tuning, and final
reconstruction of the model. Unlike conventional adversarial training,
which modifies all model parameters, our method selectively updates
only the most vulnerable filters. This leads to a more efficient defense

mechanism with lower computational overhead. Furthermore, we
ensure that the base model’s adversarial training follows the method
outlined in ref. [7], reinforcing robustness against specific attack types.
Our experimental results validate the effectiveness of this selective
fine-tuning strategy, striking a balance between adversarial defense and
performance retention on benign inputs.

Algorithm 2: Model splitting and adversarial training

Step 1: Initialize Split Model

Initialize Split CNN Model identical to original CNN

Step 2: Split Convolutional Layers

Split into two parallel layers:

One with dominant_filters (trainable)

One with remaining filters (frozen)

end for

for each convolutional layer 1 in Split_CNN_Model do

Merge outputs to reconstruct original feature map

Step 3: Adversarial Fine-Tuning

Load pre-trained model weights

Compile model with RMSprop optimizer (e = 1e-08) and categorical cross-entropy loss

Step 3.1: Prepare Training Dataset

Generate adversarial images

Concatenate adversarial images with benign images to create a new dataset

Step 3.2: Fine-Tuning Process

for each training batch (x,y) do

Update dominant filter weights

end for

Compute loss on benign and adversarial samples

Back-propagate gradients only through dominant filters

Step 3.3: Model Evaluation
Evaluate model on adversarial test images

Evaluate model on benign test images

(Xadv)
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3.6. Computational complexity

As discussed in Sections 3.4 and 3.5, our proposed selective
adversarial fine-tuning approach involves two primary steps: i)
identifying dominant filters, and ii) freezing non-dominant filters and
selectively fine-tuning dominant filters. This methodology is designed
to optimize computational efficiency, while maintaining robustness
against adversarial attacks.

Identification of Dominant Filters. For identifying dominant
filters, we generate benign-adversarial image pairs, extract feature maps
from the convolutional layers, compute feature level differences, rank
filters according to the differences, and finally average across image
pairs. The computational cost of this step is therefore O(LN + Lf log
[+ Lfd* + Lf d*k* + 0d*N) = O(Lf d*k* + 6d*N) for an L layer neural
network with 6 total parameters. Here, we assumed the input image
dimensions to be d X d, number of benign-adversarial image pairs N,
number of filters £, and filter kernel size k x k.

Adversarial Fine-tuning. Now, the CNN model training has a
computational complexity of O(Lf'd*k?*) [34]. Since we propose to fine-
tune only o fraction of the filters, our selective adversarial fine-tuning
approach has a computational complexity of O(Lf d*k* + 0d>N + aLf
d*k?). Tt is evident that there is some overhead, i.e., O(Lf'd*k* + 0d*N),
for identifying the dominant filters. However, one can choose o based
on their performance requirement and computational capability.

4. Experimental Results

As mentioned before, we generated adversarial images for the
MNIST training set with ¢ = 0.3 using both FGSM and PGD. After the
proposed adversarial fine-tuning of the split model, and conventional
adversarial training of the base model, we evaluate the models for both
benign accuracy and adversarial accuracy. We recall that the accuracy
on adversarial images with ¢ = 0.3 for the base model was 21.26% for
non-targeted FGSM and 0.58% for non-targeted PGD.

For comparison, we consider three models: a shallow model
consisting of two convolution layers with 16 and 32 filters, respectively;
a base model featuring two convolution layers with 32 and 64 filters,
respectively; and a dense model comprising three convolution layers
with 32, 64, and 128 filters, respectively. In Tables 6 and 7, we show the
performance of the three models under consideration for conventional
adversarial training against FGSM and PGD attacks respectively. As
mentioned before, we evaluate the models for both benign accuracy
and adversarial accuracy. The adversarial accuracy increases, as
expected, with adversarial training for both PGD and FGSM. But
there is a drop in the benign accuracy for both cases, as can be seen
in the fourth column for both adversarial training against FGSM
and PGD attacks. To address this, Ilyas et al. [15] proposed using a
training set containing a mixture of benign and adversarial images.
We follow this approach as well — we take 42,000 benign images
and their adversarial counterparts, and perform adversarial training of
the models. After adversarial training, the adversarial accuracy of the
models over an average of five training’s remains essentially the same
for both FGSM and PGD attacks. For the base model, benign accuracy
drops from 99.33% to 96.00% for FGSM training and from 99.33%
to 87.79% for PGD training. If adversarial training is performed with
a mixture of benign and adversarial training data, we can bring up
the benign accuracy to satisfactory levels without having to sacrifice
adversarial accuracy (see the fifth column). That is, for all models
under consideration, the accuracy on benign images for both FGSM
and PGD adversarial training can be attained near 99.00%.

In Tables 8 and 9, we show the performance of the models under
consideration for our proposed adversarial fine-tuning training against
FGSM and PGD attacks respectively. As we can observe from the table,
our adversarial fine-tuning approach by splitting the model provides
similar results as the conventional adversarial training, even though
a smaller number of parameters were fine-tuned. As the conventional
approach, performance of the proposed approach is better when the
adversarial finetuning is done with a mixture of benign and adversarial

Table 6
Performance of the conventional adversarial training of the entire model (FGSM)

Adversarial training with Adversarial training with

Model Test image type Before adversarial training FGSM benign + FGSM
Shallow  Benign 98.94% 93.00% 98.86%

Adv (FGSM) 10.61% 98.60% 98.60%
Base Benign 99.33% 96.00% 98.83%

Adv (FGSM) 21.26% 98.95% 98.98%
Dense Benign 99.36% 90.11% 98.67%

Adv (FGSM) 11.64% 98.91% 98.75%

Table 7
Performance of the conventional adversarial training of the entire model (PGD)
Adversarial training with

Model Test image type Before adversarial training Adversarial training with PGD benign + PGD
Shallow  Benign 98.94% 95.94% 99.04%

Adv (PGD) 0.89% 98.78% 98.63%
Base Benign 99.33% 87.79% 99.13%

Adv (PGD) 0.58% 98.89% 98.86%
Dense Benign 99.36% 95.68% 99.05%

Adv (PGD) 1.20% 98.72% 98.59%
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Table 8
Performance of the proposed adversarial fine-tuning of the split model (FGSM)

Test image  Adversarial fine-tuning  Percent difference with  Adversarial fine-tuning  Percent difference with
Model type with FGSM conventional with benign + FGSM conventional
Shallow Benign 94.03% +1.11% 98.77% —0.09%
Adv (FGSM) 98.77% +0.17% 98.30% —0.30%
Base Benign 95.45% —0.57% 98.91% +0.08%
Adv (FGSM) 98.60% —0.35% 98.61% —0.37%
Dense Benign 64.67% —28.26% 98.89% +0.22%
Adv (FGSM) 98.20% —0.72% 98.00% —0.76%
Table 9
Performance of the proposed adversarial fine-tuning of the split model (PGD)
Test image  Adversarial fine-tuning  Percent difference with  Adversarial fine-tuning  Percent difference with
Model type with PGD conventional with benign + PGD conventional
Shallow Benign 93.93% —2.10% 98.86% —0.18%
Adv (PGD) 98.15% —0.64% 97.75% —0.89%
Base Benign 94.11% +7.20% 99.01% —0.12%
Adv (PGD) 98.76% —0.13% 98.56% —0.30%
Dense Benign 76.97% —19.56% 98.01% —1.05%
Adv (PGD) 95.67% —3.09% 95.05% —3.59%

training data. For the base model, benign accuracy for both FGSM and
PGD training is approximately 99.00%, and the adversarial accuracy is
approximately 98.50% — this is essentially the same as the conventional
adversarial training results on the base model.

In Tables 6-9, we observe that adversarial training with a
mixture of benign and adversarial samples provides approximately 98%
accuracy, regardless of the model type. This indicates that the dominant
filters are indeed the most vulnerable portion of the model and securing
just those filters provides as good a result as conventional adversarial
training. However, our proposed adversarial fine-tuning is more
computation-friendly, since it involves a smaller amount of trainable
parameters. We argue that the advantage of the proposed approach
becomes greater with denser and more complex networks containing
many trainable parameters, as shown in the following.

Thus far, we chose the top 10% filters as dominant filters. We
investigate the effect of choosing more dominant (and therefore,
trainable) filters. As shown in Tables 10 and 11, performance does
not change noticeably for either the PGD or the FGSM. The accuracy
findings show the benign and adversarial accuracies for the three models
when the percentage of trainable filters in the convolutional layers are

increased. On the last column for both tables, first value corresponds
to FGSM fine-tuning, second value corresponds to Benign + FGSM
fine-tuning. We argue that with this combination of dataset and attack
model, the vulnerability of the model lies mostly within the top 10% of
the dominant filters, which once again proves that adversarial training
of the entire network is somewhat wasteful.

In Table 12, we show the percentage of trainable parameters
is reduced when using the proposed adversarial fine-tuning of the
split model. For the dense model, more than half of the model does
not require adversarial training for achieving a robust performance
against adversarial attacks. More specifically, the proposed method
reduces trainable parameters by 64.07% for the top 10% dominant
filters, 56.93% for 20%, and 35.73% for 50%, significantly decreasing
computational costs. This reduction translates into lower memory usage
and faster training times, particularly for larger models, making the
method scalable to real-world applications. Compared to conventional
adversarial training, which involves retraining of all parameters, our
approach achieves comparable robustness while requiring substantially
fewer trainable parameters, as shown in Tables § and 9. These results
remain consistent across varying levels of perturbation in the attacking

Table 10
Effect of dominant filter percentage for FGSM along with percent difference with 10% baseline

Ady. fine-tuning with

Adyv. fine-tuning with Percent difference with

Dominant filters Test image type FGSM benign + FGSM 10% baseline
10% Benign 95.99% 99.13% -
Adv (FGSM) 98.69% 98.53% -
20% Benign 96.33% 99.10% +0.35%/—0.03%
Adv (FGSM) 98.64% 98.52% —0.05%/—0.01%
50% Benign 95.92% 99.07% —0.07%/—0.06%
Adv (FGSM) 98.86% 98.77% +0.17%/+0.24%
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Table 11
Effect of dominant filter percentage for PGD along with percent difference with 10% baseline

Ady. fine-tuning with Percent difference with

Dominant filters Test image type Ady. fine-tuning with PGD benign + PGD 10% baseline
10% Benign 94.11% 99.01% -
Adv (PGD) 98.76% 98.56% -
20% Benign 93.40% 99.08% —0.75%/+0.07%
Adv (PGD) 98.70% 98.67% —0.06%/+0.11%
50% Benign 91.29% 99.17% —3.00%/+0.16%
Adv (PGD) 98.88% 99.00% +0.12%/+0.45%
Table 12 a model trained against FGSM attacks may need further training if it
Percentage of reduction in trainable parameters is suspected that model information has been leaked. This underlines
- one advantage of our proposed split model fine-tuning, where we can
Dominant Shallow achieve almost similar results using much lower computational burden.
filters model Base model  Dense model More specifically, for adaptive adversaries or transfer attacks in safety-
10% 7.96% 14.33% 64.07% critical settings, such as autonomous driving or healthcare, our proposed
20% 7.08% 12.81% 56.93% scheme would provide a computational advantage over conventional
50% 4.54% 8.05% 3573% adversarial re-training. Additionally, PGD training provides better

images, highlighting the computational efficiency of the proposed
method in contrast to traditional approaches.

4.1. Discussions

It is worth noting that our experimental findings can also be
interpreted as an implicit ablation study of the proposed framework.
In Section 3.4 (Figures 4-6), we showed that adversarial perturbations
consistently exploit a small subset of convolutional filters across
classes and perturbation magnitudes, effectively isolating the most
critical vulnerable components. The subsequent experiments in
Tables 10—12 further highlight that increasing the proportion of fine-
tuned filters beyond this vulnerable subset does not meaningfully
improve robustness, indicating that the identification mechanism itself,
rather than the number of updated parameters, is the key contributor
to performance gains. Moreover, by comparing FGSM-based and
PGD-based fine-tuning in Tables 6-9, we effectively assess the impact
of different adversarial objectives: PGD fine-tuning yields stronger
robustness that also transfers to FGSM attacks, whereas FGSM fine-
tuning provides weaker generalization. Together, these analyses clarify
the contribution of each design choice: (i) filter-level vulnerability
identification provides efficiency and robustness, and (ii) stronger
adversarial objectives during fine-tuning enhance transferability. These
results validate the central components of our framework without the
need for additional experiments.

4.2. Remarks

Adversarial training may not be an one-shot approach for the
model to be robust against future adversarial attacks. If the attackers get
access to a model information; fully or partially; adversarial examples
can be generated even if a model is trained against it. This is especially
true for adversarial training against FGSM attacks, since FGSM is a
one-step algorithm that computes the perturbation with a single step
in the direction of the gradient of the loss function. It does not explore
the gradient of the loss function in its entirety. Attackers can take
advantage of this characteristic by computing new adversarial attacks
the model is not trained against, if model information is revealed. Thus,

12

defense since it takes an iterative approach to the gradient descent in
order to maximize the loss. A stronger adversarial training, such as, with
PGD adversarial images, will not only secure the model against PGD
attacks, but also provide protection against other weaker attacks (such
as FGSM) to a certain extent.

4.3. Future works

Despite the promising results, our method has several limitations
that warrant further exploration. First, the effectiveness of dominant
filter identification may vary depending on the underlying network
architecture. For example, convolutional networks, with their structured
and localized receptive fields, lend themselves more naturally to
filter-level vulnerability analysis, whereas attention-based models
may not exhibit the same clear filter dominance patterns. Second,
dataset characteristics such as inter-class similarity and noise levels
can influence how consistently adversarial vulnerabilities manifest
across filters, potentially affecting the reliability of selective fine-
tuning. Finally, while our evaluation demonstrates robustness gains
on the tested benchmarks, additional studies on larger-scale and more
heterogeneous datasets are needed to assess the generalizability of the
approach. Addressing these factors represents an important avenue for
future research.

More specifically, implementing our proposed method with
second order adversarial attacks (i.e., the Carlini-Wagner [33] approach)
is deferred for future research. Additionally, interesting directions of
future works could be 1) to extend our work to larger and more complex
datasets, such as CIFAR-10, CIFAR-100, and Tiny ImageNet, ii)
applying the proposed approach to advanced architectures, including
VGG and ResNet, and iii) benchmarking the proposed approach against
state-of-the-art defense mechanisms. Last but not the least, exploring the
transferability of identified dominant filters across models with similar
structures could be of independent interest, such as transitioning from a
model with layers of (16, 32) to one with (16, 32, 64). These directions
will help establish the scalability and versatility of our approach in real-
world scenarios.

5. Conclusion

Adversarial attacks take advantage of the excess capacity of the
neural network models in such a way that makes subliminal adjustments
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to the inputs (imperceptible to humans), and thereby causes the model
to make inaccurate predictions. Since neural network-based models are
deployed in several critical applications, strong defense mechanisms
against such adversarial attacks are rightfully warranted. However,
existing approach for attaining model robustness against adversarial
attacks is adversarial training, which typically provides defense
against specific attack types and requires substantial computational
resources. In this work, we showed that by algorithmically identifying
specific vulnerable parts of the neural network model, and performing
adversarial fine-tuning of those parts, we can attain the same level of
performance as the conventional adversarial training. Our analysis
reveals that only a small portion of the vulnerable components
accounts for a majority of the model’s errors caused by adversarial
attacks. As such, we propose to selectively fine-tune these vulnerable
components, which ensures significant computational-load savings.
We empirically validate our proposed approach on the MNIST dataset,
and demonstrate that our approach can achieve similar performance as
the more resource-intensive conventional adversarial training method.
Our results also demonstrate that robustness gains arise primarily
from selectively fine-tuning adversarially vulnerable filters rather
than retraining larger portions of the model, and from employing
stronger adversarial objectives during fine-tuning. We note that a more
efficient defense mechanism is crucial since neural network models
are increasingly deployed in safety-critical and socially impactful
applications — such as healthcare, finance, and autonomous systems,
where adversarial attacks could lead to harmful consequences.
Additionally, our proposed lightweight selective fine-tuning approach
would certainly help reduce the computational and energy overhead of
conventional adversarial training, contributing to more sustainable Al
deployment.
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