
Received: 14 April 2025 | Revised: 4 June 2025 | Accepted: 22 August 2025 | Published online: 13 October 2025

RESEARCH ARTICLE Artificial Intelligence and Applications
2025, Vol. 00(00) 1-10

DOI: 10.47852/bonviewAIA52025930

Incorporating Fuzzy ARTMAP
Network with Spiking Neural Networks

Issam Dagher1,*

1 Department of Computer Engineering, University of Balamand, Lebanon

Abstract: In this paper, we have incorporated the Fuzzy Adaptive Resonance Theory Mapping (Fuzzy ARTMAP) classification module into the
Spiking Neural Networks (SNNs). This new network can have multiple hidden layers, a supervised corrected layer, and an ARTMAP module. The
objective of the supervised layer is to correct the spikes given by the Spike-timing-dependent plasticity (STDP) layer in a supervised manner. Then
the resulting corrected spikes are fed into an ARTMAP network. When an output spiking train code is similar to one of the stored ART codes. It
modifies that code to incorporate the new input into that code category. This combination required a new training algorithm. The hidden layers are
trained using the popular STDP. This unsupervised learning is followed by a supervised layer where new supervised weight update formulas are
presented. This new combination is compared to other spiking algorithms using datasets from the UCI repository. It is shown that SNN_ARTMAP
provides better recognition results than other similar spiking supervised learning algorithms.

Keywords: SNN, ARTMAP, STDP, supervised learning

1. Introduction
Spiking Neural Networks (SNNs) are a type of artificial neural

network that more accurately mimics the structure of natural neural
networks. Transmission of information is done using action potentials
(neuron spikes). Spikes are impulses or discrete events that appear at
certain positions in a time interval. A first-order differential equation can
serve to represent the membrane potential of a neuron. This equation is
capable of forecasting whether a spike will happen or not. Because these
spikes are non-differentiable, different SNN training techniques were
developed. Indirect methods were used by first training the network in
the continuous domain and then converting it into the discrete domain.
In the work of Luo et al. [1], a learning algorithm utilizing gradient
descent is introduced to optimize synaptic delays, aiming to improve
the sequential learning ability of an individual spiking neuron.

Lower latency paired with substantial activation sparsity results
in significant enhancements in computational efficiency [2]. Efficient
implementation of SNN using FPFA is presented in the work of El
Maachi et al. [3].

Different SNN training techniques were developed. Direct
training of Deep SNN is shown in the work of Zhou et al. [4].

Indirect methods were used by first training the network in the
continuous domain and then converting it into the discrete domain.

A new framework based on spikes, utilizing entropy theory,
was proposed in the work of Guo et al. [5]. Yang et al. [6] designed
an efficient learning mechanism with spiking dendrites. New training
techniques for SNN were presented in the work of Saranirad et al. [7],
Meng et al. [8], and Hao et al. [9]. Gouda et al. [10] applied the surrogate
gradient method, which is a very efficient method to overcome the
discontinuity of the spike. It is based on continuous relaxation of the
real gradient. Hardware implementation of SNN is presented in the
work of Benismon et al. [11] and Frenkel et al. [12]. Converting Deep
ANN to SNN with a small number of time steps is shown in the work

of Meng et al. [13]. In the work of Li et al [14], Differentiable Spike
(Dspike) functions were introduced. The optimal smoothness for the
gradient was determined using the difference gradient.

Adaptive resonance theory (ART) was first proposed in 1976 by
Grossberg. As shown in the work of Tashiro et al. [15], the theory was
developed to address the stability/plasticity problem. A key difficulty
in incremental (or online) learning is the “stability-plasticity dilemma,”
commonly referred to as “catastrophic forgetting.” The system strives
to retain and remember as much information as possible because it is
uncertain about which information is truly significant to the user and may
consequently lose (forget) crucial data. When new content is delivered
gradually, the learning is referred to as online learning. Information will
only be received once by the system, after which it will modify its model
description and get ready for fresh input. Given the restricted amount of
memory storage capacity, information that was previously saved during
learning may vanish since fresh knowledge has replaced it.

Fuzzy ART neural network is a clustering technique based on
Adaptive Resonance Theory. A rectangle serves as the geometric
representation of each cluster. Two fuzzy ARTs make up the architecture
of fuzzy ARTMAP. Supervised learning characterizes the Fuzzy
ARTMAP. It includes two stages: the training stage, during which
labeled clusters (rectangles) are created, and the testing stage, in which
any unlabeled test data is categorized.

The presentation order of patterns has a significant impact on
this architecture’s generalization performance. The max–min clustering
algorithm was used in the work of Dagher et al. [16] to achieve an
efficient order of pattern presentation.

2. Spiking Neural Networks – ARTMAP Prototype
SNNs are a form of artificial neural networks that imitate the

organization of biological neural networks. Unlike Multi-Layer-
Perceptrons (MLP), SNN integrates the aspect of time into its operational
model. In an SNN, neurons transmit information when their membrane
potential reaches a certain threshold level. Once the membrane potential
surpasses this threshold, the neuron produces a signal or spike that is

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/	
by/4.0/).

1

*Corresponding author: Issam Dagher, Department of Computer Engineering,
University of Balamand, Lebanon. Email: dagheri@balamand.edu.lb

https://doi.org/10.47852/bonviewAIA52025930
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:dagheri%40balamand.edu.lb?subject=

Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

sent to neighboring neuron. The output of many spikes is called a spike
train. The communication and thus learning between neurons is based
on the generated spike trains. Only at spike occurrences does a neuron
communicate with other neurons. This communication takes place
via a synapse between two neurons. Every neuron has the ability to
obtain signals from numerous other neurons. To form the output spike
train, the currents from all synapses are combined and integrated at
the receiving end of the neuron. The activity of pre- and post-synaptic
neurons affects the conductance of a synapse, also known as synaptic
weight. This activity is thought to be responsible for neurons’ ability to
learn. Typically, spikes in the pre- and/or post-synaptic neuron cause
weight changes and eventually learning.

The postsynaptic current is given by:

where t1 and t2 are time constants representing the steepness of rise and
decay times.

2.1. Leaky integrate-and-fire neuron (LIF)
Leaky integrate and fire (LIF) is the simplest model of a neuron. It

is an electrical circuit consisting of a “leaky” resistor with conductance
g in parallel with a capacitor C and a current synaptic source I. The
membrane potential V(t) follows the differential equation:

When V exceeds a threshold, a spike is obtained, and V is reset
to E.

2.2. Coding schemes
Converting input pixels into spikes is done using one of the

following coding schemes: rate coding, TTFS coding, phase coding,
and burst coding.

We have used the rate coding scheme, where each value is
converted into a Poisson spike train.

2.3. Spike-time-dependent plasticity learning
STDP learning [17] is a method used for unsupervised learning.

It is based on the behavior noted in biological neurons: When a
postsynaptic spike follows a presynaptic spike, the synaptic weight is
strengthened. In contrast, if a postsynaptic spike precedes a presynaptic
spike, the synaptic weight is weakened.

The weight adjustments are not based on whether the actual
output is equal to the desired output. But over time, every neuron will
be trained to recognize certain data patterns.

For the implementation of the STDP, the weight update formula
is represented by:

η μ

where:
τ which can be approximated by:

This is a nonlinear learning rule for updating a synaptic weight
W, which depends on the presynaptic activity x_pre, a target value x_tar,
and a maximum weight W_max.

η: Learning rate controls how quickly the weight changes.
x_pre: Presynaptic activity represents firing rate or signal strength from

a presynaptic neuron.
x_tar: Target presynaptic activity at the desired or homeostatic level.
W_max: Maximum allowed weight or upper limit.
μ: Exponent controlling nonlinearity determines how sharply the update

is influenced as x_pre approaches W_max.
If x_pre > x_tar, the weight may increase (assuming W_max −

x_pre > 0).
The term (W_max − x_pre)^μ prevents the weight from growing

indefinitely.
If x_pre < x_tar, the weight may decrease, depending on the rest

of the expression.

2.4. Simple SNN architecture with supervised learning
Figure 1 shows the supervised version of a simple SNN. The

weights are adjusted based on the difference between the actual output
and the target spikes (impulses).

�

2.5. Simple SNN architecture with supervised learning
using backpropagation

The backpropagation algorithm uses the following gradient
descent rule for the weight update.

α

This weight update formula requires the calculation of the
derivative of the error, which in turn requires the calculation of the
derivative of impulses. Because the impulses are practically non-
differentiable, different techniques were used to estimate this calculation.
The surrogate gradient technique is one of the most common ones.

2

Figure 1
Supervised version of a simple SNN

Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

2.6. Fuzzy ARTMAP’s hyper-rectangle
The ARTMAP architecture consists of three components: two

Fuzzy ART networks, ARTa and ARTb, along with an inter-ART
operator. Training the network entails inputting data into ARTa and
their corresponding targets into ARTb. In ARTa, the data is clustered,
and these clusters receive labels from ARTb. Similar data points with
the same target group are grouped to form a rectangle that acts as the
prototype generated by ARTa. Fuzzy ART is a clustering technique
designed for processing continuous data. The system features an input
field F1 where data is entered and an output field F2 where the results
of the clustering are displayed. Each node j in the F2 field is linked to
all nodes i in the F1 field via a top-down weight represented as wji. The
collection of top-down weights from node j in the F2 field is referred
to as Wj, acting as the prototype for cluster j. For p input data points I1,
I2,…, Ip that are part of cluster j, Wj can be defined as follows:

It is important to highlight that before being fed into Fuzzy
ART, certain preprocessing of the input patterns occurs. The initial
preprocessing stage receives a Ma-dimensional input pattern related to
the task of pattern clustering and transforms it into an output vector
a = (a1,..., aMa), where each element is limited to the range [0, 1]. In
the next preprocessing phase, the output a from the first stage is utilized
to produce an output vector I in a manner that

where:

 ;

For p patterns:	

Wj can be written as follows:

where and
The operand is referred to as the fuzzy-min, and the operand

 is referred to as the fuzzy-max. The process is shown in Figure 2 for
two 2-dimensional vectors, x = (x1, x2) and y = (y1, y2).

I1 = (x1, x2, 1 − x1, 1 − x2); I2 = (y1, y2, 1 − y1, 1 − y2).
Wj = I1 I2;

Wj = (min(x1, y1), min(x2, y2), max(1 − x1, 1 − y1), max(1 − x2, 1 − y2))
Wj = (x1, y2, 1 − y1, 1 − x2) = (x y, 1 − (x y))

The weight vector Wj can be expressed through two vectors uj and
vj, which act as the vertices of a rectangle Rj.

In Figure 3, there is a rectangle defined by endpoints uj and vj that
encloses the datapoints.

Given a test input
The following equation is used to determine the bottom-up

inputs:

Calculate the value of Tj for all the output nodes j. The node jmax
which will give the maximum value of Tj will be considered the winner.

The label of the data Ir will correspond to the label that node jmax
was assigned following the training phase.

2.6.1. Simple illustration of SNN-ART
In the training phase, the basic idea is that inputs with the same

Desired Class will produce a collection of output spike trains. These
output spike trains will be mapped to one or more output ART categories
corresponding to that Desired Class. A mapping will be formed between
each desired Class with a hyper-rectangle containing all the output
spike trains. In the test phase, any input with the same desired class will
produce an output spike train belonging to that hyper-rectangle.

For illustration given 4 inputs belonging to 2 classes.

I1 and I2 belong to Class1 with desired spikes 00
I3 and I4 belong to Class2 with desired spikes 01

After applying these 4 inputs to the SNN-ART network and
suppose we get the following output spikes for each input.

1110 with desired spikes 00
1101 with desired spikes 00
1001 with desired spikes 01
1010 with desired spikes 01

Doing complement coding on the output spikes we get:

11100001 with desired spikes 00
11010010 with desired spikes 00
10010110 with desired spikes 01
10100101 with desired spikes 01

3

Figure 2
Fuzzy minimum and fuzzy maximum operations

 Figure 3
The rectangle Rj, defined by its endpoints uj and vj, encompasses

I1, I2,…, Ip.

Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

After training, the ART categories are characterized by the
following weights

W1 = (1,1,0,0,0,0,1,1) and W2 = (1,0,0,0,0,1,1,1)
W1 is mapped to the desired spike 00 and W2 is mapped to the

desired spike 01

For testing, applying the first input I1 to SNN-ART will give an
output spike: 1110

After complement coding we get 11100001
Calculating

 for j = 1 and j = 2, and for α = 0.001

Because T1 > T2 then the output of the ART will be the desired
spike of W1 which is 00.

The same procedure can be applied to all the test inputs.

3. SNN-ARTMAP Network

3.1. Our weight updates of a simple SNN architecture
Figure 4 illustrates a basic Spiking Neural Network (SNN).

Every input corresponds to a Poisson Spike train, with the frequency
of the spikes being directly related to its magnitude. Each produced
spike train is scaled by the synaptic weight. The total of the adjusted
spike trains is computed and sent to the Leaky Integrate-and-Fire (LIF)
neuron, which produces the output spike train.

δ

These 2 equations show that increasing the weights Wi has the
effect of increasing Out(t), which will make Output(t) have a value of 1
(Output spike). And decreasing Wi has the opposite effect.

Our output weight update strategy is the following:

1)  If the desired output is 1, then increase Wi (α is a small positive
number).

Increasing Wi will increase Out(t) until it becomes greater than or
equal to Thresh. A spike is generated

α

We want the neuron to spike, that is, have an output ≥ Thresh.
If the current output is too low, i.e., Out(t) < Thresh, then the update
amount is positive. This rule increases the weight Wi, moving the
neuron’s output closer to the threshold. α is a small positive learning
rate. The use of max(0, ...) ensures no change if the output already
exceeds the threshold.

2) If the desired output is 0, then decrease Wi (away from Thresh).

α

We want the neuron not to spike, so we want the output to stay
below the threshold. If the output is high, this update reduces the weight
Wi, decreasing the neuron’s response. The more the current output
Out(t), the larger the weight reduction. α is a learning rate that regulates
the magnitude of the update.

3.2. Simple SNN architecture followed by an ART-
MAP module

Figure 5 shows a simple SNN-ARTMAP network. It consists of
3 inputs and 1 output.

Any input from the same Desired Class will produce an output
spike train that falls within that hyper-rectangle in the training algorithm.
Figure 6 illustrates this concept.

Output spikes from C12 are mapped to R3, while those from C2
are mapped to R2. Both R1 and R3 correspond to the same Desired
Class.

3.3. SNN-ARTMAP network
Figure 7 shows a more complex SNN-ARTMAP network. It

consists of 2 inputs, 3 hidden neurons and 2 outputs.
The hidden weights Wh are updated using the following STDP

rule.

4

 Figure 4
Simple SNN network

 Figure 5
Simple SNN-ARTMAP network

 Figure 6
ART rectangles

Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

The output corrected weights Wout are updated using the
following rule:

If the desired output is 1, then

α

Else

α

It is important to highlight that the complexity of this network
can be enhanced by raising the quantity of hidden neurons and the
number of hidden layers.

4. Simulation Results
To evaluate the effectiveness of the SNN-ARTMAP algorithm,

simulations are conducted using datasets from the UCI repository. We
have used the following 2 datasets:

1)  The Iris dataset consists of 50 samples representing three distinct
species of Iris: Iris setosa, Iris virginica, and Iris versicolor. For each
sample, four characteristics were documented, namely the lengths
and widths of the sepals and petals, measured in centimeters. A
selection of 10 random samples from each species is used as the
training set, resulting in a total of 30 samples, while the remaining 40
samples constitute the test set, amounting to a total of 120 samples.

The structure of the network includes 4 input nodes, 3 output
nodes, and a varying number of hidden neurons.

Table 1 compares our algorithm with other similar spiking
networks.

2) The Wisconsin breast cancer dataset contains 699 instances. It is
categorized into benign and malignant cases. Each instance consists
of nine measurements, each represented by an integer ranging from
1 to 10. A group of ten random samples from each category was
selected to serve as the training set, with the remaining samples
designated for the testing set. As a result, there were 20 samples

allocated for training and 679 for testing. The network architecture
consists of 9 inputs, 2 outputs, and a different number of hidden
neurons.

Table 2 compares our algorithm with other similar spiking
networks.

Tables 1 and 2 present a comparative analysis of various spiking
neural network-based methods regarding testing accuracy. Of the six
techniques evaluated, the SNN-ARTMAP with 20 hidden neurons
achieves the highest testing accuracy, exceeding that of all other
models. This suggests that enlarging the number of hidden neurons
within the SNN-ARTMAP structure boosts its performance in pattern
recognition, likely due to its enhanced capacity for representation.
The Multi-STIP approach closely follows, demonstrating strong
performance. Multi-STIP is known for its effectiveness in modeling
temporal dynamics, which may explain its robust results. A more
modest version of SNN-ARTMAP (with 10 hidden neurons) performs
competitively against established methods like SpikeProp, a well-
known and effective gradient-based learning algorithm for SNN.
The SWAT and multi-ReSuMe approaches show slightly lower
performance levels. These techniques might be limited by their
learning methodologies or their generalization capabilities compared
to the others. Notably, multi-ReSuMe, which employs the ReSuMe
learning rule for supervised training of Spiking Neural Networks,
underperforms relative to the other models, indicating potential
challenges in its ability to map temporal patterns effectively or in
scaling up the network. In conclusion, the results suggest that SNN-
ARTMAP, especially with an adequate number of hidden neurons,

5

 Figure 7
2-3-2 SNN-ARTMAP network

Method % Testing accuracy
SpikeProp [18] 96.1
SWAT [19] 95.3
multi-ReSuMe [20] 94.0
Multi-STIP [21] 96.7
SNN-ARTMAP (10 hidden) 96.1
SNN-ARTMAP (20 hidden) 96.9

Table 1
Classification results on the Iris dataset

Method % Testing accuracy
SpikeProp [18] 97.0
SWAT [19] 96.7
multi-ReSuMe [20] 94.8
Multi-STIP [21] 97.1
SNN-ARTMAP (20 hidden) 97.0
SNN-ARTMAP (50 hidden) 97.8

Table 2
Classification results on the breast dataset

Dataset Method
% Testing
accuracy

Iris Two layer FE [1] 98
Training Samples: 75 SNN-ARTMAP (10 hidden) 97.6
Testing Samples: 75 SNN-ARTMAP (20 hidden) 98.3
Breast Cancer Two layer FE [1] 97.5
Training Samples: 349 SNN-ARTMAP (10 hidden) 97
Testing Samples: 350 SNN-ARTMAP (20 hidden) 98
Liver Disorders Two layer FE [1] 64.8
Training Samples: 172 SNN-ARTMAP (10 hidden) 64.5
Testing Samples: 173 SNN-ARTMAP (20 hidden) 65.3
Pima Diabetes Two layer FE [1] 72.5
Training Samples: 384 SNN-ARTMAP (10 hidden) 72.3
Testing Samples: 384 SNN-ARTMAP (20 hidden) 72.7

Table 3
Classification results of our algorithm compared to the two-layer

FE using different datasets from the UCI repository

Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

stands out as a promising and scalable framework for achieving
high-accuracy classification tasks within spiking neural networks. Its
ability to either outperform or match traditional approaches highlights
its robustness and flexibility.

Table 3 shows the classification results of our algorithm compared
with those shown in ref. [1]. It can be concluded that the integrated
SNN-ARTMAP increases the recognition accuracy of the SNN.

Table 3 can be illustrated graphically in Figure 8.
Figure 8 highlights the superiority of the SNN-ARTMAP in

comparison to the two-layer feature extraction (FE) network models
that utilize 10 and 20 hidden neurons across four standard datasets:
Iris, Breast Cancer, Liver Disorders, and Pima Diabetes. Iris Dataset:
With 75 samples for training and another 75 for testing, all three
models exhibit remarkable performance. The SNN-ARTMAP with
20 hidden neurons achieves the highest accuracy at 98.3%, slightly
outpacing the Two-layer FE at 98% and the SNN-ARTMAP with
10 hidden neurons at 97.6%. These notable results suggest that all
models effectively grasp the relatively simple patterns present in the
Iris dataset. The benefits of increasing the number of hidden neurons
indicate that even a minor architectural change can lead to improved
classification outcomes. Breast Cancer Dataset: In this more complex
medical dataset, which comprises 349 training samples and 350 testing
samples, the performance remains strong. The SNN-ARTMAP with
20 hidden neurons again leads with an accuracy of 98%, surpassing
the Two-layer FE at 97.5% and the 10 hidden neuron model at 97%.
This improvement reflects the advantages of having greater capacity
to handle larger, more varied datasets, allowing the network to better
define decision boundaries. Liver Disorders Dataset: In contrast to
the earlier two datasets, the classification performance on the Liver
Disorders dataset is significantly lower. The SNN-ARTMAP with 20
hidden neurons achieves the highest score of 65.3%, which is slightly
above the Two-layer FE at 64.8% and the SNN-ARTMAP with 10
hidden neurons at 64.5%. These minor differences indicate that the
models encounter difficulties due to the intrinsic complexity or noise in

this dataset, suggesting that enhanced feature engineering or different
modeling techniques may be necessary to achieve more dependable
results in this instance. Pima Diabetes Dataset: The performance of
all three models is fairly similar for this dataset: 72.7% for the SNN-
ARTMAP (20 hidden), 72.5% for the Two-layer FE, and 72.3% for the
SNN-ARTMAP (10 hidden). These results demonstrate the relatively
balanced complexity of the Pima Diabetes dataset and suggest that
SNN-ARTMAP models can at least match, if not slightly exceed,
traditional FE-based approaches. Once again, the advantage of extra
hidden neurons is slight yet consistently observed.

To demonstrate the performance of our algorithm in relation
to the leading algorithm, Table 4 presents the classification outcomes
of our method against the plastic synaptic weights and delays (Wang
et al. [22]) across various datasets from the UCI repository. Comparable
network architectures are illustrated in Table 4.

6

Dataset Method
% Testing
accuracy

Iris [22] 25-10-3 network 97
SNN-ARTMAP (25 hidden) 98.3

Breast Cancer [22] 55-15-2 network 97.9
SNN-ARTMAP (55 hidden) 98.4

Liver Disorders [22] 37-15-2 network 66.7
SNN-ARTMAP (37 hidden) 67.3

Pima Diabetes [22] 55-20-2 network 77
SNN-ARTMAP (55 hidden) 78.7

Table 4
Classification results of our algorithm compared to plastic

synaptic weights and delays using different datasets from the UCI
repository

 Figure 8
Graphical representations of Table 3

Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

5. Conclusion
In this paper, a novel training algorithm for Spiking Neural

Networks, which we call SNN-ARTMAP, is presented. SNN-ARTMAP
is a novel error-based spiking learning algorithm. This network can
have multiple hidden layers, a corrected layer, and an ARTMAP
module. While the hidden layers are trained according to STDP, the
corrected layer is trained according to the target class output. The
output spikes are fed into an ART network, which will create spike
train hyper-rectangles. Each hyper-rectangle is mapped to the correct
target class. It is shown that this algorithm outperforms other similar
spiking algorithms. SNN-ARTMAP consistently outperforms or equals
both other models across all datasets, highlighting its adaptability and
effectiveness.

In challenging datasets like Liver Disorders, none of the models
perform exceptionally well, highlighting the necessity for either
improved preprocessing techniques or alternative learning approaches.

 Future work can be dedicated to integrating SNN-ARTMAP
with attention systems [23].

Ethical Statement
This study does not contain any studies with human or animal

subjects performed by any of the authors.

Conflicts of Interest
The author declares that he has no conflicts of interest to this

work.

Data Availability Statement
The data that support the findings of this study are openly avail-

able in the UC Irvine Machine Learning Repository at https://archive.
ics.uci.edu/.

Author Contribution Statement
Issam Dagher: Conceptualization, Methodology, Software,

Validation, Formal analysis, Investigation, Resources, Data curation,
Writing – original draft, Writing – review & editing, Visualization,
Supervision, Project administration.

References
[1]	 Luo, X., Qu, H., Wang, Y., Yi, Z., Zhang, J., & Zhang, M. (2022).

Supervised learning in multilayer spiking neural networks with
spike temporal error backpropagation. IEEE Transactions on
Neural Networks and Learning Systems, 34(12), 10141–10153.
https://doi.org/10.1109/TNNLS.2022.3164930

[2]	 Rathi, N., & Roy, K. (2021). Diet-SNN: A low-latency spiking
neural network with direct input encoding and leakage and thresh-
old optimization. IEEE Transactions on Neural Networks and
Learning Systems, 34(6), 3174–3182. https://doi.org/10.1109/TN-
NLS.2021.3111897

[3]	 El Maachi, S., Chehri, A., & Saadane, R. (2024). Efficient hardware
acceleration of spiking neural networks using FPGA: Towards
real-time edge neuromorphic computing. In 2024 IEEE 99th
Vehicular Technology Conference, 1–5. https://doi.org/10.1109/
VTC2024-Spring62846.2024.10683049

[4]	 Zhou, C., Zhang, H., Yu, L., Ye, Y., Zhou, Z., Huang, L., ... & Tian,
Y. (2024). Direct training high-performance deep spiking neural
networks: A review of theories and methods. Frontiers in Neuro-
science, 18, 1383844. https://doi.org/10.3389/fnins.2024.1383844

[5]	 Guo, W., Fouda, M. E., Eltawil, A. M., & Salama, K. N.
(2023). Efficient training of spiking neural networks with
temporally-​truncated local backpropagation through time.
Frontiers in neuroscience, 17, 1047008. https://doi.org/10.3389/
fnins.2023.1047008

[6]	 Yang, S., Linares-Barranco, B., & Chen, B. (2022). Heteroge-
neous ensemble-based spike-driven few-shot online learning.
Frontiers in Neuroscience, 16, 850932. https://doi.org/10.3389/
fnins.2022.850932

[7]	 Saranirad, V., Dora, S., McGinnity, T. M., & Coyle, D. (2024).
CDNA-SNN: A new spiking neural network for pattern classifi-
cation using neuronal assemblies. IEEE Transactions on Neural
Networks and Learning Systems, 36(2), 2274–2287. https://doi.
org/10.1109/TNNLS.2024.3353571

[8]	 Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., & Luo, Z. Q.
(2022). Training high-performance low-latency spiking neural net-
works by differentiation on spike representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, 12444–12453.

[9]	 Hao, Y., Huang, X., Dong, M., & Xu, B. (2020). A biologically
plausible supervised learning method for spiking neural networks
using the symmetric STDP rule. Neural Networks, 121, 387–395.
https://doi.org/10.1016/j.neunet.2019.09.007

[10]	 Gouda, M., Abreu, S., & Bienstman, P. (2024). Surrogate gradi-
ent learning in spiking networks trained on event-based cytom-
etry dataset. Optics Express, 32(9), 16260–16272. https://doi.
org/10.1364/OE.518323

[11]	 Bensimon, M., Greenberg, S., Ben-Shimol, Y., & Haiut, M.
(2021). A new sctn digital low power spiking neuron. IEEE
Transactions on Circuits and Systems II: Express Briefs, 68(8),
2937–2941. https://doi.org/10.1109/TCSII.2021.3065827

[12]	 Frenkel, C., Lefebvre, M., Legat, J. D., & Bol, D. (2018). A
0.086-mm2 $12.7-pJ/SOP 64k-synapse 256-neuron online-learn-
ing digital spiking neuromorphic processor in 28-nm CMOS.
IEEE Transactions on Biomedical Circuits and Systems, 13(1),
145–158. https://doi.org/10.1109/TBCAS.2018.2880425

[13]	 Meng, Q., Yan, S., Xiao, M., Wang, Y., Lin, Z., & Luo, Z. Q.
(2022). Training much deeper spiking neural networks with a
small number of time-steps. Neural Networks, 153, 254–268.
https://doi.org/10.1016/j.neunet.2022.06.001

[14]	 Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., & Gu, S. (2021).
Differentiable spike: Rethinking gradient-descent for train-
ing spiking neural networks. Advances in Neural Information
Processing Systems, 34, 23426–23439.

[15]	 Tashiro, K., Masuyama, N., & Nojima, Y. (2024). A growing hierar-
chical clustering algorithm via parameter-free adaptive resonance
theory. In 2024 International Joint Conference on Neural Net-
works, 1–6. https://doi.org/10.1109/IJCNN60899.2024.10650253

[16]	 Dagher, I., Georgiopoulos, M., Heileman, G. L., & Bebis, G.
(1999). An ordering algorithm for pattern presentation in fuzzy
ARTMAP that tends to improve generalization performance.
IEEE Transactions on Neural Networks, 10(4), 768–778. https://
doi.org/10.1109/72.774217

[17]	 Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Martínez, J. F.,
Bataller-Mompeán, M., & Francés-Víllora, J. V. (2015). Sim-
plified spiking neural network architecture and STDP learning
algorithm applied to image classification. EURASIP Journal on
Image and Video Processing, 2015(1), 4. https://doi.org/10.1186/
s13640-015-0059-4

[18]	 Bohte, S. M., Kok, J. N., & La Poutre, H. (2002).
Error-backpropagation in temporally encoded networks of
spiking neurons. Neurocomputing, 48(1–4), 17–37. https://doi.
org/10.1016/S0925-2312(01)00658-0

7

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://doi.org/10.1109/TNNLS.2022.3164930
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.1109/VTC2024-Spring62846.2024.10683049
https://doi.org/10.1109/VTC2024-Spring62846.2024.10683049
https://doi.org/10.3389/fnins.2024.1383844
https://doi.org/10.3389/fnins.2023.1047008
https://doi.org/10.3389/fnins.2023.1047008
https://doi.org/10.3389/fnins.2022.850932
https://doi.org/10.3389/fnins.2022.850932
https://doi.org/10.1109/TNNLS.2024.3353571
https://doi.org/10.1109/TNNLS.2024.3353571
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1364/OE.518323
https://doi.org/10.1364/OE.518323
https://doi.org/10.1109/TCSII.2021.3065827
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1016/j.neunet.2022.06.001
https://doi.org/10.1109/IJCNN60899.2024.10650253
https://doi.org/10.1109/72.774217
https://doi.org/10.1109/72.774217
https://doi.org/10.1186/s13640-015-0059-4
https://doi.org/10.1186/s13640-015-0059-4
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1016/S0925-2312(01)00658-0

Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

[19]	 Wade, J. J., McDaid, L. J., Santos, J. A., & Sayers, H. M.
(2010). SWAT: A spiking neural network training algorithm
for classification problems. IEEE Transactions on Neural
Networks, 21(11), 1817–1830. https://doi.org/10.1109/
TNN.2010.2074212

[20]	 Sporea, I., & Grüning, A. (2013). Supervised learning in multi-
layer spiking neural networks. Neural Computation, 25(2), 473–
509. https://doi.org/10.1162/NECO_a_00396

[21]	 Lin, X., Wang, X., & Hao, Z. (2017). Supervised learning in
multilayer spiking neural networks with inner products of spike
trains. Neurocomputing, 237, 59–70. https://doi.org/10.1016/j.
neucom.2016.08.087

[22]	 Wang, J. (2024). Training multi-layer spiking neural networks with
plastic synaptic weights and delays. Frontiers in Neuroscience,
17, 1253830. https://doi.org/10.3389/fnins.2023.1253830

[23]	 Zhou, Z., Niu, J., Zhang, Y., Yuan, L., & Zhu, Y. (2025).
Spiking transformer with spatial-temporal spiking self-at-
tention. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 1–5. https://doi.org/10.1109/
ICASSP49660.2025.10890026

8

How to Cite: Dagher, I. (2025). Incorporating Fuzzy ARTMAP Network with Spiking
Neural Networks. Artificial Intelligence and Applications. https://doi.org/10.47852/bon-
viewAIA52025930

https://doi.org/10.1109/TNN.2010.2074212
https://doi.org/10.1109/TNN.2010.2074212
https://doi.org/10.1162/NECO_a_00396
https://doi.org/10.1016/j.neucom.2016.08.087
https://doi.org/10.1016/j.neucom.2016.08.087
https://doi.org/10.3389/fnins.2023.1253830
https://doi.org/10.1109/ICASSP49660.2025.10890026
https://doi.org/10.1109/ICASSP49660.2025.10890026
https://doi.org/10.47852/bonviewAIA52025930

