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Abstract: In this paper, we have incorporated the Fuzzy Adaptive Resonance Theory Mapping (Fuzzy ARTMAP) classification module into the 
Spiking Neural Networks (SNNs). This new network can have multiple hidden layers, a supervised corrected layer, and an ARTMAP module. The 
objective of the supervised layer is to correct the spikes given by the Spike-timing-dependent plasticity (STDP) layer in a supervised manner. Then 
the resulting corrected spikes are fed into an ARTMAP network. When an output spiking train code is similar to one of the stored ART codes. It 
modifies that code to incorporate the new input into that code category.  This combination required a new training algorithm. The hidden layers are 
trained using the popular STDP. This unsupervised learning is followed by a supervised layer where new supervised weight update formulas are 
presented. This new combination is compared to other spiking algorithms using datasets from the UCI repository. It is shown that SNN_ARTMAP 
provides better recognition results than other similar spiking supervised learning algorithms.
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1. Introduction
Spiking Neural Networks (SNNs) are a type of artificial neural 

network that more accurately mimics the structure of natural neural 
networks. Transmission of information is done using action potentials 
(neuron spikes). Spikes are impulses or discrete events that appear at 
certain positions in a time interval. A first-order differential equation can 
serve to represent the membrane potential of a neuron. This equation is 
capable of forecasting whether a spike will happen or not. Because these 
spikes are non-differentiable, different SNN training techniques were 
developed. Indirect methods were used by first training the network in 
the continuous domain and then converting it into the discrete domain. 
In the work of Luo et al. [1], a learning algorithm utilizing gradient 
descent is introduced to optimize synaptic delays, aiming to improve 
the sequential learning ability of an individual spiking neuron.

Lower latency paired with substantial activation sparsity results 
in significant enhancements in computational efficiency [2]. Efficient 
implementation of SNN using FPFA is presented in the work of El 
Maachi et al. [3].

Different SNN training techniques were developed. Direct 
training of Deep SNN is shown in the work of  Zhou et al. [4]. 

Indirect methods were used by first training the network in the 
continuous domain and then converting it into the discrete domain.

A new framework based on spikes, utilizing entropy theory, 
was proposed in the work of Guo et al. [5]. Yang et al. [6] designed 
an efficient learning mechanism with spiking dendrites. New training 
techniques for SNN were presented in the work of Saranirad et al. [7], 
Meng et al. [8], and Hao et al. [9]. Gouda et al. [10] applied the surrogate 
gradient method, which is a very efficient method to overcome the 
discontinuity of the spike. It is based on continuous relaxation of the 
real gradient. Hardware implementation of SNN is presented in the 
work of Benismon et al. [11] and Frenkel et al. [12]. Converting Deep 
ANN to SNN with a small number of time steps is shown in the work 

of Meng et al. [13]. In the work of Li et al [14], Differentiable Spike 
(Dspike) functions were introduced. The optimal smoothness for the 
gradient was determined using the difference gradient.  

Adaptive resonance theory (ART) was first proposed in 1976 by 
Grossberg. As shown in the work of Tashiro et al. [15], the theory was 
developed to address the stability/plasticity problem. A key difficulty 
in incremental (or online) learning is the “stability-plasticity dilemma,” 
commonly referred to as “catastrophic forgetting.” The system strives 
to retain and remember as much information as possible because it is 
uncertain about which information is truly significant to the user and may 
consequently lose (forget) crucial data. When new content is delivered 
gradually, the learning is referred to as online learning. Information will 
only be received once by the system, after which it will modify its model 
description and get ready for fresh input. Given the restricted amount of 
memory storage capacity, information that was previously saved during 
learning may vanish since fresh knowledge has replaced it.

Fuzzy ART neural network is a clustering technique based on 
Adaptive Resonance Theory. A rectangle serves as the geometric 
representation of each cluster. Two fuzzy ARTs make up the architecture 
of fuzzy ARTMAP. Supervised learning characterizes the Fuzzy 
ARTMAP. It includes two stages: the training stage, during which 
labeled clusters (rectangles) are created, and the testing stage, in which 
any unlabeled test data is categorized.

The presentation order of patterns has a significant impact on 
this architecture’s generalization performance. The max–min clustering 
algorithm was used in the work of Dagher et al. [16] to achieve an 
efficient order of pattern presentation.

2. Spiking Neural Networks – ARTMAP Prototype
SNNs are a form of artificial neural networks that imitate the 

organization of biological neural networks. Unlike Multi-Layer-
Perceptrons (MLP), SNN integrates the aspect of time into its operational 
model. In an SNN, neurons transmit information when their membrane 
potential reaches a certain threshold level. Once the membrane potential 
surpasses this threshold, the neuron produces a signal or spike that is 
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sent to neighboring neuron. The output of many spikes is called a spike 
train. The communication and thus learning between neurons is based 
on the generated spike trains. Only at spike occurrences does a neuron 
communicate with other neurons. This communication takes place 
via a synapse between two neurons. Every neuron has the ability to 
obtain signals from numerous other neurons. To form the output spike 
train, the currents from all synapses are combined and integrated at 
the receiving end of the neuron. The activity of pre- and post-synaptic 
neurons affects the conductance of a synapse, also known as synaptic 
weight. This activity is thought to be responsible for neurons’ ability to 
learn. Typically, spikes in the pre- and/or post-synaptic neuron cause 
weight changes and eventually learning.

The postsynaptic current is given by:

where t1 and t2 are time constants representing the steepness of rise and 
decay times.

2.1. Leaky integrate-and-fire neuron (LIF)
Leaky integrate and fire (LIF) is the simplest model of a neuron. It 

is an electrical circuit consisting of a “leaky” resistor with conductance 
g in parallel with a capacitor C and a current synaptic source I. The 
membrane potential V(t) follows the differential equation:

When V exceeds a threshold, a spike is obtained, and V is reset 
to E.

2.2. Coding schemes
Converting input pixels into spikes is done using one of the 

following coding schemes: rate coding, TTFS coding, phase coding, 
and burst coding. 

We have used the rate coding scheme, where each value is 
converted into a Poisson spike train.

2.3. Spike-time-dependent plasticity learning
STDP learning [17] is a method used for unsupervised learning. 

It is based on the behavior noted in biological neurons: When a 
postsynaptic spike follows a presynaptic spike, the synaptic weight is 
strengthened. In contrast, if a postsynaptic spike precedes a presynaptic 
spike, the synaptic weight is weakened.

The weight adjustments are not based on whether the actual 
output is equal to the desired output. But over time, every neuron will 
be trained to recognize certain data patterns.

For the implementation of the STDP, the weight update formula 
is represented by:

η μ

where:
τ  which can be approximated by:

This is a nonlinear learning rule for updating a synaptic weight 
W, which depends on the presynaptic activity x_pre, a target value x_tar, 
and a maximum weight W_max.

η: Learning rate controls how quickly the weight changes.
x_pre: Presynaptic activity represents firing rate or signal strength from 

a presynaptic neuron.
x_tar: Target presynaptic activity at the desired or homeostatic level.
W_max: Maximum allowed weight or upper limit.
μ: Exponent controlling nonlinearity determines how sharply the update 

is influenced as x_pre approaches W_max.
If x_pre > x_tar, the weight may increase (assuming W_max − 

x_pre > 0).
The term (W_max − x_pre)^μ prevents the weight from growing 

indefinitely.
If x_pre < x_tar, the weight may decrease, depending on the rest 

of the expression.

2.4. Simple SNN architecture with supervised learning
Figure 1 shows the supervised version of a simple SNN. The 

weights are adjusted based on the difference between the actual output 
and the target spikes (impulses).

�

2.5. Simple SNN architecture with supervised learning 
using backpropagation

The backpropagation algorithm uses the following gradient 
descent rule for the weight update.

α

This weight update formula requires the calculation of the 
derivative of the error, which in turn requires the calculation of the 
derivative of impulses. Because the impulses are practically non-
differentiable, different techniques were used to estimate this calculation. 
The surrogate gradient technique is one of the most common ones.

2

Figure 1
Supervised version of a simple SNN
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2.6. Fuzzy ARTMAP’s hyper-rectangle
The ARTMAP architecture consists of three components: two 

Fuzzy ART networks, ARTa and ARTb, along with an inter-ART 
operator. Training the network entails inputting data into ARTa and 
their corresponding targets into ARTb. In ARTa, the data is clustered, 
and these clusters receive labels from ARTb. Similar data points with 
the same target group are grouped to form a rectangle that acts as the 
prototype generated by ARTa. Fuzzy ART is a clustering technique 
designed for processing continuous data. The system features an input 
field F1 where data is entered and an output field F2 where the results 
of the clustering are displayed. Each node j in the F2 field is linked to 
all nodes i in the F1 field via a top-down weight represented as wji. The 
collection of top-down weights from node j in the F2 field is referred 
to as Wj, acting as the prototype for cluster j. For p input data points I1, 
I2,…, Ip that are part of cluster j, Wj can be defined as follows:

It is important to highlight that before being fed into Fuzzy 
ART, certain preprocessing of the input patterns occurs. The initial 
preprocessing stage receives a Ma-dimensional input pattern related to 
the task of pattern clustering and transforms it into an output vector 
a = (a1,..., aMa), where each element is limited to the range [0, 1]. In 
the next preprocessing phase, the output a from the first stage is utilized 
to produce an output vector I in a manner that

where:

 ; 

For p patterns:	

Wj can be written as follows:

where  and  
The operand  is referred to as the fuzzy-min, and the operand 

 is referred to as the fuzzy-max. The process is shown in Figure 2 for 
two 2-dimensional vectors, x = (x1, x2) and y = (y1, y2).

I1 = (x1, x2, 1 − x1, 1 − x2); I2 = (y1, y2, 1 − y1, 1 − y2).
Wj = I1  I2;

Wj = (min(x1, y1), min(x2, y2), max(1 − x1, 1 − y1), max(1 − x2, 1 − y2))
Wj = (x1, y2, 1 − y1, 1 − x2) = (x  y, 1 − (x  y))

The weight vector Wj can be expressed through two vectors uj and 
vj, which act as the vertices of a rectangle Rj. 

In Figure 3, there is a rectangle defined by endpoints uj and vj that 
encloses the datapoints.

Given a test input 
The following equation is used to determine the bottom-up 

inputs:

Calculate the value of Tj for all the output nodes j. The node jmax 
which will give the maximum value of Tj will be considered the winner. 

The label of the data Ir will correspond to the label that node jmax 
was assigned following the training phase.

2.6.1. Simple illustration of SNN-ART
In the training phase, the basic idea is that inputs with the same 

Desired Class will produce a collection of output spike trains. These 
output spike trains will be mapped to one or more output ART categories 
corresponding to that Desired Class. A mapping will be formed between 
each desired Class with a hyper-rectangle containing all the output 
spike trains. In the test phase, any input with the same desired class will 
produce an output spike train belonging to that hyper-rectangle.

For illustration given 4 inputs belonging to 2 classes. 

I1 and I2 belong to Class1 with desired spikes 00 
I3 and I4 belong to Class2 with desired spikes 01 

After applying these 4 inputs to the SNN-ART network and 
suppose we get the following output spikes for each input.

1110 with desired spikes 00
1101 with desired spikes 00
1001 with desired spikes 01
1010 with desired spikes 01

Doing complement coding on the output spikes we get:

11100001 with desired spikes 00
11010010 with desired spikes 00
10010110 with desired spikes 01
10100101 with desired spikes 01

3

Figure 2
Fuzzy minimum and fuzzy maximum operations

 Figure 3
The rectangle Rj, defined by its endpoints uj and vj, encompasses 

I1, I2,…, Ip.
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After training, the ART categories are characterized by the 
following weights

W1 = (1,1,0,0,0,0,1,1) and W2 = (1,0,0,0,0,1,1,1)
W1 is mapped to the desired spike 00 and W2 is mapped to the 

desired spike 01

For testing, applying the first input I1 to SNN-ART will give an 
output spike: 1110 

After complement coding we get 11100001
Calculating

 for j = 1 and j = 2, and for α = 0.001

Because T1 > T2 then the output of the ART will be the desired 
spike of W1 which is 00.

The same procedure can be applied to all the test inputs.

3. SNN-ARTMAP Network

3.1. Our weight updates of a simple SNN architecture
Figure 4 illustrates a basic Spiking Neural Network (SNN). 

Every input corresponds to a Poisson Spike train, with the frequency 
of the spikes being directly related to its magnitude. Each produced 
spike train is scaled by the synaptic weight. The total of the adjusted 
spike trains is computed and sent to the Leaky Integrate-and-Fire (LIF) 
neuron, which produces the output spike train. 

δ

These 2 equations show that increasing the weights Wi has the 
effect of increasing Out(t), which will make Output(t) have a value of 1 
(Output spike). And decreasing Wi has the opposite effect. 

Our output weight update strategy is the following:

1)  If the desired output is 1, then increase Wi (α is a small positive 
number). 

Increasing Wi will increase Out(t) until it becomes greater than or 
equal to Thresh. A spike is generated

α

We want the neuron to spike, that is, have an output ≥ Thresh. 
If the current output is too low, i.e., Out(t) < Thresh, then the update 
amount is positive. This rule increases the weight Wi, moving the 
neuron’s output closer to the threshold. α is a small positive learning 
rate. The use of max(0, ...) ensures no change if the output already 
exceeds the threshold.

2) If the desired output is 0, then decrease Wi (away from Thresh).

α

We want the neuron not to spike, so we want the output to stay 
below the threshold. If the output is high, this update reduces the weight 
Wi, decreasing the neuron’s response. The more the current output 
Out(t), the larger the weight reduction. α is a learning rate that regulates 
the magnitude of the update.

3.2. Simple SNN architecture followed by an ART-
MAP module

Figure 5 shows a simple SNN-ARTMAP network. It consists of 
3 inputs and 1 output.

Any input from the same Desired Class will produce an output 
spike train that falls within that hyper-rectangle in the training algorithm. 
Figure 6 illustrates this concept. 

Output spikes from C12 are mapped to R3, while those from C2 
are mapped to R2. Both R1 and R3 correspond to the same Desired 
Class.

3.3. SNN-ARTMAP network
Figure 7 shows a more complex SNN-ARTMAP network. It 

consists of 2 inputs, 3 hidden neurons and 2 outputs.
The hidden weights Wh are updated using the following STDP 

rule.

4

 Figure 4
Simple SNN network

 Figure 5
Simple SNN-ARTMAP network

 Figure 6
ART rectangles
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The output corrected weights Wout are updated using the 
following rule:

If the desired output is 1, then

α

Else

α

It is important to highlight that the complexity of this network 
can be enhanced by raising the quantity of hidden neurons and the 
number of hidden layers.

4. Simulation Results
To evaluate the effectiveness of the SNN-ARTMAP algorithm, 

simulations are conducted using datasets from the UCI repository. We 
have used the following 2 datasets:

1)  The Iris dataset consists of 50 samples representing three distinct 
species of Iris: Iris setosa, Iris virginica, and Iris versicolor. For each 
sample, four characteristics were documented, namely the lengths 
and widths of the sepals and petals, measured in centimeters. A 
selection of 10 random samples from each species is used as the 
training set, resulting in a total of 30 samples, while the remaining 40 
samples constitute the test set, amounting to a total of 120 samples.

The structure of the network includes 4 input nodes, 3 output 
nodes, and a varying number of hidden neurons.

Table 1 compares our algorithm with other similar spiking 
networks.

2) The Wisconsin breast cancer dataset contains 699 instances. It is 
categorized into benign and malignant cases. Each instance consists 
of nine measurements, each represented by an integer ranging from 
1 to 10. A group of ten random samples from each category was 
selected to serve as the training set, with the remaining samples 
designated for the testing set. As a result, there were 20 samples 

allocated for training and 679 for testing. The network architecture 
consists of 9 inputs, 2 outputs, and a different number of hidden 
neurons.

Table 2 compares our algorithm with other similar spiking 
networks.

Tables 1 and 2 present a comparative analysis of various spiking 
neural network-based methods regarding testing accuracy. Of the six 
techniques evaluated, the SNN-ARTMAP with 20 hidden neurons 
achieves the highest testing accuracy, exceeding that of all other 
models. This suggests that enlarging the number of hidden neurons 
within the SNN-ARTMAP structure boosts its performance in pattern 
recognition, likely due to its enhanced capacity for representation. 
The Multi-STIP approach closely follows, demonstrating strong 
performance. Multi-STIP is known for its effectiveness in modeling 
temporal dynamics, which may explain its robust results. A more 
modest version of SNN-ARTMAP (with 10 hidden neurons) performs 
competitively against established methods like SpikeProp, a well-
known and effective gradient-based learning algorithm for SNN. 
The SWAT and multi-ReSuMe approaches show slightly lower 
performance levels. These techniques might be limited by their 
learning methodologies or their generalization capabilities compared 
to the others. Notably, multi-ReSuMe, which employs the ReSuMe 
learning rule for supervised training of Spiking Neural Networks, 
underperforms relative to the other models, indicating potential 
challenges in its ability to map temporal patterns effectively or in 
scaling up the network. In conclusion, the results suggest that SNN-
ARTMAP, especially with an adequate number of hidden neurons, 
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 Figure 7
2-3-2 SNN-ARTMAP network

Method % Testing accuracy
SpikeProp [18] 96.1
SWAT [19] 95.3
multi-ReSuMe [20] 94.0
Multi-STIP [21] 96.7
SNN-ARTMAP (10 hidden) 96.1
SNN-ARTMAP (20 hidden) 96.9

Table 1
Classification results on the Iris dataset

Method % Testing accuracy
SpikeProp [18] 97.0
SWAT [19] 96.7
multi-ReSuMe [20] 94.8
Multi-STIP [21] 97.1
SNN-ARTMAP (20 hidden) 97.0
SNN-ARTMAP (50 hidden) 97.8

Table 2
Classification results on the breast dataset

Dataset Method
% Testing 
accuracy

Iris Two layer FE [1] 98
Training Samples: 75 SNN-ARTMAP (10 hidden) 97.6
Testing Samples: 75 SNN-ARTMAP (20 hidden) 98.3
Breast Cancer Two layer FE [1] 97.5
Training Samples: 349 SNN-ARTMAP (10 hidden) 97
Testing Samples: 350 SNN-ARTMAP (20 hidden) 98
Liver Disorders Two layer FE [1] 64.8
Training Samples: 172 SNN-ARTMAP (10 hidden) 64.5
Testing Samples: 173 SNN-ARTMAP (20 hidden) 65.3
Pima Diabetes Two layer FE [1] 72.5
Training Samples: 384 SNN-ARTMAP (10 hidden) 72.3
Testing Samples: 384 SNN-ARTMAP (20 hidden) 72.7

Table 3
Classification results of our algorithm compared to the two-layer 

FE using different datasets from the UCI repository
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stands out as a promising and scalable framework for achieving 
high-accuracy classification tasks within spiking neural networks. Its 
ability to either outperform or match traditional approaches highlights 
its robustness and flexibility.

Table 3 shows the classification results of our algorithm compared 
with those shown in ref. [1]. It can be concluded that the integrated 
SNN-ARTMAP increases the recognition accuracy of the SNN.

Table 3 can be illustrated graphically in Figure 8.
Figure 8 highlights the superiority of the SNN-ARTMAP in 

comparison to the two-layer feature extraction (FE) network models 
that utilize 10 and 20 hidden neurons across four standard datasets: 
Iris, Breast Cancer, Liver Disorders, and Pima Diabetes. Iris Dataset: 
With 75 samples for training and another 75 for testing, all three 
models exhibit remarkable performance. The SNN-ARTMAP with 
20 hidden neurons achieves the highest accuracy at 98.3%, slightly 
outpacing the Two-layer FE at 98% and the SNN-ARTMAP with 
10 hidden neurons at 97.6%. These notable results suggest that all 
models effectively grasp the relatively simple patterns present in the 
Iris dataset. The benefits of increasing the number of hidden neurons 
indicate that even a minor architectural change can lead to improved 
classification outcomes. Breast Cancer Dataset: In this more complex 
medical dataset, which comprises 349 training samples and 350 testing 
samples, the performance remains strong. The SNN-ARTMAP with 
20 hidden neurons again leads with an accuracy of 98%, surpassing 
the Two-layer FE at 97.5% and the 10 hidden neuron model at 97%. 
This improvement reflects the advantages of having greater capacity 
to handle larger, more varied datasets, allowing the network to better 
define decision boundaries. Liver Disorders Dataset: In contrast to 
the earlier two datasets, the classification performance on the Liver 
Disorders dataset is significantly lower. The SNN-ARTMAP with 20 
hidden neurons achieves the highest score of 65.3%, which is slightly 
above the Two-layer FE at 64.8% and the SNN-ARTMAP with 10 
hidden neurons at 64.5%. These minor differences indicate that the 
models encounter difficulties due to the intrinsic complexity or noise in 

this dataset, suggesting that enhanced feature engineering or different 
modeling techniques may be necessary to achieve more dependable 
results in this instance. Pima Diabetes Dataset: The performance of 
all three models is fairly similar for this dataset: 72.7% for the SNN-
ARTMAP (20 hidden), 72.5% for the Two-layer FE, and 72.3% for the 
SNN-ARTMAP (10 hidden). These results demonstrate the relatively 
balanced complexity of the Pima Diabetes dataset and suggest that 
SNN-ARTMAP models can at least match, if not slightly exceed, 
traditional FE-based approaches. Once again, the advantage of extra 
hidden neurons is slight yet consistently observed. 

To demonstrate the performance of our algorithm in relation 
to the leading algorithm, Table 4 presents the classification outcomes 
of our method against the plastic synaptic weights and delays (Wang 
et al. [22]) across various datasets from the UCI repository.  Comparable 
network architectures are illustrated in Table 4.
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Dataset Method
% Testing 
accuracy

Iris [22] 25-10-3 network 97
SNN-ARTMAP (25 hidden) 98.3

Breast Cancer [22] 55-15-2 network 97.9
SNN-ARTMAP (55 hidden) 98.4

Liver Disorders [22] 37-15-2 network 66.7
SNN-ARTMAP (37 hidden) 67.3

Pima Diabetes [22] 55-20-2 network 77
SNN-ARTMAP (55 hidden) 78.7

Table 4
Classification results of our algorithm compared to plastic 

synaptic weights and delays using different datasets from the UCI 
repository

 Figure 8
Graphical representations of Table 3
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5. Conclusion
In this paper, a novel training algorithm for Spiking Neural 

Networks, which we call SNN-ARTMAP, is presented. SNN-ARTMAP 
is a novel error-based spiking learning algorithm. This network can 
have multiple hidden layers, a corrected layer, and an ARTMAP 
module. While the hidden layers are trained according to STDP, the 
corrected layer is trained according to the target class output.  The 
output spikes are fed into an ART network, which will create spike 
train hyper-rectangles. Each hyper-rectangle is mapped to the correct 
target class. It is shown that this algorithm outperforms other similar 
spiking algorithms. SNN-ARTMAP consistently outperforms or equals 
both other models across all datasets, highlighting its adaptability and 
effectiveness.

In challenging datasets like Liver Disorders, none of the models 
perform exceptionally well, highlighting the necessity for either 
improved preprocessing techniques or alternative learning approaches.

 Future work can be dedicated to integrating SNN-ARTMAP 
with attention systems [23].
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