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Abstract: Peach production and breeding benefit from digital agriculture and image processing technology. However, there is little knowledge 
about the optimal image denoising and processing algorithms for estimating the physical attributes of peach leaves from images. The objective 
of this study was to evaluate different image denoising and processing techniques to obtain optimal methods and establish a unified approach 
for estimating the physical characteristics of healthy peach leaves, including length, width, perimeter, and area. Twenty denoising filters were 
evaluated, and the bilateral filter was determined as the optimal filter for peach leaf image processing with Gaussian and Poisson noise. Twenty-
four color space models, including twenty vegetation indices, were evaluated, among which the CIELAB (L*a*b*) color space performed best 
in the segmentation task using K-means clustering. Seven segmentation algorithms were evaluated and K-means clustering was found to be the 
optimal method based on a custom metric function. The unified algorithm including optimal denoising, color space selection, and segmentation 
techniques successfully estimated the physical characteristics of peach tree leaves. The results show that a unified approach is reliable and accurate 
for estimating the physical characteristics of peach leaves from images. These techniques are crucial for efficient orchard management and other 
digitalization-based applications in peach production and breeding.
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1. Introduction
Agriculture is a major component of the economy and a crucial 

factor in national food security. In 2023, a USDA report stated that 
agriculture, food, and related industries accounted for 5.6% of the 
GDP and 10.4% of employment in the United States (U.S.) [1]. As 
an agricultural product, peaches provide nutrients such as vitamins, 
minerals, and antioxidants that enhance the national diet. In 2021, 
the total value of peach production in the U.S. was $624 million [2]. 
Research in the peach industry, including peach genetics, insect control, 
and sustainable production practices, contributes to agriculture in 
general and to sound agricultural practices.

The application of advanced computer technologies in agriculture, 
known as digital agriculture, has transformed traditional agriculture by 
promoting efficiency, sustainability, and profitability. Because of its 
advantages of precise data measurement and analysis, image processing 
technology simplifies the laborious work in agriculture and makes it 
more efficient and accurate. The applications of image processing in 
digital agriculture include peach disease management, automated weed 
detection in orchards, precise yield estimation, and early detection of 
plant diseases and pest infestations [3–10].

1)  Precision agriculture: With the help of images from satellites, 
drones, and ground sensors, precision agriculture checks the health 
of crops, pests and diseases, and the soil.

2)  Monitoring crops and diseases: Processing images of crops 
helps farmers track their crops from the beginning to the end of 
the growing season. It locates diseases and nutrient problems by 
analyzing information from images, such as color, texture, and 
growth pattern.

3)  Weed control: Processing images helps to detect and control weeds 
in crop fields. It assists in building weed control systems and reduces 
the need for chemicals and their environmental impact.

4)  Prediction of crop yields and quality: Processing images of historical 
data and imagery helps to predict the yield of crops and quality of 
the fruits.

5)  Control of resources: Processing images helps save resources such 
as water, fertilizer, and energy by providing real-time images of crop 
conditions.

Image segmentation is an important step in image processing. It 
divides an image into clear and meaningful parts or objects. There are 
many image segmentation methods, and each has its own advantages 
and disadvantages. The selection of an appropriate approach depends on 
the characteristics of an image and the requirements of an application.  
The following are some commonly used image segmentation methods 
[11–14].

1)  Threshold segmentation: Each pixel is assigned to a segment based 
on its intensity or color. It is fast and efficient when objects and the 
background have clear separation.

2)  Edge segmentation: This method finds edges in an image. It is 
effective when objects have sharp intensity changes.

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/	
by/4.0/).

1

*Corresponding author: Haixin Wang, Department of Mathematics and Computer 
Science, Fort Valley State University, USA. Email: wangh@fvsu.edu

https://doi.org/10.47852/bonviewAIA52025928
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:wangh%40fvsu.edu?subject=


Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

3)  Region segmentation: This method groups pixels into regions based 
on color, texture, or intensity. It works well for segmenting objects 
that appear similar on their entire surface.

4)  Clustering segmentation: This method clusters pixels based on 
similar features and uses K-means clustering, mean-shift, or fuzzy 
C-means clustering. It facilitates automatic segmentation with 
minimal prior information.

5)  Deep learning segmentation: These approaches are trained on large 
datasets of labeled images. They are promised to achieve automated 
and accurate segmentation. But they require robust hardware support 
with sufficient computational resources and extensive training data.

6)  Other methods: Semantic segmentation, instance segmentation, 
panoptic segmentation, local segmentation, and global segmentation. 
One technique may belong to multiple categories.

Image segmentation results are influenced by the choice of color 
space models and the noise in images. In image processing, color 
space models represent colors using mathematical models. Each color 
space model standardizes color representation and has its benefits and 
disadvantages for image segmentation. The selection of an optimal 
model depends on the applications used because different models give 
different segmentation results [15–17].

Another factor affecting image segmentation is the noise present 
in images. Images captured by digital cameras and smartphones contain 
noise originating from image sensors. This noise can be categorized 
into fixed pattern noise, banding noise, and random noise. Fixed pattern 
noise arises from sensor measurements due to the stochastic nature of 
photon counting. Banding noise results from a bank of analog-to-digital 
(A/D) converters. Random noise is generated by photon emission, 
intrinsic thermal and electronic fluctuations, and other sources. Table 1 
lists the different types of noise encountered in image processing. Image 
noise introduces unwanted information, posing a significant challenge 
in the application of image processing technology. A critical step in 
image processing is the denoising of images, which is fundamental 

for improving the quality of subsequent segmentation tasks. Various 
image denoising models have been developed and are categorized as 
shown in Figure 1 [18–23]. The physical characteristics of plants are 
indicators of their health. Physical characteristics of leaves such as 
leaf color, texture, shape, and size reflect the physiological condition 
of the plant. They help us detect plant diseases, nutrient deficiencies, 
and other stress factors. Understanding the physical characteristics is 
important for understanding plant growth and productivity, especially 
in agriculture where plant health affects yield and quality.

Image segmentation technology is a tool for estimating and 
analyzing these physical characteristics. This process involves 
partitioning an image into multiple segments, each matching a distinct 
component of the plant, such as leaves, stems, and flowers. In the work 
of Ashwinkumar et al. [24], image segmentation was used to detect early 
signs of disease in tomato plants, and it showed high accuracy rates 
in distinguishing healthy and infected leaves. In the work of Fuentes 
et al. [25], convolutional neural networks were used to segment and 
classify coffee leaf images, helping to find leaf rust disease. Paithane 
and Wagh [26] developed a novel fuzzy c-means algorithm for cotton 
leaf spot detection, further highlighting the utility of clustering methods 
in agricultural imaging.

Accurate estimation of leaf characteristics is crucial for precision 
agriculture. Recent studies span denoising, color–space choices, and 
segmentation or trait extraction. Fan et al. [27] developed a two-stream 
deep framework which performs plant segmentation and leaf counting 
on Computer Vision Problems in Plant Phenotyping (CVPPP) images. 
Li et al. [28] built an automated, non-destructive monitoring system 
for rapeseed leaves and reported strong UNet-Attention segmentation 
performance. For color space selection in field imagery, Hernández 
et al. [29] proposed a principled method for choosing optimal channels 
for plant or soil segmentation. As a preprocessing step, Bhujade et al. 
[30] introduced an optimization-assisted cascaded filtering pipeline 
that improves denoising quality for crop images. For classical 
pipelines, Jamjoom et al. [31] combined K-means segmentation with 
SVM classification for leaf-disease analysis on PlantVillage. These 
works highlight gaps in noise robustness, color representation, and 
computational efficiency. Our unified algorithm employs bilateral 
filtering, CIELAB, and K-means clustering to improve robustness and 
accuracy relative to these approaches. Table 2 summarizes and clarifies 
the scope and metrics.

Unlike deep models that require training data, GPU resources, 
and task-specific labels, our workflow is end-to-end interpretable: 
denoising (20 filters), color space selection (24 transformations, 
including 20 vegetation indices), and segmentation (7 algorithms) are 
compared quantitatively on the same imagery. The analysis isolates 
the noise effects (Gaussian vs. Poisson) and motivates the final 
choices (bilateral filtering and K-means in CIELAB) that maximize 
our composite scores. The output is a set of physical traits (length, 
width, perimeter, area) directly usable in orchard management, which 
is outside the scope of prior works. In contrast, our contribution is 
a unified workflow that (i) quantitatively selects the denoiser, color 
space, and segmentation method under mixed Gaussian-Poisson 
noise; (ii) demonstrates noise robustness and explains failure modes; 
and (iii) outputs physical leaf traits (length, width, perimeter, area) 
directly from noisy images. Within our study, bilateral filtering and 
CIELAB with K-means emerge as the optimal choices, and we 
quantify that Gaussian noise, not Poisson noise, is the dominant factor 
affecting accuracy. This positions our method as a resource-light and 
reproducible alternative to learning-based systems while addressing a 
different end goal: trait estimation.

The contributions of the study are listed as follows.

1)  An approach is proposed to estimate the physical characteristics of 
healthy peach leaves.

2

Noise Model Noise Source(s)/Characteristic(s)
Gaussian noise From natural sources
White noise Constant power spectrum and zero 

auto-correlation
Fractal noise Brownian motion with a 

non-stationary stochastic process
Salt-and-pepper noise Pixel values are set to 0 or 255
Periodic noise From electronic interference
Quantization noise From the process of converting 

analog data into digital data
Speckle noise From coherent imaging systems
Poisson noise From the statistical nature of 

electromagnetic waves
Gaussian-Poisson noise From the combination of Gaussian 

noise and Poisson noise
Gamma noise From laser images
Rayleigh noise From radar images
Impulse noise Random occurrence of white and 

black pixels
Uniform noise Uniformly distributed in a range of 

values
Multiplicative noise Signal-dependent scaling noise

Table 1
Noise models
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2)  Twenty denoising filters are compared to identify the optimal filter 
for peach leaf images.

3)  The robustness of noise effects is examined on both synthetic data 
and real leaf images.

4)  Twenty-four color space models are evaluated to determine the 
optimal color space for peach leaf images.

5)  Within the L*a*b* color space, 360 PlantVillage peach leaf images, 
and a fixed preprocessing and postprocessing, K-means clustering 

is identified as the optimal segmentation algorithm for peach leaf 
images in the study, among seven segmentation algorithms.

2. Proposed Unified Methodology
The physical characteristics of peach leaves, such as length, 

width, perimeter, and area, are indicators of peach leaf health and 
vigor. Therefore, a comprehensive analysis of these characteristics can 

3

Figure 1
Categories of denoising models

Study Task Data Reported metric(s) Key differentiators
Fan et al. [27] Leaf counting guid-

ed by segm.
CVPPP17 (Arabidopsis, 
tobacco)

Segm. IoU ≈ 0.98; counting 
DiC 0.11, ADiC 0.36, MSE 
0.42

Deep two-stream model; task = 
counting; requires training

Li et al. [28] Leaf-area monitoring Brassica napus Segm. acc. 96.77%; area error 
down to 1.25% (splint)

UNet-Attention + device; task 
= area on rapeseed; training/
hardware

Hernández-Hernández 
et al. [29]

Plant/soil segm. 
(color space 
selection)

Field imagery Accuracy > 95.8% Focus on channel selection; no 
trait estimation

Bhujade et al. [30] Denoising for crop 
images

Soybean, cotton PSNR/SSIM vs. baselines Denoising only; no 
segmentation/traits

Jamjoom et al. [31] Disease segm. and 
cls.

PlantVillage SVM acc. 97.2% (KNN 
80.2%, Ensemble 83.6%)

Disease classification; training 
and labels required

This work Trait estimation from 
noisy images

Peach leaves 
(PlantVillage subset)

Unified: selects optimal de-
noiser, color space, segmen-
tation; reports length/width/
area/perimeter

Noise-robust; broad 
comparison: 20 filters, 24 color 
transforms, 7 segmentation 
algorithms

Table 2
Comparison with recent work: tasks, data, metrics, and differentiators
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provide important information about possible problems that affect the 
health of the leaves and the productivity of peach trees. Studying these 
characteristics can help in the early detection of problems so that timely 
actions can be taken and good management strategies can be adopted to 
solve these problems [50]. 

Based on the noise analysis of real images, the comparison 
of color spaces, and the comparison of segmentation algorithms in 
Section 2, this study proposes a unified approach to find the physical 
characteristics of peach leaves. The unified approach includes the 
bilateral filter for denoising, the CIELAB color space for feature 
representation, and the K-means clustering algorithm for segmentation. 
The process is illustrated in Figure 2.

2.1. Bilateral filter
The bilateral filter is a nonlinear, edge-preserving, and noise-

reducing smoothing filter. The equation is given as follows.

where

1)  G′(x, y): Output pixel value at position (x, y) after applying the filter
2)  Sx,y: The neighborhood window centered around (x, y)
3)  w(i, j): Weights used in the bilateral filter, with ws(i, j) as spatial 

weights and wr(i, j) as range weights

2.2. RGB to L*a*b*

The CIELAB (or L*a*b* ) color space is identified as the optimal 
color space for this study. The input RGB values must first be converted 
to the CIE XYZ color space. Then the L*, a*, and b* are obtained by 
a nonlinear transformation. The conversion process is described as 
follows.

RGB to XYZ Conversion:

X = 0.4124564 · R′ + 0.3575761 · G′ + 0.1804375 · B′
Y = 0.2126729 · R′ + 0.7151522 · G′ + 0.0721750 · B′
Z = 0.0193339 · R′ + 0.1191920 · G′ + 0.9503041 · B′

XYZ to LAB Conversion:

where f (t) is defined as

2.3. K-means clustering
K-means clustering is an unsupervised machine learning 

algorithm which splits a dataset into K non-overlapping clusters [44]. 
The goal of the algorithm is to minimize the sum of distances between 
data points and their corresponding cluster centers. K-means clustering 
has advantages such as simplicity, scalability, speed, and flexibility to 
different data types. However, it also has limitations, including the need 
to prespecify the number of clusters K, the need to randomly initialize 
the centroids and being sensitive to outliers, being affected by the 
shape of the clusters, and being likely to reach suboptimal solutions. 
K-means clustering is selected as the segmentation method based on the 
comparative evaluation in Section 2.3. The general procedure consists 
of the following steps:

Step 1: Initialization
Choose K centroids from the dataset.

Step 2: Assignment Step
Assign each data point to the closest centroid based on Euclidean 

distance:

μ μ

where μi is the centroid for the ith cluster, xp is a data point, and  is the 
set of all points that are closer to the ith centroid than any other centroid.

Step 3: Update Step
Calculate the new centroids as the mean of all data points in the 

cluster:

μ

Step 4: Output Step

(1)

(2)

4

Figure 2
A unified approach to estimate the physical characteristics of 

peach leaves
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Output: The final K clusters and their centroids until the centroids 
do not change significantly or the maximum number of iterations is 
reached.

3. Experimental Evaluation
Image noise, color space models, and segmentation algorithms 

influence the quality of image analysis. In this section, we perform a 
comparative analysis of different denoising filters, color space models, 
and segmentation algorithms to determine the optimal algorithm. This 
study applies these methods to investigate the physical characteristics 
of peach leaves.

3.1. Dataset
The dataset used in this study is publicly available from the 

PlantVillage dataset on Kaggle, which includes 360 images of healthy 
peach leaves. The input images are shown in the RGB color space.

3.2. Denoising process for real digital images
Knowing the types of noise in digital images helps in developing 

denoising algorithms and improving image quality. Digital images 
captured by cameras or smartphones contain noise that follows Poisson 
and Gaussian distributions. Those noises affect quality of image 
processing results [21, 32]. See Appendix A for a description of Poisson 
and Gaussian noise.

3.2.1. Denoising filters
Denoising filters are crucial for processing images before they 

are applied in tasks such as segmentation [19, 33]. These filters reduce 
noise and preserve details, including edges. This study evaluates twenty 
denoising filters, listed in Table 3, to determine the optimal filter for 
peach leaf images.

3.2.2. Custom noise metric function
To select appropriate denoising algorithms for real images 

with Poisson and Gaussian distributions, three standard metrics are 
considered: mean squared error (MSE), peak signal-to-noise ratio 
(PSNR), and structural similarity index measure (SSIM). These metrics 
are used to evaluate the performance of denoising algorithms and are 
listed in Table 4.

where

1)  N is the total number of pixels in the image.
2)  G(i) is the observed pixel value.
3)   is the predicted pixel value.
4)  MAX is the maximum possible pixel value of the image.
5)  x and y are two measurement windows with size N×N.
6)  μx and μy are the pixel sample means of the two measurement 

windows x and y.
7)  σ  and σ  are the standard deviations of x and y.
8)  σxy is the cross-covariance between x and y.
9)  C1 and C2 are constants added to stabilize the division and avoid 

division by zero.

While each metric has its limitations, it is necessary to formulate 
a comprehensive metric function for assessing denoising algorithms. In 
this paper, we design a new metric function to evaluate the performance 
of denoising methods on Poisson and Gaussian noisy images. This 
function integrates three common metric functions: MSE, PSNR, and 
SSIM, to create a comprehensive evaluation metric. The formula for the 
custom metric is as follows.

where
1)  n stands for noise. This function is denoted as Metricn to evaluate the 

performance of denoising algorithms.
2)  , , and  are weights. The weights can be adjusted to 

emphasize the importance of a specific metric in applications.
3)  M1 is the MSE. It measures the average squared difference 

between the original and denoised images. It is used to measure the 
reconstruction quality.

4)  M2 is the PSNR. It compares the maximum possible signal to the 
noise and assesses the quality of image reconstruction in terms of 
signal fidelity.

5)  S1 is the SSIM. It measures the quality of the image by 
comparing the structural similarity between the original and 
denoised images.

In Equation (3),  is adjusted to 50% due to the similarity 
between metrics MSE and PSNR. After normalizing each component 
to [0,1], we enforce , ,  ≥ 0, and  +  +  =1. Because 
MSE and PSNR quantify closely related fidelity aspects, we allocate 
half of the weight to SSIM and split the remainder equally between 
MSE and PSNR. In all reported results, we set  = 0.25 (MSE), 

 = 0.25 (PSNR), and  = 0.50 (SSIM). For robustness checks, we 
considered ,  ∈ [0.20,0.30], and  ∈ [0.40,0.60]; the nominal 
(0.25,0.25,0.50) setting is used for tables and figures. This metric 

(3)

5

Name of Image Quality 
Metric Formula
Mean squared error (MSE)

Peak signal-to-noise ratio 
(PSNR)
Structural similarity index 
measure (SSIM)

μ μ σ
μ μ σ σ

Table 4
Summary of image quality metrics for noise analysis

Filter Name Filter Name
Ideal notch filter Homomorphic filter
Geometric mean filter Morphological filter
Median order-statistic filter Constrained least squares filter
Adaptive noise smoothing 
filter

Nonlinear complex diffusion 
filter

Adaptive median filter Gabor filter
Neighborhood mean filter Wiener filter
Harmonic mean filter Kuwahara filter
Inverse harmonic mean filter Beltrami filter
Inverse filter Lucy-Richardson filter
Bilateral filter Non-local means (NLM) filter

Table 3
List of 20 denoising filters
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function is made to balance the evaluation by using the strengths of 
the three main metrics. MSE shows pixel-level accuracy. PSNR shows 
the noise level in the reconstructed image. SSIM shows the structural 
similarity based on human visual perception.

3.2.3. General procedure for comparing denoising filters and results
The general procedure to deal with noise, including Gaussian 

and Poisson noise, is to compare different denoising algorithms using 
a custom metric and select the optimal denoising algorithm. Figure 3 
illustrates this general procedure.

To standardize the values of M1, M2, and S1 within the range 
[0, 1], the following equation is used for normalization.

A value of f = 1 indicates perfect similarity.
In the simulation sections, a noise-free image of a peach tree leaf 

is used to verify the procedure. Figure 4 demonstrates an example of 
the procedure. The result is shown in Table 5. f1 represents the value 
of f with Gaussian noise, f2 represents the value of f with Poisson 
noise, and fm is the mean value of f1 and f2. The results show that the 
bilateral filter is identified as the optimal denoising algorithm for the 
peach tree leaf with Gaussian noise and the geometric mean filter as the 
optimal algorithm for Poisson noise. The mean value of fm is 0.65. The 

distribution of fm is depicted in Figure 5, and the majority of fm values 
lie within the ranges [0.65, 0.72] or [0.87, 0.94]. The bilateral filter is 
identified as the top-performing filter for images affected by both noise 
types. The Wiener filter and inverse harmonic filter are also deemed 
optimal based on the values of fm.

The example images shown were generated by adding Gaussian 
noise with a variance of 0.5 and Poisson noise with a scale factor of 
6. The visual differences between images are small and may appear 
imperceptible to the human eye. However the measurement using MSE, 
PSNR, and SSIM shows variations in noise reduction and image detail 
preservation. This simulation is similar to the real digital images. Noise 
exists in images, but we cannot see it, so quantitative simulation must 
be performed.

3.2.4. Robustness analysis of noise
Noise impacts image processing results. The covariance of 

Gaussian noise ranges from 0 to 2.5. The Poisson noise scale factors 
range from (1 to 10) for different levels of Poisson noise. The general 
procedure is illustrated in Figure 6.

Figures 7, 8, and 9 provide a visual representation of how 
accuracy varies with different levels of Gaussian noise covariance and 
Poisson noise scale factors. The standard deviation of accuracy across 
different noise levels is 0.136. These variations depend on the Gaussian 
noise covariance and Poisson noise scale factor. Image processing 
results show fluctuations in accuracy when these noise parameters 

(4)
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 Figure 3
Selection of denoising algorithm based on value f
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change. The correlation between Gaussian noise covariance and 
accuracy is -0.77, which means a strong negative relationship. When 
the Gaussian noise level increases, the accuracy of image segmentation 
will decrease. The correlation between the Poisson noise scale factor 
and accuracy is 0.057, indicating Poisson noise has little impact on 
the accuracy of image segmentation. Therefore, Gaussian noise is 
the primary factor that affects overall accuracy. Reducing Gaussian 
noise can improve image processing performance. In the contour plot, 
some regions show a steep gradient, indicating that accuracy changes 
significantly when the Gaussian covariance changes.

Regions with wide spaces between contours show areas where 
accuracy stays steady even when parameters change. In the heatmap, 
certain columns or rows show higher or lower accuracy. This means 
that Gaussian covariance has a greater effect on the accuracy than other 
factors.

3.3. Comparison of color space models
This study analyzes the physical characteristics of peach leaves 

using different segmentation algorithms. The optimal color space model 
depends on the specific application, as different models give different 
results.

3.3.1. Color space models
Previous research [34, 35] investigated twenty-four red, green, 

blue (RGB) color transformations, including twenty vegetation indices. 
These transformations are listed in Table 6.

3.3.2. The custom metric function for segmentation
Metrics are used to assess the performance of segmentation 

algorithms by comparing an algorithm’s output and the established 
ground truth annotations. These metrics help measure the accuracy, 
completeness, and consistency of the segmented regions. The selection 
of metrics depends on specific tasks and desired evaluation criteria. 
Common metrics include pixel accuracy, sensitivity, precision, recall, 
dice score (or F1-score), intersection over union (IoU) (or Jaccard 
index), and specificity. Each metric returns a value between 0 and 1, 
where higher values indicate greater overlap and better segmentation 
performance [36, 37].

Calculating pixel accuracy requires identifying the true 
positive (TP), true negative (TN), false positive (FP), and false 
negative (FN).

For each class:

1)  TP: A pixel is correctly classified as belonging to a target class.
2)  TN: A pixel is correctly classified as not belonging to a target class.
3)  FP: A pixel is incorrectly classified as belonging to a target class.
4)  FN: A pixel is incorrectly classified as not belonging to a target class.

Selecting a metric depends on the specific application because 
each has its own advantages and limitations. For instance, metrics such 
as pixel accuracy, sensitivity, precision, and recall are not suitable for 

7

Denoising Algorithms f1 f2 fm
Ideal notch filter 0.4218 0.7275 0.5747
Geometric mean filter 0.7825 0.9720 0.8773
Median order-statistic filter 0.6311 0.5916 0.6113
Adaptive noise smoothing filter 0.8647 0.8023 0.8335
Adaptive median filter 0.9112 0.8431 0.8771
Neighborhood mean filter 0.9053 0.8391 0.8722
Harmonic mean filter 0.8144 0.9609 0.8876
Inverse harmonic mean filter 0.9197 0.9699 0.9448
Inverse filter 0.3373 0.3107 0.3240
Bilateral filter 0.9915 0.9151 0.9533
Homomorphic filter 0.7857 0.7300 0.7578
Morphological filter 0.7086 0.8750 0.7918
Constrained least squares filter 0.3366 0.3102 0.3234
Nonlinear complex diffusion filter 0.8966 0.8305 0.8635
Gabor filter 0.7098 0.6648 0.6873
Wiener filter 0.9635 0.8923 0.9279
Kuwahara filter 0.3372 0.3104 0.3238
Beltrami filter 0.3374 0.3106 0.3240
Lucy-Richardson filter 0.7526 0.6987 0.7256
Non-local means filter 0.7824 0.7264 0.7544

Table 5
Denoising filters and their performance metrics denoising 

algorithms f1, f2,fm

 Figure 4
A peach leaf image affected by Gaussian noise and Poisson noise

 Figure 5
Distribution of filters based on fm
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class imbalance, while dice score and Jaccard index are suited for class 
imbalance at the expense of computational cost. Pixel accuracy weights 
all pixels equally. Sensitivity does not take false positives into account. 
Precision misses false negatives. Specificity does not count false 
negatives. The Jaccard index is affected by object sizes. The metric 
function shown in Equation (5) evaluates the performance of image 
segmentation algorithms by using six common evaluation metrics, each 
designed to emphasize different aspects of segmentation quality. The 
function is given by

where

1)   (for i=1,2,…,6) are weights that can be tuned based on the 
application and the requirements of the segmentation task. These 
weights allow the function to focus on certain evaluation metrics 
depending on the type of images or the segmentation process.

2)  p1 is pixel accuracy. It calculates the ratio of correctly classified 
pixels (true positives and true negatives) to the total number of 
pixels.

3)  s1 is sensitivity or Recall. It measures how well the algorithm finds 
pixels belonging to the target class.

4)  p2 is precision. It measures the number of correctly classified pixels 
compared to all pixels classified as the target class.

5)  d1 is the dice coefficient or F1-score. It balances precision and recall 
and provides a single score to quantify segmentation performance.

6)  j1 is the Jaccard index or IoU. It measures the overlap between the 
ground truth and the segmented region.

7)  s2 is specificity. It measures the ability to correctly find pixels that do 
not belong to the target class.

(5)
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 Figure 7
Synthetic image accuracy with different noise levels: 3D surface 

plot

 Figure 9
Accuracy of synthetic images at different noise levels shown in a 

heatmap

 Figure 8
Synthetic image accuracy with different noise levels: contour plot

 Figure 6
Flowchart of robustness analysis of noise
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Table 7 shows the formulas for the six metrics. This metric 
function uses most common metrics when evaluating the segmentation 
results and gives a balanced, accurate, and full evaluation.

3.3.3. Comparative evaluation of color spaces using the metric function
Choosing the color space has an impact on the outcomes of 

image segmentation. The effect of color space on segmentation 

depends on the image properties and the requirements of the 
application. An optimal choice of color space for this work enhances 
the accuracy and reliability of the segmentation results. Twenty-
four different color transformations, including twenty vegetation 
indices, are implemented [34]. The K-means clustering algorithm is 
employed for image segmentation. Each color space’s metric function 
score is computed. A detailed illustration of this process is shown in 
Figure 10.

An analysis of the metric function scores provided in Table 8, 
and the six metric scores shown in Figure 11 across different color 
spaces concludes that the L*a*b* color space excels in pixel accuracy, 
sensitivity, precision, dice coefficient, Jaccard index, specificity, and 
the custom metric function score. It also exhibits high sensitivity. 
Both TGI and YCbCr also yield positive results across most metrics. 
Considering these outcomes, the L*a*b* color space has been selected 
as the most suitable choice for this study. It is important to note that 
the conclusion regarding the performance of the L*a*b* color space 
is based on the K-means clustering algorithm. Different segmentation 
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Name Description
Original
Red/Green/Blue R/G/B channels from the RGB color 

space
Theoretical transformation
X/Y/Z X/Y/Z channels from the XYZ color 

space
L*/a*/b* L*/a*/b* channels from the CIELAB 

color space
Hue/Saturation/Value H/S/V channels from the HSV color 

space
Y/Cb/Cr Y/Cb/Cr channels from the YCbCr 

color space
Empirical transformation
Normalized Red

Normalized Green

Normalized Blue

Excess Red

Excess Blue

Excess Green Red

Green Blue Difference GBD=G-B
Red Blue Difference RBD=R-B
Red Green Difference RGD=R-G
Green Red Ratio

Green Blue Ratio

Normalized Green Red 
Difference
Normalized Green Blue 
Difference
Modified NGRD

Visible Band Difference

RGB Vegetation Index

Crust Index

Color Index of Vegetation 
Extraction  (CIVE)

CIVE = 0.441R − 0.811G + 0.385B  
+ 18.78745

Triangular Greenness 
Index

TGI = 95G − 35R − 60B

Modified Excess Green MExG = 1.262G − 0.884R − 0.311B

Table 6
Color space models

Name Formula
Pixel accuracy

Sensitivity (Recall)

Precision

Dice coefficient

Jaccard index

Specificity

Table 7
Summary of image segmentation metrics

 Figure 10
Proposed methodology for color space selection in image 

segmentation



Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

algorithms may yield different results when used in conjunction with 
the various color spaces. Previous studies [38, 39] have shown that 
a comparative analysis of color spaces across various segmentation 
methods reveals that results are relatively similar and the segmented 
regions of the resulting images using HSV, HSI, L∗a∗b∗, and L∗u∗v∗ 
color spaces are more uniform.

3.4. Comparative analysis of segmentation algorithms 
within the CIELAB (L*a*b*) color space

The selection of the segmentation algorithm is important 
because each algorithm has its own strengths and limitations that 
affect the quality of the segmentation results [40–43]. The comparison 
of the seven algorithms follows a standard procedure, as shown in 
Figure 12. The quality is evaluated using a custom metric function score. 
Algorithmic details of energy forms, thresholds, neighborhood rules, 
and hyperparameters for segmentation algorithms: Active Contour, 
Region Growing, Multilevel/Global/Adaptive Thresholds, and KNN, 
are provided in Appendix B.

3.4.1. Performance analysis of segmentation algorithms 
This study uses the custom metric function in Equation (5) 

with six metrics: pixel accuracy, sensitivity, precision, dice score, 
Jaccard index, and specificity to compare the performance of different 
segmentation algorithms. From Figures 13 and 14, the K-means 
clustering algorithm gets the highest score based on the custom metric 
function. The global threshold and adaptive threshold algorithms 
follow the K-means clustering algorithm. The best algorithm depends 
on the application requirements. In this study, the K-means clustering 
algorithm is selected for peach leaf segmentation because it gives the 
best performance according to the custom metric function score.

Figure 15 outlines the general procedure of segmenting a peach 
leaf from its background, and Figure 16 illustrates an example of the 
segmentation results.

4. Results and Discussion

4.1. Component selection results
Our experimental evaluation of 20 denoising filters confirmed 

that the Bilateral filter provided the best performance for images with 
mixed Gaussian and Poisson noise, achieving the highest mean score 
of 0.9533.

Among the 24 color space transformations evaluated, the 
CIELAB color space was identified as optimal, yielding a top metric 
score of 0.9840 in K-means segmentation tasks.

The comparison of seven segmentation algorithms demonstrated 
that K-means clustering was the most effective for isolating peach 
leaves within the CIELAB space, outperforming other methods on our 
custom metric function.

4.2. Noise robustness and implications
Real images inherently contain noise, which impacts the 

performance of segmentation algorithms. The noise robustness of 
the proposed segmentation algorithm was evaluated by introducing 
additional noise covariance. To evaluate the performance of the 
algorithm under realistic mixed-noise conditions, we created a three-
dimensional (3D) parameter space. The following figures visually 
illustrate the accuracy of the system, where one axis represents the 
Gaussian noise covariance and the other axis the Poisson noise scale 
factor. This approach allows for a clear analysis of how the algorithm 
responds to each noise type individually and to their combined effect. 
Figures 17 to 19 illustrate the results generated by the flowchart 
procedure in Figure 6.

Unlike the analysis of synthetic data, real digital images are 
sensitive to Gaussian noise variance, which is between [0, 0.05]. 
Figures 17 and 18 show 3D surface and contour plots visually 
illustrating the accuracy of the image segmentation algorithm when the 
Gaussian noise covariance and Poisson noise scale factor are varied. 
The results show that as the Gaussian noise covariance increases, the 
segmentation accuracy drops significantly. This drop becomes very 
steep when the covariance exceeds 0.05. On the other hand, Poisson 
noise has a much less impact on accuracy, and accuracy decreases much 
slowly as the scale factor varies. The plots show that for getting high-
accuracy segmentation, controlling Gaussian noise is more important 
than handling Poisson noise.

Figure 19 shows more details with a heatmap that maps 
segmentation accuracy across different Gaussian and Poisson noise 
levels. Gradient of intensity in the heatmap visualizes levels of the 
image where accuracy drops dramatically. The largest color changes 
happen when Gaussian noise covariance is high, supporting the finding 
that Gaussian noise is the main factor. The relatively stable regions of 
the heatmap along the axis of increasing Poisson noise suggest that the 
segmentation algorithm exhibits greater resilience to Poisson noise 
compared to Gaussian noise.
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Set A Set B Set C
Color space Score Color space Score Color space Score
CI 0.6183 L*a*b* 0.9840 RGB 0.9112
CIVE 0.4952 MExG 0.8644 RGBVI 0.5176
ExB 0.9560 MNGRD 0.2619 RBD 0.2812
ExGR 0.6452 NB 0.6986 RGD 0.9715
ExR 0.9409 NG 0.8460 TGI 0.9808
GBD 0.9674 NGBD 0.7047 VD 0.8427
GBR 0.2997 NGRD 0.8406 XYZ 0.7941
GRR 0.9300 NR 0.4512 YCbCr 0.9817
HSV 0.8556

Table 8
Metric function scores for each color space
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The analysis of Figures 17–19 demonstrates that while both 
Gaussian and Poisson noise can degrade segmentation accuracy, 
the system is notably more sensitive to variations in Gaussian noise 
covariance. The accuracy decline is steep in regions of higher Gaussian 
noise, indicating that in real-world applications, efforts to mitigate 
Gaussian noise are crucial for preserving segmentation quality. On the 
other hand, the system shows robustness against Poisson noise, with 
accuracy only gradually decreasing as the Poisson noise scale factor 
increases. This suggests that while Poisson noise may be present in 
imaging scenarios, its impact on segmentation performance is less than 

that of Gaussian noise. Therefore, in practical applications requiring 
high-precision segmentation, strategies should prioritize reducing 
Gaussian noise to maximize accuracy.

4.3. Physical characteristics estimation
The measurement of the physical characteristics of peach leaves 

such as length, width, area, and perimeter is achieved using a systematic 
procedure that uses segmentation and measurement methods. Below is 
a step-by-step breakdown of the process:
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 Figure 11
Six metric scores for each color space except for the custom metric score
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1)  Image acquisition and preprocessing: A peach leaf image is 
preprocessed using the bilateral filter to eliminate noise while 
retaining edges.

2)  Segmentation: The leaf is segmented from the background using 
K-means clustering in the L*a*b* color space.

3)  Measurement:
(a)  Length: The length is measured from the base to the tip of the 

leaf in the major axis of an ellipse that fits the segmented leaf.
(b)  Width: It is measured as the minor axis of the same ellipse and 

the shortest diameter.
(c)  Area: It is measured by counting the number of pixels inside the 

segmented leaf.
(d)  Perimeter: It is measured by the sum of the distances between 

adjacent pixels on the leaf edge.

Visual results are shown in Figure 20.
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 Figure 12
Comparative evaluation process for segmentation algorithms

 Figure 13
Performance of segmentation algorithms based on six metrics

 Figure 16
(a) Original image, (b) Leaf image segmented from its background 

for better readability and formatting

 Figure 15
General procedure to segment a leaf from its background

 Figure 14
Comparison of custom metric scores of segmentation algorithms
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Table 9 presents the pixel-based measurements of the physical 
characteristics of a peach leaf. This table includes measurements 
associated with a peach leaf image, specifically aimed at evaluating and 
determining properties related to a leaf’s physical characteristics.

Table 2 contrasts our study with recent research. Two 
clarifications apply: (1) tasks and datasets differ (e.g., leaf counting on 

CVPPP, disease classification on PlantVillage, or rapeseed leaf-area 
monitoring) and (2) several works target a single pipeline component 
(denoising or segmentation), whereas our goal is an end-to-end trait 
estimation workflow. In our study, we provide quantitative evidence 
that (i) bilateral filtering is optimal across Gaussian/Poisson noise 
when evaluated by a composite metric, outperforming the next best 
filters, inverse harmonic mean and Wiener filters, in terms of the mean 
score fm and (ii) K-means in the CIELAB space yields the highest 
segmentation score among seven candidates in our evaluation. We 
also find that Gaussian noise strongly and negatively correlates with 
accuracy (−0.77), whereas Poisson noise has a minimal effect, and we 
visualize robustness across different noise levels. Consequently, our 
unified pipeline is competitive and capable of reporting peach leaf 
physical traits required for orchard applications.

5. Conclusion
The study fills the gap in digital agriculture by designing a 

unified image processing algorithm to find the physical characteristics 
of peach leaves, such as length, width, perimeter, and area, from 
noisy images. This study falls under digital agriculture, where image 
processing helps with crop monitoring, disease detection, and resource 
management.

Peach trees are important in agriculture, and the ability to 
automatically evaluate leaf health is important for orchard management 
and breeding programs. However, the noise in real agricultural images 
makes it difficult to correctly segment and measure leaf features. 
Therefore, different image denoising filters, color space models, 
and segmentation algorithms were applied and compared to find the 
appropriate method for processing peach leaf images with different 
levels of noise.

The comprehensive analysis shows that the bilateral filter is the 
best for dealing with Gaussian and Poisson noise in peach leaf images. It 
preserves the edges and details of the leaf during the denoising process. 
The L∗a∗b∗ color space model is the suitable color space model that 
provides better performance in the segmentation process using the 
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Area Length Width Perimeter
16,213.0 278.3 75.5 641.7

Table 9
Physical characteristics measurements of a peach leaf in pixels

 Figure 19
Accuracy of real image segmentation with different noise levels: 

heatmap

 Figure 20
A peach leaf example demonstrating the unified algorithm: (a) 

original image of a peach leaf, (b) denoised image after applying 
bilateral filter, (c) illustration of width and length of a peach leaf, 

(d) segmented image using K-means clustering

 Figure 18
Accuracy of real image segmentation with different noise levels: 

contour plot

 Figure 17
Accuracy of real image segmentation with different noise levels: 

3D surface plot
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K-means clustering algorithm due to its robust color separation 
property. Among the seven segmentation methods, K-means clustering 
was the most reliable for segmenting the leaf region and extracting the 
physical dimensions of the leaf.

The algorithm developed in this study integrates optimal 
denoising, color space selection, and segmentation methods to obtain 
a reliable and accurate method for finding the physical characteristics 
of peach leaves. The reliability was demonstrated by the high accuracy 
of the leaf blade length, width, area, and perimeter measurements from 
noisy images. These measurements can be used to monitor the health of 
peach trees and aid in insect control and the efficient use of resources 
in the orchard.

This work provides a strong and flexible image processing 
method for peach leaf analysis in digital agriculture. This technique is 
also applicable to other crops and agricultural use cases where image 
noise and segmentation are a challenge. Future work will explore the 
application of the method to images of peach leaves that are affected 
by disease and pests, and explore the application of deep learning 
approaches in such study.
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Appendix A. Gaussian and Poisson noise models
1)  Gaussian noise model

Gaussian noise is a common type of noise in digital images. It 
comes from sensor imperfections, the environment, and the electronic 
devices during the image-capturing process. It also follows a normal 
distribution, so the probability of a pixel intensity changing from its 
expected value. Gaussian noise is added to each pixel, resulting in a 
corrupted image with pixel intensities varying around their true values. 
Gaussian noise is modeled by a probability density function (PDF):

πσ

μ
σ

where x represents the pixel value, µ is the mean (the average noise 
level), and σ is the standard deviation (the noise variance). 

Gaussian noise is additive and independent of the signal strength. 
It can obscure fine image details, making effective denoising techniques 
crucial for image processing tasks.

2)  Poisson noise model
Poisson noise, also called shot noise, is caused by the statistical 

nature of photon detection during image acquisition. As observed in 
low-light conditions, fewer photons were captured, resulting in random 
fluctuations in image intensities. Poisson noise depends on the signal. 
Therefore, its variance increases with the signal intensity. This makes 
brighter parts of the image appear noisier. The Poisson noise is modeled 
for a pixel value x as follows:

where λ is the mean and variance of the distribution. It represents the 
expected number of photon arrivals at a pixel. The statistical nature of 
Poisson noise makes it more difficult to remove than Gaussian noise, 
requiring special denoising methods to maintain image quality.

Appendix B. Segmentation algorithms
For each pixel p, we construct a feature vector in the CIELAB 

space xp= [Lp, ap, bp]
⊤∈R3, which is obtained by RGB to L*a*b* 

mapping. All segmentation algorithms in this section operate on xp.

1)  Active contour model
The active contour model, also known as a snake, involves the 

dynamic evolution of a curve in 2D or a surface in 3D, guided by both 
internal and external forces. Its objective is to adjust the contour to align 
precisely with the boundaries of objects under consideration. Despite 
its advantages of flexibility, user interaction facilitation, and ability to 
handle complex shapes, it is sensitive to initialization, tends to converge 
to local minima, and incurs high computational costs [45].

2)  Region growing algorithm
The region growing algorithm is a pixel-based method. It groups 

pixels based on predefined similarity criteria. In this study, the pixels 
with the maximum variation from the mean value of the initially 
selected seed region are added to the growing regions. This method 
is simple and easy to adapt and tune parameters. However the initial 
seed selection can affect the segmentation results and may lead to over-
segmentation or under-segmentation. It is also sensitive to noise [46]. 
The general procedure for implementing active contours is as follows:

Step 1: Initial Contour Selection
Start with a chosen initial contour within a dataset.

Step 2: Energy minimization 

Minimize the energy function:

where Einternal is internal energy, Eimage is external energy, Econ is energy 
from the constraint forces, and xs is a data point.

Step 3: Output Step
Output: The final contour once it stabilizes or the maximum 

number of iterations is reached.

3) Multilevel image thresholds
The method of multilevel thresholding uses Otsu’s method and 

assumes that an image has pixels that belong to the foreground or 
the background. Its objective is to identify an optimal threshold that 
minimizes intra-class variance or maximizes inter-class variance. This 
method is inherently simple and efficient for multimodal images, and it 
autonomously determines threshold values. However, it is constrained 
by the assumption of a bimodal distribution and is sensitive to noise 
[11]. The general process is outlined below:

Step 1: Compute the histogram and probabilities of each intensity 
level in an image.

Step 2: Set up the inter-class variance formula.
Step 3: Compute the inter-class variance.
Step 4: Choose thresholds that maximize inter-class variance.
Step 5: Output: the segmented image with minimum intra-class 

variance.

4)  Global image threshold
Global image threshold, another method based on Otsu’s idea, 

finds the optimal global threshold of a grayscale image [47]. It gives 
each pixel a binary value (0 or 1) based on the threshold.

5)  Adaptive image threshold
The adaptive image threshold sets the threshold for each pixel 

based on the local mean intensity in its neighborhood [48]. This method 
has the advantages of adaptability and detail preservation. But it also 
has disadvantage such as noise sensitivity, computational complexity 
and dependence on the homogeneity assumption. The procedure is as 
follows:

Step 1: Define the neighborhood size.
Step 2: Compute the local mean intensity within the neighborhood. 

For a pixel at location (x, y), the adaptive thresholding can be 
defined as follows:

where M and N are the sizes of the neighborhood, I(x + i, y + j) is 
the intensity of the image at location (x + i, y + j), and a and b are the 
distances from the central pixel to the edges of the neighborhood in the 
x and y directions.

Step 3: Set the threshold. If the pixel at location (x, y) is I(x, y) ≥ T 
(x, y), then it is set to white; otherwise, it is set to black.

Step 4: Output: the segmented image based on the threshold.

K-nearest neighbors
The K-nearest neighbors (KNN) algorithm is used for 

pixel-by-pixel classification tasks. Each pixel is classified based on 
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its similarity to a set of pre-labeled training data samples. KNN is 
simple, requires few parameters to tune, and is capable of handling 
multiple class segmentation. However, its drawbacks include high 
computational intensity and sensitivity to parameter K, which may lead 
to over-segmentation or under-segmentation [49]. The general process 
can be outlined as follows:

Step 1: Select a value for K.
Step 2: Compute the distance between the new input and all 

training samples.
Step 3: Select K samples with the smallest distance to the input.
Step 4: Assign the most frequent class label from K neighbors to 

its input.
Step 5: Output: the segmented image with each pixel assigned a 

predicted class label.
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