Received: 14 April 2025 | Revised: 15 September 2025 | Accepted: 28 September 2025 | Published online: 21 October 2025

Artificial Intelligence and Applications
2025, Vol. 00(00) 1-18
DOI: 10.47852/bonviewAIA52025928

Estimation of Physical Characteristics of ==
Noisy Peach Leaves Using a
Unified Algorithm

RESEARCH ARTICLE

BON VIEW PUBLISHING

Chunxian Chen' and Haixin Wang>*

! Southeastern Fruit and Tree Nut Research Laboratory, USDA Agricultural Research Service, USA
2 Department of Mathematics and Computer Science, Fort Valley State University, USA

Abstract: Peach production and breeding benefit from digital agriculture and image processing technology. However, there is little knowledge
about the optimal image denoising and processing algorithms for estimating the physical attributes of peach leaves from images. The objective
of this study was to evaluate different image denoising and processing techniques to obtain optimal methods and establish a unified approach
for estimating the physical characteristics of healthy peach leaves, including length, width, perimeter, and area. Twenty denoising filters were
evaluated, and the bilateral filter was determined as the optimal filter for peach leaf image processing with Gaussian and Poisson noise. Twenty-
four color space models, including twenty vegetation indices, were evaluated, among which the CIELAB (L*a*b*) color space performed best
in the segmentation task using K-means clustering. Seven segmentation algorithms were evaluated and K-means clustering was found to be the
optimal method based on a custom metric function. The unified algorithm including optimal denoising, color space selection, and segmentation
techniques successfully estimated the physical characteristics of peach tree leaves. The results show that a unified approach is reliable and accurate
for estimating the physical characteristics of peach leaves from images. These techniques are crucial for efficient orchard management and other

digitalization-based applications in peach production and breeding.
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1. Introduction

Agriculture is a major component of the economy and a crucial
factor in national food security. In 2023, a USDA report stated that
agriculture, food, and related industries accounted for 5.6% of the
GDP and 10.4% of employment in the United States (U.S.) [1]. As
an agricultural product, peaches provide nutrients such as vitamins,
minerals, and antioxidants that enhance the national diet. In 2021,
the total value of peach production in the U.S. was $624 million [2].
Research in the peach industry, including peach genetics, insect control,
and sustainable production practices, contributes to agriculture in
general and to sound agricultural practices.

The application of advanced computer technologies in agriculture,
known as digital agriculture, has transformed traditional agriculture by
promoting efficiency, sustainability, and profitability. Because of its
advantages of precise data measurement and analysis, image processing
technology simplifies the laborious work in agriculture and makes it
more efficient and accurate. The applications of image processing in
digital agriculture include peach disease management, automated weed
detection in orchards, precise yield estimation, and early detection of
plant diseases and pest infestations [3—10].

1) Precision agriculture: With the help of images from satellites,
drones, and ground sensors, precision agriculture checks the health
of crops, pests and diseases, and the soil.
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2) Monitoring crops and diseases: Processing images of crops
helps farmers track their crops from the beginning to the end of
the growing season. It locates diseases and nutrient problems by
analyzing information from images, such as color, texture, and
growth pattern.

3) Weed control: Processing images helps to detect and control weeds
in crop fields. It assists in building weed control systems and reduces
the need for chemicals and their environmental impact.

4) Prediction of crop yields and quality: Processing images of historical
data and imagery helps to predict the yield of crops and quality of
the fruits.

5) Control of resources: Processing images helps save resources such
as water, fertilizer, and energy by providing real-time images of crop
conditions.

Image segmentation is an important step in image processing. It
divides an image into clear and meaningful parts or objects. There are
many image segmentation methods, and each has its own advantages
and disadvantages. The selection of an appropriate approach depends on
the characteristics of an image and the requirements of an application.
The following are some commonly used image segmentation methods
[11-14].

1) Threshold segmentation: Each pixel is assigned to a segment based
on its intensity or color. It is fast and efficient when objects and the
background have clear separation.

2) Edge segmentation: This method finds edges in an image. It is
effective when objects have sharp intensity changes.
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3) Region segmentation: This method groups pixels into regions based
on color, texture, or intensity. It works well for segmenting objects
that appear similar on their entire surface.

4) Clustering segmentation: This method clusters pixels based on
similar features and uses K-means clustering, mean-shift, or fuzzy
C-means clustering. It facilitates automatic segmentation with
minimal prior information.

5) Deep learning segmentation: These approaches are trained on large
datasets of labeled images. They are promised to achieve automated
and accurate segmentation. But they require robust hardware support
with sufficient computational resources and extensive training data.

6) Other methods: Semantic segmentation, instance segmentation,
panoptic segmentation, local segmentation, and global segmentation.
One technique may belong to multiple categories.

Image segmentation results are influenced by the choice of color
space models and the noise in images. In image processing, color
space models represent colors using mathematical models. Each color
space model standardizes color representation and has its benefits and
disadvantages for image segmentation. The selection of an optimal
model depends on the applications used because different models give
different segmentation results [15—17].

Another factor affecting image segmentation is the noise present
in images. Images captured by digital cameras and smartphones contain
noise originating from image sensors. This noise can be categorized
into fixed pattern noise, banding noise, and random noise. Fixed pattern
noise arises from sensor measurements due to the stochastic nature of
photon counting. Banding noise results from a bank of analog-to-digital
(A/D) converters. Random noise is generated by photon emission,
intrinsic thermal and electronic fluctuations, and other sources. Table 1
lists the different types of noise encountered in image processing. Image
noise introduces unwanted information, posing a significant challenge
in the application of image processing technology. A critical step in
image processing is the denoising of images, which is fundamental

Table 1
Noise models

Noise Model

Gaussian noise

Noise Source(s)/Characteristic(s)

From natural sources

White noise Constant power spectrum and zero

auto-correlation
Brownian motion with a
non-stationary stochastic process

Fractal noise

Salt-and-pepper noise Pixel values are set to 0 or 255

Periodic noise From electronic interference

Quantization noise From the process of converting

analog data into digital data

Speckle noise From coherent imaging systems

From the statistical nature of
clectromagnetic waves

Poisson noise

From the combination of Gaussian
noise and Poisson noise

Gaussian-Poisson noise

Gamma noise From laser images

Rayleigh noise From radar images

Random occurrence of white and
black pixels

Impulse noise

Uniform noise Uniformly distributed in a range of

values

Multiplicative noise Signal-dependent scaling noise

for improving the quality of subsequent segmentation tasks. Various
image denoising models have been developed and are categorized as
shown in Figure 1 [18-23]. The physical characteristics of plants are
indicators of their health. Physical characteristics of leaves such as
leaf color, texture, shape, and size reflect the physiological condition
of the plant. They help us detect plant diseases, nutrient deficiencies,
and other stress factors. Understanding the physical characteristics is
important for understanding plant growth and productivity, especially
in agriculture where plant health affects yield and quality.

Image segmentation technology is a tool for estimating and
analyzing these physical characteristics. This process involves
partitioning an image into multiple segments, each matching a distinct
component of the plant, such as leaves, stems, and flowers. In the work
of Ashwinkumar et al. [24], image segmentation was used to detect early
signs of disease in tomato plants, and it showed high accuracy rates
in distinguishing healthy and infected leaves. In the work of Fuentes
et al. [25], convolutional neural networks were used to segment and
classify coffee leaf images, helping to find leaf rust disease. Paithane
and Wagh [26] developed a novel fuzzy c-means algorithm for cotton
leaf spot detection, further highlighting the utility of clustering methods
in agricultural imaging.

Accurate estimation of leaf characteristics is crucial for precision
agriculture. Recent studies span denoising, color—space choices, and
segmentation or trait extraction. Fan et al. [27] developed a two-stream
deep framework which performs plant segmentation and leaf counting
on Computer Vision Problems in Plant Phenotyping (CVPPP) images.
Li et al. [28] built an automated, non-destructive monitoring system
for rapeseed leaves and reported strong UNet-Attention segmentation
performance. For color space selection in field imagery, Hernandez
et al. [29] proposed a principled method for choosing optimal channels
for plant or soil segmentation. As a preprocessing step, Bhujade et al.
[30] introduced an optimization-assisted cascaded filtering pipeline
that improves denoising quality for crop images. For classical
pipelines, Jamjoom et al. [31] combined K-means segmentation with
SVM classification for leaf-disease analysis on PlantVillage. These
works highlight gaps in noise robustness, color representation, and
computational efficiency. Our unified algorithm employs bilateral
filtering, CIELAB, and K-means clustering to improve robustness and
accuracy relative to these approaches. Table 2 summarizes and clarifies
the scope and metrics.

Unlike deep models that require training data, GPU resources,
and task-specific labels, our workflow is end-to-end interpretable:
denoising (20 filters), color space selection (24 transformations,
including 20 vegetation indices), and segmentation (7 algorithms) are
compared quantitatively on the same imagery. The analysis isolates
the noise effects (Gaussian vs. Poisson) and motivates the final
choices (bilateral filtering and K-means in CIELAB) that maximize
our composite scores. The output is a set of physical traits (length,
width, perimeter, area) directly usable in orchard management, which
is outside the scope of prior works. In contrast, our contribution is
a unified workflow that (i) quantitatively selects the denoiser, color
space, and segmentation method under mixed Gaussian-Poisson
noise; (ii) demonstrates noise robustness and explains failure modes;
and (iii) outputs physical leaf traits (length, width, perimeter, area)
directly from noisy images. Within our study, bilateral filtering and
CIELAB with K-means emerge as the optimal choices, and we
quantify that Gaussian noise, not Poisson noise, is the dominant factor
affecting accuracy. This positions our method as a resource-light and
reproducible alternative to learning-based systems while addressing a
different end goal: trait estimation.

The contributions of the study are listed as follows.

1) An approach is proposed to estimate the physical characteristics of
healthy peach leaves.
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Figure 1
Categories of denoising models
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Table 2
Comparison with recent work: tasks, data, metrics, and differentiators
Study Task Data Reported metric(s) Key differentiators
Fan et al. [27] Leaf counting guid-  CVPPP17 (Arabidopsis, Segm. loU = 0.98; counting Deep two-stream model; task =
ed by segm. tobacco) DiC 0.11, ADiC 0.36, MSE counting; requires training
0.42
Liet al. [28] Leaf-area monitoring  Brassica napus Segm. acc. 96.77%; area error  UNet-Attention + device; task
down to 1.25% (splint) = area on rapeseed; training/
hardware
Hernandez-Hernandez  Plant/soil segm. Field imagery Accuracy > 95.8% Focus on channel selection; no
et al. [29] (color space trait estimation
selection)
Bhujade et al. [30] Denoising for crop Soybean, cotton PSNR/SSIM vs. baselines Denoising only; no
images segmentation/traits
Jamjoom et al. [31] Disease segm. and PlantVillage SVM acc. 97.2% (KNN Disease classification; training
cls. 80.2%, Ensemble 83.6%) and labels required
This work Trait estimation from Peach leaves Unified: selects optimal de- Noise-robust; broad
noisy images (PlantVillage subset) noiser, color space, segmen- comparison: 20 filters, 24 color
tation; reports length/width/ transforms, 7 segmentation
area/perimeter algorithms

2) Twenty denoising filters are compared to identify the optimal filter
for peach leaf images.

3) The robustness of noise effects is examined on both synthetic data
and real leaf images.

4) Twenty-four color space models are evaluated to determine the
optimal color space for peach leaf images.

5) Within the L*a*b* color space, 360 PlantVillage peach leaf images,
and a fixed preprocessing and postprocessing, K-means clustering

is identified as the optimal segmentation algorithm for peach leaf
images in the study, among seven segmentation algorithms.

2. Proposed Unified Methodology

The physical characteristics of peach leaves, such as length,
width, perimeter, and area, are indicators of peach leaf health and
vigor. Therefore, a comprehensive analysis of these characteristics can
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provide important information about possible problems that affect the
health of the leaves and the productivity of peach trees. Studying these
characteristics can help in the early detection of problems so that timely
actions can be taken and good management strategies can be adopted to
solve these problems [50].

Based on the noise analysis of real images, the comparison
of color spaces, and the comparison of segmentation algorithms in
Section 2, this study proposes a unified approach to find the physical
characteristics of peach leaves. The unified approach includes the
bilateral filter for denoising, the CIELAB color space for feature
representation, and the K-means clustering algorithm for segmentation.
The process is illustrated in Figure 2.

2.1. Bilateral filter

The bilateral filter is a nonlinear, edge-preserving, and noise-
reducing smoothing filter. The equation is given as follows.

_ 2(4,4) €8x ywl(4,5) G (4,5)
GI(2,y) = =S Ges,uig) M

where

1) G'(x,y): Output pixel value at position (X, y) after applying the filter

2) Sx,y: The neighborhood window centered around (x, y)

3) w(i, j): Weights used in the bilateral filter, with ws(i, j) as spatial
weights and wr(i, j) as range weights

Figure 2
A unified approach to estimate the physical characteristics of
peach leaves

( Input: Noisy peach leaf images )

v

[ Apply Bilateral filter )

v

Change to L*a*b* color space

v

( Apply K-means segmentation)

v

[ Apply morphological operations )

v

( Output: Peach leaf physical characteristic ]

2.2. RGB to L*a*b*

The CIELAB (or L*a*b* ) color space is identified as the optimal
color space for this study. The input RGB values must first be converted
to the CIE XYZ color space. Then the L*, a*, and b* are obtained by
a nonlinear transformation. The conversion process is described as
follows.

RGB to XYZ Conversion:

X =0.4124564 - R'+ 0.3575761 - G' + 0.1804375 - B’
Y =0.2126729 - R"+0.7151522 - G' + 0.0721750 - B’
Z=0.0193339 - R+ 0.1191920 - G' + 0.9503041 - B’

XYZ to LAB Conversion:

where f (t) is defined as

ift > (%)3

© t3
f(t
% . (2—69)2 -t -+ % otherwise

2.3. K-means clustering

K-means clustering is an unsupervised machine learning
algorithm which splits a dataset into K non-overlapping clusters [44].
The goal of the algorithm is to minimize the sum of distances between
data points and their corresponding cluster centers. K-means clustering
has advantages such as simplicity, scalability, speed, and flexibility to
different data types. However, it also has limitations, including the need
to prespecify the number of clusters K, the need to randomly initialize
the centroids and being sensitive to outliers, being affected by the
shape of the clusters, and being likely to reach suboptimal solutions.
K-means clustering is selected as the segmentation method based on the
comparative evaluation in Section 2.3. The general procedure consists
of the following steps:

Step 1: Initialization
Choose K centroids from the dataset.
Step 2: Assignment Step

Assign each data point to the closest centroid based on Euclidean

distance:

= {xp i I I < I —uI1 <5 <K} @

where . is the centroid for the i cluster, X, is a data point, and Si(t) is the
set of all points that are closer to the i centroid than any other centroid.
Step 3: Update Step
Calculate the new centroids as the mean of all data points in the
cluster:

t+1)

=1

5]

i

> X

xiES-(t)

N

Step 4: Output Step



Artificial Intelligence and Applications \Vol. 00

Iss. 00 2025

Output: The final K clusters and their centroids until the centroids
do not change significantly or the maximum number of iterations is
reached.

3. Experimental Evaluation

Image noise, color space models, and segmentation algorithms
influence the quality of image analysis. In this section, we perform a
comparative analysis of different denoising filters, color space models,
and segmentation algorithms to determine the optimal algorithm. This
study applies these methods to investigate the physical characteristics
of peach leaves.

3.1. Dataset

The dataset used in this study is publicly available from the
PlantVillage dataset on Kaggle, which includes 360 images of healthy
peach leaves. The input images are shown in the RGB color space.

3.2. Denoising process for real digital images

Knowing the types of noise in digital images helps in developing
denoising algorithms and improving image quality. Digital images
captured by cameras or smartphones contain noise that follows Poisson
and Gaussian distributions. Those noises affect quality of image
processing results [21, 32]. See Appendix A for a description of Poisson
and Gaussian noise.

3.2.1. Denoising filters

Denoising filters are crucial for processing images before they
are applied in tasks such as segmentation [19, 33]. These filters reduce
noise and preserve details, including edges. This study evaluates twenty
denoising filters, listed in Table 3, to determine the optimal filter for
peach leaf images.

3.2.2. Custom noise metric function

To select appropriate denoising algorithms for real images
with Poisson and Gaussian distributions, three standard metrics are
considered: mean squared error (MSE), peak signal-to-noise ratio
(PSNR), and structural similarity index measure (SSIM). These metrics
are used to evaluate the performance of denoising algorithms and are
listed in Table 4.

Table 3
List of 20 denoising filters

Filter Name

Homomorphic filter

Filter Name

Ideal notch filter

Geometric mean filter Morphological filter

Median order-statistic filter Constrained least squares filter

Adaptive noise smoothing Nonlinear complex diffusion

filter filter
Adaptive median filter Gabor filter
Neighborhood mean filter Wiener filter

Harmonic mean filter Kuwabhara filter

Inverse harmonic mean filter Beltrami filter
Inverse filter

Bilateral filter

Lucy-Richardson filter
Non-local means (NLM) filter

Table 4
Summary of image quality metrics for noise analysis

Name of Image Quality

Metric Formula

Mean squared error (MSE) MSE = & SN (G(i) B /@(i))z

Peak signal-to-noise ratio PSNR = 10 - log;, ( MAX? )

(PSNR) MSE

Structural similarity index IM = (215117 +C1) (205,+Cs)

measure (SSIM) 58 (13+03+C1) (3+03+C2)
where

1) N is the total number of pixels in the image.

2) G(i) is the observed pixel value.

3) 6(1) is the predicted pixel value.

4) MAX is the maximum possible pixel value of the image.

5) x and y are two measurement windows with size NxN.

6) p_and u, are the pixel sample means of the two measurement
windows x and y.

7) o2 and cf, are the standard deviations of x and y.

8) o, is the cross-covariance between x and y.

9) C, and C, are constants added to stabilize the division and avoid
division by zero.

While each metric has its limitations, it is necessary to formulate
a comprehensive metric function for assessing denoising algorithms. In
this paper, we design a new metric function to evaluate the performance
of denoising methods on Poisson and Gaussian noisy images. This
function integrates three common metric functions: MSE, PSNR, and
SSIM, to create a comprehensive evaluation metric. The formula for the
custom metric is as follows.

Metric, = f(wiM1, wjM2, w3S1) 3)

where

1) n stands for noise. This function is denoted as Metric_ to evaluate the
performance of denoising algorithms.

2) wi, Wy, and wji are weights. The weights can be adjusted to
emphasize the importance of a specific metric in applications.

3) M1 is the MSE. It measures the average squared difference
between the original and denoised images. It is used to measure the
reconstruction quality.

4) M2 is the PSNR. It compares the maximum possible signal to the
noise and assesses the quality of image reconstruction in terms of
signal fidelity.

5) S1 is the SSIM. It measures the quality of the image by
comparing the structural similarity between the original and
denoised images.

In Equation (3), wy is adjusted to 50% due to the similarity
between metrics MSE and PSNR. After normalizing each component
to [0,1], we enforce w7, wy, wy >0, and w] + wy + wi =1. Because
MSE and PSNR quantify closely related fidelity aspects, we allocate
half of the weight to SSIM and split the remainder equally between
MSE and PSNR. In all reported results, we set w; = 0.25 (MSE),
wy = 0.25 (PSNR), and w3 = 0.50 (SSIM). For robustness checks, we
considered wy, wy € [0.20,0.30], and wy € [0.40,0.60]; the nominal
(0.25,0.25,0.50) setting is used for tables and figures. This metric
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function is made to balance the evaluation by using the strengths of
the three main metrics. MSE shows pixel-level accuracy. PSNR shows
the noise level in the reconstructed image. SSIM shows the structural
similarity based on human visual perception.

3.2.3. General procedure for comparing denoising filters and results
The general procedure to deal with noise, including Gaussian
and Poisson noise, is to compare different denoising algorithms using
a custom metric and select the optimal denoising algorithm. Figure 3
illustrates this general procedure.
To standardize the values of M1, M2, and S1 within the range
[0, 1], the following equation is used for normalization.

value—minimumy,ye
Maximumy,jye —MINIMUM ya1pe

normalized e =

“4)

A value of =1 indicates perfect similarity.

In the simulation sections, a noise-free image of a peach tree leaf
is used to verify the procedure. Figure 4 demonstrates an example of
the procedure. The result is shown in Table 5. f1 represents the value
of f with Gaussian noise, f2 represents the value of f with Poisson
noise, and fm is the mean value of f1 and f2. The results show that the
bilateral filter is identified as the optimal denoising algorithm for the
peach tree leaf with Gaussian noise and the geometric mean filter as the
optimal algorithm for Poisson noise. The mean value of fm is 0.65. The

distribution of fm is depicted in Figure 5, and the majority of fm values
lie within the ranges [0.65, 0.72] or [0.87, 0.94]. The bilateral filter is
identified as the top-performing filter for images affected by both noise
types. The Wiener filter and inverse harmonic filter are also deemed
optimal based on the values of fm.

The example images shown were generated by adding Gaussian
noise with a variance of 0.5 and Poisson noise with a scale factor of
6. The visual differences between images are small and may appear
imperceptible to the human eye. However the measurement using MSE,
PSNR, and SSIM shows variations in noise reduction and image detail
preservation. This simulation is similar to the real digital images. Noise
exists in images, but we cannot see it, so quantitative simulation must
be performed.

3.2.4. Robustness analysis of noise

Noise impacts image processing results. The covariance of
Gaussian noise ranges from 0 to 2.5. The Poisson noise scale factors
range from (1 to 10) for different levels of Poisson noise. The general
procedure is illustrated in Figure 6.

Figures 7, 8, and 9 provide a visual representation of how
accuracy varies with different levels of Gaussian noise covariance and
Poisson noise scale factors. The standard deviation of accuracy across
different noise levels is 0.136. These variations depend on the Gaussian
noise covariance and Poisson noise scale factor. Image processing
results show fluctuations in accuracy when these noise parameters

Figure 3
Selection of denoising algorithm based on value f
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Select the best denoising algorithm based on value 2 )

I -

< |

Calculate mean value fm = (f1 + f2) /2 )

v
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Figure 4
A peach leaf image affected by Gaussian noise and Poisson noise
Original image

Gaussian noisy image

Poisson noisy image Combined noisy image

Table 5
Denoising filters and their performance metrics denoising
algorithms f1, £2,fm

Denoising Algorithms f1 2 fm

Ideal notch filter 0.4218 0.7275 0.5747
Geometric mean filter 0.7825 0.9720 0.8773
Median order-statistic filter 0.6311 0.5916 0.6113
Adaptive noise smoothing filter 0.8647 0.8023 0.8335
Adaptive median filter 0.9112 0.8431 0.8771
Neighborhood mean filter 0.9053 0.8391 0.8722
Harmonic mean filter 0.8144 0.9609 0.8876
Inverse harmonic mean filter 0.9197 0.9699 0.9448
Inverse filter 0.3373 0.3107 0.3240
Bilateral filter 0.9915 0.9151 0.9533
Homomorphic filter 0.7857 0.7300  0.7578
Morphological filter 0.7086 0.8750 0.7918
Constrained least squares filter 0.3366 0.3102 0.3234
Nonlinear complex diffusion filter ~ 0.8966 0.8305 0.8635
Gabor filter 0.7098 0.6648 0.6873
Wiener filter 0.9635 0.8923 0.9279
Kuwabhara filter 0.3372 0.3104 0.3238
Beltrami filter 0.3374 0.3106 0.3240
Lucy-Richardson filter 0.7526 0.6987 0.7256
Non-local means filter 0.7824 0.7264 0.7544

change. The correlation between Gaussian noise covariance and
accuracy is -0.77, which means a strong negative relationship. When
the Gaussian noise level increases, the accuracy of image segmentation
will decrease. The correlation between the Poisson noise scale factor
and accuracy is 0.057, indicating Poisson noise has little impact on
the accuracy of image segmentation. Therefore, Gaussian noise is
the primary factor that affects overall accuracy. Reducing Gaussian
noise can improve image processing performance. In the contour plot,
some regions show a steep gradient, indicating that accuracy changes
significantly when the Gaussian covariance changes.

Figure 5
Distribution of filters based on fm

Number of filters
N
N (4] w
) | |

N
[9)]
1

0.5

04
0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Regions with wide spaces between contours show areas where
accuracy stays steady even when parameters change. In the heatmap,
certain columns or rows show higher or lower accuracy. This means
that Gaussian covariance has a greater effect on the accuracy than other
factors.

3.3. Comparison of color space models

This study analyzes the physical characteristics of peach leaves
using different segmentation algorithms. The optimal color space model
depends on the specific application, as different models give different
results.

3.3.1. Color space models

Previous research [34, 35] investigated twenty-four red, green,
blue (RGB) color transformations, including twenty vegetation indices.
These transformations are listed in Table 6.

3.3.2. The custom metric function for segmentation

Metrics are used to assess the performance of segmentation
algorithms by comparing an algorithm’s output and the established
ground truth annotations. These metrics help measure the accuracy,
completeness, and consistency of the segmented regions. The selection
of metrics depends on specific tasks and desired evaluation criteria.
Common metrics include pixel accuracy, sensitivity, precision, recall,
dice score (or Fl-score), intersection over union (IoU) (or Jaccard
index), and specificity. Each metric returns a value between 0 and 1,
where higher values indicate greater overlap and better segmentation
performance [36, 37].

Calculating pixel accuracy requires identifying the true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN).

For each class:

1) TP: A pixel is correctly classified as belonging to a target class.

2) TN: A pixel is correctly classified as not belonging to a target class.
3) FP: A pixel is incorrectly classified as belonging to a target class.
4) FN: A pixel is incorrectly classified as not belonging to a target class.

Selecting a metric depends on the specific application because
each has its own advantages and limitations. For instance, metrics such
as pixel accuracy, sensitivity, precision, and recall are not suitable for
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Flowchart of robustness analysis of noise Synthetic image accuracy with different noise levels: contour plot
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Calculate accuracy class imbalance, while dice score and Jaccard index are suited for class
imbalance at the expense of computational cost. Pixel accuracy weights
all pixels equally. Sensitivity does not take false positives into account.
Precision misses false negatives. Specificity does not count false
negatives. The Jaccard index is affected by object sizes. The metric
function shown in Equation (5) evaluates the performance of image
segmentation algorithms by using six common evaluation metrics, each
designed to emphasize different aspects of segmentation quality. The
function is given by
Output: 3D plot images and heatmap
Metric, = f(wipl, wisl, wip2, widl, wijl, wis2) Q)
where
1) wi (for i=1,2,...,6) are weights that can be tuned based on the
application and the requirements of the segmentation task. These
Figure 7 weights allow the function to focus on certain evaluation metrics
Synthetic image accuracy with different noise levels: 3D surface depend}ng on the type of images or the segmentation process.
plot 2) p, is pixel accuracy. It calculates the ratio of correctly classified
1 pixels (true positives and true negatives) to the total number of
/\ 0.9 pixels.
TS 08 3) s, is sensitivity or Recall. It measures how well the algorithm finds
0.8 \ 2‘; pixels belonging to the target class.
§ 06 0'5 4) p, is precision. It measures the number of correctly classified pixels
3 ’ 0' . compared to all pixels classified as the target class.
£ 0.4+ 03 5) d, is the dice coefficient or F1-score. It balances precision and recall
0.2 | 02 and provides a single score to quantify segmentation performance.
0 ¥ 6) j, is the Jaccard index or IoU. It measures the overlap between the
0 08 1 15 ) E 0 ;“ d‘;‘i ground truth and the segmented region.
. ] R . . by .
Gaussian noise covariance ?050 20 7) s, is specificity. It measures the ability to correctly find pixels that do

not belong to the target class.
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Table 6 Table 7

Color space models Summary of image segmentation metrics

Name Description Name Formula
Original Pixel accuracy p1= %
Red/Green/Blue R/G/B channels from the RGB color o

space Sensitivity (Recall) $; = %
Theoretical transformation Precision P2 = Toirp
XIY/Z X/Y/Z channels from the XYZ color Dice coefficient dy = - 2xTP

space 2XTP+FP+FN
L*/a*/b* L*/a*/b* channels from the CIELAB Jaccard index = %

color space Specificity So = %
Hue/Saturation/Value H/S/V channels from the HSV color

space
Y/Cb/Cr Y/Cb/Cr channels from the YCbCr

color space

Empirical transformation

i _ _R
Normalized Red NR = o5
i __G¢
Normalized Green NG = i3
i __B
Normalized Blue NB = o5
_ 14R-G
Excess Red ExR = ;-G
_ 14B-G
Excess Blue ExB = 248-¢
_ 3G-24R-B
Excess Green Red ExGR = S5~
Green Blue Difference GBD=G-B
Red Blue Difference RBD=R-B
Red Green Difference RGD=R-G
Green Red Ratio GRR = %
Green Blue Ratio GBR = %
Normalized Green Red NGRD = &R
. GTR
Difference
Normalized Green Blue NGBD = &8
. G+B
Difference
Modifi RD _ G2-R?
odified NG MNGRD = L
Visible Band Difference VD = 2G-B-R
2G1BIR
i _ G*BR
RGB Vegetation Index RGBVI = &-BR
_ 2B
Crust Index Cl= &
Color Index of Vegetation CIVE=0.441R - 0.811G + 0.385B
Extraction (CIVE) +18.78745

Triangular Greenness TGI=95G —35R — 60B

Index

Modified Excess Green MExG =1.262G — 0.884R — 0.311B

Table 7 shows the formulas for the six metrics. This metric
function uses most common metrics when evaluating the segmentation
results and gives a balanced, accurate, and full evaluation.

3.3.3. Comparative evaluation of color spaces using the metric function
Choosing the color space has an impact on the outcomes of
image segmentation. The effect of color space on segmentation

depends on the image properties and the requirements of the
application. An optimal choice of color space for this work enhances
the accuracy and reliability of the segmentation results. Twenty-
four different color transformations, including twenty vegetation
indices, are implemented [34]. The K-means clustering algorithm is
employed for image segmentation. Each color space’s metric function
score is computed. A detailed illustration of this process is shown in
Figure 10.

An analysis of the metric function scores provided in Table 8,
and the six metric scores shown in Figure 11 across different color
spaces concludes that the L*a*b* color space excels in pixel accuracy,
sensitivity, precision, dice coefficient, Jaccard index, specificity, and
the custom metric function score. It also exhibits high sensitivity.
Both TGI and YCbCr also yield positive results across most metrics.
Considering these outcomes, the L*a*b* color space has been selected
as the most suitable choice for this study. It is important to note that
the conclusion regarding the performance of the L*a*b* color space
is based on the K-means clustering algorithm. Different segmentation

Figure 10
Proposed methodology for color space selection in image
segmentation

( Input: Image in RGB color space )

v

Color space transformation

v

C Apply K-means clustering )

v

[ Calculate metric function score )

v

( Output: Selected color space )

End
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Table 8
Metric function scores for each color space
Set A Set B Set C

Color space Score Color space Score Color space Score
CI 0.6183 L*a*b* 0.9840 RGB 09112
CIVE 0.4952 MExG 0.8644 RGBVI 0.5176
ExB 0.9560 MNGRD 0.2619 RBD 0.2812
ExGR 0.6452 NB 0.6986 RGD 0.9715
ExR 0.9409 NG 0.8460 TGI 0.9808
GBD 0.9674 NGBD 0.7047 VD 0.8427
GBR 0.2997 NGRD 0.8406 XYZ 0.7941
GRR 0.9300 NR 0.4512 YCbCr 0.9817
HSV 0.8556

algorithms may yield different results when used in conjunction with
the various color spaces. Previous studies [38, 39] have shown that
a comparative analysis of color spaces across various segmentation
methods reveals that results are relatively similar and the segmented
regions of the resulting images using HSV, HSI, L*a*b*, and Lxuxv+*
color spaces are more uniform.

3.4. Comparative analysis of segmentation algorithms
within the CIELAB (L*a*b¥*) color space

The selection of the segmentation algorithm is important
because each algorithm has its own strengths and limitations that
affect the quality of the segmentation results [40—43]. The comparison
of the seven algorithms follows a standard procedure, as shown in
Figure 12. The quality is evaluated using a custom metric function score.
Algorithmic details of energy forms, thresholds, neighborhood rules,
and hyperparameters for segmentation algorithms: Active Contour,
Region Growing, Multilevel/Global/Adaptive Thresholds, and KNN,
are provided in Appendix B.

3.4.1. Performance analysis of segmentation algorithms

This study uses the custom metric function in Equation (5)
with six metrics: pixel accuracy, sensitivity, precision, dice score,
Jaccard index, and specificity to compare the performance of different
segmentation algorithms. From Figures 13 and 14, the K-means
clustering algorithm gets the highest score based on the custom metric
function. The global threshold and adaptive threshold algorithms
follow the K-means clustering algorithm. The best algorithm depends
on the application requirements. In this study, the K-means clustering
algorithm is selected for peach leaf segmentation because it gives the
best performance according to the custom metric function score.

Figure 15 outlines the general procedure of segmenting a peach
leaf from its background, and Figure 16 illustrates an example of the
segmentation results.

4. Results and Discussion

4.1. Component selection results

Our experimental evaluation of 20 denoising filters confirmed
that the Bilateral filter provided the best performance for images with
mixed Gaussian and Poisson noise, achieving the highest mean score
of 0.9533.

10

Among the 24 color space transformations evaluated, the
CIELAB color space was identified as optimal, yielding a top metric
score of 0.9840 in K-means segmentation tasks.

The comparison of seven segmentation algorithms demonstrated
that K-means clustering was the most effective for isolating peach
leaves within the CIELAB space, outperforming other methods on our
custom metric function.

4.2. Noise robustness and implications

Real images inherently contain noise, which impacts the
performance of segmentation algorithms. The noise robustness of
the proposed segmentation algorithm was evaluated by introducing
additional noise covariance. To evaluate the performance of the
algorithm under realistic mixed-noise conditions, we created a three-
dimensional (3D) parameter space. The following figures visually
illustrate the accuracy of the system, where one axis represents the
Gaussian noise covariance and the other axis the Poisson noise scale
factor. This approach allows for a clear analysis of how the algorithm
responds to each noise type individually and to their combined effect.
Figures 17 to 19 illustrate the results generated by the flowchart
procedure in Figure 6.

Unlike the analysis of synthetic data, real digital images are
sensitive to Gaussian noise variance, which is between [0, 0.05].
Figures 17 and 18 show 3D surface and contour plots visually
illustrating the accuracy of the image segmentation algorithm when the
Gaussian noise covariance and Poisson noise scale factor are varied.
The results show that as the Gaussian noise covariance increases, the
segmentation accuracy drops significantly. This drop becomes very
steep when the covariance exceeds 0.05. On the other hand, Poisson
noise has a much less impact on accuracy, and accuracy decreases much
slowly as the scale factor varies. The plots show that for getting high-
accuracy segmentation, controlling Gaussian noise is more important
than handling Poisson noise.

Figure 19 shows more details with a heatmap that maps
segmentation accuracy across different Gaussian and Poisson noise
levels. Gradient of intensity in the heatmap visualizes levels of the
image where accuracy drops dramatically. The largest color changes
happen when Gaussian noise covariance is high, supporting the finding
that Gaussian noise is the main factor. The relatively stable regions of
the heatmap along the axis of increasing Poisson noise suggest that the
segmentation algorithm exhibits greater resilience to Poisson noise
compared to Gaussian noise.
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Figure 11
Six metric scores for each color space except for the custom metric score
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The analysis of Figures 17-19 demonstrates that while both
Gaussian and Poisson noise can degrade segmentation accuracy,
the system is notably more sensitive to variations in Gaussian noise
covariance. The accuracy decline is steep in regions of higher Gaussian
noise, indicating that in real-world applications, efforts to mitigate
Gaussian noise are crucial for preserving segmentation quality. On the
other hand, the system shows robustness against Poisson noise, with
accuracy only gradually decreasing as the Poisson noise scale factor
increases. This suggests that while Poisson noise may be present in
imaging scenarios, its impact on segmentation performance is less than

that of Gaussian noise. Therefore, in practical applications requiring
high-precision segmentation, strategies should prioritize reducing
Gaussian noise to maximize accuracy.

4.3. Physical characteristics estimation

The measurement of the physical characteristics of peach leaves
such as length, width, area, and perimeter is achieved using a systematic
procedure that uses segmentation and measurement methods. Below is
a step-by-step breakdown of the process:

11
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Figure 12 Figure 15
Comparative evaluation process for segmentation algorithms General procedure to segment a leaf from its background
( Input: Image in RGB color space ) ( Input: Image in RGB color space ]
( Convert the image in L*a*b* color space ) ( Convert the image in L*a*b* color space )
( Apply segmentation algorithms ) . .
Apply K-means clustering algorithm

v

( Calculate metric function scores )

[ Output: The selected algorithm j ¢ )

with the highest metric score C Output: The segmented image with objects

Figure 13 Fi
. . . . igure 16
Performance of segmentation algorithms based on six metrics (a) Original image, (b) Leaf image segmented from its background
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Figure 14

Comparison of custom metric scores of segmentation algorithms
1) Image acquisition and preprocessing: A peach leaf image is

12 preprocessed using the bilateral filter to eliminate noise while
retaining edges.
2) Segmentation: The leaf is segmented from the background using
K-means clustering in the L*a*b* color space.
3) Measurement:
(a) Length: The length is measured from the base to the tip of the
leaf in the major axis of an ellipse that fits the segmented leaf.
(b) Width: It is measured as the minor axis of the same ellipse and
the shortest diameter.
(c) Area: It is measured by counting the number of pixels inside the
segmented leaf.
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Visual results are shown in Figure 20.

12



Artificial Intelligence and Applications \Vol. 00

Iss. 00 2025

Figure 17
Accuracy of real image segmentation with different noise levels:
3D surface plot

Accuracy

Figure 18
Accuracy of real image segmentation with different noise levels:
contour plot
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Figure 19
Accuracy of real image segmentation with different noise levels:
heatmap
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Table 9 presents the pixel-based measurements of the physical
characteristics of a peach leaf. This table includes measurements
associated with a peach leaf image, specifically aimed at evaluating and
determining properties related to a leaf’s physical characteristics.

Table 2 contrasts our study with recent research. Two
clarifications apply: (1) tasks and datasets differ (e.g., leaf counting on

Figure 20
A peach leaf example demonstrating the unified algorithm: (a)
original image of a peach leaf, (b) denoised image after applying
bilateral filter, (c) illustration of width and length of a peach leaf,
(d) segmented image using K-means clustering

(a) (b)
(c) (d)
Length
Width
Table 9

Physical characteristics measurements of a peach leaf in pixels
Area Length Width Perimeter
16,213.0 278.3 75.5 641.7

CVPPP, disease classification on PlantVillage, or rapeseed leaf-area
monitoring) and (2) several works target a single pipeline component
(denoising or segmentation), whereas our goal is an end-to-end trait
estimation workflow. In our study, we provide quantitative evidence
that (i) bilateral filtering is optimal across Gaussian/Poisson noise
when evaluated by a composite metric, outperforming the next best
filters, inverse harmonic mean and Wiener filters, in terms of the mean
score fm and (ii) K-means in the CIELAB space yields the highest
segmentation score among seven candidates in our evaluation. We
also find that Gaussian noise strongly and negatively correlates with
accuracy (—0.77), whereas Poisson noise has a minimal effect, and we
visualize robustness across different noise levels. Consequently, our
unified pipeline is competitive and capable of reporting peach leaf
physical traits required for orchard applications.

5. Conclusion

The study fills the gap in digital agriculture by designing a
unified image processing algorithm to find the physical characteristics
of peach leaves, such as length, width, perimeter, and area, from
noisy images. This study falls under digital agriculture, where image
processing helps with crop monitoring, disease detection, and resource
management.

Peach trees are important in agriculture, and the ability to
automatically evaluate leaf health is important for orchard management
and breeding programs. However, the noise in real agricultural images
makes it difficult to correctly segment and measure leaf features.
Therefore, different image denoising filters, color space models,
and segmentation algorithms were applied and compared to find the
appropriate method for processing peach leaf images with different
levels of noise.

The comprehensive analysis shows that the bilateral filter is the
best for dealing with Gaussian and Poisson noise in peach leaf images. It
preserves the edges and details of the leaf during the denoising process.
The L*a*b* color space model is the suitable color space model that
provides better performance in the segmentation process using the

13
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K-means clustering algorithm due to its robust color separation
property. Among the seven segmentation methods, K-means clustering
was the most reliable for segmenting the leaf region and extracting the
physical dimensions of the leaf.

The algorithm developed in this study integrates optimal
denoising, color space selection, and segmentation methods to obtain
a reliable and accurate method for finding the physical characteristics
of peach leaves. The reliability was demonstrated by the high accuracy
of the leaf blade length, width, area, and perimeter measurements from
noisy images. These measurements can be used to monitor the health of
peach trees and aid in insect control and the efficient use of resources
in the orchard.

This work provides a strong and flexible image processing
method for peach leaf analysis in digital agriculture. This technique is
also applicable to other crops and agricultural use cases where image
noise and segmentation are a challenge. Future work will explore the
application of the method to images of peach leaves that are affected
by disease and pests, and explore the application of deep learning
approaches in such study.
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Appendix A. Gaussian and Poisson noise models

1) Gaussian noise model

Gaussian noise is a common type of noise in digital images. It
comes from sensor imperfections, the environment, and the electronic
devices during the image-capturing process. It also follows a normal
distribution, so the probability of a pixel intensity changing from its
expected value. Gaussian noise is added to each pixel, resulting in a
corrupted image with pixel intensities varying around their true values.
Gaussian noise is modeled by a probability density function (PDF):

(x—u)?

e 2°

f(x) = \/217[?

where x represents the pixel value, p is the mean (the average noise
level), and o is the standard deviation (the noise variance).

Gaussian noise is additive and independent of the signal strength.
It can obscure fine image details, making effective denoising techniques
crucial for image processing tasks.

2) Poisson noise model

Poisson noise, also called shot noise, is caused by the statistical
nature of photon detection during image acquisition. As observed in
low-light conditions, fewer photons were captured, resulting in random
fluctuations in image intensities. Poisson noise depends on the signal.
Therefore, its variance increases with the signal intensity. This makes
brighter parts of the image appear noisier. The Poisson noise is modeled
for a pixel value x as follows:

Plz=k)=¢% ,;’\k

for k=0,1,2,...

where A is the mean and variance of the distribution. It represents the
expected number of photon arrivals at a pixel. The statistical nature of
Poisson noise makes it more difficult to remove than Gaussian noise,
requiring special denoising methods to maintain image quality.

Appendix B. Segmentation algorithms

For each pixel p, we construct a feature vector in the CIELAB
space x = [L, a, bp]TER3, which is obtained by RGB to L*a*b*
mapping. All segmentation algorithms in this section operate on xp.
1) Active contour model

The active contour model, also known as a snake, involves the
dynamic evolution of a curve in 2D or a surface in 3D, guided by both
internal and external forces. Its objective is to adjust the contour to align
precisely with the boundaries of objects under consideration. Despite
its advantages of flexibility, user interaction facilitation, and ability to
handle complex shapes, it is sensitive to initialization, tends to converge
to local minima, and incurs high computational costs [45].

2) Region growing algorithm

The region growing algorithm is a pixel-based method. It groups
pixels based on predefined similarity criteria. In this study, the pixels
with the maximum variation from the mean value of the initially
selected seed region are added to the growing regions. This method
is simple and easy to adapt and tune parameters. However the initial
seed selection can affect the segmentation results and may lead to over-
segmentation or under-segmentation. It is also sensitive to noise [46].
The general procedure for implementing active contours is as follows:

Step 1: Initial Contour Selection
Start with a chosen initial contour within a dataset.

Step 2: Energy minimization

Minimize the energy function:

*

Esnake = f()l Evsnake(ms)dS
= fol (Einternal(a:s) + Eimage(ws) + Econ(ws))ds

where E, is internal energy, Eimage is external energy, E_ is energy

from the constraint forces, and x_is a data point.

Step 3: Output Step
Output: The final contour once it stabilizes or the maximum
number of iterations is reached.

3) Multilevel image thresholds

The method of multilevel thresholding uses Otsu’s method and
assumes that an image has pixels that belong to the foreground or
the background. Its objective is to identify an optimal threshold that
minimizes intra-class variance or maximizes inter-class variance. This
method is inherently simple and efficient for multimodal images, and it
autonomously determines threshold values. However, it is constrained
by the assumption of a bimodal distribution and is sensitive to noise
[11]. The general process is outlined below:

Step 1: Compute the histogram and probabilities of each intensity
level in an image.

Step 2: Set up the inter-class variance formula.

Step 3: Compute the inter-class variance.

Step 4: Choose thresholds that maximize inter-class variance.

Step 5: Output: the segmented image with minimum intra-class
variance.

4) Global image threshold

Global image threshold, another method based on Otsu’s idea,
finds the optimal global threshold of a grayscale image [47]. It gives
each pixel a binary value (0 or 1) based on the threshold.

5) Adaptive image threshold

The adaptive image threshold sets the threshold for each pixel
based on the local mean intensity in its neighborhood [48]. This method
has the advantages of adaptability and detail preservation. But it also
has disadvantage such as noise sensitivity, computational complexity
and dependence on the homogeneity assumption. The procedure is as
follows:

Step 1: Define the neighborhood size.

Step 2: Compute the local mean intensity within the neighborhood.
For a pixel at location (X, y), the adaptive thresholding can be
defined as follows:

a b
T(x,y) = yiw 2 2 Mx+iy+j)

i=—aj=—b

where M and N are the sizes of the neighborhood, I(x + i, y + j) is
the intensity of the image at location (x + i, y + j), and a and b are the
distances from the central pixel to the edges of the neighborhood in the
x and y directions.

Step 3: Set the threshold. If the pixel at location (x, y) is I(x, y) > T
(X, y), then it is set to white; otherwise, it is set to black.
Step 4: Output: the segmented image based on the threshold.

K-nearest neighbors

The K-nearest neighbors (KNN) algorithm is used for
pixel-by-pixel classification tasks. Each pixel is classified based on

17



Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

its similarity to a set of pre-labeled training data samples. KNN is
simple, requires few parameters to tune, and is capable of handling
multiple class segmentation. However, its drawbacks include high
computational intensity and sensitivity to parameter K, which may lead
to over-segmentation or under-segmentation [49]. The general process
can be outlined as follows:

Step 1: Select a value for K.

Step 2: Compute the distance between the new input and all
training samples.

Step 3: Select K samples with the smallest distance to the input.

Step 4: Assign the most frequent class label from K neighbors to
its input.

Step 5: Output: the segmented image with each pixel assigned a
predicted class label.
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