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Abstract: This study aims to evaluate the precision of a mathematical system using Artificial Intelligence (AI) in forecasting retinal anomalies 
linked to Diabetic Retinopathy (DR). The study adopted a quantitative, descriptive, and exploratory approach. A standard sample of 1684 
ocular fundus images was analyzed. These images were divided into two groups: Class 0 for healthy eyes and Class 1 for eyes with DR. 
A finite population model was used to determine the sample size, which came from a publicly available database. Experts in the field 
validated the results obtained to guarantee the accuracy of the findings. The study used the Vision AI solution to train and test 3,752 publicly 
available medical images. During the training phase, an independent set of 1,684 medical images that had not been included in the training 
sample was selected. The sample was then classified into two groups: (1) Class 0 for healthy eyes; and (2) Class 1 for eyes with DR. To 
evaluate the model’s performance, a statistical analysis was conducted using key metrics such as accuracy, sensitivity, specificity, F1-score, 
and confusion matrix. The AI-based model demonstrated an accuracy exceeding 90%, with statistically significant findings supporting the 
study’s hypothesis. The findings highlight the model’s ability to detect and predict DR in real time, improving the accuracy of disease 
detection.
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1. Introduction
Artificial intelligence (AI) is not a technology far removed from 

everyday life. Autonomous cars and voice-recognition assistants are 
already part of modern society. What futurists imagined in television 
shows is now part of our reality [1]. The reach and advantages of 
this technology extend beyond expectations, with applications that 
support decision-making in mission-critical systems, particularly 
in the healthcare sector. In this field, AI has helped address complex 
challenges, including cost reduction and faster response times. Danieli 
et al. [2] emphasize that AI-based applications allow for highly 
accurate and efficient detection of autoimmune diseases. This approach 
shortens response times and reduces human bias, leading to more 
timely and effective diagnoses. Al-Worafi [3] underscores the need 
of using emerging technologies to detect and diagnose diseases with 
enhanced sensitivity, specificity, robustness, and simplicity, especially 
in resource-constrained settings. Technology contributes to reducing 
human error caused by biases in knowledge, experience, or expertise in 
data interpretation [4]. 

The health industry has to deal with more complex, hard-to-
treat ailments contributed by the advent of the digital age. The Pan 
American Health Organization (PAHO) emphasizes this by claiming a 
25% increase in diabetes prevalence over the previous decade [5]. This 
increase shows the importance of finding new ways and instruments 
to quickly and accurately identify problems, especially in low-income 

areas where access to full ophthalmologic examinations and modern 
imaging equipment is limited. Moreover, there often exists a deficiency 
of professionals with the requisite knowledge, experience, and skill 
to promptly diagnose ocular illnesses [6], presenting a considerable 
problem for contemporary medicine. 

In addition, conventional screening procedures such as direct 
ophthalmoscopy and fluorescein angiography typically require the 
pupils to be dilated, are time-consuming, and dependent on the 
availability of highly qualified ophthalmologists. These techniques are 
often not available in low- and middle-income nations because they are 
too expensive, the infrastructure is not good enough, or they are too far 
away, which leads to delayed diagnosis and more cases of blindness 
that might have been avoided [7]. These restrictions highlight the need 
for scalable, cost-effective, and automated systems that can function 
correctly in primary care environments without direct professional 
involvement.

Diabetic Retinopathy (DR) is a prevalent complication of 
diabetes that may result in vision loss if not properly identified and 
managed. Loffler et al. [8] and Wang [9] found that one-third of those 
with diabetes had pathological abnormalities in the retina due to changes 
in the blood vessels. The researchers also spoke about how hard it is to 
find, understand, assess, and predict this issue, which might lead to full 
or partial vision loss if not identified immediately.

In light of this, screening becomes an essential remedy. However, 
more than 80% of patients who undergo screening show no evidence 
of the condition, which means that a significant amount of money is 
spent on monitoring individuals who are actually healthy. This is 
further exacerbated by a shortage of professionals trained to make 
accurate diagnoses, underscoring the urgent need for new, effective, and 
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accessible screening tools and methods. Kawas et al. [10] and Zhang 
et al. [11] mention that the use of advanced techniques can improve the 
accuracy of ophthalmic disease diagnoses, speeding up diagnoses and 
reducing the likelihood of human error.

Felix et al. [12] and Fernandes et al. [13] agree that the use of 
algorithms based on mathematical models not only improves accuracy 
but also significantly reduces diagnostic costs and the need for 
specialized interventions. Rawat et al. [14] highlight the performance 
of deep convolutional neural network (CNN) models on the Vision 
AI platform, improving response times and accuracy. The level of 
processing, prediction, and decision of ophthalmologic images within 
the model offer superior efficiency in the detection of a pathology 
compared to similar results generated by a clinical analyst manually. 

Likewise, Capponi et al. [15] argue in their study that if it were 
possible to train AI using advanced techniques for the diagnosis and 
treatment of ophthalmologic pathologies, it would allow for the timely 
prevention of diseases in real time. This creates a technical and scientific 
challenge related to the use of automated data management models for 
decision-making in mission-critical systems. In this regard, Dokeroglu 
et al. [16] and Wang and Naveed [17] report that the use of AI would 
enable the rapid and accurate detection of DR, along with other eye 
diseases. Therefore, given this approach, the following research 
question emerges and serves as the foundation of the present study: 
Would the use of mathematical algorithms based on AI, which process 
data from the retinas of ophthalmologic patients, allow the detection of 
positive patients with DR disease with a level of accuracy greater than 
90% confidence?

In this regard, Omer [18] and Silk et al. [19] highlight in their 
research that the use of data management models not only optimizes 
diagnoses but also provides improved accessibility and efficiency in 
patient care. Fernandes et al. [13] argue that the use of AI applications 
increases disease prevention in different areas of the healthcare 
sector. Shu et al. [20] reinforce emerging technologies in the field of 
ophthalmology and their potential to significantly improve global eye 
health. Osto et al. [21] highlight both the practical and socioeconomic 
benefits of using AI in decision-making processes for diagnosing patient 
pathologies. All of the above establishes a valid argument supporting 
the viability and feasibility of the proposed study. Finally, based on the 
findings of the present study, the aim is to contribute to the state of the 
art using a model based on emerging technologies. 

2. Literature Review
In the era of modern medicine, DR presents itself as one of the 

most important challenges to be overcome by human beings. Fernandes 
et al. [13] point out that the increasing global prevalence of this disease 
reflects a worldwide epidemic of diabetes, which affects more than 
422 million people in 2023; one of the main causes is the sedentary 
lifestyle and inadequate diets that have contributed to the increase in 
the incidence of this disease, mainly in low-income countries with 
limitations in specialized medical care. Liu et al. [22] and Zhang 
et al. [23] emphasize that this situation puts considerable pressure on 
public health systems, as there are insufficient resources and qualified 
personnel to provide adequate care.

This global scenario underscores the need to adopt comprehensive 
strategies in the health sector that address preventive, timely, and severe 
complications to mitigate the impact of this disease worldwide [24] as 
DR is one of the diabetic diseases with greater complications, severity, 
and incidence, due to the progressive deterioration of blood vessels in 
the retina. Thus, Yuan et al. [25] describe that the first symptoms of 
this disease include abnormalities such as microaneurysms, which can 
progress to more severe conditions such as diabetic macular edema 

and the proliferation of new blood vessels, causing hemorrhages, 
retinal detachment, and blindness. For this reason, Rahmani et al. [26] 
highlight the importance of implementing new tools, mechanisms, or 
methods that allow the generation of accurate, timely, and real-time 
diagnoses to prevent the evolution of this pathology and its effects.

However, in modern ophthalmology, addressing this great 
challenge requires advanced technological tools capable of 
distinguishing between healthy eyes and those affected by DR. Irfan 
et al. [27] highlight in their findings that the use of technologies to 
facilitate the capture of retinal images for analysis and interpretation 
plays a key role in the early detection and diagnosis of ophthalmologic 
diseases. Therefore, this innovative approach would not only raise the 
standards in diagnosis but also drive earlier and more personalized 
interventions, thus improving the patient’s quality of life.

Donniacuo et al. [28] and Fernandes et al. [13] agree that these 
images are essential elements, that should be considered by clinical 
analysts to identify the pathology of a healthy eye. According to Flaxel 
et al. [29], it is crucial to categorize, classify, and determine the severity 
of DR in order to establish appropriate therapy. The international 
clinical disease severity scale for DR is the scientific evidence and 
does not require specialized tests such as optical coherence tomography 
or fluorescein angiography as it facilitates communication between 
caregivers of diabetic patients and promotes more effective management 
of DR, being able to prevent more than 90% of cases of vision loss.

Meregalli Falerni et al. [30] and Wang [9] highlight in their 
studies the relevance of the evolution of ophthalmologic diagnosis 
from clinical features, using visual indicators, which facilitates an in-
depth understanding of complex diseases. However, Rahmani et al. 
[26] emphasize the crucial role that an emerging technology such as AI 
could play in ocular diagnostic assessment and accuracy.

AI is undoubtedly gaining ground as a tool that enables the 
identification, management, analysis, and interpretation of complex 
data in health sciences. Likewise, Mansour et al. [31] emphasize that 
this technology can process large volumes of data at a low cost, in real-
time, and with a reduced margin of error, which makes it a primary 
tool for early detection and classification of diseases without the need 
for invasive procedures. Bahreyni et al. [32] and Fernandes et al. [13] 
emphasize that the use of CNN-based models enhances the diagnostic 
process by enabling faster, more efficient, effective, and high-quality 
medical diagnoses.

However, in the field of DR, this technology represents a 
significant advance allowing more accessible and sustainable diagnoses 
in populations previously disadvantaged by the lack of specialized 
medical resources. Omer [18] states that the use of AI allows 
democratizing access to quality medical care and marks a radical 
change in the way eye care is approached globally, while Zheng et al. 
[33] state that this technology serves to obtain significant improvements 
in the treatment of diabetic complications; thus, raising the quality of 
medical care and improving patient outcomes [30].

This technological advance, such as AI technology, can 
contribute to the field of medical diagnostics; however, it would 
not be feasible without its ability to identify, interpret, and analyze 
medical images because it accurately determines anomalies that 
cannot be recognized through conventional diagnostic methods. 
Dorweiler et al. [34], Martínez-Gutiérrez et al. [35], and Osto et al. 
[21] agree that the evaluation of medical images allowed classifying 
different ophthalmologic pathologies with a higher level of accuracy 
than a clinical analyst who performs it manually; this is an aspect of 
special relevance in environments characterized by limited access to 
medical specialists and advanced technology, as AI can contribute as an 
innovative element to transform patient care [36].
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In this context, Abulfadl et al. [37] and Fernandes et al. [13] 
underscore the need of a comprehensive evaluation of the structural 
integrity of the retina for the identification of advanced vascular 
anomalies. Furthermore, fundus evaluation is a crucial process that 
augments these methodologies by allowing direct monitoring of retinal 
status and fostering the swift identification of any structural or vascular 
alterations [29].

Osto et al. [21] and Zhu et al. [38] contend that the utilization 
of complementary medical diagnostic techniques would facilitate 
improved accessibility and early detection of DR, thereby enhancing 
diagnostic efficiency in contemporary clinical environments, given the 
limitations of traditional methods in certain clinical contexts. Doctors can 
easily and cheaply check the state of the retina by looking at the fundus. 
This makes it simpler to discover abnormalities early. This strategy is 
particularly useful in places where access to modern technology may be 
restricted. Furthermore, the use of AI overcomes traditional limitations 
by facilitating the expansion of fundus assessments in a more accurate, 
timely manner and to a wider population in real-time [39]. Therefore, 
the integration of traditional diagnostic techniques with technological 
innovations such as AI is paramount to managing various scenarios of 
DR-associated pathologies [40].

Additionally, Liu et al. [22] and Rahmani et al. [26] highlight 
that currently, traditional DR diagnostic techniques present additional 
challenges such as limited accessibility, high costs, and the invasive 
nature of the technique, which hinder the effectiveness and early 
detection of DR. Thus AI-based predictive models offer a more 
accessible, economical, and scalable detection of the disease [36].

The use of AI-based predictive models for clinical diagnosis of 
DR builds on the use of DL-based techniques because they facilitate 
the analysis of large volumes of data (medical images) for accurate 
identification of pathological patterns [10, 32]. This gives accurate 
diagnoses in remote areas and reduces the incidence of serious 
complications by 30% [41].

Among the techniques contained in DL, the ResNet50 architecture 
stands out, which is a platform designed from the deep CNN model, 
for the classification of ophthalmological images. Because it has a 
structure with residual connections, for the training of models of great 
depth, this makes the gradients that flow directly through the layers. 
Thus addressing the challenge of gradient fading in deeper networks, 
which contributes to optimizing both the sensitivity and specificity of 
the diagnosis and treatment strategy [17, 40, 42].

Kawas et al. [10] and Kumawat and Chawla [43] highlight 
among the potential benefits of the platform its ability to manage cases 
individually for patients, which enables adaptation to their needs, given 
the possible limitations of resources, tools, or materials. This manages 
to establish a synergy between clinical analysts and ResNet50 to 
establish a solid foundation in clinical decision-making processes based 
on evidence and informed data [19].

The level of precision used by the ResNet50 architecture is 
essential to facilitate early interventions and prevent the progression of 
DR; for this reason, its structure is composed of a set of mathematical 
models and statistical analysis to identify, analyze, and categorize 
medical images for classification. Capponi et al. [15], Chiaramonti 
and Testa [40], and Nam et al. [44] argue that the level of accuracy in 
automated systems for data management is crucial, as these systems 
enable early intervention in chronic and progressive eye diseases, 
thereby helping to prevent severe and permanent visual damage. The 
ResNet50 design has been demonstrated to be superior in finding DR, 
which makes diagnoses more accurate and has a large effect on clinical 
results.

Recent advancements in computer vision have resulted in novel 
architectures that surpass traditional CNNs in both precision and 
comprehensibility. The recognition Transformer (DETR) model [45], 

for instance, doesn’t need hand-crafted anchors for object identification, 
which makes it suitable for hard tasks like exudates and hemorrhages 
in retinal diseases. Vision Transformers (ViT) and Swin Transformers 
[46] have shown state-of-the-art efficacy in medical image processing 
via the use of global self-attention mechanisms that enhance feature 
representation across spatial contexts. Researchers have also studied 
multi-modal Transformer models, like MedFuse and TransMed, to find 
how they might combine retinal pictures with clinical data (such as 
patient age and glucose levels) to improve the accuracy of diagnosis 
[47].

This study uses ResNet50 because it strikes a good balance 
between speed and accuracy in diagnosis. However, the proposed Vision 
AI model is designed to be modular, which means that Transformer-
based architectures can be added in the future. This will make it scalable 
and retains its relevance as the field continues to evolve.

Finally, although AI-based predictions show a high level of 
confidence, it is paramount to complement these results with additional 
assessments with clinical analysts [12] because this validation process 
not only verifies the accuracy of AI diagnoses but also establishes 
regular follow-up and comprehensive evaluations by eye care experts 
[43]. Moreover, integrating these emerging technologies with traditional 
clinical expertise highlights their essential value in improving eye care 
[48]. Integrating AI into everyday medical processes represents a great 
challenge, as it is crucial to take into consideration complementary 
aspects such as minimizing the risks of diagnostic errors, data privacy, 
system adaptability, collaboration between the parties involved, and 
establishing new regulations to optimize these advances and ensure that 
AI improves eye health care.

Despite the availability of several FDA-approved systems like 
EyeArt, IDx-DR, and Retmarker, many of these tools require costly 
infrastructure, are limited to specific imaging devices, or depend on 
centralized, specialist-based environments [49]. In contrast, the Vision 
AI model proposed in this study offers key differentiators:

1)  Scalability, by being adaptable to various clinical settings and 
regional constraints.

2)  Accessibility, particularly in low-resource environments, as it 
operates efficiently without needing invasive equipment or specialist 
supervision.

3)  Implementation simplicity, through a lightweight algorithmic 
structure that can be embedded into existing diagnostic workflows 
with minimal cost.

4)  Cross-platform compatibility, allowing the model to analyze 
retinal images from diverse fundus cameras, thus avoiding bias or 
dependence on a specific device manufacturer.

These characteristics position Vision AI as an innovative, 
practical, and clinically reliable alternative that expands the reach 
of early DR detection, especially in underserved populations [50]. 
Unlike existing commercial tools, this model was validated using 
real-world multicenter datasets and supports decentralized diagnostic 
implementation, making it highly relevant for public health deployment.

3. Methodology
The study adopted a quantitative approach evaluating the 

following hypothesis: Would the use of mathematical algorithms based 
on AI, which process data from the retinal images, allow the detection 
of DR with a level of accuracy greater than 90% confidence? Based 
on statistical analysis, patterns of behavior will be established and this 
theory will be proven [51]. In addition, the study sought to develop the 
object of research, identifying regularities and relationships between 
the components of the study [52]. Additionally, the study identified the 
properties and characteristics of the phenomenon related to the main 
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strategies for the early detection of DR [53]. Then, an exploration was 
conducted to model the factors to be considered in strategies for the 
correct use of AI-based models for early prediction of ocular pathology 
[54].

Initially, 5436 retinal images were classified by retina specialists 
into two categories: 1) healthy eyes (Class 0) and 2) Eyes with DR 
(Class 1). This allowed the feasibility of the research and the testing of 
the proposed hypothesis. Additionally, the validation process used the 
expert judgment of specialists to reduce the error in the classification 
of the images. Next, training, validation, and testing of the data 
management model were conducted based on deep CNN algorithms 
within the Vision AI platform.

In the statistical analysis stage, the ResNet50 architecture, 
thanks to its ability to learn through residual functions, allowed 
the input layers to be adjusted for residual mapping, achieving the 
stacking of residual blocks within a 50-layer network, with the aim of 
optimizing the training process, reducing loss and data preprocessing 
[55–58].  

Figure 1 illustrates the processing of a block (image) within the 
ResNet architecture. Here, the stacking of the layers usually finds ideal 
weights and biases, resulting in the best network performance, through 
successive forward passes, error calculations, and backpropagation. By 
adding the input back to the output, this architecture prevents gradients 
from vanishing too quickly. The goal is the introduction of residual 
blocks containing an identity shortcut connection that skips one or more 
layers.

A complete ResNet50 architecture is illustrated in Figure 2, 
where the convolution kernel size, output channel size, and stride size 
(default is 1) are displayed, similarly for the grouping layers.

CNNs use convolutional parameter layers to iteratively learn to 
transform input images into hierarchical feature maps [57]. 

The ResNet50 architecture was selected due to its balance 
between depth, training efficiency, and accuracy. Unlike older models 
like VGG16, which contains more parameters and lacks residual 
connections, ResNet50 avoids the vanishing gradient problem and 
improves learning in deep networks. Although newer models such as 
EfficientNet and Vision Transformers show promise, they require more 
computational resources or larger datasets. Therefore, ResNet50 offered 
a robust and practical solution for this clinical imaging task.

The ResNet50 architecture demonstrated reliable performance in 
medical image recognition, enabling more accurate results through the 
use and analysis of confusion matrices. Compared to VGG16, ResNet50 
is more efficient; and while EfficientNet or Vision Transformers offer 
better accuracy in large datasets, they demand higher computational 
cost and complex tuning, which was not ideal for the project scope.

The CNN network used the following parameters for its training:

1.  The input corresponding to the training dataset consisted of 3752 
images, each labeled with a category (Class 0 and Class 1).

2.  Next, the training dataset used a classifier to learn the structure of 
each of the classes.

3.  Subsequently, the quality of the classifier was evaluated by asking 
it to predict a label for a new set of images that it had never seen 
before. 

4.  Finally, the comparison of the actual labels with those estimated 
(predicted) by the classifier was performed.

The ResNet50 architecture was selected for its balance in depth, 
efficiency, and precision in training and testing data models in deep 
networks, avoiding the problem of gradient disappearance. Although 
technologies such as VGG16, EfficientNet, and Vision Transformers 
exist, they require greater computing power and a larger data sample 
for use, which made their use impossible.

The pre-trained Vision AI model was adapted to the dataset using 
a fine-tuned method to optimize the learning rate. Once this stage was 
completed, the training process began with a new random input layer 
for the first epoch to ensure optimal performance with the selected 
dataset. Subsequently, the remaining dataset, resized to 448 × 448 
pixels was trained for 50 epochs, where the weights of the later layers 
were updated more rapidly than the previous layers. 

To mitigate overfitting and overconfidence, label smoothing was 
applied as a regularization technique, enhancing model performance 
and reducing overfitting. Once the training stage was complete, testing 
was carried out on the Vision AI platform, where pre-established labels 
were compared with unlabeled data. The parameters used to verify the 
accuracy of the results were sensitivity, specificity, and F1 score.

The Vision AI platform uses TensorFlow and Keras algorithms 
for data contrast and validation, while OpenCV and Numpy algorithms 
are used for data processing.

The ResNet50 input layer required the retinal fundus images to be 
224 × 224 pixels in size. OpenCV and NumPy were used to preprocess 
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the data, which included normalizing the RGB channels to a range 
of [0, 1]. During training, the study applied many data augmentation 
strategies to make the model more general and reduce overfitting. These 
adjustments included flipping the photographs both horizontally and 
vertically, rotating them randomly by up to 15°, zooming them in by up 
to 10%, and changing the brightness slightly. The research made these 
improvements using Keras’s ImageDataGenerator module. The mean 
and standard deviation of each pixel from the training dataset were also 
used to normalize the images. This method made sure that the data was 
consistent and contributed to the dataset’s diversity without affecting 
how useful it was for therapeutic purposes.

Finally, the study evaluated the concept that AI-based arithmetic 
algorithms might discover DR in positive cases with more than 90% 
accuracy. The Vision AI platform’s confusion matrix showed that the 
model was quite reliable in making predictions.

4. Results
These findings show that the approaches utilized worked well 

and provided a lot of information about how the data were used to train, 
verify, and test the models. The distribution of the data and the accuracy 
of the classifications are crucial to ensure reliable and timely diagnoses. 
The following tables and figures highlight the characteristics of the 
datasets, the effectiveness of the applied AI tools, and the validation 
of the proposed models; thus demonstrating the solutions obtained in 
this study.

Table 1 shows the distribution of the dataset used for training, 
validation, and testing, with 80% allocated for training and validation, 
and 20% reserved for mathematical model testing minimizing the risk 
of overfitting [60].

Table 2 shows the distribution of the images used for each class 
(3752 images for each class) through oversampling [59].

The training process involved classifying 3752 images of healthy 
eyes and 3752 eyes with DR. For validation, 938 healthy eyes and 409 
DR eyes were used, while 1173 healthy and 511 DR eyes were reserved 
for model testing. The sample size was determined using the finite 
population model based on a known database of participating patients 
collected in 2022 through open data and available in Latin America, 
North America, Asia, and Europe, ensuring both geographic variability 
and demographic variability [34, 44].

The findings obtained through the AI models were compiled 
through the Vision AI application. Figure 3 shows descriptive 
information on the efficacy of the application in ophthalmologic 
screening for the classification of a healthy eye in an accurate and 
timely manner.

Figure 3 illustrates the results of the Vision AI application of a 
healthy eye, with a confidence level of 97.6%; the left frame (Quadrant 
1) shows the representation of the healthy fundus; the right frame 
(Quadrant 2) shows the heat map of the healthy eye, where Vision AI can 
assess the optic nerve region (1), which is an important characteristic 
for the early detection of ocular pathology [37], and the foveal region 
(2), which facilitates the central vision and the detection of diseases 
such as macular degeneration [32], and the macula of the retina region 
(3), allowing to corroborate the state of retinal health [11]. Descriptive 
information on the efficacy of Vision AI for the classification of an eye 
with DR is shown in Figure 4.

Figure 4 illustrates the results of an eye with DR with a confidence 
level of 96.5%; in the left frame (Quadrant 1), the color fundus image 
can be appreciated; and in the right frame (Quadrant 2), the heat map, 
where Vision AI can recognize the optic nerve region (1) and macular 
region (2) that suggest a high activity in this region, indicating the 

presence of microaneurysms and exudates, characteristic symptoms 
of DR [29, 36]. In addition, areas in the periphery of the retina stand 
out (3); where other signs of DR could be present that complement 
the screening due to the size, morphology, and compartment of the 
peripheral zone [17]. Table 3 summarizes the results obtained through 
the Vision AI application.

The study also got more findings from the mathematical models 
by using Vision AI (see Table 4).

This evidence demonstrates that the results are representative, 
exceeding the 90% confidence level established for the health sciences 
sector [65]. This reaffirms the reliability and robustness of Vision AI for 
the detection of DR as a clinical screening tool. 

The objective of the research was to determine the diagnostic 
accuracy for identifying DR in positive patients and to validate the 
proposed hypothesis using a confusion matrix. According to Weng et al. 
[41], the confusion matrix is a mathematical tool that provides insights 
into accuracy and efficiency in identifying DR from fundus images. In 
this study, the matrix was used to accurately predict different ocular 
condition classes, with a focus on highlighting specific areas indicative 
of symptoms related to DR.

Fernandes et al. [13] and Irfan et al. [27] highlight that this 
mathematical model predicts each category from a comparative analysis 
of an image that has been previously classified, giving it predictive 
capabilities by training. However, if the model is unable to recognize 
the category to be evaluated, it assumes the status of unclassifiable 
category to be considered in a subsequent training. Figure 5 shows 
the descriptive information of the efficiency obtained by the confusion 
matrix used in Vision AI for the classification of the different types of 
eyes in the selected sample.

Moreover, to assess the model’s learning behavior over time, the 
training and validation accuracy and loss were monitored throughout 
the 50 training epochs. The results showed stable convergence without 
significant overfitting, indicating that the model generalized well to new 
images. These trends confirm the robustness of the training strategy and 
support the model’s reliability in clinical applications.

To make the results easier to understand, a comparison bar 
chart was also made. It showed the final performance metrics for 
both classes: accuracy, precision, recall, and F1-score. These images 
show clearly how well the model can diagnose both healthy and sick 
individuals, which is in line with existing standards for AI-based 
medical imaging.

Table 5 analyzes 1,684 images using a confusion matrix, 
obtaining an accuracy of over 90% in the results. Additionally, the 
receiver operating characteristic under the curve (ROC-AUC) was 0.96, 
confirming a high level of accuracy in findings, with categorized and 
unlabeled images.

Table 5 shows that the accuracy level in detecting healthy eyes 
was 95.35% (1128/1183), while the DR group was 91.02% (456/501); 
in both scenarios, the results exceeded 90% accuracy.

Izah et al. [66] emphasize that in medical research, maintaining 
a confidence level above 90% is important to ensure the accuracy and 
reliability of the findings. A high confidence level is associated with 
narrower confidence intervals, which in turn reduces the likelihood of 
Type I errors (false positives) and Type II errors (false negatives). Field-
Richards et al. [67] and Lee et al. [68] emphasize that strong statistical 
analyses and high confidence levels are essential for directing evidence-
based behaviors. Vaajoki et al. [69] add that the use of complementary 
statistical parameters enhances a study’s sensitivity, which ensures the 
detection of true, valid, and applicable effects in real clinical settings.

By applying AI-based mathematical algorithms and statistical 
methods to retinal data from ophthalmologic patients, the model 
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achieved a diagnostic accuracy of 91.02% in identifying positive cases 
of DR. This level of accuracy shows that the AI model is strong and 
dependable enough for mission-critical use in healthcare settings. This 
supports the acceptance of the alternative hypothesis and the rejection 
of the null hypothesis.

5. Discussion
DR is a microvascular consequence of diabetes mellitus that 

affects the retinal blood vessels and may result in partial or total vision 
loss in advanced stages. Recent studies indicate that DR is a primary 
cause of avoidable blindness among working-age people, particularly 
impacting those with inadequate metabolic management of diabetes 
[70]. After 20 years of having diabetes, over 60% of those with type 2 
diabetes and practically all people with type 1 diabetes are thought to 
have some level of retinopathy [71].

Detecting DR in its early stages is crucial to prevent serious 
complications. Studies such as the Early Treatment Diabetic 
Retinopathy Study (ETDRS) have shown that early interventions such 
as intensive glycemic control and laser photocoagulation significantly 
reduce the risk of visual impairment [72]. The advent of anti-Vascular 
Endothelial Growth Factor (anti-VEGF) therapy and surgical 
techniques has revolutionized treatment outcomes in DR; however, 
undetected disease remains a burden despite excellent treatment 
options [73]. Advances in AI-based tools have improved the quality 
and access to early detection [74].

A summary of the comparative analysis between the optimizations 
applied is presented in Table 6.

Undoubtedly, hypothesis testing ratifies the results and provides 
evidence that the use of AI demonstrates robustness, reliability, and 
accuracy in the detection of DR. In this regard, Kumar et al. [75] 
highlight that the accuracy of DR grading found an error rate of 49% 
among internists, diabetologists, and resident physicians in overlooking 
the diagnosis of Proliferative Diabetic Retinopathy (PDR). Meanwhile, 
Sarantakos et al. [39] highlight the importance of adopting AI 
technologies in modern medicine to improve accuracy and efficiency 
in medical diagnostics on a global scale, along with the benefits of cost 
savings, speed, efficiency, and effectiveness in outcomes towards the 
patient.

Early and accurate diagnosis of DR is essential to prevent 
progression to advanced stages that can be blinding. Traditional 
screening and diagnostic techniques for DR include ophthalmoscopy 
and fluorescein angiography [76]. Although these techniques are 
effective, they have several limitations. For instance, ophthalmoscopy 
requires dilation of the pupils which is time-consuming, uncomfortable, 
and temporarily debilitating for patients. Fluorescein angiography is 
invasive by way of intravenous injection of a contrast medium which 
can cause severe adverse reactions [77].

The high cost of traditional screening poses a significant barrier 
to care especially in populations and regions with limited resources 
[78]. The reliance on the clinical judgment of the specialist can yield 
inconsistent diagnoses and significant interobserver variability [79]. 
These limitations have motivated the development of technologies, 
such as AI-based systems, which aim to improve diagnostic accuracy 
and facilitate early detection [80].
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Study Dice Parameter ADF (mm) Jaccard Index Acc %
Normal Normal 97.6% High accuracy in identifying normal images is crucial to avoid 

false positives. The model accurately confirmed the absence 
of pathologies.

Boldrin et al. [61].

DR DR 96.5% High accuracy in detecting DR is essential for early and effec-
tive interventions. The model detected clear signs of DR such 
as microaneurysms and hard exudates.

Flaxel et al. [29]; 
Martínez-Gutiérrez et al. 
[35].

Table 3
Retinal image classification results via Vision AI

Categories

Number of data 
for training with 

oversampling

Number 
of data for 
validation

Number of 
test data

Actual healthy 
(Class 0)

3752 938 1173

Actual DR 
(Class 1)

3752 409 511

Table 2
Data used for model training

 Figure 3
Using Vision AI platform to classify healthy retinas

 Figure 4
Using the Vision AI platform and classification of eyes with DR 
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Vision AI has several advantages over other modern tools in 
the market. For instance, Eyenuk’s EyeArt system, which also uses 
AI, has demonstrated 91.3% accuracy in DR detection but requires 
more specialized equipment and is not as accessible due to the high 
cost of acquisition [81]. The retinalyze system, while effective, is less 
accurate and more costly as it requires specialized equipment and 
highly trained personnel [82]. Similar to EyeArt, IDx-DR requires 
expensive technology and trained personnel to operate, which poses 
implementation challenges in places with little resources [83]. 
Retmarker is another program used to monitor the progression of 
DR; however, it requires significant manual input and is costly to 
maintain [84]. In addition, it demonstrates lower accuracy compared 
to Vision AI.

In summary, Vision AI is great at finding DR, with a high 
accuracy and sensitivity rate of 96.16% for healthy eyes and 90.2% 
for DR. It is a good and useful option due to its ease of access and low 
operational costs. This is particularly true in remote places or areas with 
limited access to resources. Vision AI is a better option than previous 
procedures as it is non-invasive, quick, and highly automated. Previous 
methods are typically intrusive, costly, and depend on experts. This 
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Measure Normal DR Goal
Sensitivity level 96.16% 90.2% Represents the level of accuracy to correctly detect true positives and 

negatives [62].
Level of specificity 90.2% 96.16% It represents the probability that the results of a test will be negative if 

you do not have the disease [63].
F1-score 95.75% 90.1% It represents the evaluation that combines precision and sensitivity in a 

single harmonic metric, offering a balance between both [64].

Table 4
Complementary results of Vision AI statistical models

Categories

Number of patients 
predicted to be 

healthy

Cumulative percentage 
of patients predicted as 

healthy (%)
Number of patients 
predicted with DR

Cumulative percentage 
of patients predicted 

with DR (%)
Actual healthy (Class 0) 1128 95.35% 45 8.98%
Actual DR (Class 1) 55 4.65% 456 91.02%
Total 1183 501

Table 5
Results of the confusion matrix prediction model

Features Vision AI Traditional screening
Invasiveness Non-invasive Invasive; pupil dilation, angiography
Cost Lower operating cost High; equipment, personnel
Accessibility HIGHLY ACCESSIBLE in remote areas LIMITED; requires specialized infrastructure
Processing time RAPID AQUISITION (<3 sec.) Slow; requires preparation and processing time

Need for specialists Reduced, high automation High; dependent on specialist expertise
Early detection capacity High precision and sensitivity Variable; some techniques do not effectively detect early 

changes, because it is done manually by the clinical analyst.
Accuracy rate 96.16% (healthy) and 90.2% (DR) Variable; usually lower without AI

Table 6
Comparative analysis of the predictive model of retinal images through Vision AI and traditional techniques

 Figure 5
Confusion matrix results for a sample of 1684 eyes
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makes it less dependent on a qualified operator or specialist knowledge, 
making it easier to detect problems early with great accuracy.

Omer [18] and Zeng et al. [85] highlight that Vision AI improves 
DR detection by analyzing a wide range of parameters in depth. This 
is very important for protecting eye health. Abegaz et al. [86] and 
Rapach et al. [87] also show that the approach works well in finding 
vascular adverse events by giving clear examples of real positive cases. 
Combining AI-based systems with tools like the confusion matrix 
is very important for informed decision-making in mission-critical 
applications extending beyond healthcare.

Rapach et al. [87] contend that this approach facilitates the 
acquisition of diagnostic accuracy regarding biomarkers present in 
high-risk patients to enhance their quality of life. Outside of healthcare, 
Bagheri et al. [88] improved complicated design processes in engineering 
models by employing systems and simulations that were evaluated using 
a confusion matrix. An et al. [89] obtained more accurate and efficient 
risk assessment in sustainable development environments, resulting 
in cost savings, reduced execution times, and positive environmental 
impact. In education, Chiang et al. [90] activated self-monitoring to 
help teachers improve pedagogical strategies, and Premeaux et al. [91] 
demonstrated the role of AI in automating construction processes and 
improving business decision-making. These findings emphasize the 
importance of AI-based technologies in establishing new principles, 
standards, and policies to drive innovation while ensuring efficiency. 

As society enters the 5th Industrial Revolution, where automation 
and AI will dominate, particularly in healthcare, it is crucial to develop 
guidelines for certifying and accrediting emerging technologies. 
Agencies like the European Medicines Agency (EMA) and the Food 
and Drug Administration (FDA) must expedite approvals to make 
advanced technologies more accessible, cost-effective, and impactful in 
improving quality of life. This study underscores how AI-based systems 
can effectively detect DR, showcasing their ability to improve accuracy, 
sensitivity, and specificity in retinal image classification, along with the 
ability to safeguard the confidentiality, integrity, and availability of 
patient data in a connected world.

Despite its advantages, Vision AI faces limitations, particularly 
its reliance on input image quality. Issues such as lens opacities, 
insufficient illumination, or patient movements, can compromise 
diagnostic accuracy [92]. This challenge is not unique to Vision AI. It 
underscores the need for improved algorithms to handle challenges and 
ensure accurate diagnoses in all conditions [93].

While Vision AI is highly accurate in detecting DR, some other 
technologies offer complementary strengths. For instance, Retmarker 
offers detailed tracking of DR progression, which is a crucial metric for 
monitoring treatment outcomes over time [94]. Emerging multimodal 
technologies that combine AI with biomarkers or genetic data provide 
an even more comprehensive assessment of ocular health status and risk 
of DR progression, outperforming Vision AI in certain clinical scenarios 
[95]. Nevertheless, Vision AI remains an invaluable tool, particularly in 
resource-limited settings, where its low cost and high accuracy enable 
timely diagnosis, addressing the growing global burden of diabetes and 
its complications [96].

The confusion matrix has been instrumental in validating Vision 
AI’s performance, highlighting its ability to reduce misdiagnosis 
and preserve resources. In ophthalmology, where early detection is 
critical, AI’s ability to identify disease states is transformative. Vision 
AI democratizes access to high-quality diagnostics, making advanced 
healthcare more accessible worldwide.

The practical implications of this research extend beyond 
healthcare, illustrating how emerging technologies can revolutionize 
various fields. The integration of AI, the Internet of Things (IoT), and 
Big Data can improve health systems, predict public health challenges, 
and drive resilient digital ecosystems [97]. This study provides a 

roadmap for stakeholders to leverage AI for data-driven decision-
making, fostering innovation in both academic and industrial domains. 
Further research will continue to explore multidisciplinary applications 
of AI, from bioengineering to ethical considerations, paving the way for 
groundbreaking advancements in human health [97–100]. In conclusion, 
the deployment of Vision AI for early DR detection represents a 
significant advancement in clinical ophthalmology, particularly for 
underserved regions. Its low-cost, high-accuracy, and non-invasive 
features make it an ideal solution for rural areas and health systems 
with limited access to specialists [101]. Integrating this AI-based tool 
into national visual health programs could enhance population-level 
screening efforts, reduce preventable blindness, and inform data-driven 
public health strategies. Policymakers are encouraged to consider such 
technologies in the formulation of equitable, efficient, and scalable 
healthcare solutions.

6. Conclusions
This study conclusively illustrates how the implementation of an 

advanced AI model, based on the ResNet50 neural network architecture, 
is marking a turning point in the detection and management of DR, 
a severe complication of diabetes that can result in blindness. The 
results obtained are not only significant but also highlight the ability 
of the AI model to increase accuracy, sensitivity, and specificity in the 
classification of retinal images, whether normal or pathological. 

In Latin America, it is estimated that over 45% of diabetic patients 
do not undergo regular ophthalmologic screenings due to the shortage 
of specialists, especially in rural and underserved areas [102]. In Costa 
Rica, for example, regions outside the Greater Metropolitan Area report 
fewer than one ophthalmologist per 100,000 inhabitants, significantly 
limiting access to early detection of DR [103]. This disparity underscores 
the urgent need for automated, accessible, and accurate screening tools 
that can support early diagnosis and intervention, even in resource-
constrained healthcare settings.

The application of the confusion matrix as an evaluative tool 
has been crucial in this process, providing a thorough and meticulous 
validation of the model’s efficacy. This technique has allowed 
verification of the model’s high accuracy rate in correctly identifying 
and classifying ocular conditions and has impressively highlighted its 
potential to drastically reduce misdiagnosis and unnecessary treatment. 
This advantage is of paramount importance in ophthalmology, where 
early detection can effectively prevent the progression of DR to 
complete vision loss. 

The findings underscore the crucial importance of incorporating 
advanced AI technologies into ophthalmic care. The ResNet50 model 
has emerged as an exceptionally promising tool for clinicians, offering a 
diagnostic method that is faster, less invasive, and more accessible than 
traditional methods. This tool becomes even more valuable in settings 
where access to specialists and advanced technology may be limited.

Furthermore, the integration of this model can democratize 
access to high-quality diagnostics, promoting fairer and more equitable 
detection and treatment worldwide. This approach not only improves 
diagnostic efficiency but also facilitates more timely and targeted 
interventions, essential to prevent irreversible damage to patients and 
significantly improve standards of eye care worldwide.

Additionally, recent findings by Vij and Arora [7] reinforce 
the clinical viability of ResNet-based architectures in DR diagnosis. 
Their study implemented a deep inductive transfer learning approach 
for multiclass classification of DR severity using the IDRiD dataset. 
Among five evaluated models, the optimized Xception network 
achieved an AUC-ROC of 0.9902 and precision above 0.98 across all 
severity stages. These results confirm that, when enhanced with fine-
tuned parameters and robust preprocessing, models like ResNet50 
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remain highly competitive in clinical settings, particularly due to 
their scalability, adaptability, and strong performance in image-based 
diagnostics.

To push the area of AI-assisted ophthalmology forward, a number 
of important research paths are suggested. These suggestions are meant 
to fix the problems that are now present and look at how this technology 
may have a bigger effect:

1)  Multicenter validation: To ensure the applicability and robustness of 
the ResNet50 model, it is essential to conduct multicenter validation 
studies that include diverse populations and clinical settings. 
This will help determine the efficacy of the model in different 
demographic and geographic contexts, and ensure its adaptability 
and scalability.

2)  Integration of new technologies: Merging the AI model with other 
new technologies, such Optical Coherence Tomography (OCT) and 
fluorescein angiography, might help us learn more about DR and other 
retinal diseases. Looking at how these technologies can work together 
might lead to big improvements in how accurate diagnoses are.

3)  Development of composite predictive models: Look into how 
to make composite models that can not only find DR but also 
guess how the illness will become worse. This might lead to 
more tailored and timely treatments, which could lead to better 
treatment results. 

4)  Research on the economic and social effects: Do research that look 
at how using AI to diagnose DR would affect the economy and 
society. These research might provide us useful information on how 
to lower costs, make things easier to get to, and how they affect a 
patient’s quality of life. 

5)  Ethics and data privacy: Do further study on how employing AI in 
health affects privacy and ethics. Develop regulatory and policy 
frameworks that ensure the security and privacy of patient data, 
while fostering innovation in AI technologies.

Conclusively, this study not only validates the efficacy of AI 
models in ophthalmology but also lays a solid foundation for future 
research that could expand and improve the detection and management 
of eye diseases worldwide.
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