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Abstract: This study aims to evaluate the precision of a mathematical system using Artificial Intelligence (Al) in forecasting retinal anomalies
linked to Diabetic Retinopathy (DR). The study adopted a quantitative, descriptive, and exploratory approach. A standard sample of 1684
ocular fundus images was analyzed. These images were divided into two groups: Class 0 for healthy eyes and Class 1 for eyes with DR.
A finite population model was used to determine the sample size, which came from a publicly available database. Experts in the field
validated the results obtained to guarantee the accuracy of the findings. The study used the Vision Al solution to train and test 3,752 publicly
available medical images. During the training phase, an independent set of 1,684 medical images that had not been included in the training
sample was selected. The sample was then classified into two groups: (1) Class 0 for healthy eyes; and (2) Class 1 for eyes with DR. To
evaluate the model’s performance, a statistical analysis was conducted using key metrics such as accuracy, sensitivity, specificity, F1-score,
and confusion matrix. The Al-based model demonstrated an accuracy exceeding 90%, with statistically significant findings supporting the
study’s hypothesis. The findings highlight the model’s ability to detect and predict DR in real time, improving the accuracy of disease

detection.
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1. Introduction

Artificial intelligence (Al) is not a technology far removed from
everyday life. Autonomous cars and voice-recognition assistants are
already part of modern society. What futurists imagined in television
shows is now part of our reality [1]. The reach and advantages of
this technology extend beyond expectations, with applications that
support decision-making in mission-critical systems, particularly
in the healthcare sector. In this field, Al has helped address complex
challenges, including cost reduction and faster response times. Danieli
et al. [2] emphasize that Al-based applications allow for highly
accurate and efficient detection of autoimmune diseases. This approach
shortens response times and reduces human bias, leading to more
timely and effective diagnoses. Al-Worafi [3] underscores the need
of using emerging technologies to detect and diagnose diseases with
enhanced sensitivity, specificity, robustness, and simplicity, especially
in resource-constrained settings. Technology contributes to reducing
human error caused by biases in knowledge, experience, or expertise in
data interpretation [4].

The health industry has to deal with more complex, hard-to-
treat ailments contributed by the advent of the digital age. The Pan
American Health Organization (PAHO) emphasizes this by claiming a
25% increase in diabetes prevalence over the previous decade [5]. This
increase shows the importance of finding new ways and instruments
to quickly and accurately identify problems, especially in low-income

*Corresponding author: Gabriel Silva-Atencio, Engineering Department,
Universidad Latinoamericana de Ciencia y Tecnologia, Costa Rica. Email:
gsilvaad468@ulacit.ed.cr

areas where access to full ophthalmologic examinations and modern
imaging equipment is limited. Moreover, there often exists a deficiency
of professionals with the requisite knowledge, experience, and skill
to promptly diagnose ocular illnesses [6], presenting a considerable
problem for contemporary medicine.

In addition, conventional screening procedures such as direct
ophthalmoscopy and fluorescein angiography typically require the
pupils to be dilated, are time-consuming, and dependent on the
availability of highly qualified ophthalmologists. These techniques are
often not available in low- and middle-income nations because they are
too expensive, the infrastructure is not good enough, or they are too far
away, which leads to delayed diagnosis and more cases of blindness
that might have been avoided [7]. These restrictions highlight the need
for scalable, cost-effective, and automated systems that can function
correctly in primary care environments without direct professional
involvement.

Diabetic Retinopathy (DR) is a prevalent complication of
diabetes that may result in vision loss if not properly identified and
managed. Loffler et al. [8] and Wang [9] found that one-third of those
with diabetes had pathological abnormalities in the retina due to changes
in the blood vessels. The researchers also spoke about how hard it is to
find, understand, assess, and predict this issue, which might lead to full
or partial vision loss if not identified immediately.

In light of this, screening becomes an essential remedy. However,
more than 80% of patients who undergo screening show no evidence
of the condition, which means that a significant amount of money is
spent on monitoring individuals who are actually healthy. This is
further exacerbated by a shortage of professionals trained to make
accurate diagnoses, underscoring the urgent need for new, effective, and

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/

by/4.0/


https://doi.org/10.47852/bonviewAIA52025555
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:gsilvaa468%40ulacit.ed.cr?subject=

Artificial Intelligence and Applications Vol. 00

Iss. 00 2025

accessible screening tools and methods. Kawas et al. [10] and Zhang
et al. [11] mention that the use of advanced techniques can improve the
accuracy of ophthalmic disease diagnoses, speeding up diagnoses and
reducing the likelihood of human error.

Felix et al. [12] and Fernandes et al. [13] agree that the use of
algorithms based on mathematical models not only improves accuracy
but also significantly reduces diagnostic costs and the need for
specialized interventions. Rawat et al. [14] highlight the performance
of deep convolutional neural network (CNN) models on the Vision
Al platform, improving response times and accuracy. The level of
processing, prediction, and decision of ophthalmologic images within
the model offer superior efficiency in the detection of a pathology
compared to similar results generated by a clinical analyst manually.

Likewise, Capponi et al. [15] argue in their study that if it were
possible to train Al using advanced techniques for the diagnosis and
treatment of ophthalmologic pathologies, it would allow for the timely
prevention of diseases in real time. This creates a technical and scientific
challenge related to the use of automated data management models for
decision-making in mission-critical systems. In this regard, Dokeroglu
et al. [16] and Wang and Naveed [17] report that the use of Al would
enable the rapid and accurate detection of DR, along with other eye
diseases. Therefore, given this approach, the following research
question emerges and serves as the foundation of the present study:
Would the use of mathematical algorithms based on Al, which process
data from the retinas of ophthalmologic patients, allow the detection of
positive patients with DR disease with a level of accuracy greater than
90% confidence?

In this regard, Omer [18] and Silk et al. [19] highlight in their
research that the use of data management models not only optimizes
diagnoses but also provides improved accessibility and efficiency in
patient care. Fernandes et al. [13] argue that the use of Al applications
increases disease prevention in different areas of the healthcare
sector. Shu et al. [20] reinforce emerging technologies in the field of
ophthalmology and their potential to significantly improve global eye
health. Osto et al. [21] highlight both the practical and socioeconomic
benefits of using Al in decision-making processes for diagnosing patient
pathologies. All of the above establishes a valid argument supporting
the viability and feasibility of the proposed study. Finally, based on the
findings of the present study, the aim is to contribute to the state of the
art using a model based on emerging technologies.

2. Literature Review

In the era of modern medicine, DR presents itself as one of the
most important challenges to be overcome by human beings. Fernandes
et al. [13] point out that the increasing global prevalence of this disease
reflects a worldwide epidemic of diabetes, which affects more than
422 million people in 2023; one of the main causes is the sedentary
lifestyle and inadequate diets that have contributed to the increase in
the incidence of this disease, mainly in low-income countries with
limitations in specialized medical care. Liu et al. [22] and Zhang
et al. [23] emphasize that this situation puts considerable pressure on
public health systems, as there are insufficient resources and qualified
personnel to provide adequate care.

This global scenario underscores the need to adopt comprehensive
strategies in the health sector that address preventive, timely, and severe
complications to mitigate the impact of this disease worldwide [24] as
DR is one of the diabetic diseases with greater complications, severity,
and incidence, due to the progressive deterioration of blood vessels in
the retina. Thus, Yuan et al. [25] describe that the first symptoms of
this disease include abnormalities such as microaneurysms, which can
progress to more severe conditions such as diabetic macular edema

and the proliferation of new blood vessels, causing hemorrhages,
retinal detachment, and blindness. For this reason, Rahmani et al. [26]
highlight the importance of implementing new tools, mechanisms, or
methods that allow the generation of accurate, timely, and real-time
diagnoses to prevent the evolution of this pathology and its effects.

However, in modern ophthalmology, addressing this great
challenge requires advanced technological tools capable of
distinguishing between healthy eyes and those affected by DR. Irfan
et al. [27] highlight in their findings that the use of technologies to
facilitate the capture of retinal images for analysis and interpretation
plays a key role in the early detection and diagnosis of ophthalmologic
diseases. Therefore, this innovative approach would not only raise the
standards in diagnosis but also drive earlier and more personalized
interventions, thus improving the patient’s quality of life.

Donniacuo et al. [28] and Fernandes et al. [13] agree that these
images are essential elements, that should be considered by clinical
analysts to identify the pathology of a healthy eye. According to Flaxel
etal. [29], it is crucial to categorize, classify, and determine the severity
of DR in order to establish appropriate therapy. The international
clinical disease severity scale for DR is the scientific evidence and
does not require specialized tests such as optical coherence tomography
or fluorescein angiography as it facilitates communication between
caregivers of diabetic patients and promotes more effective management
of DR, being able to prevent more than 90% of cases of vision loss.

Meregalli Falerni et al. [30] and Wang [9] highlight in their
studies the relevance of the evolution of ophthalmologic diagnosis
from clinical features, using visual indicators, which facilitates an in-
depth understanding of complex diseases. However, Rahmani et al.
[26] emphasize the crucial role that an emerging technology such as Al
could play in ocular diagnostic assessment and accuracy.

Al is undoubtedly gaining ground as a tool that enables the
identification, management, analysis, and interpretation of complex
data in health sciences. Likewise, Mansour et al. [31] emphasize that
this technology can process large volumes of data at a low cost, in real-
time, and with a reduced margin of error, which makes it a primary
tool for early detection and classification of diseases without the need
for invasive procedures. Bahreyni et al. [32] and Fernandes et al. [13]
emphasize that the use of CNN-based models enhances the diagnostic
process by enabling faster, more efficient, effective, and high-quality
medical diagnoses.

However, in the field of DR, this technology represents a
significant advance allowing more accessible and sustainable diagnoses
in populations previously disadvantaged by the lack of specialized
medical resources. Omer [18] states that the use of AI allows
democratizing access to quality medical care and marks a radical
change in the way eye care is approached globally, while Zheng et al.
[33] state that this technology serves to obtain significant improvements
in the treatment of diabetic complications; thus, raising the quality of
medical care and improving patient outcomes [30].

This technological advance, such as Al technology, can
contribute to the field of medical diagnostics; however, it would
not be feasible without its ability to identify, interpret, and analyze
medical images because it accurately determines anomalies that
cannot be recognized through conventional diagnostic methods.
Dorweiler et al. [34], Martinez-Gutiérrez et al. [35], and Osto et al.
[21] agree that the evaluation of medical images allowed classifying
different ophthalmologic pathologies with a higher level of accuracy
than a clinical analyst who performs it manually; this is an aspect of
special relevance in environments characterized by limited access to
medical specialists and advanced technology, as Al can contribute as an
innovative element to transform patient care [36].
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In this context, Abulfadl et al. [37] and Fernandes et al. [13]
underscore the need of a comprehensive evaluation of the structural
integrity of the retina for the identification of advanced vascular
anomalies. Furthermore, fundus evaluation is a crucial process that
augments these methodologies by allowing direct monitoring of retinal
status and fostering the swift identification of any structural or vascular
alterations [29].

Osto et al. [21] and Zhu et al. [38] contend that the utilization
of complementary medical diagnostic techniques would facilitate
improved accessibility and early detection of DR, thereby enhancing
diagnostic efficiency in contemporary clinical environments, given the
limitations of traditional methods in certain clinical contexts. Doctors can
easily and cheaply check the state of the retina by looking at the fundus.
This makes it simpler to discover abnormalities early. This strategy is
particularly useful in places where access to modern technology may be
restricted. Furthermore, the use of Al overcomes traditional limitations
by facilitating the expansion of fundus assessments in a more accurate,
timely manner and to a wider population in real-time [39]. Therefore,
the integration of traditional diagnostic techniques with technological
innovations such as Al is paramount to managing various scenarios of
DR-associated pathologies [40].

Additionally, Liu et al. [22] and Rahmani et al. [26] highlight
that currently, traditional DR diagnostic techniques present additional
challenges such as limited accessibility, high costs, and the invasive
nature of the technique, which hinder the effectiveness and early
detection of DR. Thus Al-based predictive models offer a more
accessible, economical, and scalable detection of the disease [36].

The use of Al-based predictive models for clinical diagnosis of
DR builds on the use of DL-based techniques because they facilitate
the analysis of large volumes of data (medical images) for accurate
identification of pathological patterns [10, 32]. This gives accurate
diagnoses in remote areas and reduces the incidence of serious
complications by 30% [41].

Among the techniques contained in DL, the ResNet50 architecture
stands out, which is a platform designed from the deep CNN model,
for the classification of ophthalmological images. Because it has a
structure with residual connections, for the training of models of great
depth, this makes the gradients that flow directly through the layers.
Thus addressing the challenge of gradient fading in deeper networks,
which contributes to optimizing both the sensitivity and specificity of
the diagnosis and treatment strategy [17, 40, 42].

Kawas et al. [10] and Kumawat and Chawla [43] highlight
among the potential benefits of the platform its ability to manage cases
individually for patients, which enables adaptation to their needs, given
the possible limitations of resources, tools, or materials. This manages
to establish a synergy between clinical analysts and ResNet50 to
establish a solid foundation in clinical decision-making processes based
on evidence and informed data [19].

The level of precision used by the ResNet50 architecture is
essential to facilitate early interventions and prevent the progression of
DR; for this reason, its structure is composed of a set of mathematical
models and statistical analysis to identify, analyze, and categorize
medical images for classification. Capponi et al. [15], Chiaramonti
and Testa [40], and Nam et al. [44] argue that the level of accuracy in
automated systems for data management is crucial, as these systems
enable early intervention in chronic and progressive eye diseases,
thereby helping to prevent severe and permanent visual damage. The
ResNet50 design has been demonstrated to be superior in finding DR,
which makes diagnoses more accurate and has a large effect on clinical
results.

Recent advancements in computer vision have resulted in novel
architectures that surpass traditional CNNs in both precision and
comprehensibility. The recognition Transformer (DETR) model [45],

for instance, doesn’t need hand-crafted anchors for object identification,
which makes it suitable for hard tasks like exudates and hemorrhages
in retinal diseases. Vision Transformers (ViT) and Swin Transformers
[46] have shown state-of-the-art efficacy in medical image processing
via the use of global self-attention mechanisms that enhance feature
representation across spatial contexts. Researchers have also studied
multi-modal Transformer models, like MedFuse and TransMed, to find
how they might combine retinal pictures with clinical data (such as
patient age and glucose levels) to improve the accuracy of diagnosis
[47].

This study uses ResNet50 because it strikes a good balance
between speed and accuracy in diagnosis. However, the proposed Vision
Al model is designed to be modular, which means that Transformer-
based architectures can be added in the future. This will make it scalable
and retains its relevance as the field continues to evolve.

Finally, although Al-based predictions show a high level of
confidence, it is paramount to complement these results with additional
assessments with clinical analysts [12] because this validation process
not only verifies the accuracy of Al diagnoses but also establishes
regular follow-up and comprehensive evaluations by eye care experts
[43]. Moreover, integrating these emerging technologies with traditional
clinical expertise highlights their essential value in improving eye care
[48]. Integrating Al into everyday medical processes represents a great
challenge, as it is crucial to take into consideration complementary
aspects such as minimizing the risks of diagnostic errors, data privacy,
system adaptability, collaboration between the parties involved, and
establishing new regulations to optimize these advances and ensure that
Al improves eye health care.

Despite the availability of several FDA-approved systems like
EyeArt, IDx-DR, and Retmarker, many of these tools require costly
infrastructure, are limited to specific imaging devices, or depend on
centralized, specialist-based environments [49]. In contrast, the Vision
Al model proposed in this study offers key differentiators:

1) Scalability, by being adaptable to various clinical settings and
regional constraints.

2) Accessibility, particularly in low-resource environments, as it
operates efficiently without needing invasive equipment or specialist
supervision.

3) Implementation simplicity, through a lightweight algorithmic
structure that can be embedded into existing diagnostic workflows
with minimal cost.

4) Cross-platform compatibility, allowing the model to analyze
retinal images from diverse fundus cameras, thus avoiding bias or
dependence on a specific device manufacturer.

These characteristics position Vision Al as an innovative,
practical, and clinically reliable alternative that expands the reach
of early DR detection, especially in underserved populations [50].
Unlike existing commercial tools, this model was validated using
real-world multicenter datasets and supports decentralized diagnostic
implementation, making it highly relevant for public health deployment.

3. Methodology

The study adopted a quantitative approach evaluating the
following hypothesis: Would the use of mathematical algorithms based
on Al, which process data from the retinal images, allow the detection
of DR with a level of accuracy greater than 90% confidence? Based
on statistical analysis, patterns of behavior will be established and this
theory will be proven [51]. In addition, the study sought to develop the
object of research, identifying regularities and relationships between
the components of the study [52]. Additionally, the study identified the
properties and characteristics of the phenomenon related to the main
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strategies for the early detection of DR [53]. Then, an exploration was
conducted to model the factors to be considered in strategies for the
correct use of Al-based models for early prediction of ocular pathology
[54].

Initially, 5436 retinal images were classified by retina specialists
into two categories: 1) healthy eyes (Class 0) and 2) Eyes with DR
(Class 1). This allowed the feasibility of the research and the testing of
the proposed hypothesis. Additionally, the validation process used the
expert judgment of specialists to reduce the error in the classification
of the images. Next, training, validation, and testing of the data
management model were conducted based on deep CNN algorithms
within the Vision Al platform.

In the statistical analysis stage, the ResNet50 architecture,
thanks to its ability to learn through residual functions, allowed
the input layers to be adjusted for residual mapping, achieving the
stacking of residual blocks within a 50-layer network, with the aim of
optimizing the training process, reducing loss and data preprocessing
[55-58].

Figure 1 illustrates the processing of a block (image) within the
ResNet architecture. Here, the stacking of the layers usually finds ideal
weights and biases, resulting in the best network performance, through
successive forward passes, error calculations, and backpropagation. By
adding the input back to the output, this architecture prevents gradients
from vanishing too quickly. The goal is the introduction of residual
blocks containing an identity shortcut connection that skips one or more
layers.

A complete ResNet50 architecture is illustrated in Figure 2,
where the convolution kernel size, output channel size, and stride size
(default is 1) are displayed, similarly for the grouping layers.

CNNs use convolutional parameter layers to iteratively learn to
transform input images into hierarchical feature maps [57].

The ResNet50 architecture was selected due to its balance
between depth, training efficiency, and accuracy. Unlike older models
like VGG16, which contains more parameters and lacks residual
connections, ResNet50 avoids the vanishing gradient problem and
improves learning in deep networks. Although newer models such as
EfficientNet and Vision Transformers show promise, they require more
computational resources or larger datasets. Therefore, ResNet50 offered
a robust and practical solution for this clinical imaging task.

Figure 1
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The ResNet50 architecture demonstrated reliable performance in
medical image recognition, enabling more accurate results through the
use and analysis of confusion matrices. Compared to VGG16, ResNet50
is more efficient; and while EfficientNet or Vision Transformers offer
better accuracy in large datasets, they demand higher computational
cost and complex tuning, which was not ideal for the project scope.

The CNN network used the following parameters for its training:

1. The input corresponding to the training dataset consisted of 3752
images, each labeled with a category (Class 0 and Class 1).

2. Next, the training dataset used a classifier to learn the structure of
each of the classes.

3. Subsequently, the quality of the classifier was evaluated by asking
it to predict a label for a new set of images that it had never seen
before.

4. Finally, the comparison of the actual labels with those estimated
(predicted) by the classifier was performed.

The ResNet50 architecture was selected for its balance in depth,
efficiency, and precision in training and testing data models in deep
networks, avoiding the problem of gradient disappearance. Although
technologies such as VGG16, EfficientNet, and Vision Transformers
exist, they require greater computing power and a larger data sample
for use, which made their use impossible.

The pre-trained Vision Al model was adapted to the dataset using
a fine-tuned method to optimize the learning rate. Once this stage was
completed, the training process began with a new random input layer
for the first epoch to ensure optimal performance with the selected
dataset. Subsequently, the remaining dataset, resized to 448 x 448
pixels was trained for 50 epochs, where the weights of the later layers
were updated more rapidly than the previous layers.

To mitigate overfitting and overconfidence, label smoothing was
applied as a regularization technique, enhancing model performance
and reducing overfitting. Once the training stage was complete, testing
was carried out on the Vision Al platform, where pre-established labels
were compared with unlabeled data. The parameters used to verify the
accuracy of the results were sensitivity, specificity, and F1 score.

The Vision Al platform uses TensorFlow and Keras algorithms
for data contrast and validation, while OpenCV and Numpy algorithms
are used for data processing.

The ResNet50 input layer required the retinal fundus images to be
224 x 224 pixels in size. OpenCV and NumPy were used to preprocess
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the data, which included normalizing the RGB channels to a range
of [0, 1]. During training, the study applied many data augmentation
strategies to make the model more general and reduce overfitting. These
adjustments included flipping the photographs both horizontally and
vertically, rotating them randomly by up to 15°, zooming them in by up
to 10%, and changing the brightness slightly. The research made these
improvements using Keras’s ImageDataGenerator module. The mean
and standard deviation of each pixel from the training dataset were also
used to normalize the images. This method made sure that the data was
consistent and contributed to the dataset’s diversity without affecting
how useful it was for therapeutic purposes.

Finally, the study evaluated the concept that Al-based arithmetic
algorithms might discover DR in positive cases with more than 90%
accuracy. The Vision Al platform’s confusion matrix showed that the
model was quite reliable in making predictions.

4. Results

These findings show that the approaches utilized worked well
and provided a lot of information about how the data were used to train,
verity, and test the models. The distribution of the data and the accuracy
of the classifications are crucial to ensure reliable and timely diagnoses.
The following tables and figures highlight the characteristics of the
datasets, the effectiveness of the applied Al tools, and the validation
of the proposed models; thus demonstrating the solutions obtained in
this study.

Table 1 shows the distribution of the dataset used for training,
validation, and testing, with 80% allocated for training and validation,
and 20% reserved for mathematical model testing minimizing the risk
of overfitting [60].

Table 2 shows the distribution of the images used for each class
(3752 images for each class) through oversampling [59].

The training process involved classifying 3752 images of healthy
eyes and 3752 eyes with DR. For validation, 938 healthy eyes and 409
DR eyes were used, while 1173 healthy and 511 DR eyes were reserved
for model testing. The sample size was determined using the finite
population model based on a known database of participating patients
collected in 2022 through open data and available in Latin America,
North America, Asia, and Europe, ensuring both geographic variability
and demographic variability [34, 44].

The findings obtained through the Al models were compiled
through the Vision AI application. Figure 3 shows descriptive
information on the efficacy of the application in ophthalmologic
screening for the classification of a healthy eye in an accurate and
timely manner.

Figure 3 illustrates the results of the Vision Al application of a
healthy eye, with a confidence level of 97.6%; the left frame (Quadrant
1) shows the representation of the healthy fundus; the right frame
(Quadrant 2) shows the heat map of the healthy eye, where Vision Al can
assess the optic nerve region (1), which is an important characteristic
for the early detection of ocular pathology [37], and the foveal region
(2), which facilitates the central vision and the detection of diseases
such as macular degeneration [32], and the macula of the retina region
(3), allowing to corroborate the state of retinal health [11]. Descriptive
information on the efficacy of Vision Al for the classification of an eye
with DR is shown in Figure 4.

Figure 4 illustrates the results of an eye with DR with a confidence
level of 96.5%; in the left frame (Quadrant 1), the color fundus image
can be appreciated; and in the right frame (Quadrant 2), the heat map,
where Vision Al can recognize the optic nerve region (1) and macular
region (2) that suggest a high activity in this region, indicating the

presence of microaneurysms and exudates, characteristic symptoms
of DR [29, 36]. In addition, areas in the periphery of the retina stand
out (3); where other signs of DR could be present that complement
the screening due to the size, morphology, and compartment of the
peripheral zone [17]. Table 3 summarizes the results obtained through
the Vision Al application.

The study also got more findings from the mathematical models
by using Vision Al (see Table 4).

This evidence demonstrates that the results are representative,
exceeding the 90% confidence level established for the health sciences
sector [65]. This reaffirms the reliability and robustness of Vision Al for
the detection of DR as a clinical screening tool.

The objective of the research was to determine the diagnostic
accuracy for identifying DR in positive patients and to validate the
proposed hypothesis using a confusion matrix. According to Weng et al.
[41], the confusion matrix is a mathematical tool that provides insights
into accuracy and efficiency in identifying DR from fundus images. In
this study, the matrix was used to accurately predict different ocular
condition classes, with a focus on highlighting specific areas indicative
of symptoms related to DR.

Fernandes et al. [13] and Irfan et al. [27] highlight that this
mathematical model predicts each category from a comparative analysis
of an image that has been previously classified, giving it predictive
capabilities by training. However, if the model is unable to recognize
the category to be evaluated, it assumes the status of unclassifiable
category to be considered in a subsequent training. Figure 5 shows
the descriptive information of the efficiency obtained by the confusion
matrix used in Vision Al for the classification of the different types of
eyes in the selected sample.

Moreover, to assess the model’s learning behavior over time, the
training and validation accuracy and loss were monitored throughout
the 50 training epochs. The results showed stable convergence without
significant overfitting, indicating that the model generalized well to new
images. These trends confirm the robustness of the training strategy and
support the model’s reliability in clinical applications.

To make the results easier to understand, a comparison bar
chart was also made. It showed the final performance metrics for
both classes: accuracy, precision, recall, and F1-score. These images
show clearly how well the model can diagnose both healthy and sick
individuals, which is in line with existing standards for Al-based
medical imaging.

Table 5 analyzes 1,684 images using a confusion matrix,
obtaining an accuracy of over 90% in the results. Additionally, the
receiver operating characteristic under the curve (ROC-AUC) was 0.96,
confirming a high level of accuracy in findings, with categorized and
unlabeled images.

Table 5 shows that the accuracy level in detecting healthy eyes
was 95.35% (1128/1183), while the DR group was 91.02% (456/501);
in both scenarios, the results exceeded 90% accuracy.

Izah et al. [66] emphasize that in medical research, maintaining
a confidence level above 90% is important to ensure the accuracy and
reliability of the findings. A high confidence level is associated with
narrower confidence intervals, which in turn reduces the likelihood of
Type I errors (false positives) and Type I errors (false negatives). Field-
Richards et al. [67] and Lee et al. [68] emphasize that strong statistical
analyses and high confidence levels are essential for directing evidence-
based behaviors. Vaajoki et al. [69] add that the use of complementary
statistical parameters enhances a study’s sensitivity, which ensures the
detection of true, valid, and applicable effects in real clinical settings.

By applying Al-based mathematical algorithms and statistical
methods to retinal data from ophthalmologic patients, the model
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Table 2 5. Discussion
Data used for model training . . . .
DR is a microvascular consequence of diabetes mellitus that
Number of data Number affects the retinal blood vessels and may result in partial or total vision
for training with  of data for ~ Number of loss in advanced stages. Recent studies indicate that DR is a primary
Categories oversampling validation test data cause of avoidable blindness among working-age people, particularly
Actual healthy 3752 938 1173 impacting those with inadequate metabolic management of diabetes
(Class 0) [70]. After 20 years of having diabetes, over 60% of those with type 2
Actual DR 3752 409 511 diabetes and practlcall.y all people with type 1 diabetes are thought to
(Class 1) have some leyel of ret}nqpathy [71]. . . .
Detecting DR in its early stages is crucial to prevent serious
complications. Studies such as the Early Treatment Diabetic
Retinopathy Study (ETDRS) have shown that early interventions such
Figure 3 as intensive glycemic control and laser photocoagulation significantly
Using Vision Al platform to classify healthy retinas reduce the risk of visual impairment [72]. The advent of anti-Vascular
Quadrant 1 Quadrant 2 Endothelial Growth Factor (anti-VEGF) therapy and surgical
Healthy fundus Heat map of the retina, macula, and techniques has revolutionized treatment outcomes in DR; however,

blood vessels of a healthy eye

Note: Healthy fundus sample (Class 0).

Figure 4
Using the Vision Al platform and classification of eyes with DR

Quadrant 1
Fundus with DR

Quadrant 2
Heat map of the retina, macula, and
blood vessels of an eye with DR

Note: Fundus sample with DR (Class 1).

achieved a diagnostic accuracy of 91.02% in identifying positive cases
of DR. This level of accuracy shows that the Al model is strong and
dependable enough for mission-critical use in healthcare settings. This
supports the acceptance of the alternative hypothesis and the rejection
of the null hypothesis.

undetected disease remains a burden despite excellent treatment
options [73]. Advances in Al-based tools have improved the quality
and access to early detection [74].

A summary of the comparative analysis between the optimizations
applied is presented in Table 6.

Undoubtedly, hypothesis testing ratifies the results and provides
evidence that the use of Al demonstrates robustness, reliability, and
accuracy in the detection of DR. In this regard, Kumar et al. [75]
highlight that the accuracy of DR grading found an error rate of 49%
among internists, diabetologists, and resident physicians in overlooking
the diagnosis of Proliferative Diabetic Retinopathy (PDR). Meanwhile,
Sarantakos et al. [39] highlight the importance of adopting Al
technologies in modern medicine to improve accuracy and efficiency
in medical diagnostics on a global scale, along with the benefits of cost
savings, speed, efficiency, and effectiveness in outcomes towards the
patient.

Early and accurate diagnosis of DR is essential to prevent
progression to advanced stages that can be blinding. Traditional
screening and diagnostic techniques for DR include ophthalmoscopy
and fluorescein angiography [76]. Although these techniques are
effective, they have several limitations. For instance, ophthalmoscopy
requires dilation of the pupils which is time-consuming, uncomfortable,
and temporarily debilitating for patients. Fluorescein angiography is
invasive by way of intravenous injection of a contrast medium which
can cause severe adverse reactions [77].

The high cost of traditional screening poses a significant barrier
to care especially in populations and regions with limited resources
[78]. The reliance on the clinical judgment of the specialist can yield
inconsistent diagnoses and significant interobserver variability [79].
These limitations have motivated the development of technologies,
such as Al-based systems, which aim to improve diagnostic accuracy
and facilitate early detection [80].

Table 3
Retinal image classification results via Vision Al
Study Dice Parameter ADF (mm) Jaccard Index Acce %
Normal Normal 97.6% High accuracy in identifying normal images is crucial to avoid Boldrin et al. [61].
false positives. The model accurately confirmed the absence
of pathologies.
DR DR 96.5% High accuracy in detecting DR is essential for early and effec-  Flaxel et al. [29];

tive interventions. The model detected clear signs of DR such
as microaneurysms and hard exudates.

Martinez-Gutiérrez et al.
[35].
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Table 4
Complementary results of Vision Al statistical models
Measure Normal DR Goal
Sensitivity level 96.16% 90.2% Represents the level of accuracy to correctly detect true positives and

negatives [62].

Level of specificity 90.2% 96.16% It represents the probability that the results of a test will be negative if

you do not have the disease [63].

Fl-score 95.75% 90.1% It represents the evaluation that combines precision and sensitivity in a

single harmonic metric, offering a balance between both [64].

Figure 5 Vision Al has several advantages over other modern tools in

Confusion matrix results for a sample of 1684 eyes the market. For instance, Eyenuk’s EyeArt system, which also uses
Al, has demonstrated 91.3% accuracy in DR detection but requires

more specialized equipment and is not as accessible due to the high

1000 cost of acquisition [81]. The retinalyze system, while effective, is less
accurate and more costly as it requires specialized equipment and

Healthy

45 300 highly trained personnel [82]. Similar to EyeArt, IDx-DR requires
expensive technology and trained personnel to operate, which poses
3 implementation challenges in places with little resources [83].
% - 600 Retmarker is another program used to monitor the progression of
2 DR; however, it requires significant manual input and is costly to
400 maintain [84]. In addition, it demonstrates lower accuracy compared
x 55 456 to Vision Al N . . . .
In summary, Vision Al is great at finding DR, with a high
- 200 accuracy and sensitivity rate of 96.16% for healthy eyes and 90.2%
for DR. It is a good and useful option due to its ease of access and low
Healthy DR operational costs. This is particularly true in remote places or areas with
Predicted label limited access to resources. Vision Al is a better option than previous
procedures as it is non-invasive, quick, and highly automated. Previous
methods are typically intrusive, costly, and depend on experts. This
Table 5
Results of the confusion matrix prediction model
Number of patients Cumulative percentage Cumulative percentage
predicted to be of patients predicted as Number of patients of patients predicted
Categories healthy healthy (%) predicted with DR with DR (%)
Actual healthy (Class 0) 1128 95.35% 45 8.98%
Actual DR (Class 1) 55 4.65% 456 91.02%
Total 1183 501
Table 6
Comparative analysis of the predictive model of retinal images through Vision Al and traditional techniques
Features Vision Al Traditional screening
Invasiveness Non-invasive Invasive; pupil dilation, angiography
Cost Lower operating cost High; equipment, personnel
Accessibility HIGHLY ACCESSIBLE in remote areas LIMITED; requires specialized infrastructure
Processing time RAPID AQUISITION (<3 sec.) Slow; requires preparation and processing time
Need for specialists Reduced, high automation High; dependent on specialist expertise
Early detection capacity High precision and sensitivity Variable; some techniques do not effectively detect early

changes, because it is done manually by the clinical analyst.

Accuracy rate 96.16% (healthy) and 90.2% (DR) Variable; usually lower without Al
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makes it less dependent on a qualified operator or specialist knowledge,
making it easier to detect problems early with great accuracy.

Omer [18] and Zeng et al. [85] highlight that Vision Al improves
DR detection by analyzing a wide range of parameters in depth. This
is very important for protecting eye health. Abegaz et al. [86] and
Rapach et al. [87] also show that the approach works well in finding
vascular adverse events by giving clear examples of real positive cases.
Combining Al-based systems with tools like the confusion matrix
is very important for informed decision-making in mission-critical
applications extending beyond healthcare.

Rapach et al. [87] contend that this approach facilitates the
acquisition of diagnostic accuracy regarding biomarkers present in
high-risk patients to enhance their quality of life. Outside of healthcare,
Bagherietal. [88] improved complicated design processes in engineering
models by employing systems and simulations that were evaluated using
a confusion matrix. An et al. [89] obtained more accurate and efficient
risk assessment in sustainable development environments, resulting
in cost savings, reduced execution times, and positive environmental
impact. In education, Chiang et al. [90] activated self-monitoring to
help teachers improve pedagogical strategies, and Premeaux et al. [91]
demonstrated the role of Al in automating construction processes and
improving business decision-making. These findings emphasize the
importance of Al-based technologies in establishing new principles,
standards, and policies to drive innovation while ensuring efficiency.

As society enters the 5th Industrial Revolution, where automation
and Al will dominate, particularly in healthcare, it is crucial to develop
guidelines for certifying and accrediting emerging technologies.
Agencies like the European Medicines Agency (EMA) and the Food
and Drug Administration (FDA) must expedite approvals to make
advanced technologies more accessible, cost-effective, and impactful in
improving quality of life. This study underscores how Al-based systems
can effectively detect DR, showcasing their ability to improve accuracy,
sensitivity, and specificity in retinal image classification, along with the
ability to safeguard the confidentiality, integrity, and availability of
patient data in a connected world.

Despite its advantages, Vision Al faces limitations, particularly
its reliance on input image quality. Issues such as lens opacities,
insufficient illumination, or patient movements, can compromise
diagnostic accuracy [92]. This challenge is not unique to Vision Al It
underscores the need for improved algorithms to handle challenges and
ensure accurate diagnoses in all conditions [93].

While Vision Al is highly accurate in detecting DR, some other
technologies offer complementary strengths. For instance, Retmarker
offers detailed tracking of DR progression, which is a crucial metric for
monitoring treatment outcomes over time [94]. Emerging multimodal
technologies that combine Al with biomarkers or genetic data provide
an even more comprehensive assessment of ocular health status and risk
of DR progression, outperforming Vision Al in certain clinical scenarios
[95]. Nevertheless, Vision Al remains an invaluable tool, particularly in
resource-limited settings, where its low cost and high accuracy enable
timely diagnosis, addressing the growing global burden of diabetes and
its complications [96].

The confusion matrix has been instrumental in validating Vision
Al’s performance, highlighting its ability to reduce misdiagnosis
and preserve resources. In ophthalmology, where early detection is
critical, Al’s ability to identify disease states is transformative. Vision
Al democratizes access to high-quality diagnostics, making advanced
healthcare more accessible worldwide.

The practical implications of this research extend beyond
healthcare, illustrating how emerging technologies can revolutionize
various fields. The integration of Al, the Internet of Things (IoT), and
Big Data can improve health systems, predict public health challenges,
and drive resilient digital ecosystems [97]. This study provides a

roadmap for stakeholders to leverage Al for data-driven decision-
making, fostering innovation in both academic and industrial domains.
Further research will continue to explore multidisciplinary applications
of AL, from bioengineering to ethical considerations, paving the way for
groundbreaking advancements in human health [97—100]. In conclusion,
the deployment of Vision Al for early DR detection represents a
significant advancement in clinical ophthalmology, particularly for
underserved regions. Its low-cost, high-accuracy, and non-invasive
features make it an ideal solution for rural areas and health systems
with limited access to specialists [101]. Integrating this Al-based tool
into national visual health programs could enhance population-level
screening efforts, reduce preventable blindness, and inform data-driven
public health strategies. Policymakers are encouraged to consider such
technologies in the formulation of equitable, efficient, and scalable
healthcare solutions.

6. Conclusions

This study conclusively illustrates how the implementation of an
advanced Al model, based on the ResNet50 neural network architecture,
is marking a turning point in the detection and management of DR,
a severe complication of diabetes that can result in blindness. The
results obtained are not only significant but also highlight the ability
of the Al model to increase accuracy, sensitivity, and specificity in the
classification of retinal images, whether normal or pathological.

In Latin America, it is estimated that over 45% of diabetic patients
do not undergo regular ophthalmologic screenings due to the shortage
of specialists, especially in rural and underserved areas [102]. In Costa
Rica, for example, regions outside the Greater Metropolitan Area report
fewer than one ophthalmologist per 100,000 inhabitants, significantly
limiting access to early detection of DR [103]. This disparity underscores
the urgent need for automated, accessible, and accurate screening tools
that can support early diagnosis and intervention, even in resource-
constrained healthcare settings.

The application of the confusion matrix as an evaluative tool
has been crucial in this process, providing a thorough and meticulous
validation of the model’s efficacy. This technique has allowed
verification of the model’s high accuracy rate in correctly identifying
and classifying ocular conditions and has impressively highlighted its
potential to drastically reduce misdiagnosis and unnecessary treatment.
This advantage is of paramount importance in ophthalmology, where
early detection can effectively prevent the progression of DR to
complete vision loss.

The findings underscore the crucial importance of incorporating
advanced Al technologies into ophthalmic care. The ResNet50 model
has emerged as an exceptionally promising tool for clinicians, offering a
diagnostic method that is faster, less invasive, and more accessible than
traditional methods. This tool becomes even more valuable in settings
where access to specialists and advanced technology may be limited.

Furthermore, the integration of this model can democratize
access to high-quality diagnostics, promoting fairer and more equitable
detection and treatment worldwide. This approach not only improves
diagnostic efficiency but also facilitates more timely and targeted
interventions, essential to prevent irreversible damage to patients and
significantly improve standards of eye care worldwide.

Additionally, recent findings by Vij and Arora [7] reinforce
the clinical viability of ResNet-based architectures in DR diagnosis.
Their study implemented a deep inductive transfer learning approach
for multiclass classification of DR severity using the IDRiD dataset.
Among five evaluated models, the optimized Xception network
achieved an AUC-ROC of 0.9902 and precision above 0.98 across all
severity stages. These results confirm that, when enhanced with fine-
tuned parameters and robust preprocessing, models like ResNet50
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remain highly competitive in clinical settings, particularly due to
their scalability, adaptability, and strong performance in image-based
diagnostics.

To push the area of Al-assisted ophthalmology forward, a number
of important research paths are suggested. These suggestions are meant
to fix the problems that are now present and look at how this technology
may have a bigger effect:

1) Multicenter validation: To ensure the applicability and robustness of
the ResNet50 model, it is essential to conduct multicenter validation
studies that include diverse populations and clinical settings.
This will help determine the efficacy of the model in different
demographic and geographic contexts, and ensure its adaptability
and scalability.

2) Integration of new technologies: Merging the Al model with other
new technologies, such Optical Coherence Tomography (OCT) and
fluorescein angiography, might help us learn more about DR and other
retinal diseases. Looking at how these technologies can work together
might lead to big improvements in how accurate diagnoses are.

3) Development of composite predictive models: Look into how
to make composite models that can not only find DR but also
guess how the illness will become worse. This might lead to
more tailored and timely treatments, which could lead to better
treatment results.

4) Research on the economic and social effects: Do research that look
at how using Al to diagnose DR would affect the economy and
society. These research might provide us useful information on how
to lower costs, make things easier to get to, and how they affect a
patient’s quality of life.

5) Ethics and data privacy: Do further study on how employing Al in
health affects privacy and ethics. Develop regulatory and policy
frameworks that ensure the security and privacy of patient data,
while fostering innovation in Al technologies.

Conclusively, this study not only validates the efficacy of Al
models in ophthalmology but also lays a solid foundation for future
research that could expand and improve the detection and management
of eye diseases worldwide.
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