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Abstract: Cybersecurity threats and attacks are increasing day by day, bringing real focus on Domain Name System (DNS)-based data
exfiltration—a stealth technique used by attackers to steal sensitive information from compromised networks. DNS query exchange is the initial
part of any data exchange in the Internet and is the most neglected in traditional monitoring systems. These enable attackers to create covert
channels to carry out various advanced persistent threats and unauthorized exfiltration attempts. In this research study, we present a novel detection
approach of these DNS patterns through low-dimensional latent representations extracted via a Tabular-Variational AutoEncoder (Tab-VAE),
specifically tailored for DNS-over-HTTPS (DoH) traffic. The latent space obtained by the Tab-VAE is subsequently fed into a multi-head self-
attention classifier to perform a multi-class classification. We evaluated our experiments using the BCCC-CIC-Bell-DNS-2024 dataset, which
provides a realistic snapshot of DoH traffic patterns. Notably, the proposed model demonstrated robust generalization across varying batch sizes
and achieved competitive performance metrics with an improved accuracy of 80% and precision score of 75% for a batch size of 128. These
findings highlight the potential of advanced machine learning architectures in reinforcing cybersecurity posture. By integrating such techniques,

organizations can improve the detection of covert DNS-based attacks and better protect sensitive assets against emerging threats.
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1. Introduction

In this age of global connectivity, where the Internet enables almost
all aspects of everyday life, stringent and real-time security controls have
become more vital now than ever before. As organizations rely on smooth
data exchange and low-latency communication, this openness also
becomes a profitable target for cybercriminals. Increasingly advanced
attacks, such as exfiltration of data through hidden channels such as
Domain Name System (DNS) tunneling, underscore the necessity of
sophisticated detection mechanisms that function effectively in a wide
variety of network landscapes. To enhance privacy, DNS resolutions are
increasingly often encrypted and transported using protocols such as
DNS over HTTPS (DoH), DNS over TLS (DoT), and DNS over QUIC
(DoQ) [1, 2]. Although these protocols increase confidentiality and
thwart eavesdropping, they compromise the visibility of network traffic,
making it more difficult to detect threats in real time. Malicious users
can now blend in with normal encrypted traffic and evade traditional
inspection techniques. Furthermore, tools such as iodine and dnscat2
facilitate tunneling over DNS by inserting arbitrary payloads into
queries, effectively hiding the attack content [3, 4]. As encrypted DNS
protocols are targeted by attackers, detecting these patterns becomes
difficult, particularly in contexts with varied device capabilities ranging
from Internet-of-Things (IoT) devices to servers.
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Traditional security measures, such as blocking malicious
domain names and using rule-based approaches to block harmful traffic
patterns, are no longer sufficient for encrypted DNS traffic. The lack
of sufficient labeled datasets for capturing DNS network traffic has
also resulted in poor detection systems. Additionally, attackers employ
obfuscation techniques that completely hide their payloads, making it
difficult to detect their intentions.

To address these challenges, training Machine Learning (ML)
and Deep Learning (DL) models to recognize these patterns in traffic
has shown promise in classifying encrypted traffic [5-8]. However,
many models face limitations due to the lack of labeled data and poor
generalization across different attacks, resulting in the evolving nature
of attack strategies. In particular, recent autoencoders and transformer-
based models excel at extracting latent patterns from sequential
network data, making them particularly effective for anomaly detection
in encrypted DNS traffic [9, 10].

In recent years, the emergence of autoencoders and transformer-
based models [11-14] has further improved the capacity to capture
complex patterns in network traffic. Both models excel at processing
sequential data and understanding long-range dependencies, making
them particularly suitable for analyzing the latent space of network
traffic in DoH, DoT, DoQ, and other encrypted protocols. By learning
these latent representations, attention-based transformers can detect
subtle anomalies in encrypted traffic, even when explicit patterns are not
easily identifiable. These models can adapt to evolving attack strategies,
which is crucial as attackers refine their methods to evade detection.
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This paper explores the potential of using the Tabular-Variational
AutoEncoder (Tab-VAE) to classify encrypted DNS traffic, which
proves to be more effective in handling network flow information.

While traditional and ML models have been used for network
traffic classification, they struggle with encrypted DNS due to a lack of
interpretable features. Traditional models often rely on shallow features
that miss the complex patterns in modern encrypted traffic. In contrast,
latent representations from autoencoders and VAEs offer a solution
by transforming high-dimensional inputs into a compact latent space.
This helps capture underlying patterns and improve class separability
by reducing noise and redundancy. These enhanced features can assist
classifiers, such as self-attention models, in identifying benign versus
malicious traffic. Additionally, learning latent spaces is beneficial
for sparse or partially labeled data, supporting semi-supervised and
unsupervised learning tasks.

This study explores a new approach to classifying DoH traffic
in complex, heterogeneous network environments. The main idea is
to combine a Tab-VAE with a self-attention-based classifier to better
capture the nuanced characteristics of encrypted DNS traffic. One of
the key strengths of Tab-VAE is its ability to handle tabular data more
effectively than standard autoencoders. This makes it particularly useful
for representing the diverse set of features typically found in network
traffic, where underlying distribution of input data varies with the
traffic capture. This not only improves the reconstruction capabilities
of the model but also enhances its ability to recognize deviations from
normal behavior, which is crucial for identifying malicious activity. The
probabilistic nature of the model helps it generalize well across different
types of traffic, making it more resilient to changes and novel attack
strategies. Additionally, working with latent space representations
allows the model to uncover subtle patterns that might otherwise go
unnoticed, especially in encrypted channels such as DoH. By using
these latent features, the system becomes better equipped to detect
anomalies that traditional methods might miss.

The primary objective of this study is to improve the classification
of DoH traffic in heterogeneous networks by utilizing deep latent
representations. Specifically, we aim to achieve the following objectives:

1) To design a Tabular-Variational Encoder-Decoder (Tab-VAE)
model that learns and generates latent spaces for high-dimensional
representations of DoH traffic for downstream classification tasks.

2) To leverage the latent space derived from high-dimensional DoH
traffic to detect anomalies and accurately classify deviations
indicative of malicious activities into multiple threat classes.

3) To design and develop a scalable and efficient self-attention-based
classifier trained on the latent space, capable of lightweight and
accurate classification of DoH traffic in heterogeneous network
environments.

4) To evaluate the performance of the proposed model using the BCCC-
CIC-Bell-DNS-2024 dataset, a widely recognized benchmark in
cybersecurity research, across varying batch sizes. The classification
performance is statistically validated using a one-way Analysis of
Variance (ANOVA) test and shows optimal accuracy improvements
at a batch size of 128.

The following sections of this paper provide a comprehensive
review of related works on DoH traffic classification in Section 2.
Section 3 explains the theoretical framework of the Tab-VAE model for
latent space generation. Section 4 discusses the methodology used to
design a self-attention-based classifier. Section 5 presents the results and
discusses the experiments conducted. Lastly, the conclusion highlights
the limitations of the study and outlines the scope for future work.
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2. Literature Review

Table 1 provides a detailed summary of studies carried out
on various datasets related to DNS traffic. This section highlights
the approaches of various works using various approaches and
methodologies related to the detection and analysis of DoH traffic.

Chhabra et al. [15] analyzed the performance of DoH compared to
traditional DNS using data from over 22,000 subscriber in 224 countries.
The study shows that performance of DoH varies by geographical
location and Internet service providers. Additionally, the researchers
demonstrated the security threats posed by DoH exploitations. Vekshin
et al. [16] studied and proposed a method to capture and analyze DNS
traffic, which was then used as preprocessed input to generate a labeled
dataset. The dataset contains 1,128,904 flows, of which approximately
33,000 are labeled as DoH traffic for the classification task using ML
models. Lambion et al. [17] created a labeled dataset that captures real-
time traffic exhibiting DNS data exfiltration and tunneling behavior
and utilized this dataset to train ML models, such as random forest
combined with a Convolutional Neural Network (CNN) classifier, to
improve the accuracy of detecting DNS tunnels in real-time traffic.

Wang et al. [18] provided a detailed analysis of DNS tunnel
detection techniques, which are crucial for identifying malicious
activities disguised as normal DNS traffic. They explored rule-based
and model-based methods between 2006 and 2020. The work also
discussed the strengths and weaknesses of each approach in handling
encrypted DNS traffic. Casanova and Lin [19] focused on detecting
malicious DoH traffic using DL techniques, emphasizing the need for
more generalizable models across different network environments,
and used a preprocessed CIRA-CIC-DoHBrw-2020 dataset to address
feature selection and data imbalance problems. Long Short-Term
Memory (LSTM) and Bidirectional LSTM models are compared for
classification task.

Mitsuhashi et al. [20] proposed a novel identification system
for malicious DNS tunneling tools using a hierarchical classification
method using an ML model. The model was tested on the CIRA-
CIC-DoHBrw-2020 dataset and achieved 99% accuracy in detecting
suspicious DoH traffic. Monshizadeh et al. [21] proposed combination
of Conditional Variational AutoEncoder and Random Forest classifier
(CVAEWRF) to improve network traffic anomaly detection. The
CVAEWRF architecture improves model and data generalization by
reducing overfitting in intrusion detection. By learning most of the
similar input features, the CVAE direct RF classifier can efficiently
identify various attack types. The model is evaluated against existing
methods using the ISCX-2012 and MAWILab-2018 datasets, achieving
detection rates over 99.9%.

Khanam et al. [22] presented a DL-based Intrusion Detection
System (IDS), which is designed to address data imbalance in loT
networks, and introduced the Class-wise Focal Loss Variational
AutoEncoder to generate realistic samples for underrepresented attack
types and enhance learning for minority classes through the Class-
wise Focal Loss function. A deep neural network classifier trained
on this balanced dataset achieves 88.08% accuracy, with notable
detection rates for rare attacks such as U2R (User to Root, 79.25%)
and R2L (Root to Local, 67.5%). The results highlight the importance
of addressing data imbalance in an IDS and the effectiveness of deep
generative models in improving detection performance. Abu Al-Haija
et al. [23] developed a lightweight, double-stage scheme for detecting
malicious DoH traffic using a hybrid learning approach. The system
first identifies DoH versus non-DoH traffic with random fine trees, then
uses AdaBoost trees to classify DoH traffic as benign or malicious.
By using principal component analysis and random under-sampling,
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Table 1
Summary of related works carried out in DoH traffic classification

CIRA-CIC- BCCC-CIC-Bell-
SI. No Author (Year and references) Other datasets DoHBrw-2020 CIC-Bell-DNS-2021 DNS-2024
1 Chhabra et al. [15] *
2 Vekshin et al. [16] *
3 Lambion et al. [17] *
4 Wang et al. [18] *
5 Casanova and Lin [19] *
6 Mitsuhashi et al. [20] *
7 Monshizadeh et al. [21] *
8 Khanam et al. [22] *
9 Abu Al-Haija et al. [23] *
10 Fesl et al. [24] *
11 Lyu et al. [25] *
12 Alzighaibi [26] *
13 Irénée et al. [27] *
14 Wau et al. [28] *
15 Niktabe et al. [29] *
16 Bozkurt et al. [30] *
17 Demmese et al. [31] *
18 Huang [32] *
19 Panigrahi et al. [33] *
20 Shafi et al. [34] *
21 Liu et al. [35] *
22 Kazmi et al. [36] *
23 Namrita Gummadi et al. [37] *
24 Kirubavathi et al. [38] *
25 Proposed Tab-VAE model *

it increases efficiency with a reduced feature set. Experiments on the
CIRA-CIC-DoHBrw-2020 dataset have demonstrated high accuracy
and low overhead, surpassing existing models. This study provides a
practical solution for enhancing cybersecurity against malicious DoH
traffic.

Fesl et al. [24] proposed a DL method to detect DoH traffic to
enhance secure communication between DNS servers and users. They
created a DoH dataset from network traffic at the Czech Network
Information Center (CZ.NIC) and developed models that accurately
identified encrypted DoH traffic, including from Cloudflare, achieving
an accuracy of about 95%. The study reviewed existing ML models
for DoH detection and described in detail data preprocessing and
model optimization techniques. Fesl et al. concluded that their models
can effectively generalize and detect DoH connections from various
providers. Lyu et al. [25] studied DNS encryption, focusing on its
development, advantages, and potential for misuse. The analysis
covered various standards, such as DoT, DoH, and DoQ, and examined
their adoption, performance, and security flaws. The study showed
how malware can misuse DNS encryption for command-and-control
communications and data exfiltration, thus evading traditional security
measures. It also explored detection techniques for encrypted DNS
traffic and user profiling, providing insights for countermeasures against
malicious activities and highlighting research directions for enhancing
performance and security of DNS encryption.

Alzighaibi [26] investigated methods for detecting DoH traffic
using various ML models, including Random Forest, Gaussian Naive
Bayes, Logistic Regression, K-Nearest Neighbors (KNN), Support
Vector Classifier, Linear Discriminant Analysis, Decision Tree (DT),
AdaBoost, Gradient Boosting, and LSTM neural networks. Their study
utilized the CIRA-CIC-DoHBrw2020 dataset for the classification task
and achieved an impressive detection accuracy of 99.99% for binary
classification using the stacking model. Irénée etal. [27] proposed a hybrid
approach to reduce the features needed to detect DoH traffic utilizing the
XGBoost, Tree SHAP (SHapley Additive exPlanations), and Sequential
Forward Evaluation methods. The work was tested on the CIRA-CIC-
DoHBrw-2020 dataset with improved detection accuracy. Results
showed a prediction efficiency of over 99.9%, even when the number of
features was reduced from 33 to less than five. Wu et al. [28] addressed
the challenges of detecting malicious DoH traffic, which uses encryption
to improve user security and privacy but complicates conventional traffic
analysis. The authors proposed a novel DoH-TriCGAN (Tri-Component
Conditional Generative Adversarial Network) model that utilizes small
sample analysis and Conditional Generative Adversarial Networks
(CGANS) to detect malicious DoH traffic. Traditional methods struggle
with encrypted DNS traffic under the DoH protocol. Insufficient labeled
traffic data and imbalanced datasets hinder accurate detection. The DoH-
TriCGAN model showcased remarkable accuracy in its evaluations
with training on Small Sample Set-3000: The accuracy was 99.34%,
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outperforming other models such as Random Forest with 93.07% and
the Transformer model with 93.94% accuracy.

Niktabe et al. [29] presented an interpretable ML model using
DTs to profile malicious and benign DoH traffic. It introduced a feature
engineering technique that enhances accuracy and interpretability while
minimizing overfitting. To address data imbalance, a balanced dataset
(BCCC-CIRA-CIC-DoHBrw-2020) was created using Synthetic Minority
Oversampling Technique (SMOTE). The DT model achieved 93.93%
accuracy for malicious traffic and 94.86% for benign traffic, providing
a computationally efficient and explainable approach for real-time DoH
security monitoring. Bozkurt et al. [30] presented a method for detecting
malicious DoH traffic using ML and feature reduction techniques to
improve the detection speed. Their approach combined classifiers with
correlation analysis and principal component analysis to reduce redundant
features. Results showed that feature reduction enhances performance,
particularly for the Random Forest classifier, achieving 99% accuracy.
The KNN models saw a slight drop of 0.73% in accuracy, while the
Stochastic Gradient Descent classifier could also suffer a decrease. This
research optimizes the efficiency of IDS for DoH traffic analysis.

Demmese et al. [31] introduced a novel image-based ML
approach to classify malicious domains using transfer learning with
ResNet-50. By converting DNS traffic data into RGB images, the
model identified complex patterns, overcoming the limitations of
traditional blacklist detection. Using the CIC-Bell-DNS-2021 dataset,
the model achieved an accuracy of 98.67%, outpacing Support Vector
Machine (97.99%) and KNN (97.9%). This method automates feature
extraction and provides a scalable solution for real-time domain
threat detection. Future research can focus on lightweight architecture
and diverse datasets to improve model generalization. Huang [32]
introduced an interpretable DL model for detecting DoH attacks, which
effectively monitors encrypted DNS traffic. Utilizing the CIRA-CIC-
DoHBrw-2020 dataset with 672,558 samples, the model achieves over
97% accuracy in distinguishing benign from malicious DoH traffic.
Evaluation metrics such as Receiver Operating Characteristic (ROC)
curves and F1 scores validate its reliability, although detection of benign
traffic needs improvement due to dataset imbalance. SHAP analysis is
used to highlight important features such as network flow duration and
packet length, thereby enhancing the interpretability of the model.

Panigrahi et al. [33] introduced a hybrid threat detection
model for DNS data exfiltration in Security Information and Event
Management (SIEM) systems utilizing the CIC-Bell-DNS-EXF-2021
dataset, which evaluates ML algorithms such as Random Forest,
KNN, Gradient Boosted Trees (GBT), and DTs within a Multi-
Criteria Decision Analysis framework. The Gradient Boosted Trees
with VIKOR Multi-Criteria Decision Making (GBT-VIKOR) model
achieved the highest accuracy at 99.52% in identifying malicious DNS
traffic. By combining stateful and stateless detection techniques, the
model improves accuracy and reduces false-positive results. Although
this approach enhances the effectiveness of SIEM, challenges in dataset
diversity and real-time adaptability persist. Shafi et al. [34] introduced
an advanced DNS behavior profiling method to detect and analyze
malicious DNS activities, tackling issues such as evasion tactics and
URL obfuscation. It features a novel algorithm for feature selection,
pattern extraction, and a neural network—based profiling model to
improve accuracy. A significant contribution is ALFlowLyzer, a
network flow analyzer, and the BCCC-CIC-Bell-DNS-2024 dataset,
which extends existing datasets. By employing ML and DL, the study
achieved high classification accuracy, with over 95% precision for
all attack categories, demonstrating the effectiveness of behavioral
profiling for real-time threat detection in cybersecurity.

Liu et al. [35] introduced MFC-DoH, a novel method for detecting
DoH tunnels. This method combines Model-Agnostic Meta-Learning
(MAML) with a specialized CNN architecture known as Federated
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Convolutional Neural Network (F-CNN). MFC-DoH improved detection
accuracy, particularly in few-shot scenarios, by utilizing frequency
domain analysis and multi-head self-attention layers to identify time
series and periodic patterns. The model was trained on a large dataset
of DoH tunnel traffic and subsequently fine-tuned using limited data,
enabling it to outperform traditional detection methods for malicious
DoH activity. Experimental validation using public datasets confirmed
the effectiveness of MFC-DoH, positioning it as a promising solution for
securing encrypted DNS traffic against covert tunnels. Kazmi et al. [36]
enhanced Cyber Threat Intelligence in Federated Learning using CVAEs
to tackle non—Independent and Identical Distributed data challenges.
Their approach generated threat-specific data for each silo, improving
model performance in Software-Defined Networking (SDN) and boosting
accuracy from 92% to 97% for tasks such as intrusion detection and
threat classification. Namrita Gummadi et al. [37] emphasized the use of
Explainable Artificial Intelligence techniques such as SHAP, LIME (Local
Interpretable Model-Agnostic Explanations), and CEM (Counterfactual
Explanation Method) for feature selection in IoT sensor traffic. The
proposed framework can be effectively used for anomaly detection in
IoT network traffic and can improve explainability, interpretability, and
model performance when trained on publicly available datasets such as
micro-electromechanical system datasets and botnet traffic.

Rabie et al. [39] introduced a framework for enhancing
cyberattack detection using a stacking-based IDS, which combines
J48 and ExtraTreeClassifier with an Enhanced Equilibrium Optimizer
(EEO) for feature selection and SMOTE-IPF for class balancing. This
study tackled challenges such as high-dimensional data, class imbalance,
and elevated false-positive rates through optimization techniques such
as Fisher score and KNN. Tested on the NSL-KDD and UNSW-NB15
benchmarks, the framework achieved an accuracy of 99.7% and 98.1%,
respectively, with high F1 scores. While it provides a scalable, hybrid
solution for improved detection accuracy, challenges remain in managing
high-dimensional data and potential noise from synthetic oversampling.
Pramanick et al. [40] proposed an intrusion detection framework that
leverages advanced techniques to address the unique security challenges
faced by loT networks. By utilizing Decisive Red Fox optimization for
feature selection, the model enhances the efficiency of the classification
process, resulting in shorter training times and reduced error rates.
This framework, coupled with Descriptive Back-Propagated Radial
Basis Function classification, was designed to significantly improve
the accuracy of intrusion detection amid a backdrop of loT-specific
vulnerabilities. Testing against multiple benchmark datasets showed
that this innovative approach not only achieves high detection rates but
also maintains a low computational burden, establishing it as a viable
solution to the challenges of the evolving IoT security landscape.

Deep neural networks and ensemble methods achieved nearly
99% accuracy in multi-class traffic classification. While traditional
techniques such as supervised learning and anomaly detection are often
applied to DNS and DoH traffic threat identification, the use of Tab-VAE
is still largely unexplored. Tab-VAE is crucial for detecting malicious
network traffic because it performs both dimensionality reduction
and unsupervised feature learning, thus effectively handling mixed
data types in network datasets. Its robustness against noise improves
detection accuracy, and its generative capabilities can augment training
data with limited labeled samples. Additionally, the interpretable
latent representations of Tab-VAE provide cybersecurity analysts with
valuable insights in identifying threats and vulnerabilities.

3. Proposed Tab-VAEs Model for Latent Space For-
mulation

Figure 1 shows the process diagram of the proposed Tab-VAE
Encoder-Decoder model with a self-attention classifier explicitly
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Process diagram of Tab-VAE model

Figure 1

Process diagram of Tab-VAE model

Data acquistion

Preprocessing Module

Tabular Variational Autoencoder
(TabVAE)

Self-Attention-
Based Classifier

Evaluation Module

Structured tabular

-« E der: Maps input

« Attention Layer(s):

« Classification

representation of
Data Sources / Input in flow/session-level features to latent Capture inter-feature > resul}s X
pcap features in csv features. space. or inter-session « Metrics computation
format « Latent Space: dependencies. (Accuracy, F1-score,
Compact « Classification Head: etc.)
‘ representation Predicts traffic type « Visualization of
AP capturing complex (e.g., benign, attention weights /
DoH traffic filtering patterns. malware, DGA, latent clustering
« Decoder Used tunneling).
during training for
reconstruction loss.
DNS query/response Preprocessed tabular
metadata (parsed info) features
DoH traffic class labels.—

Latent embeddings. =——

designed to handle DNS traffic. By leveraging the dimensionality
reduction capabilities of tabular autoencoders, this approach aims to
generate a low-dimensional latent space that effectively captures the
characteristics of both regular DNS activity and various DNS data
exfiltration attacks.

The study utilized a structured pipeline to process DoH traffic
captured from various network environments, including enterprise,
IoT, and mobile settings. The raw traffic was parsed to create a
comprehensive dataset of flow-level and packet-level features. Tab-
VAE condensed these features into a compact latent space, preserving
the key patterns of DoH flows. This representation was input into a self-
attention-based classifier that captured inter-feature dependencies and
temporal correlations for effective traffic classification. The model was
trained and evaluated on both real-world and synthetic DoH datasets,
achieving robust performance in distinguishing benign from malicious
traffic using standard metrics such as accuracy, precision, recall, and
F1 score. Sections 3.1 to 3.3 discuss the description of the dataset used
and the preprocessing of DNS domain features, followed by an ablation
study of the proposed implementation details of the VAE model.
Section 3.4 gives an ablation study of the model architecture which is
necessary to understand it.

3.1. Dataset description

The BCCC-CIC-Bell-DNS-2024 dataset [34] is a key resource for
analyzing DoH traffic, which secures DNS queries through encryption.
This dataset includes both benign traffic and various forms of malicious
traffic such as DNS tunneling, amplification attacks, malware, phishing,
and spam. In our study, we extracted flow metadata with focus on
malicious classes, and also included benign flow records to construct
a representative training set. Initial flow-level filtering was applied to
isolate DNS-specific traffic; however, this process led to imbalanced
class distributions, with certain target classes (e.g., specific attack
types) being underrepresented. To address this issue, we used SMOTE
to generate synthetic samples for the minority classes. This resulted in
a more balanced dataset and mitigated the risk of bias during training.
The final training dataset comprises 30,000 flow records distributed
across benign and multiple malicious categories. Figure 2 visualizes
the class distribution after balancing, highlighting the effectiveness of
SMOTE in preparing the dataset for robust model training.

3.2. Dataset preprocessing

Data preprocessing is the crucial stage before model training ,
where features from DNS traffic are extracted by screening all flow

Figure 2
BCCC-CIC-Bell-DNS-2024 dataset
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metadata with dst port=53, which represents DNS traffic with 119
features comprised of integer, text, and categorical features. Before
generating the latent embeddings of the domain features, preprocessing
of integer, text, and categorical features is carried out using standard
transformations as given in Table 2. The output of the preprocessing
stage is a set of preprocessed DNS features that can help in DoH traffic
classification.

3.3. Tab-VAE model

The proposed methodology utilizes a custom-defined Tab-VAE
Encoder-Decoder model to use the dimensionality reduction technique
of autoencoders to generate a low-dimensional latent space of DNS
traffic that includes various types of DNS data exfiltration attacks. The
main advantage of the proposed model is the dimensionality reduction
achieved by the autoencoder implementation, which reduced the total
119 features in the original dataset to 15 features. The Tab-VAE model
consists of several components: a VAE Encoder layer, a Bottleneck
layer, a Decoder layer, and a custom loss function that facilitates the
creation of efficient latent space representations of the input tabular
dataset. Figure 3 illustrates the architecture of the Tab-VAE model,
highlighting the said components.

3.3.1. Encoder layer

The encoder in Tab-VAE is designed to process various types
of input data, such as integers, floating-point values, and categorical
variables, which are derived from traffic captures. The primary function
of the encoder is to transform this high-dimensional input into a more
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Table 2
Preprocessing of DNS features

DNS domain features

Features

Transformations applied

Integer features

Text features

Duration, packets rate, receiving_packets_rate, sending_packets rate,
packets len rate. receiving packets len rate, sending packets len rate,
mean_packets len, median_packets_len, mode packets len,

ttl_values mean, ttl values mode, ttl_values_variance,

ttl values standard deviation, ttl values median, ttl values skewness,
ttl_values coefficient of variation, average authority resource records,
average additional resource records, average answer resource records

Only DNS domain name is used for the proposed model: domain_name

Integer values are scaled, and float-
ing-point values are clipped using 5th
and 95th percentile values present in the
feature values.

8-bit hash of the domain_name feature is

Categorical features Label or target column present in the dataset

generated to capture the domain name—
related information.

Label encoding is applied for the target
class distributions.

Figure 3
Tab-VAE architecture
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compact and manageable representation in a lower-dimensional latent
space. The encoder consists of two hidden layers h1 and h2, as given in
Equations (1) and (2), each of which employing specific transformation
functions to facilitate transformation of input to the latent space. The
following components explain how VAE works:

1) Input handling: The encoder first preprocesses the input data to
ensure that it is suitable for the transformation process. This may
involve normalizing numeric values or encoding categorical values
into a format more suitable for numerical use.

2) Hidden layer h1: In our model, hl is the first hidden layer that takes
the preprocessed inputs and produces output from a transformation
function (e.g., ReLU, sigmoid) and a weighted sum. Hidden layer
h1 is the first stage of feature extraction, which begins by capturing
the most important patterns and relationships in the preprocessed
features. By applying transformation functions, hl identifies and
shows the important features that may be suitable for the output data.
The ReLU function helps generate a nonlinear transformation that
can help the encoder logic capture important feature relationships
that other simple linear transformations may miss.

3) Hidden layer h2: Similarly, in our model, h2 is the second layer
that further processes the output from hl, applying another round
of transformation function. This layer is needed to refine the
representation created by hl and helps capture complex patterns in
the data. Thus, h2 plays an important role in making the encoded
data more compact and informative, focusing on the interactions
between the features identified by h1. We use the stacking of these
layers to predict the final output.

These are lower-dimensional embeddings that consist of features
from the original high-dimensional feature input, while retaining
important information. Lastly, the encoder-decoder architecture helps
in tasks such as anomaly detection, sample generation, and data
reconstruction in the context of DNS traffic analysis.
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h1l = ReLU(BatchNorm(Linear(x))) (D

h2 = ReLU(BatchNorm(Linear(h1))) 2)
The outputs of the hidden layers 4/ and A2 are obtained by
applying a linear transformation to the input features:

Linear(z) = W(z) + b,

where W e R¥udin g the weight matrix

b ER¥" is the bias vector

x ERYn s the input feature vector

din and dout denote the input and output feature dimensions,

respectively.

To stabilize the optimization process and improve convergence,
the output of the linear transformation is normalized using a BatchNorm
layer applied across the mini-batch, as shown in Equation (3). Let
denote the normalized value of the i-th feature.

{-Ti*ltB}
Lyt
S TP

Applying ReLU on the parameter Z helps to learn complex
decision boundaries and also improves the model convergence with
faster training.

The linear function applies a learned affine transformation
using the ReLU function to map the input tabular data to a nonlinear
latent space. The combination of hl and h2 forms a Multi-Layer
Perceptron (MLP), which transforms the inputs into high-level feature
representations. Given the input feature x, the intermediate output of the
MLP gives a nonlinear transformation h1 and h2 incorporating learned
feature interactions, normalized values, and nonlinear transformations.
The encoder outputs the approximate posterior values of the features
which are the mean (p) and log variance (log 62) of the learned latent
distributions given in Equation (4):

z=

)

u = Linear(h2) and log 02 = Linear(h2) “4)

These two values help the encoder to define probabilistic latent
space representations using the reparameterization trick (z) given in
Equation (5), which is essential to prevent the Tab-VAE model from
blocking learning and avoid the exploding gradient problem. These
values are applied during training and further help the decoder minimize
the reconstruction loss.

Z=p+ 0 Xe wherec = exp(O.SX log 0'2),

5
and e ~ N(0,I), where z ~ N(u, 6?) )
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3.3.2. Latent space representation

The preprocessed tabular dataset (x) is transformed into latent
space (z) using the reparameterization trick that ensures forward and
backward computations during training help generate a low-dimensional
latent space with a dimension of 15 features. Latent scores for these
15 features are generated using XGBoost and permutation methods
to determine the importance of the feature maps. Figure 4 shows the
t-distributed Stochastic Neighbor Embedding (t-SNE) visualization of
the latent space obtained by the VAE decoder model, which highlights
the importance of the proposed technique in showing the class
separability of the dataset under low-dimensional space.

3.3.3. Decoder layer

The decoder layer mirrors the encoder layer, transforming
the input latent space (z) into progressively larger dimensions to
reconstruct the original input(x). The decoder follows the same
structure as the encoder, which utilizes two hidden layers h1 and h2 for
the reconstruction process.

3.3.4. Loss function

The Tab-VAE model was trained for 50 epochs, as shown in
Figure 5. The convergence of the loss function between reconstruction
loss and latent distribution alignment is calculated for each epoch or
iteration. The model employs a loss function (L) which is a combination
of two loss functions, namely the reconstruction loss (Lrecon) in

Figure 4
t-SNE of latent space obtained by Tab-VAE
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Loss function of Tab-VAE
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Equation (6) and the Kullback-Leibler divergence loss (LKL) in
Equation (7). These two loss functions are necessary because of the
presence of continuous and categorical features in the input(x). The
Lrecon is a function that represents how well the model can reconstruct
the integer and categorical values from the latent space to input(x).
For integer values Mean Squared Error (MSE) is used, whereas for
categorical values cross-entropy loss is used to form the Lrecon.

Given the prior and approximate prior distributions of the
encoder output: q(zx) = N(z; u, diag(o?)) and p(z) = N(0,I). The total
loss function for the reconstruction loss can be given by

Lrecon = > (Xi— X')? and Lrecon = — 3 xlog(x")

i=

(6)

-

Ly = Dx(q(zlx) | p(2) = 3 S (14 log o — nj2 — 62)  (7)

The total loss function is defined as L = Lyecon + LKI-

3.4. Ablation study on the Tab-VAE model

This ablation study highlights the changes made to the baseline
VAE model considering the input dataset and feature set comprising
integer, text, and categorical values in tabular representations. In the
experiments on the training and testing set (80:20), the baseline model
is optimized using an an encoder, latent space reparameterization
trick, and a decoder module. The loss function used to estimate the
reconstruction error is optimized using both the MSE and the LKL.
Modifying BatchNorm1D in both the encoder and decoder resulted in
an increased reconstruction error and potential training stability. Also
the activation function ReLU introduces nonlinearity, which is crucial
for the model learning rate; removing or changing to other activation
functions hinders the performance of the model. Hence, the activation
function is retained with the ReLU function for better accuracy. In
the same way, modification on the latent space size is determined by
different latent dimensions; a smaller latent space results in higher
information loss, while a larger latent space may result in redundant
information. Table 3 lists the Tab-VAE model parameters used to train
the proposed model.

4. DoH Traffic Classification Utilizing Latent Space
and Self-Attention Layer

The proposed model effectively integrates a two-stage approach
combining Tab-VAE with externally implemented self-attention neural

Table 3
Model parameters for Tab-VAE
Parameters Values
input_dim Input dimension size equal to number of
features in the tabular dataset
Hidden layers Two hidden layers h1 and h2 with 64 and
32 neurons
Activation function ReLU
Latent space parameters p and log 2

Bottleneck layer Encoder compresses the input to encod-
ing dimension=32 and later reduced to

output_dim=15 features.

Epochs 50
Optimizer Adam optimizer
Loss function MSE
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network layer to enhance DoH traffic classification. The significant
advantage of the proposed approach is enhanced data preprocessing with
class-imbalanced datasets, which provide transfer learning capabilities
for the VAE model. The model outputs latent representations that can
be used for transfer learning in various ways. As illustrated in Figure 6,
the proposed model includes a self-attention layer that collaboratively
improves the classification of DoH traffic utilizing the latent space.
The model can identify patterns and relationships by leveraging the
structured feature representations in the low-dimensional latent space,
ultimately leading to increased classification accuracy.

To detect and identify DoH traffic, the use of a self-attention
layer with the model is essential. This layer enables the model to
prioritize and identify the important components within the input data
when making predictions. By doing so, it better captures the complex
relationships and dependencies among DoH traffic from other types of
network activity. In our model, at the initial phase, the process starts
by defining a low-dimensional latent space consisting of 15 carefully
selected features. These features are selected specifically to help the
classifier in identifying DoH traffic and provide a good balance between
the model performance and learning rate. To verify the need of these
features, we use SHAP scores to rate the features among themselves.
As shown in Figure 7, SHAP scores assign a numerical value to each
specific feature, indicating the contribution of the feature to the model
output. This develops a clear understanding of how each feature
influences the final output, enhancing our model transparency and
interpretability. The SHAP values obtained in our proposed work use
the XGBoost algorithm, which results in good performance in ML
tasks. Additionally, other techniques such as permutation-based feature
importance methods help to randomize features and analyze the effect
on model performance. This process allows for a clear importance
of each feature to the final output. By using these methods with the

Figure 6
Tab-VAE with self-attention layer
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internal attention mechanism, we aim to improve both the accuracy and
efficiency of traffic classification.

4.1. Self-attention layer for DoH classification

Figure 8 shows the design of a self-attention-based classifier that
significantly enhances the analysis of features by transforming each
input feature into a higher-dimensional representation through tailored
projections. This transformation yields three distinct representations:
Query (Q), Key (K), and Value (V). Each of these projections serves
to deepen the contextual understanding of the original traffic features,
thereby enabling the classifier to achieve improved generalization and
adaptability to a diverse range of inputs. The self-attention mechanism
is a pivotal component of this architecture, as it allows the model to
uncover and capture complex relationships and dependencies among
the features.

By learning the important scores among features associated
with the input, our model can dynamically focus on the most relevant
information, thereby removing unwanted noise and data. This capability
is especially needed in cases where the input data may vary significantly,
ensuring that the classifier remains effective across different cases.
Under our proposed architecture, the internal attention model employs
three projections—Query Q, Key K, and Value V, which are extracted
from the input data to compute the importance score (Attention Score).
These scores play a fundamental role in determining the importance of
each feature in the input, resulting in improved model learning rate. As
a result, the classifier can utilize the contextual meanings embedded in
higher-dimensional feature representations to make predictions using
the following projections in our work:

Q = WQx, K= WKx, and V= WVx and
Attention score (A) is given as A = softmax (QK" / sqrt(d)) ®

where d is the attention dimension.

The attention scores are processed through a Softmax function,
which transforms these scores into attention probabilities. These
probabilities are then utilized to compute a weighted sum, which forms
the input for the fully connected layer responsible for generating class
logits.

4.2. Ablation study on self-attention layer for DoH
classification

This section explains the ablation study of our self-attention layer
used as a classifier in our work; we retained the baseline parameters
listed in Table 4, which were the standard values needed for the classifier
for latent space—based classification. The model was trained on a GPU
setup with 50 epochs with varying batch sizes to ensure transparent
evaluation. The results obtained from the classifier model are recorded
to facilitate a detailed comparative analysis of our work. Furthermore,
the model optimization was set to Adam optimizer, with a learning rate
of 0.001, our model seems to learn better. These values of learning rate

Figure 8
Self-attention with multi-head attention layer
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Table 4
Self-attention layer parameters for DoH traffic classification

Self-attention layer

Category parameters Value/Description

Model Architecture  input_dim, num_ Derived from dataset
classes

Self-Attention attention_dim=64, Multi-head

self-attention

Two-layer MLP for
classification

num_heads=4
ReLU, Dropout(0.3),
BatchNorm
epochs=50, batch_
size=64, 1r=0.001

Classification Head
Training Settings Adam optimiz-
er, Learning Rate
Scheduling

Evaluation Precision, F1 score,

Accuracy

Batch size of 16 to
128 is chosen for
model training

Classification Report,
Confusion Matrix

Batch sizes {16,32,64,128}

and optimization enhance the learning rate of our model during training,
which, in turn, improves reliability.

5. Results and Discussion

The Tab-VAE model combined with a self-attention layer with
a multi-head attention mechanism results in improved performance
in the classification of DoH traffic. This improvement is particularly
due to model training on the preprocessed dataset BCCC-CIC-BELL-
DNS-2024, which is rich in various data distributions. The dataset
covers a variety of attack categories, including data exfiltration attacks
and numerous instances of malicious DoH traffic. In this study, the
proposed model focuses on the samples categorized as malicious in the
dataset, which are divided into distinct classes ranging from 0 to 3. These
classes are defined by the following labels: Benign (0), Malware (1),
Phishing (2), and Spam (3), allowing a comprehensive understanding
of their characteristics and behaviors. Figures 9 to 13 depict a clear
understanding of the need for latent space—based classification,
employing a self-attention layer with a multi-head attention mechanism.

The model was trained and evaluated across varying batch sizes,
specifically 16, 32, 64, and 128. The results obtained with batch sizes of
16 and 128 demonstrate the improvements in accuracy and efficiency
of the model.

Analysis of the results showcases significant improvements in the
model generalization property, robustness and adaptability in accurately
classifying different types of data within the latent space. These points
highlight how the proposed approach addresses the challenges posed by
malicious DoH traffic classification. The confusion matrix in Figure 9
illustrates the model learning, as indicated by the high values along the
diagonal, which show its good performance in classifying instances.
However, the model had difficulty in identifying instances of the Spam
class, totaling 1,538. This issue is due to the imbalance of the dataset
itself.

The class-wise metrics presented in Figure 10 provide a
comprehensive view of the model performance across various input
types, highlighting its effectiveness in differentiating among the different
classes. Our analysis reveals that the model excels at identifying
the Spam class, achieving the highest F1 score across all assessed
categories. This indicates a strong balance between precision and recall
for this class. In contrast, the model encountered significant challenges
when it comes to detecting malware and phishing attempts. Notably,
recall for these classes is particularly low, suggesting that the model
failed to identify a considerable number of actual malware and phishing
threats. This shortcoming highlights a key area for improvement,
as both precision and recall illustrate a detrimental trade-off in these
categories. The findings point to the necessity of improvements in the
model architecture or training methodology to achieve better overall
generalization and robustness in detecting these more elusive threats.

Analysis of the batch sizes revealed distinct performance
differences across the evaluated configurations. Overall, the model
trained with 16, 32, 64, and 128 batch sizes achieved improved accuracy,
precision, recall, and F1 score, indicating that varying batch sizes can
be a more effective learning parameter. Statistical techniques such as
the one-way ANOVA method confirm that the performance variation
among the varying batch sizes was improving the model learning rate.
The one-way ANOVA method results in an F-statistic value of 0.056
and a p value of 0.98 for an input batch size of 128. These findings
suggest that carefully tuning the batch size is crucial for optimizing the
performance of the self-attention classifier, as the selected batch size
not only improved stability across multiple runs but also contributed

Figure 9
Confusion matrix of model training for batch sizes 16 and 128
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Figure 10
Class-wise metrics for batch sizes 16 and 128
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Figure 11
Model accuracy and loss function during DoH classification
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to the overall robustness of the predictions of the model. Figure 11
illustrates the accuracy and loss metrics of the self-attention classifier
after training and testing phase in the latent space over 50 epochs. The
results indicate a modest improvement in model accuracy when using
a batch size of 128. At the same time, the cross-entropy loss function
shows a significant reduction with the progression of epochs. These
graphical representations highlight the improvement in classification
accuracy and corresponding reduction in loss, which contribute to
better generalizability of the model.

Figure 12 compares the accuracy and loss function of different
models using varying batch sizes. It shows that a batch size of 128 results
in improvements compared to a batch size of 16. For batch sizes of 32
and 64, both achieve higher and more stable accuracy on training and
testing sets, which is consistent with the observations from the loss chart.
The results show that batch sizes of 32 and 64 are the most suitable for
this specific model and dataset, as they provide a good balance between
training speed, stability, and generalization performance. In contrast,
batch size 16 appears to be too small, leading to noisy updates and a
risk of overfitting. The batch size of 128, while stable, may be too large,
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resulting in slower convergence and slightly reduced performance. The
output of the training and testing results of the model are plotted to
demonstrate the increase in the model robustness.

In conclusion, the efficiency of the proposed model is assessed
by plotting a multi-class ROC curve, providing deeper insights into its
performance. Figure 13 shows the ROC curve using the One-vs-Rest
approach, showing the various multi-class distributions present in the
dataset. This visualization not only highlights the ability of the model
to distinguish between classes but also illustrates its effectiveness in the
latent space, allowing for a comprehensive understanding of how well
the model distinguishes between each category. By evaluating the area
under the curve for each class, we can interpret the overall accuracy of
the model and its capability in classifying diverse data.

Table 5 shows the analysis of our work with other literary
works proposed on various DNS datasets. Autoencoders are good
choices for dimensionality reduction on large feature sets compared
to different datasets, such as the CIRA-CIC-DoHBrw-2020 and CIC-
Bell-DNS 2021 datasets. The proposed model uses the BCCC-CIC-
Bell-DNS-2024 dataset, which is advanced compared to the CIC-
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Figure 12
Model accuracy for training and testing of varying batch sizes
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Bell-DNS-2021 dataset, consisting of behavioral aspects of DNS
traffic and attack distributions. Based on the review of literature, our
proposed work is the first to utilize latent space—based classification
using Tab-VAE and self-attention layer to classify the obtained latent.
The proposed model converges well for imbalanced datasets, which
highlights the importance of real-time DoH traffic classification.

5.1. Discussions

This section revisits the primary objectives of the study. It
evaluates how the proposed framework—consisting of a Tab-VAE and
a Self-Attention classifier—addresses each of these objectives through
empirical evidence and ablation studies.

Objective 1: Tab-VAE for Latent Representation and
Classification: The first objective was to design a Tab-VAE Encoder-
Decoder to learn meaningful latent space representations from high-
dimensional DoH traffic data. Our implementation of Tab-VAE
successfully achieved this by integrating a structured encoder-decoder
architecture with reparameterization, BatchNorm, and ReLU activation
functions to manage the mixed-type nature of the tabular input. The
model was trained using a hybrid loss function combining MSE for
numerical features and cross-entropy loss for categorical features, with
a KL divergence regularization to enforce latent space continuity. As
shown in Table 5, the Tab-VAE model achieved superior classification
performance when the latent embeddings were used to train a
downstream classifier, with an accuracy of 80%, F1 score of 0.70, and
consistent generalization across test folds.

Objective 2: Latent Space Quality via Visualization: To evaluate
whether the Tab-VAE successfully captured meaningful structure
in the latent space, we visualized the learned representations using
t-SNE, as shown in Figure 4. The embeddings reveal a well-separated
clustering of benign and various malicious traffic types, indicating that
the model effectively disentangles semantic patterns in encrypted DNS
flows. This validates the quality of the compressed representation:
malicious samples tend to form distinct sub-clusters, which are aligned
with their behavioral similarities (e.g., tunneling, exfiltration). Latent
representations not only compress high-dimensional features but
also preserve class-discriminative structure, which is essential for
downstream classification.

Objective 3: Robust Self-Attention Classifier Across Diverse
Traffic: The third objective was to develop a scalable and lightweight
self-attention classifier trained on the Tab-VAE-generated latent space.
This classifier demonstrated strong performance and robustness in
classifying both benign and malicious DoH traffic across multiple batch
sizes and training settings. Additionally, an empirical evaluation with
varying batch sizes (16, 32, 64, and 128) showed that a batch size of
128 consistently resulted in improved accuracy, precision, recall, and
F1 scores. The one-way ANOVA (F = 0.056, p = 0.98) confirms the
statistical significance and demonstrates the stability and robustness
of the model across different configurations. As shown in Figure 11,
the decline in cross-entropy loss and the consistent improvement in
accuracy over 50 epochs illustrate the effective convergence and training
stability of the model, validating its practical utility and adaptability in
dynamic DNS environments.

Figure 13
Model performance on various batch sizes of 16 and 128
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Table 5
Comparative analysis of BCCC-CIC-Bell-DNS-2024 with earlier studies
SL No  References Baseline models Performance metrics used Findings
1 Panigrahi et al. [33] ML models: Accuracy, Precision, Recall, GBT-VIKOR model demonstrated the
RF-AHP (RA), KNN-TOPSIS  F1 score highest accuracy at 99.52%, while the
(KT), GBT-VIKOR (GV), and KNN-TOPSIS model had the lowest
DT-Entropy-TOPSIS (DET) accuracy at 93.65%, using CIC-Bell-
DNS-2021 dataset.
2 Shafi et al. [34] A multi-layer neural network Accuracy, Precision, Recall, The model achieves an accuracy rate
F1 score exceeding 99% in profiling various DNS
activities and proposed BCCC-CIC-Bell-
DNS dataset.
3 Kirubavathi et al. [38]  XGBoost with hyperparameter ~ Accuracy, Precision, Recall, The baseline accuracy of the XGBoost
tuning with Optuna F1 score, Recall, ROC curve model was 88.89%, which improved to
93% after hyperparameter optimization
framework Optuna with Precision=0.88,
Recall=0.91, Flscore=0.89, AUC=0.98.
4 Proposed Tab-VAE Tab-VAE + Self-attention Accuracy, Precision, Recall, An accuracy of 80% for a batch size of 128,
model mechanism-based classifier F1 score with F1 score and Precision equal to 75%.

Ablation Analysis: Our ablation study on Tab-VAE (Table 3)
showed that replacing ReLU with sigmoid/tanh reduced the learning curve
and model efficiency. Also removing BatchNorm1D introduced instability
during training and increased the reconstruction error. Varying the
dimensionality of the latent space revealed a trade-off: lower dimensions
led to loss of feature granularity, while overly large latent spaces introduced
redundancy. A bottleneck of 15 latent dimensions proved optimal for
balancing reconstruction fidelity and discriminative power.

Our ablation study on the self-attention layer (Table 4) showed
that a multi-head self-attention mechanism (4 heads, 64-dimensional
keys/values) effectively captured interactions between compressed
feature vectors. Using ReLU + BatchNorm + Dropout in the
classification head improved generalization and mitigated overfitting.
The model achieved optimal performance with a batch size of 128, and
a learning rate of 0.001 using the Adam optimizer. The classification
robustness of the model across different attack types is confirmed in
the confusion matrix (Figure 9) and class-wise classification report,
where precision and recall values remained above 0.70 for most
classes.

6. Conclusion

In summary, the combination of the Tab-VAE with a self-
attention layer and multi-head attention mechanism marks a notable
advancement in classifying malicious DoH traffic. Using the
comprehensive BCCC-CIC-BELL-DNS-2024 dataset, this advanced
model demonstrates improved accuracy in differentiating various
types of digital traffic, particularly achieving impressive results with
batch sizes ranging from 16 to 128. Although the proposed Tab-VAE
model, which merges a Tab-VAE with a self-attention-based classifier,
achieved an accuracy of 80% and an F1 score of 75% at a batch size
of 128, it still falls short when compared to traditional ensemble-based
models. The results highlight opportunities for further improvement,
including enhancements in manual feature engineering, architectural
improvements, and optimization techniques.

The system generates interpretable latent representations and
achieves reliable DoH traffic classification across heterogeneous traffic
scenarios, making it suitable for real-world deployment in privacy-
preserving network environments. Future work will aim to improve the

136

performance of the Tab-VAE framework while retaining its generative
strengths for robust classification of tabular data. This progress not only
enhances the ability of the model to generalize and detect threats across a
variety of scenarios but also establishes a solid groundwork for ongoing
research in cybersecurity. It opens new directions for creating more
efficient detection and response strategies to combat evolving cyber
threats. However, challenges exist, such as computational complexity
remains a significant consideration. The extensive preprocessing
required to generate latent space representations from large traffic
datasets demands manual feature engineering. Additionally, the time
required to establish these representations and effectively train the
classifier tailored for DoH traffic classification highlights the necessity
for continuous optimization in the model. In future work, we aim to
expand our analysis of computational overhead and performance in
real-world IoT contexts by conducting comprehensive benchmarking
across various devices in IoT platforms. We will explore the impact of
diverse networking conditions and data processing methods on system
performance on model outputs.
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