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Abstract: Cybersecurity threats and attacks are increasing day by day, bringing real focus on Domain Name System (DNS)–based data 
exfiltration—a stealth technique used by attackers to steal sensitive information from compromised networks. DNS query exchange is the initial 
part of any data exchange  in the Internet and is the most neglected in traditional monitoring systems. These enable attackers to create covert 
channels to carry out various advanced persistent threats and unauthorized exfiltration attempts. In this research study, we present a novel detection 
approach of these DNS patterns through low-dimensional latent representations extracted via a Tabular-Variational AutoEncoder (Tab-VAE), 
specifically tailored for DNS-over-HTTPS (DoH) traffic. The latent space obtained by the Tab-VAE is subsequently fed into a multi-head self-
attention classifier to perform a multi-class classification. We evaluated our experiments using the BCCC-CIC-Bell-DNS-2024 dataset, which 
provides a realistic snapshot of DoH traffic patterns. Notably, the proposed model demonstrated robust generalization across varying batch sizes 
and achieved competitive performance metrics with an improved accuracy of 80% and precision score of 75% for a batch size of 128. These 
findings highlight the potential of advanced machine learning architectures in reinforcing cybersecurity posture. By integrating such techniques, 
organizations can improve the detection of covert DNS-based attacks and better protect sensitive assets against emerging threats.
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1. Introduction
In this age of global connectivity, where the Internet enables almost 

all aspects of everyday life, stringent and real-time security controls have 
become more vital now than ever before. As organizations rely on smooth 
data exchange and low-latency communication, this openness also 
becomes a profitable target for cybercriminals. Increasingly advanced 
attacks, such as exfiltration of data through hidden channels such as 
Domain Name System (DNS) tunneling, underscore the necessity of 
sophisticated detection mechanisms that function effectively in a wide 
variety of network landscapes. To enhance privacy, DNS resolutions are 
increasingly often encrypted and transported using protocols such as 
DNS over HTTPS (DoH), DNS over TLS (DoT), and DNS over QUIC 
(DoQ) [1, 2]. Although these protocols increase confidentiality and 
thwart eavesdropping, they compromise the visibility of network traffic, 
making it more difficult to detect threats in real time. Malicious users 
can now blend in with normal encrypted traffic and evade traditional 
inspection techniques. Furthermore, tools such as iodine and dnscat2 
facilitate tunneling over DNS by inserting arbitrary payloads into 
queries, effectively hiding the attack content [3, 4]. As encrypted DNS 
protocols are targeted by attackers, detecting these patterns becomes 
difficult, particularly in contexts with varied device capabilities ranging 
from Internet-of-Things (IoT) devices to servers.  

Traditional security measures, such as blocking malicious 
domain names and using rule-based approaches to block harmful traffic 
patterns, are no longer sufficient for encrypted DNS traffic. The lack 
of sufficient labeled datasets for capturing DNS network traffic has 
also resulted in poor detection systems. Additionally, attackers employ 
obfuscation techniques that completely hide their payloads, making it 
difficult to detect their intentions. 

To address these challenges, training Machine Learning (ML) 
and Deep Learning (DL) models to recognize these patterns in traffic 
has shown promise in classifying encrypted traffic [5–8]. However, 
many models face limitations due to the lack of labeled data and poor 
generalization across different attacks, resulting in the evolving nature 
of attack strategies. In particular, recent autoencoders and transformer-
based models excel at extracting latent patterns from sequential 
network data, making them particularly effective for anomaly detection 
in encrypted DNS traffic [9, 10].

In recent years, the emergence of autoencoders and transformer-
based models [11–14] has further improved the capacity to capture 
complex patterns in network traffic. Both models excel at processing 
sequential data and understanding long-range dependencies, making 
them particularly suitable for analyzing the latent space of network 
traffic in DoH, DoT, DoQ, and other encrypted protocols. By learning 
these latent representations, attention-based transformers can detect 
subtle anomalies in encrypted traffic, even when explicit patterns are not 
easily identifiable. These models can adapt to evolving attack strategies, 
which is crucial as attackers refine their methods to evade detection. 
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This paper explores the potential of using the Tabular-Variational 
AutoEncoder (Tab-VAE) to classify encrypted DNS traffic, which 
proves to be more effective in handling network flow information.  

While traditional and ML models have been used for network 
traffic classification, they struggle with encrypted DNS due to a lack of 
interpretable features. Traditional models often rely on shallow features 
that miss the complex patterns in modern encrypted traffic. In contrast, 
latent representations from autoencoders and VAEs offer a solution 
by transforming high-dimensional inputs into a compact latent space. 
This helps capture underlying patterns and improve class separability 
by reducing noise and redundancy. These enhanced features can assist 
classifiers, such as self-attention models, in identifying benign versus 
malicious traffic. Additionally, learning latent spaces is beneficial 
for sparse or partially labeled data, supporting semi-supervised and 
unsupervised learning tasks.

This study explores a new approach to classifying DoH traffic 
in complex, heterogeneous network environments. The main idea is 
to combine a Tab-VAE with a self-attention-based classifier to better 
capture the nuanced characteristics of encrypted DNS traffic. One of 
the key strengths of Tab-VAE is its ability to handle tabular data more 
effectively than standard autoencoders. This makes it particularly useful 
for representing the diverse set of features typically found in network 
traffic, where underlying distribution of input data varies with the 
traffic capture. This not only improves the reconstruction capabilities 
of the model but also enhances its ability to recognize deviations from 
normal behavior, which is crucial for identifying malicious activity. The 
probabilistic nature of the model helps it generalize well across different 
types of traffic, making it more resilient to changes and novel attack 
strategies. Additionally, working with latent space representations 
allows the model to uncover subtle patterns that might otherwise go 
unnoticed, especially in encrypted channels such as DoH. By using 
these latent features, the system becomes better equipped to detect 
anomalies that traditional methods might miss. 

The primary objective of this study is to improve the classification 
of DoH traffic in heterogeneous networks by utilizing deep latent 
representations. Specifically, we aim to achieve the following objectives:

1)  To design a Tabular-Variational Encoder-Decoder  (Tab-VAE) 
model that learns and generates latent spaces for high-dimensional 
representations of DoH traffic for downstream classification tasks.

2)  To leverage the latent space derived from high-dimensional DoH 
traffic to detect anomalies and accurately classify deviations 
indicative of malicious activities into multiple threat classes.

3)  To design and develop a scalable and efficient self-attention-based 
classifier trained on the latent space, capable of lightweight and 
accurate classification of DoH traffic in heterogeneous network 
environments.

4)  To evaluate the performance of the proposed model using the BCCC-
CIC-Bell-DNS-2024 dataset, a widely recognized benchmark in 
cybersecurity research, across varying batch sizes. The classification 
performance is statistically validated using a one-way Analysis of 
Variance (ANOVA) test and shows optimal accuracy improvements 
at a batch size of 128.

The following sections of this paper provide a comprehensive 
review of related works on DoH traffic classification in Section 2. 
Section 3 explains the theoretical framework of the Tab-VAE model for 
latent space generation. Section 4 discusses the methodology used to 
design a self-attention-based classifier. Section 5 presents the results and 
discusses the experiments conducted. Lastly, the conclusion highlights 
the limitations of the study and outlines the scope for future work.

2. Literature Review
Table 1 provides a detailed summary of studies carried out 

on various datasets related to DNS traffic. This section highlights 
the approaches of various works using various approaches and 
methodologies related to the detection and analysis of DoH traffic.

Chhabra et al. [15] analyzed the performance of DoH compared to 
traditional DNS using data from over 22,000 subscriber in 224 countries. 
The study shows that performance of DoH varies by geographical 
location and Internet service providers. Additionally, the researchers 
demonstrated the security threats posed by DoH exploitations. Vekshin 
et al. [16] studied and proposed a method to capture and analyze DNS 
traffic, which was then used as preprocessed input to generate a labeled 
dataset. The dataset contains 1,128,904 flows, of which approximately 
33,000 are labeled as DoH traffic for the classification task using ML 
models. Lambion et al. [17] created a labeled dataset that captures real-
time traffic exhibiting DNS data exfiltration and tunneling behavior 
and utilized this dataset to train ML models, such as random forest 
combined with a Convolutional Neural Network (CNN) classifier, to 
improve the accuracy of detecting DNS tunnels in real-time traffic.

Wang et al. [18] provided a detailed analysis of DNS tunnel 
detection techniques, which are crucial for identifying malicious 
activities disguised as normal DNS traffic. They explored rule-based 
and model-based methods between 2006 and 2020. The work also 
discussed the strengths and weaknesses of each approach in handling 
encrypted DNS traffic. Casanova and Lin [19] focused on detecting 
malicious DoH traffic using DL techniques, emphasizing the need for 
more generalizable models across different network environments, 
and used a preprocessed CIRA-CIC-DoHBrw-2020 dataset to address 
feature selection and data imbalance problems. Long Short-Term 
Memory (LSTM) and Bidirectional LSTM models are compared for 
classification task.

Mitsuhashi et al. [20] proposed a novel identification system 
for malicious DNS tunneling tools using a hierarchical classification 
method using an ML model. The model was tested on the CIRA-
CIC-DoHBrw-2020 dataset  and achieved 99% accuracy in detecting 
suspicious DoH traffic. Monshizadeh et al. [21] proposed combination 
of Conditional Variational AutoEncoder and Random Forest classifier 
(CVAEwRF) to improve network traffic anomaly detection. The 
CVAEwRF architecture improves model and data generalization by 
reducing overfitting in intrusion detection. By learning most of the 
similar input features, the CVAE direct RF classifier can efficiently 
identify various attack types. The model is evaluated against existing 
methods using the ISCX-2012 and MAWILab-2018 datasets, achieving 
detection rates over 99.9%.

Khanam et al. [22] presented a DL-based Intrusion Detection 
System (IDS),  which is designed to address data imbalance in IoT 
networks, and introduced the Class-wise Focal Loss Variational 
AutoEncoder to generate realistic samples for underrepresented attack 
types and enhance learning for minority classes through the Class-
wise Focal Loss function. A deep neural network classifier trained 
on this balanced dataset achieves 88.08% accuracy, with notable 
detection rates for rare attacks such as U2R (User to Root, 79.25%) 
and R2L (Root to Local, 67.5%). The results highlight the importance 
of addressing data imbalance in an IDS and the effectiveness of deep 
generative models in improving detection performance. Abu Al-Haija 
et al. [23] developed a lightweight, double-stage scheme for detecting 
malicious DoH traffic using a hybrid learning approach. The system 
first identifies DoH versus non-DoH traffic with random fine trees, then 
uses AdaBoost trees to classify DoH traffic as benign or malicious. 
By using principal component analysis and random under-sampling, 
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it increases efficiency with a reduced feature set. Experiments on the 
CIRA-CIC-DoHBrw-2020 dataset have demonstrated high accuracy 
and low overhead, surpassing existing models. This study provides a 
practical solution for enhancing cybersecurity against malicious DoH 
traffic. 

Fesl et al. [24] proposed a DL method to detect DoH traffic to 
enhance secure communication between DNS servers and users. They 
created a DoH dataset from network traffic at the Czech Network 
Information Center (CZ.NIC) and developed models that accurately 
identified encrypted DoH traffic, including from Cloudflare, achieving 
an accuracy of about 95%. The study reviewed existing ML models 
for DoH detection and described in detail data preprocessing and 
model optimization techniques. Fesl et al. concluded that their models 
can effectively generalize and detect DoH connections from various 
providers. Lyu et al. [25] studied DNS encryption, focusing on its 
development, advantages, and potential for misuse. The analysis 
covered various standards, such as DoT, DoH, and DoQ, and examined 
their adoption, performance, and security flaws. The study showed 
how malware can misuse DNS encryption for command-and-control 
communications and data exfiltration, thus evading traditional security 
measures. It also explored detection techniques for encrypted DNS 
traffic and user profiling, providing insights for countermeasures against 
malicious activities and highlighting research directions for enhancing 
performance and security of DNS encryption.  

Alzighaibi [26] investigated methods for detecting DoH traffic 
using various ML models, including Random Forest, Gaussian Naive 
Bayes, Logistic Regression, K-Nearest Neighbors (KNN), Support 
Vector Classifier, Linear Discriminant Analysis, Decision Tree (DT), 
AdaBoost, Gradient Boosting, and LSTM neural networks. Their study 
utilized the CIRA-CIC-DoHBrw2020 dataset for the classification task 
and achieved an impressive detection accuracy of 99.99% for binary 
classification using the stacking model. Irénée et al. [27] proposed a hybrid 
approach to reduce the features needed to detect DoH traffic utilizing the 
XGBoost, Tree SHAP (SHapley Additive exPlanations), and Sequential 
Forward Evaluation methods. The work was tested on the CIRA-CIC-
DoHBrw-2020 dataset with improved detection accuracy. Results 
showed a prediction efficiency of over 99.9%, even when the number of 
features was reduced from 33 to less than five. Wu et al. [28] addressed 
the challenges of detecting malicious DoH traffic, which uses encryption 
to improve user security and privacy but complicates conventional traffic 
analysis. The authors proposed a novel DoH-TriCGAN (Tri-Component 
Conditional Generative Adversarial Network) model that utilizes small 
sample analysis and Conditional Generative Adversarial Networks 
(CGANs) to detect malicious DoH traffic. Traditional methods struggle 
with encrypted DNS traffic under the DoH protocol. Insufficient labeled 
traffic data and imbalanced datasets hinder accurate detection. The DoH-
TriCGAN model showcased remarkable accuracy in its evaluations 
with training on Small Sample Set-3000: The accuracy was 99.34%, 
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Sl. No Author (Year and references) Other datasets
CIRA-CIC-

DoHBrw-2020 CIC-Bell-DNS-2021
BCCC-CIC-Bell-

DNS-2024
1 Chhabra et al. [15] *
2 Vekshin et al. [16] *
3 Lambion et al. [17] *
4 Wang et al. [18] *
5 Casanova and Lin [19] *
6 Mitsuhashi et al. [20] *
7 Monshizadeh et al. [21] *
8 Khanam et al. [22] *
9 Abu Al-Haija et al. [23] *
10 Fesl et al. [24] *
11 Lyu et al. [25] *
12 Alzighaibi [26] *
13 Irénée et al. [27] *
14 Wu et al. [28] *
15 Niktabe et al. [29] *
16 Bozkurt et al. [30] *
17 Demmese et al. [31] *
18 Huang [32] *
19 Panigrahi et al. [33] *
20 Shafi et al. [34] *
21 Liu et al. [35] *
22 Kazmi et al. [36] *
23 Namrita Gummadi et al. [37] *
24 Kirubavathi et al. [38] *
25 Proposed Tab-VAE model *

Table 1
Summary of related works carried out in DoH traffic classification
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outperforming other models such as Random Forest with 93.07% and 
the Transformer model with 93.94% accuracy. 

Niktabe et al. [29] presented an interpretable ML model using 
DTs to profile malicious and benign DoH traffic. It introduced a feature 
engineering technique that enhances accuracy and interpretability while 
minimizing overfitting. To address data imbalance, a balanced dataset 
(BCCC-CIRA-CIC-DoHBrw-2020) was created using Synthetic Minority 
Oversampling Technique (SMOTE). The DT model achieved 93.93% 
accuracy for malicious traffic and 94.86% for benign traffic, providing 
a computationally efficient and explainable approach for real-time DoH 
security monitoring. Bozkurt et al. [30] presented a method for detecting 
malicious DoH traffic using ML and feature reduction techniques to 
improve the detection speed. Their approach combined classifiers with 
correlation analysis and principal component analysis to reduce redundant 
features. Results showed that feature reduction enhances performance, 
particularly for the Random Forest classifier, achieving 99% accuracy. 
The KNN models saw a slight drop of 0.73% in accuracy, while the 
Stochastic Gradient Descent classifier could also suffer a decrease. This 
research optimizes the efficiency of IDS for DoH traffic analysis.

Demmese et al. [31] introduced a novel image-based ML 
approach to classify malicious domains using transfer learning with 
ResNet-50. By converting DNS traffic data into RGB images, the 
model identified complex patterns, overcoming the limitations of 
traditional blacklist detection. Using the CIC-Bell-DNS-2021 dataset, 
the model achieved an accuracy of 98.67%, outpacing Support Vector 
Machine (97.99%) and KNN (97.9%). This method automates feature 
extraction and provides a scalable solution for real-time domain 
threat detection. Future research can focus on lightweight architecture 
and diverse datasets to improve model generalization. Huang [32] 
introduced an interpretable DL model for detecting DoH attacks, which 
effectively monitors encrypted DNS traffic. Utilizing the CIRA-CIC-
DoHBrw-2020 dataset with 672,558 samples, the model achieves over 
97% accuracy in distinguishing benign from malicious DoH traffic. 
Evaluation metrics such as Receiver Operating Characteristic (ROC) 
curves and F1 scores validate its reliability, although detection of benign 
traffic needs improvement due to dataset imbalance. SHAP analysis is 
used to highlight important features such as network flow duration and 
packet length, thereby enhancing the interpretability of the model. 

Panigrahi et al. [33] introduced a hybrid threat detection 
model  for DNS data exfiltration in Security Information and Event 
Management (SIEM) systems utilizing the CIC-Bell-DNS-EXF-2021 
dataset, which evaluates ML algorithms such as Random Forest, 
KNN, Gradient Boosted Trees (GBT), and DTs within a Multi-
Criteria Decision Analysis framework. The Gradient Boosted Trees 
with VIKOR Multi-Criteria Decision Making (GBT-VIKOR) model 
achieved the highest accuracy at 99.52% in identifying malicious DNS 
traffic. By combining stateful and stateless detection techniques, the 
model improves accuracy and reduces false-positive results. Although 
this approach enhances the effectiveness of SIEM, challenges in dataset 
diversity and real-time adaptability persist. Shafi et al. [34] introduced 
an advanced DNS behavior profiling method to detect and analyze 
malicious DNS activities, tackling issues such as evasion tactics and 
URL obfuscation. It features a novel algorithm for feature selection, 
pattern extraction, and a neural network–based profiling model to 
improve accuracy. A significant contribution is ALFlowLyzer, a 
network flow analyzer, and the BCCC-CIC-Bell-DNS-2024 dataset, 
which extends existing datasets. By employing ML and DL, the study 
achieved high classification accuracy, with over 95% precision for 
all attack categories, demonstrating the effectiveness of behavioral 
profiling for real-time threat detection in cybersecurity.

Liu et al. [35] introduced MFC-DoH, a novel method for detecting 
DoH tunnels. This method combines Model-Agnostic Meta-Learning 
(MAML) with a specialized CNN architecture known as Federated 

Convolutional Neural Network (F-CNN). MFC-DoH improved detection 
accuracy, particularly in few-shot scenarios, by utilizing frequency 
domain analysis and multi-head self-attention layers to identify time 
series and periodic patterns. The model was trained on a large dataset 
of DoH tunnel traffic and subsequently fine-tuned using limited data, 
enabling it to outperform traditional detection methods for malicious 
DoH activity. Experimental validation using public datasets confirmed 
the effectiveness of MFC-DoH, positioning it as a promising solution for 
securing encrypted DNS traffic against covert tunnels. Kazmi et al. [36] 
enhanced Cyber Threat Intelligence in Federated Learning using CVAEs 
to tackle non–Independent and Identical Distributed data challenges. 
Their approach generated threat-specific data for each silo, improving 
model performance in Software-Defined Networking (SDN) and boosting 
accuracy from 92% to 97% for tasks such as intrusion detection and 
threat classification. Namrita Gummadi et al. [37] emphasized the use of 
Explainable Artificial Intelligence techniques such as SHAP, LIME (Local 
Interpretable Model-Agnostic Explanations), and CEM (Counterfactual 
Explanation Method) for feature selection in IoT sensor traffic. The 
proposed framework can be effectively used for anomaly detection in 
IoT network traffic and can improve explainability, interpretability, and 
model performance when trained on publicly available datasets such as 
micro-electromechanical system datasets and botnet traffic. 

Rabie et al. [39] introduced a framework for enhancing 
cyberattack detection using a stacking-based IDS, which combines 
J48 and ExtraTreeClassifier with an Enhanced Equilibrium Optimizer 
(EEO) for feature selection and SMOTE-IPF for class balancing. This 
study tackled challenges such as high-dimensional data, class imbalance, 
and elevated false-positive rates through optimization techniques such 
as Fisher score and KNN. Tested on the NSL-KDD and UNSW-NB15 
benchmarks, the framework achieved an accuracy of 99.7% and 98.1%, 
respectively, with high F1 scores. While it provides a scalable, hybrid 
solution for improved detection accuracy, challenges remain in managing 
high-dimensional data and potential noise from synthetic oversampling. 
Pramanick et al. [40] proposed an intrusion detection framework that 
leverages advanced techniques to address the unique security challenges 
faced by IoT networks. By utilizing Decisive Red Fox optimization for 
feature selection, the model enhances the efficiency of the classification 
process, resulting in shorter training times and reduced error rates. 
This framework, coupled with Descriptive Back-Propagated Radial 
Basis Function classification, was designed to significantly improve 
the accuracy of intrusion detection amid a backdrop of IoT-specific 
vulnerabilities. Testing against multiple benchmark datasets showed 
that this innovative approach not only achieves high detection rates but 
also maintains a low computational burden, establishing it as a viable 
solution to the challenges of the evolving IoT security landscape.

Deep neural networks and ensemble methods achieved nearly 
99% accuracy in multi-class traffic classification. While traditional 
techniques such as supervised learning and anomaly detection are often 
applied to DNS and DoH traffic threat identification, the use of Tab-VAE 
is still largely unexplored. Tab-VAE  is crucial for detecting malicious 
network traffic because it performs both dimensionality reduction 
and unsupervised feature learning, thus effectively handling mixed 
data types in network datasets. Its robustness against noise improves 
detection accuracy, and its generative capabilities can augment training 
data with limited labeled samples. Additionally, the interpretable 
latent representations of Tab-VAE provide cybersecurity analysts with 
valuable insights in identifying threats and vulnerabilities. 

3. Proposed Tab-VAEs Model for Latent Space For-
mulation

Figure 1 shows the process diagram of the proposed Tab-VAE 
Encoder-Decoder model with a self-attention classifier explicitly 
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designed to handle DNS traffic. By leveraging the dimensionality 
reduction capabilities of tabular autoencoders, this approach aims to 
generate a low-dimensional latent space that effectively captures the 
characteristics of both regular DNS activity and various DNS data 
exfiltration attacks.

The study utilized a structured pipeline to process DoH traffic 
captured from various network environments, including enterprise, 
IoT, and mobile settings. The raw traffic was parsed to create a 
comprehensive dataset of flow-level and packet-level features. Tab-
VAE condensed these features into a compact latent space, preserving 
the key patterns of DoH flows. This representation was input into a self-
attention-based classifier that captured inter-feature dependencies and 
temporal correlations for effective traffic classification. The model was 
trained and evaluated on both real-world and synthetic DoH datasets, 
achieving robust performance in distinguishing benign from malicious 
traffic using standard metrics such as accuracy, precision, recall, and 
F1 score. Sections 3.1 to 3.3 discuss the description of the dataset used 
and the preprocessing of DNS domain features, followed by an ablation 
study of the proposed implementation details of the VAE model. 
Section 3.4 gives an ablation study of the model architecture which is 
necessary to understand it. 

3.1. Dataset description
The BCCC-CIC-Bell-DNS-2024 dataset [34] is a key resource for 

analyzing DoH traffic, which secures DNS queries through encryption. 
This dataset includes both benign traffic and various forms of malicious 
traffic such as DNS tunneling, amplification attacks, malware, phishing, 
and spam. In our study, we extracted flow metadata with focus on 
malicious classes, and also included benign flow records to construct 
a representative training set. Initial flow-level filtering was applied to 
isolate DNS-specific traffic; however, this process led to imbalanced 
class distributions, with certain target classes (e.g., specific attack 
types) being underrepresented. To address this issue, we used SMOTE 
to generate synthetic samples for the minority classes. This resulted in 
a more balanced dataset and mitigated the risk of bias during training. 
The final training dataset comprises 30,000 flow records distributed 
across benign and multiple malicious categories. Figure 2 visualizes 
the class distribution after balancing, highlighting the effectiveness of 
SMOTE in preparing the dataset for robust model training.

3.2. Dataset preprocessing
Data preprocessing is the crucial stage before model training , 

where features from DNS traffic are extracted by screening all flow 

metadata with dst_port=53, which represents DNS traffic with 119 
features comprised of integer, text, and categorical features. Before 
generating the latent embeddings of the domain features, preprocessing 
of integer, text, and categorical features is carried out using standard 
transformations as given in Table 2. The output of the preprocessing 
stage is a set of preprocessed DNS features that can help in DoH traffic 
classification.

3.3. Tab-VAE model
The proposed methodology utilizes a custom-defined Tab-VAE 

Encoder-Decoder model to use the dimensionality reduction technique 
of autoencoders to generate a low-dimensional latent space of DNS 
traffic that includes various types of DNS data exfiltration attacks. The 
main advantage of the proposed model is the dimensionality reduction 
achieved by the autoencoder implementation, which reduced the total 
119 features in the original dataset to 15 features. The Tab-VAE model 
consists of several components: a VAE Encoder layer, a Bottleneck 
layer, a Decoder layer, and a custom loss function that facilitates the 
creation of efficient latent space representations of the input tabular 
dataset. Figure 3 illustrates the architecture of the Tab-VAE model, 
highlighting the said components.

3.3.1. Encoder layer
The encoder in Tab-VAE is designed to process various types 

of input data, such as integers, floating-point values, and categorical 
variables, which are derived from traffic captures. The primary function 
of the encoder is to transform this high-dimensional input into a more 
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 Figure 1
Process  diagram of Tab-VAE model

Figure 2
BCCC-CIC-Bell-DNS-2024 dataset
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compact and manageable representation in a lower-dimensional latent 
space. The encoder consists of two hidden layers h1 and h2, as given in 
Equations (1) and (2), each of which employing specific transformation 
functions to facilitate transformation of input to the latent space. The 
following components explain how VAE works: 

1) Input handling: The encoder first preprocesses the input data to 
ensure that it is suitable for the transformation process. This may 
involve normalizing numeric values or encoding categorical values 
into a format more suitable for numerical use.

2) Hidden layer h1: In our model, h1 is the first hidden layer that takes 
the preprocessed inputs and produces output from a transformation 
function (e.g., ReLU, sigmoid) and a weighted sum. Hidden layer 
h1 is the first stage of feature extraction, which begins by capturing 
the most important patterns and relationships in the preprocessed 
features. By applying transformation functions, h1 identifies and 
shows the important features that may be suitable for the output data. 
The ReLU function helps generate a nonlinear transformation that 
can help the encoder logic capture important feature relationships 
that other simple linear transformations may miss.

3) Hidden layer h2: Similarly, in our model, h2 is the second layer 
that further processes the output from h1, applying another round 
of transformation function. This layer is needed to refine the 
representation created by h1 and helps capture complex patterns in 
the data. Thus, h2 plays an important role in making the encoded 
data more compact and informative, focusing on the interactions 
between the features identified by h1. We use the stacking of these 
layers to predict the final output. 

These are lower-dimensional embeddings that consist of features 
from the original high-dimensional feature input, while retaining 
important information. Lastly, the encoder-decoder architecture helps 
in tasks such as anomaly detection, sample generation, and data 
reconstruction in the context of DNS traffic analysis.

The outputs of the hidden layers h1 and h2 are obtained by 
applying a linear transformation to the input features:

where W ϵ Rdout × din is the weight matrix
b ∈ Rdout is the bias vector
x ∈ Rdin is the input feature vector
din and dout denote the input and output feature dimensions, 
respectively.
To stabilize the optimization process and improve convergence, 

the output of the linear transformation is normalized using a BatchNorm 
layer applied across the mini-batch, as shown in Equation (3). Let 
denote the normalized value of the i-th feature.

Applying ReLU on the parameter  helps to learn complex 
decision boundaries and also improves the model convergence with 
faster training.

The linear function applies a learned affine transformation 
using the ReLU function to map the input tabular data to a nonlinear 
latent space. The combination of h1 and h2 forms a Multi-Layer 
Perceptron (MLP), which transforms the inputs into high-level feature 
representations. Given the input feature x, the intermediate output of the 
MLP gives a nonlinear transformation h1 and h2 incorporating learned 
feature interactions, normalized values, and nonlinear transformations. 
The encoder outputs the approximate posterior values of the features 
which are the mean (μ) and log variance (log σ2) of the learned latent 
distributions given in Equation (4): 

μ

These two values help the encoder to define probabilistic latent 
space representations using the reparameterization trick (z) given in 
Equation (5), which is essential to prevent the Tab-VAE model from 
blocking learning and avoid the exploding gradient problem. These 
values are applied during training and further help the decoder minimize 
the reconstruction loss. 

μ σ ϵ σ

ϵ μ σ

(1)

(2)

(3)

(4)

(5)
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DNS domain features Features Transformations applied
Integer features Duration, packets_rate, receiving_packets_rate, sending_packets_rate,  

packets_len_rate. receiving_packets_len_rate, sending_packets_len_rate,  
mean_packets_len, median_packets_len, mode_packets_len,  
ttl_values_mean, ttl_values_mode, ttl_values_variance, 
ttl_values_standard_deviation, ttl_values_median, ttl_values_skewness, 
ttl_values_coefficient_of_variation, average_authority_resource_records, 
average_additional_resource_records, average_answer_resource_records

Integer values are scaled, and float-
ing-point values are clipped using 5th 
and 95th percentile values present in the 
feature values.

Text features Only DNS domain name is used for the proposed model: domain_name 8-bit hash of the domain_name feature is 
generated to capture the domain name–
related information.

Categorical features Label or target column present in the dataset Label encoding is applied for the target 
class distributions.

Table 2
Preprocessing of DNS features

 Figure 3
Tab-VAE architecture
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3.3.2. Latent space representation
The preprocessed tabular dataset (x) is transformed into latent 

space (z) using the reparameterization trick that ensures forward and 
backward computations during training help generate a low-dimensional 
latent space with a dimension of 15 features. Latent scores for these 
15 features are generated using XGBoost and permutation methods 
to determine the importance of the feature maps. Figure 4 shows the 
t-distributed Stochastic Neighbor Embedding (t-SNE) visualization of 
the latent space obtained by the VAE decoder model, which highlights 
the importance of the proposed technique in showing the class 
separability of the dataset under low-dimensional space. 

3.3.3. Decoder layer
The decoder layer mirrors the encoder layer, transforming 

the input latent space (z) into progressively larger dimensions to 
reconstruct the original input(x). The decoder follows the same 
structure as the encoder, which utilizes two hidden layers h1 and h2 for 
the reconstruction process.

3.3.4. Loss function
The Tab-VAE model was trained for 50 epochs, as shown in 

Figure 5. The convergence of the loss function between reconstruction 
loss and latent distribution alignment is calculated for each epoch or 
iteration. The model employs a loss function (L) which is a combination 
of two loss functions, namely the reconstruction loss (Lrecon) in 

Equation (6) and the Kullback-Leibler divergence loss (LKL) in 
Equation (7). These two loss functions are necessary because of the 
presence of continuous and categorical features in the input(x). The 
Lrecon is a function that represents how well the model can reconstruct 
the integer and categorical values from the latent space to input(x). 
For integer values Mean Squared Error (MSE) is used, whereas for 
categorical values cross-entropy loss is used to form the Lrecon.

Given the prior and approximate prior distributions of the 
encoder output: μ σ  and .  The total 
loss function for the reconstruction loss can be given by

σ μ σ

The total loss function is defined as .

3.4. Ablation study on the Tab-VAE model
This ablation study highlights the changes made to the baseline 

VAE model considering the input dataset and feature set comprising 
integer, text, and categorical values in tabular representations. In the 
experiments on the training and testing set (80:20), the baseline model 
is optimized using an an encoder, latent space reparameterization 
trick, and a decoder module. The loss function used to estimate the 
reconstruction error is optimized using both the MSE and the LKL. 
Modifying BatchNorm1D in both the encoder and decoder resulted in 
an increased reconstruction error and potential training stability. Also 
the activation function ReLU introduces nonlinearity, which is crucial 
for the model learning rate; removing or changing to other activation 
functions hinders the performance of the model. Hence, the activation 
function is retained with the ReLU function for better accuracy. In 
the same way, modification on the latent space size is determined by 
different latent dimensions; a smaller latent space results in higher 
information loss, while a larger latent space may result in redundant 
information. Table 3 lists the Tab-VAE model parameters used to train 
the proposed model.

4. DoH Traffic Classification Utilizing Latent Space 
and Self-Attention Layer

The proposed model effectively integrates a two-stage approach 
combining Tab-VAE with externally implemented self-attention neural 

(6)

(7)
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Parameters Values
input_dim Input dimension size equal to number of 

features in the tabular dataset
Hidden layers Two hidden layers h1 and h2 with 64 and 

32 neurons
Activation function ReLU
Latent space parameters μ and log σ2

Bottleneck layer Encoder compresses the input to encod-
ing dimension=32 and later reduced to 
output_dim=15 features. 

Epochs 50
Optimizer Adam optimizer
Loss function MSE

Table 3
Model parameters for Tab-VAE

 Figure 5
Loss function of Tab-VAE

 Figure 4
t-SNE of latent space obtained by Tab-VAE
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network layer to enhance DoH traffic classification. The significant 
advantage of the proposed approach is enhanced data preprocessing with 
class-imbalanced datasets, which provide transfer learning capabilities 
for the VAE model. The model outputs latent representations that can 
be used for transfer learning in various ways. As illustrated in Figure 6, 
the proposed model includes a self-attention layer that collaboratively 
improves the classification of DoH traffic utilizing the latent space. 
The model can identify patterns and relationships by leveraging the 
structured feature representations in the low-dimensional latent space, 
ultimately leading to increased classification accuracy. 

To detect and identify DoH traffic, the use of a self-attention 
layer with the model is essential. This layer enables the model to 
prioritize and identify the important components within the input data 
when making predictions. By doing so, it better captures the complex 
relationships and dependencies among DoH traffic from other types of 
network activity. In our model, at the initial phase, the process starts 
by defining a low-dimensional latent space consisting of 15 carefully 
selected features. These features are selected specifically to help the 
classifier in identifying DoH traffic and provide a good balance between 
the model performance and learning rate. To verify the need of these 
features, we use SHAP scores to rate the features among themselves. 
As shown in Figure 7, SHAP scores assign a numerical value to each 
specific feature, indicating the contribution of the feature to the model 
output. This develops a clear understanding of how each feature 
influences the final output, enhancing our model transparency and 
interpretability. The SHAP values obtained in our proposed work use 
the XGBoost algorithm, which results in good performance in ML 
tasks. Additionally, other techniques such as permutation-based feature 
importance methods help to randomize features and analyze the effect 
on model performance. This process allows for a clear importance 
of each feature to the final output. By using these methods with the 

internal attention mechanism, we aim to improve both the accuracy and 
efficiency of traffic classification.

4.1. Self-attention layer for DoH classification
Figure 8 shows the design of a self-attention-based classifier that 

significantly enhances the analysis of features by transforming each 
input feature into a higher-dimensional representation through tailored 
projections. This transformation yields three distinct representations: 
Query (Q), Key (K), and Value (V). Each of these projections serves 
to deepen the contextual understanding of the original traffic features, 
thereby enabling the classifier to achieve improved generalization and 
adaptability to a diverse range of inputs. The self-attention mechanism 
is a pivotal component of this architecture, as it allows the model to 
uncover and capture complex relationships and dependencies among 
the features. 

By learning the important scores among features associated 
with the input, our model can dynamically focus on the most relevant 
information, thereby removing unwanted noise and data. This capability 
is especially needed in cases where the input data may vary significantly, 
ensuring that the classifier remains effective across different cases. 
Under our proposed architecture, the internal attention model employs 
three projections—Query Q, Key K, and Value V, which are extracted 
from the input data to compute the importance score (Attention Score). 
These scores play a fundamental role in determining the importance of 
each feature in the input, resulting in improved model learning rate. As 
a result, the classifier can utilize the contextual meanings embedded in 
higher-dimensional feature representations to make predictions using 
the following projections in our work:

where d is the attention dimension.
The attention scores are processed through a Softmax function, 

which transforms these scores into attention probabilities. These 
probabilities are then utilized to compute a weighted sum, which forms 
the input for the fully connected layer responsible for generating class 
logits.

4.2. Ablation study on self-attention layer for DoH 
classification

This section explains the ablation study of our self-attention layer 
used as a classifier in our work; we retained the baseline parameters 
listed in Table 4, which were the standard values needed for the classifier 
for latent space–based classification. The model was trained on a GPU 
setup with 50 epochs with varying batch sizes to ensure transparent 
evaluation. The results obtained from the classifier model are recorded 
to facilitate a detailed comparative analysis of our work. Furthermore, 
the model optimization was set to Adam optimizer, with a learning rate 
of 0.001, our model seems to learn better. These values of learning rate 

(8)
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 Figure 7
Latent space feature importance

 Figure 8
Self-attention with multi-head attention layer

 Figure 6
Tab-VAE with self-attention layer
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and optimization enhance the learning rate of our model during training, 
which, in turn, improves reliability.

5. Results and Discussion
The Tab-VAE model combined with a self-attention layer with 

a multi-head attention mechanism results in improved performance 
in the classification of DoH traffic. This improvement is particularly 
due to model training on the preprocessed dataset BCCC-CIC-BELL-
DNS-2024, which is rich in various data distributions. The dataset 
covers a variety of attack categories, including data exfiltration attacks 
and numerous instances of malicious DoH traffic. In this study, the 
proposed model focuses on the samples categorized as malicious in the 
dataset, which are divided into distinct classes ranging from 0 to 3. These 
classes are defined by the following labels: Benign (0), Malware (1), 
Phishing (2), and Spam (3), allowing a comprehensive understanding 
of their characteristics and behaviors. Figures 9 to 13 depict a clear 
understanding of the need for latent space–based classification, 
employing a self-attention layer with a multi-head attention mechanism. 

The model was trained and evaluated across varying batch sizes, 
specifically 16, 32, 64, and 128. The results obtained with batch sizes of 
16 and 128 demonstrate the improvements in accuracy and efficiency 
of the model. 

Analysis of the results showcases significant improvements in the 
model generalization property, robustness and adaptability in accurately 
classifying different types of data within the latent space. These points 
highlight how the proposed approach addresses the challenges posed by 
malicious DoH traffic classification. The confusion matrix in Figure 9 
illustrates the model learning, as indicated by the high values along the 
diagonal, which show its good performance in classifying instances. 
However, the model had difficulty in identifying instances of the Spam 
class, totaling 1,538. This issue is due to the imbalance of the dataset 
itself.

The class-wise metrics presented in Figure 10 provide a 
comprehensive view of the model performance across various input 
types, highlighting its effectiveness in differentiating among the different 
classes. Our analysis reveals that the model excels at identifying 
the Spam class, achieving the highest F1 score across all assessed 
categories. This indicates a strong balance between precision and recall 
for this class. In contrast, the model encountered significant challenges 
when it comes to detecting malware and phishing attempts. Notably, 
recall for these classes is particularly low, suggesting that the model 
failed to identify a considerable number of actual malware and phishing 
threats. This shortcoming highlights a key area for improvement, 
as both precision and recall illustrate a detrimental trade-off in these 
categories. The findings point to the necessity of improvements in the 
model architecture or training methodology to achieve better overall 
generalization and robustness in detecting these more elusive threats.

Analysis of the batch sizes revealed distinct performance 
differences across the evaluated configurations. Overall, the model 
trained with 16, 32, 64, and 128 batch sizes achieved improved accuracy, 
precision, recall, and F1 score, indicating that varying batch sizes can 
be a more effective learning parameter. Statistical techniques such as 
the one-way ANOVA method confirm that the performance variation 
among the varying batch sizes was improving the model learning rate. 
The one-way ANOVA method results in an F-statistic value of 0.056 
and a p value of 0.98 for an input batch size of 128. These findings 
suggest that carefully tuning the batch size is crucial for optimizing the 
performance of the self-attention classifier, as the selected batch size 
not only improved stability across multiple runs but also contributed 
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Category
Self-attention layer 

parameters Value/Description
Model Architecture input_dim, num_

classes
Derived from dataset

Self-Attention attention_dim=64, 
num_heads=4

Multi-head 
self-attention

Classification Head ReLU, Dropout(0.3), 
BatchNorm

Two-layer MLP for 
classification

Training Settings epochs=50, batch_
size=64, lr=0.001

Adam optimiz-
er, Learning Rate 
Scheduling

Evaluation Classification Report, 
Confusion Matrix

Precision, F1 score, 
Accuracy

Batch sizes {16,32,64,128} Batch size of 16 to 
128 is chosen for 
model training

Table 4
Self-attention layer parameters for DoH traffic classification

 Figure 9
Confusion matrix of model training for batch sizes 16 and 128
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to the overall robustness of the predictions of the model. Figure 11 
illustrates the accuracy and loss metrics of the self-attention classifier 
after training and testing phase in the latent space over 50 epochs. The 
results indicate a modest improvement in model accuracy when using 
a batch size of 128. At the same time, the cross-entropy loss function 
shows a significant reduction with the progression of epochs. These 
graphical representations highlight the improvement in classification 
accuracy and corresponding reduction in loss, which contribute to 
better generalizability of the model.

Figure 12 compares the accuracy and loss function of different 
models using varying batch sizes. It shows that a batch size of 128 results 
in improvements compared to a batch size of 16. For batch sizes of 32 
and 64, both achieve higher and more stable accuracy on training and 
testing sets, which is consistent with the observations from the loss chart. 
The results show that batch sizes of 32 and 64 are the most suitable for 
this specific model and dataset, as they provide a good balance between 
training speed, stability, and generalization performance. In contrast, 
batch size 16 appears to be too small, leading to noisy updates and a 
risk of overfitting. The batch size of 128, while stable, may be too large, 

resulting in slower convergence and slightly reduced performance. The 
output of the training and testing results of the model are plotted to 
demonstrate the increase in the model robustness.

In conclusion, the efficiency of the proposed model is assessed 
by plotting a multi-class ROC curve, providing deeper insights into its 
performance. Figure 13 shows the ROC curve using the One-vs-Rest 
approach, showing the various multi-class distributions present in the 
dataset. This visualization not only highlights the ability of the model 
to distinguish between classes but also illustrates its effectiveness in the 
latent space, allowing for a comprehensive understanding of how well 
the model distinguishes between each category. By evaluating the area 
under the curve for each class, we can interpret the overall accuracy of 
the model and its capability in classifying diverse data.

Table 5 shows the analysis of our work with other literary 
works proposed on various DNS datasets. Autoencoders are good 
choices for dimensionality reduction on large feature sets compared 
to different datasets, such as the CIRA-CIC-DoHBrw-2020 and CIC-
Bell-DNS 2021 datasets. The proposed model uses the BCCC-CIC-
Bell-DNS-2024 dataset, which is advanced compared to the CIC-
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 Figure 10
Class-wise metrics for batch sizes 16 and 128

 Figure 11
Model accuracy and loss function during DoH classification
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Bell-DNS-2021 dataset, consisting of behavioral aspects of DNS 
traffic and attack distributions. Based on the review of literature, our 
proposed work is the first to utilize latent space–based classification 
using Tab-VAE and self-attention layer to classify the obtained latent. 
The proposed model converges well for imbalanced datasets, which 
highlights the importance of real-time DoH traffic classification.

5.1. Discussions
This section revisits the primary objectives of the study. It 

evaluates how the proposed framework—consisting of a Tab-VAE and 
a Self-Attention classifier—addresses each of these objectives through 
empirical evidence and ablation studies. 

Objective 1: Tab-VAE for Latent Representation and 
Classification: The first objective was to design a Tab-VAE Encoder-
Decoder to learn meaningful latent space representations from high-
dimensional DoH traffic data. Our implementation of Tab-VAE 
successfully achieved this by integrating a structured encoder-decoder 
architecture with reparameterization, BatchNorm, and ReLU activation 
functions to manage the mixed-type nature of the tabular input. The 
model was trained using a hybrid loss function combining MSE for 
numerical features and cross-entropy loss for categorical features, with 
a KL divergence regularization to enforce latent space continuity. As 
shown in Table 5, the Tab-VAE model achieved superior classification 
performance when the latent embeddings were used to train a 
downstream classifier, with an accuracy of 80%, F1 score of 0.70, and 
consistent generalization across test folds.

Objective 2: Latent Space Quality via Visualization: To evaluate 
whether the Tab-VAE successfully captured meaningful structure 
in the latent space, we visualized the learned representations using 
t-SNE, as shown in Figure 4. The embeddings reveal a well-separated 
clustering of benign and various malicious traffic types, indicating that 
the model effectively disentangles semantic patterns in encrypted DNS 
flows. This validates the quality of the compressed representation: 
malicious samples tend to form distinct sub-clusters, which are aligned 
with their behavioral similarities (e.g., tunneling, exfiltration). Latent 
representations not only compress high-dimensional features but 
also preserve class-discriminative structure, which is essential for 
downstream classification.

Objective 3: Robust Self-Attention Classifier Across Diverse 
Traffic: The third objective was to develop a scalable and lightweight 
self-attention classifier trained on the Tab-VAE-generated latent space. 
This classifier demonstrated strong performance and robustness in 
classifying both benign and malicious DoH traffic across multiple batch 
sizes and training settings. Additionally, an empirical evaluation with 
varying batch sizes (16, 32, 64, and 128) showed that a batch size of 
128 consistently resulted in improved accuracy, precision, recall, and 
F1 scores. The one-way ANOVA (F = 0.056, p = 0.98) confirms the 
statistical significance and demonstrates the stability and robustness 
of the model across different configurations. As shown in Figure 11, 
the decline in cross-entropy loss and the consistent improvement in 
accuracy over 50 epochs illustrate the effective convergence and training 
stability of the model, validating its practical utility and adaptability in 
dynamic DNS environments.
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 Figure 12
Model accuracy for training and testing of varying batch sizes

 Figure 13
Model performance on various batch sizes of 16 and 128
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Ablation Analysis: Our ablation study on Tab-VAE (Table 3) 
showed that replacing ReLU with sigmoid/tanh reduced the learning curve 
and model efficiency. Also removing BatchNorm1D introduced instability 
during training and increased the reconstruction error. Varying the 
dimensionality of the latent space revealed a trade-off: lower dimensions 
led to loss of feature granularity, while overly large latent spaces introduced 
redundancy. A bottleneck of 15 latent dimensions proved optimal for 
balancing reconstruction fidelity and discriminative power.

Our ablation study on the self-attention layer (Table 4) showed 
that a multi-head self-attention mechanism (4 heads, 64-dimensional 
keys/values) effectively captured interactions between compressed 
feature vectors. Using ReLU + BatchNorm + Dropout in the 
classification head improved generalization and mitigated overfitting. 
The model achieved optimal performance with a batch size of 128, and 
a learning rate of 0.001 using the Adam optimizer. The classification 
robustness of the model across different attack types is confirmed in 
the confusion matrix (Figure 9) and class-wise classification report, 
where precision and recall values remained above 0.70 for most 
classes. 

6. Conclusion
In summary, the combination of the Tab-VAE with a self-

attention layer and multi-head attention mechanism marks a notable 
advancement in classifying malicious DoH traffic. Using the 
comprehensive BCCC-CIC-BELL-DNS-2024 dataset, this advanced 
model demonstrates improved accuracy in differentiating various 
types of digital traffic, particularly achieving impressive results with 
batch sizes ranging from 16 to 128. Although the proposed Tab-VAE 
model, which merges a Tab-VAE with a self-attention-based classifier, 
achieved an accuracy of 80% and an F1 score of 75% at a batch size 
of 128, it still falls short when compared to traditional ensemble-based 
models. The results highlight opportunities for further improvement, 
including enhancements in manual feature engineering, architectural 
improvements, and optimization techniques. 

The system generates interpretable latent representations and 
achieves reliable DoH traffic classification across heterogeneous traffic 
scenarios, making it suitable for real-world deployment in privacy-
preserving network environments. Future work will aim to improve the 

performance of the Tab-VAE framework while retaining its generative 
strengths for robust classification of tabular data. This progress not only 
enhances the ability of the model to generalize and detect threats across a 
variety of scenarios but also establishes a solid groundwork for ongoing 
research in cybersecurity. It opens new directions for creating more 
efficient detection and response strategies to combat evolving cyber 
threats. However, challenges exist, such as computational complexity 
remains a significant consideration. The extensive preprocessing 
required to generate latent space representations from large traffic 
datasets demands manual feature engineering. Additionally, the time 
required to establish these representations and effectively train the 
classifier tailored for DoH traffic classification highlights the necessity 
for continuous optimization in the model. In future work, we aim to 
expand our analysis of computational overhead and performance in 
real-world IoT contexts by conducting comprehensive benchmarking 
across various devices in IoT platforms. We will explore the impact of 
diverse networking conditions and data processing methods on system 
performance on model outputs.
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Sl. No References Baseline models Performance metrics used Findings 
1 Panigrahi et al. [33] ML models:

RF-AHP (RA), KNN-TOPSIS 
(KT), GBT-VIKOR (GV), and 
DT-Entropy-TOPSIS (DET)

Accuracy, Precision, Recall, 
F1 score

GBT-VIKOR model demonstrated the 
highest accuracy at 99.52%, while the 
KNN-TOPSIS model had the lowest 
accuracy at 93.65%, using CIC-Bell-
DNS-2021 dataset. 

2 Shafi et al. [34] A multi-layer neural network Accuracy, Precision, Recall, 
F1 score

The model achieves an accuracy rate 
exceeding 99% in profiling various DNS 
activities and proposed BCCC-CIC-Bell-
DNS dataset.

3 Kirubavathi et al. [38] XGBoost with hyperparameter 
tuning with Optuna 

Accuracy, Precision, Recall, 
F1 score, Recall, ROC curve

The baseline accuracy of the XGBoost 
model was 88.89%, which improved to 
93% after hyperparameter optimization 
framework Optuna with Precision=0.88, 
Recall=0.91, F1score=0.89, AUC=0.98.

4 Proposed Tab-VAE 
model

Tab-VAE + Self-attention 
mechanism-based classifier

Accuracy, Precision, Recall, 
F1 score

An accuracy of 80% for a batch size of 128, 
with F1 score and Precision equal to 75%.

Table 5
Comparative analysis of BCCC-CIC-Bell-DNS-2024 with earlier studies
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