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Abstract: The use of drones and unmanned aerial vehicles has significantly increased in various real-world applications such as monitoring illegal
car parking, tracing vehicles, controlling traffic jams, and chasing vehicles. However, accurate detection of license plate numbers in drone images
becomes complex and challenging due to variations in height distances and oblique angles during image capturing, unlike most existing methods
that focus on normal images for text/license plate number detection. To address this issue, this work proposes a new model for license plate number
detection in drone images using Swin transformer. The Swin transformer is chosen due to its special properties such as higher accuracy, efficiency,
and fewer computations, making it suitable for license plate number/text detection in drone images. To further improve the performance of the
proposed model under adverse conditions such as degradations, poor quality, and occlusion, the proposed work incorporates a maximally stable
extremal region-based regional proposal network to represent text data in the images. Experimental results on both normal license plates and drone

images demonstrate the superior performance of the proposed model over state-of-the-art methods.
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1. Introduction

Text and license plate number detection is important for several
real-world surveillance applications, where text detection facilitates
text recognition to understand images and videos. Some examples of
real-world cases include automatic driving without a pilot, machine
translation, human—computer interactions, etc. In these applications,
there are some challenges like arbitrary orientation, arbitrarily
shaped text, low resolution, complex background, font variations,
etc. for achieving better detection results (Mittal et al., 2022;
Nadanwar et al., 2022). However, most of these challenges are
addressed adequately by the existing methods using different deep
learning-based approaches. But in the case of surveillance
applications, drones have been used for monitoring and tracking
vehicles, traffic jams, illegal parking, toll fee collection, etc. In
these situations, due to variations in the heights and oblique
angles of drone cameras, captured images suffer from severe
degradation, poor quality, occlusion, inadequate information, etc.
It is visible in Figure 1(a), where partial license plate number is
visible, quality differs from one license plate number to another
due to distance variations between the camera and cars and the
effectiveness of perspective distortion due to oblique angle.
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In contrast to drone images in Figure 1(a), normal images shown
in Figure 1(b) do not suffer much from degradation. Since these
challenges are different from normal scene images, the past methods
may not be effective for drone images. It is evident from the results
of the state-of-the-art methods (Liao et al., 2022; Zhang et al., 2020;
Zhu et al.,, 2021) and the proposed method on drone and normal
scene images shown in Figure 1(a) and (b), respectively. The
methods (Liao et al., 2022; Zhang et al., 2020; Zhu et al., 2021)
used a deep learning-based approach for addressing challenges of
scene text detection, misses characters in the case of drone images.
On the other hand, the same methods works well for normal scene
text images. As a result, one can infer that the existing methods are
not effective for drone images. At the same time, the results of the
proposed method shown in Figure 1(a) and (b) show that the
proposed method is capable of handling both drone and normal
scene images. Therefore, there is a need for addressing the above
challenges to achieve better results for drone images.

Previous studies have attempted to address the challenges of
drone images. For instance, Kim et al. (2022) proposed a method
for rescuing missing people by designing a web server that receives
drone images and uses visual content to detect missing people.
Mohite et al. (2022) developed hyperspectral imaging techniques to
detect crop water stress from images captured by drones using
visual spectral analysis. Chowdhury et al. (2022) explored gradient
vector flow to detect dominant points in palm tree images captured
by drones to detect crown-shaped regions and count the number of
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Figure 1
Challenges faced during license plate number detection in drone images
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palm trees in drone images. Dwivedi et al. (2022) developed a model
for estimating crop area and extraction in images captured by drones
based on object-based image analysis instead of pixel-based image
analysis to monitor agriculture. However, the scope of these
methods is limited to general images and may not be effective for
text detection in drone images, including license plate numbers.
Therefore, this work aims to develop a new method for detecting
license plate numbers and text in both drone and normal images.
The remarkable success of deep learning discussed in the
past (Zhang et al., 2022a, 2022b) for the classification of objects
and complex scene images motivated us to explore transformer
architectures for license plate number detection in drone images.
This is because transformer (Liu et al., 2021) has the ability to cope
with the challenges posed by multiple adverse factors, and they
perform better than conventional deep learning approaches; hence,
we explore addressing the challenges of drone images as well as
normal scene images in this work. To reduce the effect of
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Proposed Model

nonuniform quality of license plate numbers due to the presence of
multiple vehicles in the same image, the proposed work adapts
maximally stable extremal regions (MSERs) (Gomez & Karatzas,
2014) based regional proposal network (RPN) to detect text
candidates in the input images. This step helps the Swin transformer
to perform better detection irrespective of drone and normal scene
images.

The main contributions are as follows: (i) exploring Swin
transformer for addressing challenges of both drone and normal
scene images is new compared to the state-of-the-art methods and
(i1) the use of the combination of MSER and RPN for reducing
the effect of background complexity and the effect of nonuniform
quality is new compared to the existing methods.

This paper is structured as follows: Section 2 provides a
succinct overview of related works, while Section 3 delves into
the proposed method. The experimental findings are presented in
Section 4, and the paper concludes with Section 5.
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2. Literature Review

Broadly speaking, the methods for detecting text in scene
images can be classified into two categories: those designed for
scene text detection and those developed specifically for detecting
license plate numbers. Therefore, we review the same in this section.

Zhu et al. (2021) employed the Fourier contour embedding
technique to identify text in scene images. The approach aims to
create an effective text representation that can handle diverse
geometric variations, which is achieved by leveraging the Fourier
domain instead of spatial information. However, the method may
not perform optimally in detecting text with arbitrary shapes.
Similarly, Zhang et al. (2020) proposed a text detection approach
for scene images using a deep relational reasoning graph (DRRG)
network that employs a graph convolutional network.

Most text detection methods typically use segmentation as a
strategy to improve their performance, but their effectiveness is
reliant on complex postprocessing procedures. To mitigate the
impact of these complicated postprocessing steps, Liao et al. (2022)
developed a novel approach for text detection in scene images that
leverages differential binarization and an adaptive scale fusion
technique. This method aims to overcome the limitations of
segmentation-based methods by integrating binarization and
segmentation steps to achieve more efficient text detection. Since
the scope of the method is limited to scene text images, the method
may not be extended for document layout analysis. To address this
challenge, Long et al. (2022) tackled this issue by creating an end-
to-end unified model that addresses both scene text detection and
document layout analysis challenges. Since scene text detection is a
component of document image analysis, it is reasonable to expect
that a text detection method that performs well in scenes would also
excel in document layout analysis. The proposed approach can
simultaneously detect scene text and group text into clusters.

Although various methods have been proposed for text detection
in scene images, they are often sensitive to noise and low-contrast
images. To address this issue, Soni et al. (2022) introduced a
supervised attention network that learns multiscale edge semantics
and pixel-wise spatial structure information to detect text masks in
edge-fainted noisy scene images. However, many existing methods
prioritize accuracy over efficiency. To achieve both accuracy and
efficiency, Wang et al. (2022) developed an end-to-end approach for
spotting arbitrarily shaped text in scene images using kernels that
describe the text shape and distinguish it from adjacent text. While
most methods require a large number of training samples, Dai
et al. (2021) proposed a scale-aware data augmentation-based
technique that generates synthetic samples, reducing the dependency
on real samples for accurate scene text detection. Nonetheless, these
methods may not perform well on images containing deformed text.
To address this challenge, Ma et al. (2022) proposed a text attention
network that obtains super-resolution images, significantly improving
text detection performance, especially for low-contrast and spatially
deformed text in scene images.

While most text detection methods use training and testing data
from the same distribution to achieve optimal results, this is not
always feasible for real-world applications. To address this issue,
Zheng (2022) proposed a scene text detection method using cross-
domain data and a domain adaptation strategy that involves both
low-level and high-level alignment models for feature extraction.
Additionally, transformer-based methods have been introduced to
reduce computational complexity, improve text detection
performance, and reduce the reliance on the number of training
samples. For instance, Zeng & Song (2022) developed a Swin
transformer with a feature pyramid network for scene text

detection in circuit cabinet wiring images. The proposed approach
leverages global self-attention context at each level of feature
pyramid networks and integrates features from all levels to
effectively detect text in the images.

To summarize, while the existing methods have effectively
addressed many challenges of scene text detection, they have
not been specifically designed to detect text in drone images.
Drone-captured images present unique challenges, such as occlusion,
distortion, degradations, nonuniform illumination, and multiple
text instances in the same image (such as license plate numbers
of multiple vehicles in the same image), which may limit the
effectiveness of the discussed methods. Furthermore, these methods
are primarily focused on scene text images and may not be well-
suited for detecting license plate numbers.

Several methods have been developed recently for detecting
license plate numbers in different situations. For instance, Bagi
et al. (2021) proposed a method for multilingual-oriented scene
text and traffic sign detection in adverse meteorological
conditions. However, this approach does not primarily focus
on license plate number detection. To improve the performance of
license plate detection in adverse conditions, Lee et al. (2022)
developed an information maximization-based method that uses
scene text detectors for detecting license plate numbers. Srilekha
et al. (2022) developed a method for license plate number
detection and nonhelmet rider identification using a combination
of Yolov2 and an optical character recognizer. Gizatullin
et al. (2022) used an image weight model for license plate number
detection that involves multiple-scale wavelet transforms and
morphological gradient for improving performance. Kim
etal. (2021) developed a deep learning-based model for recognizing
license plate numbers in CCTV images, which includes a super-
resolution technique using a generative adversarial network.
However, these methods do not address the specific challenges
of license plate number detection in drone images. These
challenges include occlusion, distortion, degradations, nonuniform
illumination, and multiple text instances in the same image.

To summarize, the existing methods for license plate number
detection have not addressed the challenge of detecting license
plate numbers in drone images. However, Jain et al. (2022)
proposed a method that adapted the Yolov5 architecture for
number plate detection in drone applications, but it is not
effective for images with cluttered backgrounds and multiple
adverse factors. There is a need for a more robust model that can
handle the challenges of drone images with high accuracy and
minimal computations. Thus, the proposed work introduces the
Swin transformer for detecting license plate numbers and text in
scene images.

3. Proposed Method

The aim of this study is to develop a method for detecting
license plate numbers and text in drone images. Unlike existing
methods that only focus on text detection in normal scene images,
the proposed method considers both license plate numbers and
text images for detection. However, detecting text in drone images
is challenging due to degradations, occlusion, and distortion
caused by varying height distances and oblique angles. To address
this, the proposed method uses the Swin transformer for license
plate number detection, inspired by its ability to extract context
and semantic features with high accuracy and fewer computations.

To deal with the complex background of drone images, the
proposed method uses a combination of MSERs and RPN to
extract text components. The extracted features from the Swin
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Figure 2
The block diagram of the proposed model
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transformer and MSER-based RPN are fused for license plate number
detection. The pipeline of the proposed method can be seen in Figure 2.
In the figure, the input image is fed to the backbone network
(ResNet50) followed by Swin transformer layers. The feature maps
of the backbone are then used in the Swin transformers. The
anchor-free RPN comprises MSER-based text region detections that
are projected on the feature map of the Swin transformer blocks.
Region of Interest (ROI) pooling is performed to maintain a fixed
feature size for input to the dense layers. The dense layers include
64 units in dense layer 1, and 32 units each in dense layers 2 and 3,
while dense layer 4 has 16 units, all activated using the RELU
activation function. The BBOX regressor has four units, which are
the four coordinates of the bounding boxes and are activated using
the linear activation function.

Swin-Transformer Blocks

Dense layers |

3.1. MSER-based RPN for text component
detection

As explained in the previous section, we propose a novel
approach that combines MSER-based RPN to identify text
candidate components in the images. For a given input image, the
proposed work employs MSER, which outputs candidate
components as shown in Figure 3, whereas for the input image
shown in (a), the MSER outputs candidate components by
discarding nontext components as shown in Figure 3(b). Since
MSER s sensitive to background components, it detects some of
the nontext components as candidate components. Therefore, the
proposed work obtains Canny edge image for the input image as
shown in Figure 3(c), where edges are representing prominent

Figure 3
Illustrating the steps for text component detection

(b)

Input image

7 o
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Figure 4
Swin transformer network architecture for license plate number and text detection in drone images

Swin-Transformer

Blocks 2

Swin-Transformer

Blocks | Blocks 3

information (edges of text). The RPN (Chen et al., 2017) is used to
fuse the output of the Canny edge image and MSER making it anchor
free. It uses merged information from the Canny edge detector and
the MSER region proposals (the edges obtained by the Canny edge
detector are used as a boundary for the MSER regions and the
background information is removed) (Tabassum & Dhondse,
2015). Furthermore, to reduce the effect of false positives, the
proposed work performs stroke width transform (SWT) (Epshtein
et al., 2010) over the results of the fused step. The SWT considers
the boundary pixels to estimate the stroke width, and we believe
that the stroke width of every character is almost similar. Based
on this observation, the proposed work fixes certain thresholds to
remove nontext candidates. This step helps us to eliminate most
of the nontext candidates as shown in Figure 3(d), where it can be
seen that most of the text candidates are retained and most of the
nontext candidates are removed. The result of SWT is called text
components detection. It is noted from the results (see
Figure 3(d)) that the output still contains nontext components.
This is because of variations in the foreground and background.
Note that this step does not remove nontext components at the
cost of text components. Therefore, the steps retain all the text
components. Since most of the background components are
removed, the complexity of the text detection is also reduced. The
five reduced text candidates having the highest IoU score are
considered. The proposed regions are ROI pooled with the
feature map of the Swin transformer network. This leads to
obtaining good results by the Swin transformer irrespective of
the challenges of drone images, which is the advantage of
the introduction of MSER-based RPN. Another challenge of the
drone dataset is the arbitrary angles as well as the varying scales
of texts presented which creates difficulties for segmentation-
based methods. MSERs are immune to affine transformations and
perform multiscale detection. This provides an edge over other
detection models and performs superiorly.

3.2. Swin transformer

In this study, the Swin transformer is selected for license plate
number and text detection in drone images, as it is well-suited for
representing data and extracting high-level features. While the
vision transformer (Dosovitskiy et al., 2021) and data efficient
transformer (Touvron et al, 2021) are designed for specific
objectives, such as visual information and data collection,
respectively, the Swin transformer (Liu et al., 2021) is capable of
global and local self-attention, allowing it to extract context features

Swin-Transformer

r

P PN

Swin-Transformer

Blocks 5

Swin-Transformer

Blocks 4

globally and locally. This property is particularly useful for
differentiating text components from nontext components, making it
an ideal choice for the proposed work’s objectives. Figure 4 shows
the complete architecture of the Swin transformer blocks.

Figure 5 represents two consecutive Swin transformer blocks.
The input to the first block is the encoded features z (after patch
partition) which are passed on to the layer normalization, followed
by the weighted multihead self-attention (MSA) layer. The output
from the multilayer perceptron (MLP) is fed to the next block.
Instead of W-MSA, the shifted window MSA is used for
computational efficiency. The SW-MSA procedure is shown
where the map is shifted by two units for performing the attention
mechanism. To fill up the empty space, either padding is used or
a more sophisticated approach of cyclic shift is applied and
indicated using the green arrows.

The images are first divided into patches by a patch partition
layer (e.g., H, W, three-dimensional image is divided into H/4,
W/4, 48). These partitioned patches are passed on a linear
embedding layer to project it into a dimension of C (H/4,
W/4, C). In between the stages, (between two subsequent blocks)
patch merging is done to reduce the number of patches (H/S,
W/8, 2C) resulting in lower dimensional concatenated features.
Swin transformer uses a shifted window attention mechanism to
effectively reduce the computational burden.

Q(MSA) = 4hwC? + 2(hw)>C 1)
Equation (1) represents MSA, where / is the height of the image, w is
the width of the image, and C is the dimension of the embedding
vector of the image.
Q(WMSA) = 4hwC? + 2M*hwC )
Equation (2) is the window attention mechanism where MSA is
applied not on the entire image but rather on a local window of
nonoverlapping patches (window dimension is 7X7). A cyclic
shift approach is adopted which introduces connections between
neighboring overlapping windows like the convolutional neural
networks as shown in Figure 5. This cross-window MSA
increases the accuracy while reducing computation by eliminating
redundant calculations. Each transformer block consists of linear
regularization, MSA layer (number of attention heads is 8), and
two-layer MLP with GELU activation function. After these
blocks, a patch merging layer is used. The input image of
dimension (128 X 128) is passed on to the embedding layer for
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Figure 5
Illustration of two consecutive Swin transformer blocks and cyclic shift mechanism

Padding Cyclic shifting

Figure 6
Text detection result of the proposed method for the images in Figure 3(d)

positional encoding of the patches (each patch is of size 4 X 4) due to
the transformer’s immunity to permutational changes. The addition
of features of Blocks 2 and 3 before feeding them to Block 4
(similarly the features of Blocks 4 and 5 are added together)
increases the accuracy of the model. The effect of the Swin
transformer 1is illustrated in Figure 6 for the image shown in
Figure 3(d), where one can see that the proposed model detects
license plate numbers properly for all the vehicles in the drone image.

4. Experimental Results

To evaluate the proposed method on both drone images and
normal scene images, we collected car images from Kaggle'. This
dataset provides 432 images of cars with license plate number
ground truth in the PASCAL VOC format. For the same dataset, our
collected drone images are added to evaluate and validate the
effectiveness of the proposed method for license plate number
detection in drone and normal scene images. In total, the dataset
contains 1142 images for experimentation, which include low
resolution, degraded, good quality, poor quality, partially occluded

Thitps://www.kaggle.com/datasets/andrewmvd/car-plate-detection
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license plate number images, and images with tiny text. Sample
images of our dataset are shown in Figure 7(a) and (b), respectively,
for normal images collected from the Kaggle dataset and drone
datasets, where one can see the complexity of license plate number
detection varies from one image to another. When we look at the
sample images of the Kaggle and our datasets shown in Figure 7(a)
and (b), the presence of multiple vehicles and background
complexities is almost similar. However, the height distance varies
much in the case of our dataset compared to the Kaggle dataset. To
show that the proposed model works well for different situations,
such as good-quality and poor-quality images, our dataset includes
images of the Kaggle dataset for experimentation. Therefore, overall,
we believe that the diversified images of our dataset reflect real
scenarios. All the images of our dataset are resized to 256 X 256
dimensions and normalized (intensity of image normalized by
dividing it by 255) before feeding the model.

To demonstrate the effectiveness of our proposed method, we
conducted a comparative study with the state-of-the-art techniques
that use powerful deep learning models and are robust to
challenges similar to drone images. These methods include the
differential binarization network (Liao et al., 2022), DRRG
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Figure 7
Examples of normal and drone license plate number images

Display images chosen from drone dataset without detection results

network (Zhang et al., 2020), and Fourier contour embedding
network (Zhu et al.,, 2021). To ensure a fair comparison, we
retrained these methods on our dataset and used a 70:30% split
for training and testing data. We maintained a consistent
experimental setup for all the experiments, which involved using
an HP Laptop 15s-eq0xxx with an AMD Ryzen 5 3500U
processor, 8GB RAM, and 2GB RADEON AMDA graphics card.

To evaluate and compare the performance of the proposed and
existing methods, we use the commonly used metrics of precision,
recall, and Fl-score, which are defined in Equations (3), (4),
and (5), respectively. These standard evaluation measures have also
been used in the previous studies (Liao et al., 2022; Zhang et al.,
2020; Zhu et al., 2021). We follow the same evaluation scheme as
in these studies for calculating the metrics. By using these
measures, we can assess the effectiveness of each method in terms
of both accuracy and completeness of the license plate number
detection. Similar to the traditional precision, recall, and F1-score,
the measures are defined as follows for evaluating the performance
of the methods. The pixels that are inside the ground truth
bounding box are defined as true positives. The pixels that are
inside the predicted box but are outside the ground truth bounding
box are defined as false positives. The pixels that are outside the
ground truth bounding box are defined as true negatives. The pixels
that are outside the predicted bounding box but are inside the
ground truth bounding box are defined as false negatives.

b area(ground truth) N area(predicted box)

area(predicted box) 3)
area(ground truth) N area(predicted box)
R= 4
area(ground truth)
Fr=2x P X R 5)
(P+R)

4.1. Ablation study

The adapted Swin transformer uses ResNet50 as backbone and
the combination of MSER with RPN to improve the performance of
license plate number detection in drone images. To validate the
effectiveness of the above two key steps, we conducted the
following experiments using our drone images dataset. The results
are reported in Table 1. (i) Use the baseline RestNetl01 for
license plate number detection by feeding images as input. This is
to test the effectiveness of the Swin transformer. (ii) In the same
way, supply of input images to the ResNet50 instead of the
RestNet101 for license plate number detection. (iii) Use of the
ResNet50 as a backbone for Swin transformer without MSER +
RPN. This is to test the effectiveness of the MSER + RPN. (iv)
The proposed method that considers the ResNet50 as a backbone
to Swin transformer and the steps of MSER + RPN. Table 1
shows that the baseline architecture of the ResNet50 is better than
the baseline architecture of the ResNet101 in terms of F-measure.
In this case, the precision increases for the ResNet50 while recall
decreases for the ResNet50 compared to the ResNetlOl1.
Therefore, the ResNet50 is good for reducing the number of false
positives while the ResNet101 is good for detecting text instances
in the images. Since the precision of the ResNet50 gained more

Table 1
Assessing the efficacy of key steps in the proposed
method for license plate detection

Experiments Methods Precision Recall F1-score

1) Baseline ResNet101 42.4 33.6 374

(ii) Baseline ResNet50 48.6 319 38.5

(iii) Proposed method 50.3 48.6 494
without MSER-RPN

(iv) Proposed method 79.8 77.9 78.9

with MSER-RPN
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Figure 8
Qualitative results of the proposed method for license plate number detection on different datasets

Detection results for the images chosen from Drone image dataset

than 6% over the ResNet101, recall of the ResNet101 gained more
than 2% over the recall of the ResNet50. In addition, overall, the F1-
score performance is better for the ResNet50 compared to the
ResNet101. Thus, one can infer that the ResNet50 is effective for
license plate number detection in drone images. However, when
we compare the performance of baseline architectures and the
proposed method, one can conclude that baseline architectures are
not capable of achieving the best results for drone images.

The results (iii) and (iv) reveal a significant difference in the
performance of the proposed method with and without MSER +
RPN. Specifically, the proposed method without MSER + RPN
exhibits inferior performance in comparison to the proposed
method with MSER + RPN. This highlights the importance of
MSER + RPN in improving the accuracy of the proposed method
for detecting license plate numbers in drone images.

4.2. Experiments on license plate number detection

In order to evaluate the efficacy of the proposed method, qualitative
results obtained from sample images of Kaggle and drone datasets are
depicted in Figure 8(a) and (b), respectively. As observed from
Figure 8, the proposed method is able to accurately detect license
plate numbers in all images, even in the presence of multiple adverse
factors. These results demonstrate the method’s effectiveness in
detecting license plate numbers in both normal and drone images.
Similar conclusions can be drawn from the quantitative results
presented in Table 2, which indicate that the proposed method
achieves the highest recall and F1-score when compared to existing
methods. The poor performance of existing methods can be attributed
to their lack of suitability for drone images, as they were developed
exclusively for text detection in scene images.

When we compare the results of the existing methods (Liao et al.,
2022; Zhang et al., 2020; Zhu et al., 2021) reported in Table 2,
the performance of the FCE (Zhang et al., 2020) is better than
DRRG (Zhu et al., 2021). This is due to the model in Zhang et al. (2020)
using the frequency domain to represent text instances while the model
(Zhu et al, 2021) uses the spatial domain for representing text
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instances. It is true that the frequency domain can represent
complicated shapes accurately compared to the spatial domain.
However, the postprocessing steps used in Zhang et al. (2020) and Zhu
et al. (2021) to improve the detection performance are not robust, and
hence, the models (Zhang et al., 2020; Zhu et al., 2021) report poor
precision compared to the model (Liao et al, 2022). In Liao
et al. (2022), the method uses optimized postprocessing steps to
overcome the limitations of the steps used in Zhang et al. (2020) and Zhu
et al. (2021). However, overall, the existing models (Liao et al., 2022;
Zhang et al., 2020; Zhu et al., 2021) report poor results compared to
the proposed model in terms of recall and F-score.

From these results, it can be inferred that methods developed for
text detection in normal scene images may not perform well when
applied to drone images. Conversely, the proposed method is
capable of effectively detecting license plate numbers in both
types of images, thereby demonstrating its versatility and
applicability across various settings. This is because of the
contribution of MSER-based RPN for text component detection and
the advantage of the Swin transformer. However, the method (Liao
et al., 2022) reports the highest precision compared to the other
existing method and the proposed method. This is because the
performance of the method depends on postprocessing unlike
other existing methods, and it is an end-to-end model for scene
text detection. In the case of our method, the use of Canny edge

Table 2
The performance of the proposed method and existing
techniques for license plate detection in both normal and drone
images in (%)

Methods Precision Recall Fl-score
DBNet++ (Liao et al., 2022) 90.97 61.04 73.06
DRRG (Zhang et al., 2020) 64.96 54.88 59.50
FCENet (Zhu et al., 2021) 90.96 66.00 76.50
Proposed 79.86 77.99 78.91
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Figure 9
Some failure cases of the proposed method

images and MSER step sometimes detects nontext components as
text components. The reason is Canny and MSER are sensitive to
complex backgrounds and degradations in the images, and hence,
the step introduces spurious edges for the complex background.
As a consequence, the proposed method may generate a higher
number of false positives, which in turn can result in poor precision.

4.3. Limitations

As mentioned earlier, our proposed method may fail when the
input images are hazy, have poor resolution, or are noisy in nature.
This is demonstrated in sample images in Figure 9, where the method
misses characters or does not correctly identify bounding boxes. This
may be due to the sensitivity of the Canny edge detector used in the
RPN to noise, resulting in inaccurate bounding box predictions.
Therefore, there is room for improvement by replacing the step of
text component detection with a new deep learning model or end-
to-end transformer, which we plan to investigate in future work.

The processing time for license plate number detection using
our proposed model is 7.2 FPS, which may not be optimal.
This is due to the large number of parameters and computations
involved in region proposal calculation. However, the
processing time is affected by various factors, including system
configuration, programming, and platform. Our focus in this work
is to address the problem of drone images rather than achieving
the lowest processing time. In future work, we aim to develop a
system that can be used in real-time environments.

5. Conclusion and Future Work

The proposed method in this study combines MSER and Swin
transformers to detect license plate numbers in both normal and
drone images. The MSER and RPN are used for detecting text
components in drone images despite the challenges that come
with them. The Swin transformer is adapted to detect license plate
numbers in both drone and normal images. Experimental results
on our dataset, which includes license plate images from
both normal and drone scenes, demonstrate that the proposed
method outperforms the state-of-the-art methods in terms of recall

and Fl-score. However, severe degradations in images can
cause the performance of the proposed method to deteriorate.
Nonetheless, this issue falls outside the scope of this study. To
tackle such challenges in the future, the step of text component
detection could be replaced with a new transformer.
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