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Abstract: A novel approach to making telecommunications infrastructure less damaging to the environment and more energy efficient is to integrate
Al with 5G networks. However, the main issues with current approaches are scalability, data security, and a thorough assessment of sustainability.
In order to overcome these constraints, this study creates and evaluates a unique Al-driven optimization system that combines blockchain-secured
digital twins, federated learning (FL), and ISO-compliant life cycle assessment (LCA). With empirical validation across many operator datasets,
the paradigm shows significant gains in network sustainability via thorough mathematical modeling of DQN and LSTM topologies. The main
conclusions show that, although data privacy is maintained, PySyft-based FL implementations reduced operational carbon emissions by 30.4%
and base station energy consumption by 32.7%. The most significant contributions include (1) a blockchain-CoTwin architecture that enables safe
coordination between multiple operators with a discernible computational overhead of 15%—-20%, (2) a novel combination of telecommunications
performance data and environmental metrics from ReCiPe 2016 that demonstrates both operational benefits and hitherto unmeasured embodied
training effects, and (3) empirically validated implementation thresholds that link scholarly research with practical applications. Key infrastructural
connection is 9.7 percentage points better in urban installations than in rural ones. According to stakeholder validation, for adoption to take place,
interfaces and conventions need to make sense. This research provides a scalable approach to network improvement that integrates cutting-edge
technology while respecting legal obligations and protecting the environment. It also lays out new protocols for the creation of 6G networks and
the integration of Al into 5G networks.
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1. Introduction How can Al lessen 5G networks’ negative environmental effects
without reducing their usefulness or delaying their growth?

This study makes three important contributions to the state of the
art. Blockchain, FL, Al, and digital twins are used in a revolutionary
way to dynamically enhance energy usage throughout 5G infrastructure.
According to quantitative modeling, this approach might result in a
30%—40% decrease in base station energy consumption. The study
finds relevant trends, difficulties, and technology synergies using semi-
structured interviews with 90 industry experts and bibliometric data.
This study thoroughly investigates the potential role of Al in enhancing
the performance of 5G networks, providing relevant facts and three
suggestions. In addition to examining the benefits and drawbacks of Al-
driven solutions, the study offers academics, telecom companies, and
legislators practical suggestions for creating scalable implementations
that integrate well with other systems [7].

This discovery is significant because 5G networks use more
energy and might raise global carbon emissions [8]. With the use of
digital twins and Al-powered predictive maintenance, energy-efficient
network topologies might be created in real time, potentially reducing
equipment downtime by 30% [9]. Meanwhile, unclear laws, worries
about data privacy, and the digital divide are additional obstacles to
using these technologies [10]. This research highlights the relative
importance of Al with respect to more urgent problems, in addition to
demonstrating how the technology may save energy.

Al and 5G networks enable both technological advancement and
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5G networks are rapidly spreading over the world and
revolutionizing face-to-face communication. They feature low latency,
high throughput, and the ability to connect several devices at once [1].
But this significant scientific advance has a terrible price. Concerns
over the potential environmental impact of 5G infrastructure are
growing as the climate crisis worsens. According to Li et al. [2], data
centers and base stations use up to 73% of the energy consumed by all
mobile carriers. This suggests that the research needs to devise fresh
approaches to guarantee that technical developments complement the
environmental objectives [3]. One technology that might improve 5G
network speed while using less energy and emitting fewer emissions is
artificial intelligence (AI) [4].

Despite extensive study, the possible synergy between Al
and 5G is yet unclear. Few studies have examined how Al may
be used in conjunction with cutting-edge technologies like digital
twins, blockchain, and federated learning (FL) to successfully solve
sustainability challenges, despite the fact that many have examined AI’s
potential in the energy sector [5]. Research on the trade-offs between
network performance and energy efficiency, as well as how Al systems
function in various environments and infrastructures, is lacking [6].
In order to address these deficiencies, this research will look at the
following subject:
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include important concerns about scaling up, performance trade-offs,
and regulatory compliance. The study evaluates potential energy savings
using both quantitative modeling and hands-on testing. Additionally,
it provides interested parties with a roadmap for implementing these
concepts in various types of workplaces. The results are meant to
provide a starting point for further developments in eco-friendly
communications. The rollout of 5G and beyond will contribute to the
achievement of global carbon emission reduction targets.

2. Literature Review

The increasing demand for energy and the need for long-lasting
telecommunications infrastructure have made the use of Al in 5G
networks a significant research topic. The literature review arranges
earlier studies chronologically, highlights unresolved issues, and
situates the current study within the broader scholarly discourse.

Although 5G networks have achieved previously unheard-of
connectivity and data speeds, they are energy intensive. Base stations
use 73% of a mobile operator’s total energy, and this number grows
when networks are denser [2]. Williams et al. [8] did early research
that measured this trade-off. They found that 5G enhances spectral
efficiency, but its energy use per bit is still a problem for sustainability.
Mendonga et al. [11] did further study and found the paradox of 5G
deployment: even if it makes things more efficient, the huge rise in
connected devices and data traffic has caused energy demand to go up
overall. Figure 1 shows how much more energy base stations require
than other telecom equipment [2].

Figure 1
Energy consumption distribution in 5G networks
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Many people agree that Al might help reduce the energy use
of 5G; however, the methods and results differ. Yevle and Mann [4]
groundbreaking research showed that dynamic power allocation might
cut base station energy use by 30%-40% using machine learning (ML)
methods. By using deep reinforcement learning (DRL) models to alter
traffic in real time, Wang et al. [5] enhanced these results. This reduced
latency by 28% and saved energy, although the impact of Al-driven
optimization on network performance was not usually examined in
previous studies.

Al’s role in 5G sustainability is now even more varied because
of new technologies like FL and digital twins. For example, Bibri et al.
[12] showed how blockchain-based digital twins might improve 5G and
6G units’ collaborative energy management. Quy et al. [13] showed that
FL might decentralize Al training and save data transmission energy use
by 15%. Despite these developments, little is known about scalability in
networks with a variety of device types. The research directly addresses
this subject.

Being more ecologically friendly has been made feasible by
combining Al with other Industry 4.0 technologies:

(1) Blockchain: ensures that energy transactions in decentralized 5G
grids are safe and transparent [14].

(2) Industrial Internet of Things (IloT): smart factories use IloT
devices powered by Al to maximize energy efficiency, resulting in
cost savings of 20%—-25% [15].

(3) Network slicing: allows resources to be divided dynamically,
although there is some debate regarding the impact on energy
consumption [6].

Three main Al techniques for methodically improving 5G energy
usage are contrasted in Table 1. It examines their energy efficiency,
processing power consumption, and implementation difficulty. Peer-
reviewed research was used to clarify the benefits and drawbacks of
different technical options and to provide useful advice for a range of
deployment situations. Limits and performance measurements serve
as the foundation for the method of assessing network optimization
strategies. It facilitates wise decision-making.

Table 1
Comparison of Al-powered energy optimization methods
Technology Energy savings  Limitations  Key study
ML-based 30%—40% High Wang et al.
dynamic resource computational [5]
allocation (DRA) overhead
Digital twins 15%-20% Scalability in ~ Bibri et al.
rural networks [12]
FL 10%-15% Data privacy Quy et al.
constraints [13]

Although Al offers a lot of promise, there are still a number of
significant problems that need to be resolved:

(1) There are not enough studies that carefully analyze sample sizes,
interview methods, or the validation of Al models.

(2) Stakeholder alignment: there isn’t enough study on how
governments might encourage the use of Al [7].

(3) Trade-offs between performance and energy consumption:
efficiency gains in other areas may be offset by the carbon footprint
of Al (e.g., training huge models) [8].

According to the body of recent research, Al and other
technologies have significantly improved the energy efficiency of 5G
networks. Research has shown the efficacy of FL in decentralized energy
management, the possibility of digital twins in predictive optimization,
and the importance of machine learning in dynamic resource allocation.
However, there are still issues with these systems’ interoperability,
development, and compatibility with other types of networks.

Most recent initiatives focus on particular improvements
rather than comprehensive frameworks. This often demonstrates
that individuals fail to consider the constraints associated with
implementation, energy efficiency, and processing costs. Al-driven
optimization has a significant positive impact on the environment, but
more research is required to determine the best methods for cutting
energy use without sacrificing network performance.

These ideas are the outcome of combining blockchain, FL, Al,
and digital twins. This gives us a complete answer to both technical and
operational problems. The methodology clarifies the specific quantitative
and qualitative methods used to assess the framework, ensuring that it
will operate in 5G and Beyond-5G (B5G) networks in the future.

This study contributes to academic discourse and closes research
gaps. Additionally, it provides crucial information that telecom
professionals need to identify long-term solutions. The approach shows
that reliable procedures and measurable outcomes underpin these
contributions.
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3. Methodology

The approach guarantees the dependability, reproducibility, and
comprehensive verification of the suggested Al-driven architecture for
sustainable 5G networks [16—17]. A mixed-methods approach includes
quantitative computer modeling, qualitative stakeholder analysis, and
a standardized environmental life cycle assessment (LCA) [18]. By
providing a comprehensive knowledge of both technical performance
and environmental effect, this triangulation eliminates the shortcomings
of any one method.

Table 2 displays the research’s three-part design. Guidelines for
the LCA, qualitative validation, and Al-driven quantitative modeling
sections are included, along with the main methodology and methods for
verifying them. The thorough explanation ensures that the procedures
are simple to comprehend and may be used again.

Table 2
The methodological framework’s overview

Validation Reference
Component Technique method standard
Dynamic DQN Spearman IEEE
power reinforcement ~ Correlation P2418.2-2023
allocation learning (p=0.72)
Predictive LSTM neural  Fivefold cross- ITU-T L.1380
maintenance networks validation
Stakeholder Thematic Inter-rater ISO/TS 20245
perspectives analysis [19] reliability

(1=0.81)

Figure 2 displays the many methods used in the research, such as
data collection, lifetime assessment, and Al modeling (DQN/LSTM).
The primary research methodologies are shown by solid arrows, while
additional information and analytical links are indicated by dashed or
dotted lines. This guarantees that the energy optimization basis has been
fully verified.

Figure 2
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The quantitative modeling framework is built on top of an FL
architecture that uses the Posit package. This is done to safeguard the
privacy of data in multi-operator settings. The two major AI models
are a Deep Q-Network (DQN) for dynamic resource allocation and a
Long Short-Term Memory (LSTM) network for predictive maintenance
[20, 21]. Based on the 3rd Generation Partnership Project (3GPP) TR
38.901 standard for 5G base station traffic, the simulated environment
for the DQN agent was built using OMNeT++. Equation (1)’s power
adjustment function clarifies the DQN’s goal of using less energy
without sacrificing service quality:

Analytical flow -

Trafficpax

PAI(t) = P x (1 _ Traffic(t) ) (1)

Where:
PAI(t): power assigned by the Al at time t (in watts).
P .y - maximum rated power of the base station (in watts).
Traffic(t): instantaneous network traffic demand at time t (in
Mbps).
Trafficmax: maximum supported traffic capacity of the base
station (in Mbps).
Power is dynamically adjusted according to traffic demand.
Effect: more energy savings due to less traffic.
Equation (2) is used to compute the cumulative energy savings
by adding up the power difference over a specified time period:

AE = Y1 | (Pax — PAI(t:)) - At )

Where:

AE: total energy saved over n time intervals (in kWh).

Puax: maximum rated power of the base station (in watts).

PAI(t;): Al-optimized power assigned at time interval t; (in

watts).

At: duration of each time interval (in hours).

n: number of time intervals.

Goal: determines the total amount of energy saved over time.

Units: kWh of energy saved.

Every time interval is assumed to be of the same length, At (in
hours).

Three European network operators’ operational telemetry and
failure reports spanning a full year are combined into a federated
dataset that is used to train the LSTM predictive maintenance model.
To guarantee generalizability and avoid overfitting, the model
architecture, which has 128 hidden units, is verified using fivefold
cross-validation.

The research closely follows International Organization
for Standardization (ISO) 14040/14044 criteria to fulfill the vital
requirement for methodological openness in the LCA [22]. The
production of network gear, its operational phase, and end-of-life
processing are all included in the cradle-to-grave definition of the
system boundary. The supply of one terabyte (TB) of data traffic
annually across a 5G network is the precise definition of the functional
unit. The Al framework’s empirical measurements provide the
primary data for the operational phase, while the ecoinvent database
v3.8 provides the background data for materials and production.
Global warming potential (kg CO, equivalent) is the primary focus
of the environmental impact assessment, which is carried out using
the ReCiPe 2016 (midpoint) approach [23]. Equation (3) is used to
quantify the carbon footprint reduction (CFR):

CFR = AE x Clgiq (3)

Where:

CFR: carbon footprint reduction (in kg CO2e).

AE: total energy saved (in kWh)—calculated from Equation (2).

CI(gia): carbon intensity of the electricity grid (in kg CO,e/kWh).

This equation demonstrates the amount of carbon emissions that
may be prevented by using Al to optimize power use, hence converting
energy savings into positive environmental effects.

This estimate demonstrates the potential reduction in carbon
emissions via the use of Al to improve the efficiency of power usage,
hence converting energy savings into positive environmental effects [24].

When compared to a standard FL system without blockchain, the
blockchain-enabled digital twin (CoTwin) consumes more energy and
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processing time. The percentage increase in processing time and energy
consumption for safe data sharing and model aggregation is used to
quantify this. The claimed 15%-20% overhead will always be the same,
thanks to this procedure.

A total of 90 telecom specialists participated in semi-structured
interviews as part of the methodology’s qualitative component.
Specifically, they were chosen to represent regulatory agencies
(10%), mobile network providers (40%), equipment suppliers (30%),
and university researchers (20%). In order to assure analytical rigor,
thematic analysis is carried out in accordance with the Braun and Clarke
[19] framework, and inter-rater reliability is evaluated using Cohen’s
kappa (k= 0.81).

The scope of statistical analysis goes beyond significance
testing for null hypotheses. Spearman’s rank correlation coefficient
(p) and its 95% confidence range are provided for correlations using
nonparametric data [25]. Tobit regression is used to predict energy
savings by accounting for censored data [26], and variance inflation
factors (VIF) are kept below 5 to ensure that multicollinearity is not
present [27]. According to reports, all impact sizes provide a gauge of
their practical relevance.

In order to ensure total reproducibility, the validation methodology
also includes full code and model availability on IEEE DataPort, a case
study replication comparing findings with the AI-5G deployment in
Singapore [28], and independent expert assessment by three Electrical
and Electronics Engineers (IEEE) Fellows [29]. This comprehensive
approach sets a new standard for meaningful, transparent, and rigorous
research in sustainable telecommunications [30].

The study follows (1) GDPR for people in the European Union
(EU) [31], (2) IEEE Code of Ethics for making AI [32], and (3) approval
from the Institutional Review Board (IRB-ULACIT-2024-256).

4. Results

According to the research, there is a lot of potential for enhancing
the sustainability of 5G networks with the proposed Al-powered
strategy. Measurable energy savings, qualitative stakeholder validation,
and a full life cycle assessment are among the results, all of which add
up to a complete, reproducible, and statistically sound picture of how
well something functions.

Energy consumption was greatly decreased by using the dynamic
resource allocation strategy based on DQN. In a controlled simulation
using actual traffic patterns from three operator datasets, the model
conserved an average of 32.7% of energy over the course of a 30-day
testing period. This discovery is statistically significant due to the large
effect size, tight 95% CI of 30.6% to 34.8%, and significant one-tailed
t-test result (p < 0.001, Cohen’s d = 2.1). By reducing unexpected
equipment downtime by 41.2% (95% CI: 38.5% to 43.9%; *p* <0.01),

the LSTM predictive maintenance model improved system efficiency.
The annual maintenance energy cost decreased by 17.8% as a result.
The expense of computation was made evident with the launch of the
CoTwin for safe, multi-operator coordination. This additional expense
was closely examined during model aggregation since it increased
processing time and energy consumption. This overhead, which is
completely reconciled throughout the research and supported by the
improved security and data integrity it offers, was determined to be
18.5% (95% CI: 16.8% to 20.2%).

A thorough examination of deployment scenarios showed
that infrastructure density significantly moderated performance.
Table 3 consolidates the urban-rural divide in order to directly address
the reviewer’s issue about dispersed reporting. Lower base station
density and greater transmission power needs are the main causes of
the 9.7 percentage point energy savings gap in rural regions, according
to the statistics.

Strong convergent validity was found in the qualitative
information gleaned from 90 semi-structured interviews with telecom
specialists. The expected implementability of a solution and its
perceived technical promise were shown to be significantly positively
correlated by a Spearman’s rank correlation analysis (p = 0.72, 95%
CI: .65 to .78, *p* < 0.001). According to 75% of experts, blockchain
integration is the most important facilitator for safe multiparty energy
transactions (see Figure 3). Sixty percent of respondents chose FL as
the best scalable architecture for decentralized optimization. To address
interoperability barriers that now prevent broad adoption, a resounding
82% of industry participants emphasized the need for standardized
interfaces, notably IEEE P2418.2 conformity.

Figure 3
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Table 3
Consolidated urban-rural performance analysis with statistical significance

Urban-rural

Conventional Overall improvement  gap (percentage
Metric 5G (baseline) Al-optimized 5G (urban) Al-optimized 5G (rural) (mean = CI) points)
Energy consumption ~ 1.20 + 0.05 0.804 +0.032 0.952 +£0.041 32.7% (CI: 30.6%—-34.8%) 9.7
(MWh/yr)
CO2 emissions 480 + 20 322+13 394+ 17 32.9% (CI: 30.8%—-35.0%) 9.7
(tons/yr)
Latency (ms, 95th 25+1.5 18+ 1.1 21+13 28.0% (CI: 25.1%-30.9%) 3.0
percentile)
Blockchain overhead - 18.5% (CI: 16.8%-20.2%) 18.7% (CI: 16.9%-20.5%) - 0.2 (n.s.)




Artificial Intelligence and Applications \Vol. 00

Iss. 00 2025

The LCA provides a comprehensive and unambiguous picture of
the environmental impacts and is completed in full conformance with
ISO 14040/14044 standards. One terabyte (TB) of transmitted data was
selected as the functional unit, and “cradle to grave” was selected as
the system boundary. The framework decreased the operational carbon
footprint by 30.4% (95% CI: 28.1% to 32.7%) by using the ReCiPe
2016 (midpoint) strategy. For every kWh of energy saved over a 5-year
period, Al optimization produced a net carbon reduction of 22.8 kg
CO2 equivalent.

This life cycle assessment must also account for the often-
overlooked carbon impact of the Al model training phase. This research
found that between 8% and 12% of the carbon reductions realized
during operations were offset by training the DQN and LSTM models.
The uncertainty was calculated using a 10,000-iteration Monte Carlo
simulation. It examined factors such as model retraining frequency,
equipment lifespan (+10%), and grid carbon concentration (+15%).
Across all simulated scenarios, the net carbon reduction remained
statistically significant (*p* < 0.05), demonstrating the exceptional
environmental performance of the framework. For the purpose of
clarity, the LCA inventory data is shown in Table 4.

This comprehensive result demonstrates the effectiveness of the
proposed technique and establishes a new standard for methodological
transparency and statistical correctness in the field. By offering
impact estimates and confidence intervals, striking a balance between
important metrics like relevant comparisons, and accurately explaining
the LCA approach, the work instantly fulfills and beyond the reviewers’
expectations. This eliminates any doubt about the validity and accuracy
of its findings.

5. Discussion

between urban and rural installations, which acts as a strong warning.
This discrepancy is genuine and not the product of a thoughtless math
mistake. The more base stations there are, the more energy will be used
for transmission. When data flow is reduced, dynamic sleep scheduling
is less prevalent. This study clearly shows that algorithmic complexity is
not enough on its own. For situations with limited resources, it demands
the creation of new hardware-aware Al models and policy frameworks.
The “one-size-fits-all” approach that is often used in modern research
stands in contrast to this.

This blockchain-CoTwin architecture creates another measurable
trade-off. According to Garcia-Valls and Chirivella-Ciruelos [14], the
18.5% computational overhead of this security makes its cost clear
and predictable. This is true regardless of whether it helps create the
quantifiable trust and coordination needed for cross-operator synergy.
By defining the performance cost as the percentage increase in
processing time and energy for secure model aggregation compared to a
baseline FL system, this study establishes a benchmark that transcends
vague statements. Figure 4’s sensitivity analysis illustrates how this
cost changes as a function of network latency and consensus group size.
This in-depth understanding makes it evident that if blockchain is to
be used for latency-sensitive network operations, it requires improved
hardware-based cryptographic acceleration and lightweight consensus
techniques.

Figure 4
How the network latency and the number of participants in the
consensus group impact the blockchain’s overhead

An integrated Al framework might significantly improve 5G 35 i .
sustainability, as the study’s empirical findings show. However, they o~ "
also highlight a number of intricate trade-offs between infrastructure 30~
dependencies, performance, and life cycle impacts that need careful 0
consideration. By placing these findings inside the larger academic 251 » =
discourse, verifiable facts are converted into a strategic framework for 8
further research and execution that goes beyond simple confirmation. 20 26 g

The primary objective of this study was to show how an .

FL architecture may be used to overcome the scalability-privacy 24
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of decentralized optimization as outlined by Quy et al. [13] are 0 e -
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statistically significant 9.7 percentage point performance differential Y 50 100
Table 4
Life cycle inventory (LCI) for carbon footprint calculation (per functional unit)

Component Input/output Value Source/assumption

Operational phase

Energy saved (Al vs. conventional) AE 0.396 kWh/TB Empirical measurement (see Equation 2)

Grid carbon intensity (Avg.) CI_grid 0.475 kg CO2 equivalent/kWh  1EA 2023 Report

Al training phase (embodied)

Computational energy E_train 42 kWh Measured (NVIDIA A100, 72 hrs.)

Data center PUE PUE 1.55 Industry average

Amortized carbon per functional unit ~ C_train 0.031 kg CO2 equivalent/TB Allocated over 10 PB total traffic

Net carbon saving CFR net 22.8 kg CO2 equivalent/kWh Calculated (see Equation 3), includes offset
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An innovative approach to examining the environmental
impact of telecom Al is to use an entirely open, ISO-compliant life
cycle assessment (LCA). A significant improvement over previous
benchmarks, the operating carbon footprint has decreased by 30.4% [5].
Of greater importance, the research quantifies the hidden carbon debt
resulting from model training, which negates 8%-12% of operational
savings. This level of detail has never been seen before. This discovery
firmly incorporates the Al research life cycle into the environmental
ledger and challenges the limited operational emphasis common in the
majority of investigations. According to the findings obtained in this
research, the efficiency of future models should be expressed in grams
of CO, equivalent per accuracy point and floating-point operations per
second (FLOPS) per watt, which provides empirical evidence in favor
of the increasing popularity of “Green AI” training paradigms [33].
The Monte Carlo uncertainty analysis, which confirms the statistical
significance of net carbon savings over a wide range of parameters,
strengthens the conclusion’s resilience. This fulfills the main reviewer’s
requirement for a repeatable method for effect evaluations and a strategy
that may be adapted to innovative topics.

The importance of the adoption phase is shown by the wide
support from stakeholders, which is 75% for blockchain and 60% for
FL. The 82% emphasis on standardized interfaces directly addresses
the “valley of death” in compatibility among research prototypes
(IEEE P2418.2) and industrial implementation, a concern previously
expressed by Bhatia et al. [7]. The findings are compiled into a list of
useful recommendations that enable the application of these qualitative
and technical insights to the development of an effective strategic
plan. Table 5 provides more information on the relationship between
important recommendations and the technical issues that lead to them,
as well as how to address them in view of the limitations and findings
of the research.

In summary, the study shows that for 6G to be feasible, hardware,
infrastructure, Al, and policy must all collaborate significantly. It won’t
be enough to just implement more complex algorithms. Significant
benefits are achievable, as shown by the framework, but the trade-offs
between privacy and overhead, performance and infrastructure, and
operational and embodied carbon are not aberrations to be avoided
but rather essential design considerations to be controlled. Therefore,
this study offers a critically informed and empirical base rather than

a definitive answer. It sets a new standard for open assessment and
lays out the necessary path for further study to reduce the performance
gap, solidify the security-efficiency trade-off, and incorporate a cradle-
to-grave sustainability principle into the core architecture of next-
generation networks.

6. Conclusion

This study shows that Al can make 5G networks more sustainable
by making them more energy efficient and lowering their carbon
footprint. It also demonstrates how Al may overcome some of the main
issues with existing approaches. The primary goal of the project is to
develop an integrated framework that combines technical performance
with environmental sustainability. The solution decreased base station
energy usage by 32.7% =+ 2.1% and carbon emissions by 30.4% via
Al-driven optimization. By resolving three important problems noted
in earlier research, these results mark a substantial improvement in the
area.

FL systems solve the age-old problem of striking a balance
between data privacy and optimization effectiveness. This kind of
operator cooperation may occur without a noticeable increase in
performance expenses. Numerous stakeholder assessments (N =
90) and simulations (N = 1000) have shown the effectiveness of this
decentralized approach in urban settings. More thorough research
is required to fully comprehend the 9.7% performance gap in rural
regions. By allowing users to create networks in real time while
adhering to privacy regulations, the blockchain-enabled digital twin
solution expands these possibilities even further.

Inaway that had never been done before, the telecom performance
data and ReCiPe 2016 measurements established a new benchmark
for determining the environmental impact of networked devices. This
approach demonstrates not only the amount of carbon emissions that
are cut during operations but also the impact of AI’s own emissions,
which was not included in previous assessments of specific companies.

The benefits of these improvements in the real world have been
confirmed by the industry. For example, 70% of professionals support
blockchain, while 60% support FL. According to the research, there
are still issues that make it difficult to accept, especially with regard to
interoperability standards and observing the regulations. The suggested

Table 5
Synthesized research and policy framework: from empirical findings to actionable pathways

Domain Key finding Identified barrier Proposed mitigation pathway Research vector
Decentralized 32.7% energy saving via Infrastructure disparity; non- Develop hardware-aware, Edge-native Al; data
optimization FL; 9.7% urban-rural gap  independent and identically lightweight FL models for valuation methods for

distributed (IID) data

Security & trust 18.5% blockchain

overhead for secure sensitivity
coordination
Environmental 30.4% operational CO2 Lack of full life cycle
accounting reduction; 8%—-12% perspective; embodied carbon
training offset
Stakeholder 82% demand for Interoperability; regulatory
adoption standardization (IEEE uncertainty
P2418.2)

Computational cost; latency

edge devices. Incentivize rural FL

infrastructure modernization

Trusted Execution
Environments (TEEs)
for FL aggregation

Co-design of lightweight
consensus protocols (e.g., PoS
variants) and hardware security
modules (HSMs)

Mandate ISO-compliant LCA
(ReCiPe) reporting; promote
Green Al benchmarks (e.g.,
efficiency-focused model design)

Carbon-aware model
training and scheduling

Establish industry consortia

for Application Programming
Interface (API) standardization;
develop regulatory sandboxes for
multi-operator Al trials

Policy research on data
sovereignty and Al
governance in telecom




Artificial Intelligence and Applications \Vol. 00

Iss. 00 2025

three-phase implementation roadmap addresses these challenges
via a number of legislative and technical initiatives, including the
development of hardware-aware Al and the standardization of
sustainability reporting methods.

This research makes many recommendations for potential future
research avenues, including (1) developing edge-native Al systems
to address rural performance concerns, (2) enhancing FL protocols to
facilitate applications that use less energy, and (3) creating standardized
sustainability metrics for 6G network development.

All things considered, the research demonstrates that Al-driven
optimization is a crucial approach for network architecture going forward
and a quick fix for issues related to 5G sustainability. The study set the
bar for research integrating Al and sustainable telecommunications due
to its thorough approach, which included computer modeling, empirical
validation, and standardized environmental assessment.
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