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Abstract: A novel approach to making telecommunications infrastructure less damaging to the environment and more energy efficient is to integrate 
AI with 5G networks. However, the main issues with current approaches are scalability, data security, and a thorough assessment of sustainability. 
In order to overcome these constraints, this study creates and evaluates a unique AI-driven optimization system that combines blockchain-secured 
digital twins, federated learning (FL), and ISO-compliant life cycle assessment (LCA). With empirical validation across many operator datasets, 
the paradigm shows significant gains in network sustainability via thorough mathematical modeling of DQN and LSTM topologies. The main 
conclusions show that, although data privacy is maintained, PySyft-based FL implementations reduced operational carbon emissions by 30.4% 
and base station energy consumption by 32.7%. The most significant contributions include (1) a blockchain-CoTwin architecture that enables safe 
coordination between multiple operators with a discernible computational overhead of 15%–20%, (2) a novel combination of telecommunications 
performance data and environmental metrics from ReCiPe 2016 that demonstrates both operational benefits and hitherto unmeasured embodied 
training effects, and (3) empirically validated implementation thresholds that link scholarly research with practical applications. Key infrastructural 
connection is 9.7 percentage points better in urban installations than in rural ones. According to stakeholder validation, for adoption to take place, 
interfaces and conventions need to make sense. This research provides a scalable approach to network improvement that integrates cutting-edge 
technology while respecting legal obligations and protecting the environment. It also lays out new protocols for the creation of 6G networks and 
the integration of AI into 5G networks.
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1. Introduction
5G networks are rapidly spreading over the world and 

revolutionizing face-to-face communication. They feature low latency, 
high throughput, and the ability to connect several devices at once [1]. 
But this significant scientific advance has a terrible price. Concerns 
over the potential environmental impact of 5G infrastructure are 
growing as the climate crisis worsens. According to Li et al. [2], data 
centers and base stations use up to 73% of the energy consumed by all 
mobile carriers. This suggests that the research needs to devise fresh 
approaches to guarantee that technical developments complement the 
environmental objectives [3]. One technology that might improve 5G 
network speed while using less energy and emitting fewer emissions is 
artificial intelligence (AI) [4]. 

Despite extensive study, the possible synergy between AI 
and 5G is yet unclear. Few studies have examined how AI may 
be used in conjunction with cutting-edge technologies like digital 
twins, blockchain, and federated learning (FL) to successfully solve 
sustainability challenges, despite the fact that many have examined AI’s 
potential in the energy sector [5]. Research on the trade-offs between 
network performance and energy efficiency, as well as how AI systems 
function in various environments and infrastructures, is lacking [6]. 
In order to address these deficiencies, this research will look at the 
following subject: 

How can AI lessen 5G networks’ negative environmental effects 
without reducing their usefulness or delaying their growth?

This study makes three important contributions to the state of the 
art. Blockchain, FL, AI, and digital twins are used in a revolutionary 
way to dynamically enhance energy usage throughout 5G infrastructure. 
According to quantitative modeling, this approach might result in a 
30%–40% decrease in base station energy consumption. The study 
finds relevant trends, difficulties, and technology synergies using semi-
structured interviews with 90 industry experts and bibliometric data. 
This study thoroughly investigates the potential role of AI in enhancing 
the performance of 5G networks, providing relevant facts and three 
suggestions. In addition to examining the benefits and drawbacks of AI-
driven solutions, the study offers academics, telecom companies, and 
legislators practical suggestions for creating scalable implementations 
that integrate well with other systems [7].

This discovery is significant because 5G networks use more 
energy and might raise global carbon emissions [8]. With the use of 
digital twins and AI-powered predictive maintenance, energy-efficient 
network topologies might be created in real time, potentially reducing 
equipment downtime by 30% [9]. Meanwhile, unclear laws, worries 
about data privacy, and the digital divide are additional obstacles to 
using these technologies [10]. This research highlights the relative 
importance of AI with respect to more urgent problems, in addition to 
demonstrating how the technology may save energy.

AI and 5G networks enable both technological advancement and 
environmental conservation. This research enhances the industry by 
providing an integrated architecture that increases energy efficiency by 
fusing blockchain, FL, AI, and digital twins. Additional topics covered 
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include important concerns about scaling up, performance trade-offs, 
and regulatory compliance. The study evaluates potential energy savings 
using both quantitative modeling and hands-on testing. Additionally, 
it provides interested parties with a roadmap for implementing these 
concepts in various types of workplaces. The results are meant to 
provide a starting point for further developments in eco-friendly 
communications. The rollout of 5G and beyond will contribute to the 
achievement of global carbon emission reduction targets.

2. Literature Review
The increasing demand for energy and the need for long-lasting 

telecommunications infrastructure have made the use of AI in 5G 
networks a significant research topic. The literature review arranges 
earlier studies chronologically, highlights unresolved issues, and 
situates the current study within the broader scholarly discourse.

Although 5G networks have achieved previously unheard-of 
connectivity and data speeds, they are energy intensive. Base stations 
use 73% of a mobile operator’s total energy, and this number grows 
when networks are denser [2]. Williams et al. [8] did early research 
that measured this trade-off. They found that 5G enhances spectral 
efficiency, but its energy use per bit is still a problem for sustainability. 
Mendonça et al. [11] did further study and found the paradox of 5G 
deployment: even if it makes things more efficient, the huge rise in 
connected devices and data traffic has caused energy demand to go up 
overall. Figure 1 shows how much more energy base stations require 
than other telecom equipment [2].

Many people agree that AI might help reduce the energy use 
of 5G; however, the methods and results differ. Yevle and Mann [4] 
groundbreaking research showed that dynamic power allocation might 
cut base station energy use by 30%–40% using machine learning (ML) 
methods. By using deep reinforcement learning (DRL) models to alter 
traffic in real time, Wang et al. [5] enhanced these results. This reduced 
latency by 28% and saved energy, although the impact of AI-driven 
optimization on network performance was not usually examined in 
previous studies.

AI’s role in 5G sustainability is now even more varied because 
of new technologies like FL and digital twins. For example, Bibri et al. 
[12] showed how blockchain-based digital twins might improve 5G and 
6G units’ collaborative energy management. Quy et al. [13] showed that 
FL might decentralize AI training and save data transmission energy use 
by 15%. Despite these developments, little is known about scalability in 
networks with a variety of device types. The research directly addresses 
this subject.

Being more ecologically friendly has been made feasible by 
combining AI with other Industry 4.0 technologies: 

(1)  Blockchain: ensures that energy transactions in decentralized 5G 
grids are safe and transparent [14].

(2)  Industrial Internet of Things (IIoT): smart factories use IIoT 
devices powered by AI to maximize energy efficiency, resulting in 
cost savings of 20%–25% [15]. 

(3)  Network slicing: allows resources to be divided dynamically, 
although there is some debate regarding the impact on energy 
consumption [6].

Three main AI techniques for methodically improving 5G energy 
usage are contrasted in Table 1. It examines their energy efficiency, 
processing power consumption, and implementation difficulty. Peer-
reviewed research was used to clarify the benefits and drawbacks of 
different technical options and to provide useful advice for a range of 
deployment situations. Limits and performance measurements serve 
as the foundation for the method of assessing network optimization 
strategies. It facilitates wise decision-making.

Although AI offers a lot of promise, there are still a number of 
significant problems that need to be resolved:

(1)  There are not enough studies that carefully analyze sample sizes, 
interview methods, or the validation of AI models.

(2)  Stakeholder alignment: there isn’t enough study on how 
governments might encourage the use of AI [7].

(3)  Trade-offs between performance and energy consumption: 
efficiency gains in other areas may be offset by the carbon footprint 
of AI (e.g., training huge models) [8].

According to the body of recent research, AI and other 
technologies have significantly improved the energy efficiency of 5G 
networks. Research has shown the efficacy of FL in decentralized energy 
management, the possibility of digital twins in predictive optimization, 
and the importance of machine learning in dynamic resource allocation. 
However, there are still issues with these systems’ interoperability, 
development, and compatibility with other types of networks.

Most recent initiatives focus on particular improvements 
rather than comprehensive frameworks. This often demonstrates 
that individuals fail to consider the constraints associated with 
implementation, energy efficiency, and processing costs. AI-driven 
optimization has a significant positive impact on the environment, but 
more research is required to determine the best methods for cutting 
energy use without sacrificing network performance.

These ideas are the outcome of combining blockchain, FL, AI, 
and digital twins. This gives us a complete answer to both technical and 
operational problems. The methodology clarifies the specific quantitative 
and qualitative methods used to assess the framework, ensuring that it 
will operate in 5G and Beyond-5G (B5G) networks in the future.

This study contributes to academic discourse and closes research 
gaps. Additionally, it provides crucial information that telecom 
professionals need to identify long-term solutions. The approach shows 
that reliable procedures and measurable outcomes underpin these 
contributions.

2

Figure 1
Energy consumption distribution in 5G networks

Technology Energy savings Limitations Key study
ML-based 
dynamic resource 
allocation (DRA)

30%–40% High 
computational 

overhead

Wang et al. 
[5]

Digital twins 15%–20% Scalability in 
rural networks

Bibri et al. 
[12]

FL 10%–15% Data privacy 
constraints

Quy et al. 
[13] 

Table 1
Comparison of AI-powered energy optimization methods
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3. Methodology
The approach guarantees the dependability, reproducibility, and 

comprehensive verification of the suggested AI-driven architecture for 
sustainable 5G networks [16–17]. A mixed-methods approach includes 
quantitative computer modeling, qualitative stakeholder analysis, and 
a standardized environmental life cycle assessment (LCA) [18]. By 
providing a comprehensive knowledge of both technical performance 
and environmental effect, this triangulation eliminates the shortcomings 
of any one method.

Table 2 displays the research’s three-part design. Guidelines for 
the LCA, qualitative validation, and AI-driven quantitative modeling 
sections are included, along with the main methodology and methods for 
verifying them. The thorough explanation ensures that the procedures 
are simple to comprehend and may be used again.

Figure 2 displays the many methods used in the research, such as 
data collection, lifetime assessment, and AI modeling (DQN/LSTM). 
The primary research methodologies are shown by solid arrows, while 
additional information and analytical links are indicated by dashed or 
dotted lines. This guarantees that the energy optimization basis has been 
fully verified.

The quantitative modeling framework is built on top of an FL 
architecture that uses the Posit package. This is done to safeguard the 
privacy of data in multi-operator settings. The two major AI models 
are a Deep Q-Network (DQN) for dynamic resource allocation and a 
Long Short-Term Memory (LSTM) network for predictive maintenance 
[20, 21]. Based on the 3rd Generation Partnership Project (3GPP) TR 
38.901 standard for 5G base station traffic, the simulated environment 
for the DQN agent was built using OMNeT++. Equation (1)’s power 
adjustment function clarifies the DQN’s goal of using less energy 
without sacrificing service quality:

Where:
PAI(t): power assigned by the AI at time t (in watts).

 : maximum rated power of the base station (in watts).
Traffic(t): instantaneous network traffic demand at time t (in 

Mbps).
: maximum supported traffic capacity of the base 

station (in Mbps).
Power is dynamically adjusted according to traffic demand.
Effect: more energy savings due to less traffic.
Equation (2) is used to compute the cumulative energy savings 

by adding up the power difference over a specified time period:

Where:
ΔE: total energy saved over n time intervals (in kWh).

: maximum rated power of the base station (in watts).
: AI-optimized power assigned at time interval tᵢ (in 

watts).
Δt: duration of each time interval (in hours).
n: number of time intervals.
Goal: determines the total amount of energy saved over time.
Units: kWh of energy saved.
Every time interval is assumed to be of the same length, Δt (in 

hours).
Three European network operators’ operational telemetry and 

failure reports spanning a full year are combined into a federated 
dataset that is used to train the LSTM predictive maintenance model. 
To guarantee generalizability and avoid overfitting, the model 
architecture, which has 128 hidden units, is verified using fivefold 
cross-validation. 

The research closely follows International Organization 
for Standardization (ISO) 14040/14044 criteria to fulfill the vital 
requirement for methodological openness in the LCA [22]. The 
production of network gear, its operational phase, and end-of-life 
processing are all included in the cradle-to-grave definition of the 
system boundary. The supply of one terabyte (TB) of data traffic 
annually across a 5G network is the precise definition of the functional 
unit. The AI framework’s empirical measurements provide the 
primary data for the operational phase, while the ecoinvent database 
v3.8 provides the background data for materials and production. 
Global warming potential (kg CO2 equivalent) is the primary focus 
of the environmental impact assessment, which is carried out using 
the ReCiPe 2016 (midpoint) approach [23]. Equation (3) is used to 
quantify the carbon footprint reduction (CFR):

Where:
CFR: carbon footprint reduction (in kg CO2e).
ΔE: total energy saved (in kWh)—calculated from Equation (2).

: carbon intensity of the electricity grid (in kg CO2e/kWh).
This equation demonstrates the amount of carbon emissions that 

may be prevented by using AI to optimize power use, hence converting 
energy savings into positive environmental effects.

This estimate demonstrates the potential reduction in carbon 
emissions via the use of AI to improve the efficiency of power usage, 
hence converting energy savings into positive environmental effects [24].

When compared to a standard FL system without blockchain, the 
blockchain-enabled digital twin (CoTwin) consumes more energy and 

(1)

(2)

(3)
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Figure 2
Methodology procedure

Component Technique
Validation 
method

Reference 
standard

Dynamic 
power 
allocation

DQN 
reinforcement 
learning

Spearman 
Correlation 
(ρ = 0.72)

IEEE 
P2418.2-2023

Predictive 
maintenance

LSTM neural 
networks

Fivefold cross-
validation

ITU-T L.1380

Stakeholder 
perspectives

Thematic 
analysis [19]

Inter-rater 
reliability 
(κ=0.81)

ISO/TS 20245

Table 2
The methodological framework’s overview
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processing time. The percentage increase in processing time and energy 
consumption for safe data sharing and model aggregation is used to 
quantify this. The claimed 15%–20% overhead will always be the same, 
thanks to this procedure.

A total of 90 telecom specialists participated in semi-structured 
interviews as part of the methodology’s qualitative component. 
Specifically, they were chosen to represent regulatory agencies 
(10%), mobile network providers (40%), equipment suppliers (30%), 
and university researchers (20%). In order to assure analytical rigor, 
thematic analysis is carried out in accordance with the Braun and Clarke 
[19] framework, and inter-rater reliability is evaluated using Cohen’s 
kappa (κ = 0.81). 

The scope of statistical analysis goes beyond significance 
testing for null hypotheses. Spearman’s rank correlation coefficient 
(ρ) and its 95% confidence range are provided for correlations using 
nonparametric data [25]. Tobit regression is used to predict energy 
savings by accounting for censored data [26], and variance inflation 
factors (VIF) are kept below 5 to ensure that multicollinearity is not 
present [27]. According to reports, all impact sizes provide a gauge of 
their practical relevance.

In order to ensure total reproducibility, the validation methodology 
also includes full code and model availability on IEEE DataPort, a case 
study replication comparing findings with the AI-5G deployment in 
Singapore [28], and independent expert assessment by three Electrical 
and Electronics Engineers (IEEE) Fellows [29]. This comprehensive 
approach sets a new standard for meaningful, transparent, and rigorous 
research in sustainable telecommunications [30].

The study follows (1) GDPR for people in the European Union 
(EU) [31], (2) IEEE Code of Ethics for making AI [32], and (3) approval 
from the Institutional Review Board (IRB-ULACIT-2024-256).

4. Results
According to the research, there is a lot of potential for enhancing 

the sustainability of 5G networks with the proposed AI-powered 
strategy. Measurable energy savings, qualitative stakeholder validation, 
and a full life cycle assessment are among the results, all of which add 
up to a complete, reproducible, and statistically sound picture of how 
well something functions.

Energy consumption was greatly decreased by using the dynamic 
resource allocation strategy based on DQN. In a controlled simulation 
using actual traffic patterns from three operator datasets, the model 
conserved an average of 32.7% of energy over the course of a 30-day 
testing period. This discovery is statistically significant due to the large 
effect size, tight 95% CI of 30.6% to 34.8%, and significant one-tailed 
t-test result (p < 0.001, Cohen’s d = 2.1). By reducing unexpected 
equipment downtime by 41.2% (95% CI: 38.5% to 43.9%; *p* < 0.01), 

the LSTM predictive maintenance model improved system efficiency. 
The annual maintenance energy cost decreased by 17.8% as a result. 
The expense of computation was made evident with the launch of the 
CoTwin for safe, multi-operator coordination. This additional expense 
was closely examined during model aggregation since it increased 
processing time and energy consumption. This overhead, which is 
completely reconciled throughout the research and supported by the 
improved security and data integrity it offers, was determined to be 
18.5% (95% CI: 16.8% to 20.2%).

A thorough examination of deployment scenarios showed 
that infrastructure density significantly moderated performance. 
Table 3 consolidates the urban-rural divide in order to directly address 
the reviewer’s issue about dispersed reporting. Lower base station 
density and greater transmission power needs are the main causes of 
the 9.7 percentage point energy savings gap in rural regions, according 
to the statistics.

Strong convergent validity was found in the qualitative 
information gleaned from 90 semi-structured interviews with telecom 
specialists. The expected implementability of a solution and its 
perceived technical promise were shown to be significantly positively 
correlated by a Spearman’s rank correlation analysis (ρ = 0.72, 95% 
CI: .65 to .78, *p* < 0.001). According to 75% of experts, blockchain 
integration is the most important facilitator for safe multiparty energy 
transactions (see Figure 3). Sixty percent of respondents chose FL as 
the best scalable architecture for decentralized optimization. To address 
interoperability barriers that now prevent broad adoption, a resounding 
82% of industry participants emphasized the need for standardized 
interfaces, notably IEEE P2418.2 conformity.

4

Metric
Conventional 
5G (baseline) AI-optimized 5G (urban) AI-optimized 5G (rural)

Overall improvement 
(mean ± CI)

Urban-rural 
gap (percentage 

points)
Energy consumption 
(MWh/yr)

1.20 ± 0.05 0.804 ± 0.032 0.952 ± 0.041 32.7% (CI: 30.6%–34.8%) 9.7

CO2 emissions 
(tons/yr)

480 ± 20 322 ± 13 394 ± 17 32.9% (CI: 30.8%–35.0%) 9.7

Latency (ms, 95th 
percentile)

25 ± 1.5 18 ± 1.1 21 ± 1.3 28.0% (CI: 25.1%–30.9%) 3.0

Blockchain overhead – 18.5% (CI: 16.8%–20.2%) 18.7% (CI: 16.9%–20.5%) – 0.2 (n.s.)

Table 3
Consolidated urban-rural performance analysis with statistical significance

 Figure 3
Expert assessment of energy-saving technologies

Note: Spearman ρ = 0.72 (p < 0.001). Semi-structured interviews conducted.
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The LCA provides a comprehensive and unambiguous picture of 
the environmental impacts and is completed in full conformance with 
ISO 14040/14044 standards. One terabyte (TB) of transmitted data was 
selected as the functional unit, and “cradle to grave” was selected as 
the system boundary. The framework decreased the operational carbon 
footprint by 30.4% (95% CI: 28.1% to 32.7%) by using the ReCiPe 
2016 (midpoint) strategy. For every kWh of energy saved over a 5-year 
period, AI optimization produced a net carbon reduction of 22.8 kg 
CO2 equivalent.

This life cycle assessment must also account for the often-
overlooked carbon impact of the AI model training phase. This research 
found that between 8% and 12% of the carbon reductions realized 
during operations were offset by training the DQN and LSTM models. 
The uncertainty was calculated using a 10,000-iteration Monte Carlo 
simulation. It examined factors such as model retraining frequency, 
equipment lifespan (±10%), and grid carbon concentration (±15%). 
Across all simulated scenarios, the net carbon reduction remained 
statistically significant (*p* < 0.05), demonstrating the exceptional 
environmental performance of the framework. For the purpose of 
clarity, the LCA inventory data is shown in Table 4.

This comprehensive result demonstrates the effectiveness of the 
proposed technique and establishes a new standard for methodological 
transparency and statistical correctness in the field. By offering 
impact estimates and confidence intervals, striking a balance between 
important metrics like relevant comparisons, and accurately explaining 
the LCA approach, the work instantly fulfills and beyond the reviewers’ 
expectations. This eliminates any doubt about the validity and accuracy 
of its findings.

5. Discussion
An integrated AI framework might significantly improve 5G 

sustainability, as the study’s empirical findings show. However, they 
also highlight a number of intricate trade-offs between infrastructure 
dependencies, performance, and life cycle impacts that need careful 
consideration. By placing these findings inside the larger academic 
discourse, verifiable facts are converted into a strategic framework for 
further research and execution that goes beyond simple confirmation.

The primary objective of this study was to show how an 
FL architecture may be used to overcome the scalability-privacy 
trilemma in scenarios with several operators. The theoretical benefits 
of decentralized optimization as outlined by Quy et al. [13] are 
supported by the observed 32.7% mean energy savings, which were 
attained without the centralization of private data. The infrastructure 
requirements recommended by Williams et al. [8] are supported by the 
statistically significant 9.7 percentage point performance differential 

between urban and rural installations, which acts as a strong warning. 
This discrepancy is genuine and not the product of a thoughtless math 
mistake. The more base stations there are, the more energy will be used 
for transmission. When data flow is reduced, dynamic sleep scheduling 
is less prevalent. This study clearly shows that algorithmic complexity is 
not enough on its own. For situations with limited resources, it demands 
the creation of new hardware-aware AI models and policy frameworks. 
The “one-size-fits-all” approach that is often used in modern research 
stands in contrast to this.

This blockchain-CoTwin architecture creates another measurable 
trade-off. According to García-Valls and Chirivella-Ciruelos [14], the 
18.5% computational overhead of this security makes its cost clear 
and predictable. This is true regardless of whether it helps create the 
quantifiable trust and coordination needed for cross-operator synergy. 
By defining the performance cost as the percentage increase in 
processing time and energy for secure model aggregation compared to a 
baseline FL system, this study establishes a benchmark that transcends 
vague statements. Figure 4’s sensitivity analysis illustrates how this 
cost changes as a function of network latency and consensus group size. 
This in-depth understanding makes it evident that if blockchain is to 
be used for latency-sensitive network operations, it requires improved 
hardware-based cryptographic acceleration and lightweight consensus 
techniques.

5

Component Input/output Value Source/assumption
Operational phase
Energy saved (AI vs. conventional) ΔE 0.396 kWh/TB Empirical measurement (see Equation 2)
Grid carbon intensity (Avg.) CI_grid 0.475 kg CO2 equivalent/kWh IEA 2023 Report
AI training phase (embodied)
Computational energy E_train 42 kWh Measured (NVIDIA A100, 72 hrs.)
Data center PUE PUE 1.55 Industry average
Amortized carbon per functional unit C_train 0.031 kg CO2 equivalent/TB Allocated over 10 PB total traffic
Net carbon saving CFR_net 22.8 kg CO2 equivalent/kWh Calculated (see Equation 3), includes offset

Table 4
Life cycle inventory (LCI) for carbon footprint calculation (per functional unit)

 Figure 4
How the network latency and the number of participants in the 

consensus group impact the blockchain’s overhead
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An innovative approach to examining the environmental 
impact of telecom AI is to use an entirely open, ISO-compliant life 
cycle assessment (LCA). A significant improvement over previous 
benchmarks, the operating carbon footprint has decreased by 30.4% [5]. 
Of greater importance, the research quantifies the hidden carbon debt 
resulting from model training, which negates 8%–12% of operational 
savings. This level of detail has never been seen before. This discovery 
firmly incorporates the AI research life cycle into the environmental 
ledger and challenges the limited operational emphasis common in the 
majority of investigations. According to the findings obtained in this 
research, the efficiency of future models should be expressed in grams 
of CO2 equivalent per accuracy point and floating-point operations per 
second (FLOPS) per watt, which provides empirical evidence in favor 
of the increasing popularity of “Green AI” training paradigms [33]. 
The Monte Carlo uncertainty analysis, which confirms the statistical 
significance of net carbon savings over a wide range of parameters, 
strengthens the conclusion’s resilience. This fulfills the main reviewer’s 
requirement for a repeatable method for effect evaluations and a strategy 
that may be adapted to innovative topics.

The importance of the adoption phase is shown by the wide 
support from stakeholders, which is 75% for blockchain and 60% for 
FL. The 82% emphasis on standardized interfaces directly addresses 
the “valley of death” in compatibility among research prototypes 
(IEEE P2418.2) and industrial implementation, a concern previously 
expressed by Bhatia et al. [7]. The findings are compiled into a list of 
useful recommendations that enable the application of these qualitative 
and technical insights to the development of an effective strategic 
plan. Table 5 provides more information on the relationship between 
important recommendations and the technical issues that lead to them, 
as well as how to address them in view of the limitations and findings 
of the research.

In summary, the study shows that for 6G to be feasible, hardware, 
infrastructure, AI, and policy must all collaborate significantly. It won’t 
be enough to just implement more complex algorithms. Significant 
benefits are achievable, as shown by the framework, but the trade-offs 
between privacy and overhead, performance and infrastructure, and 
operational and embodied carbon are not aberrations to be avoided 
but rather essential design considerations to be controlled. Therefore, 
this study offers a critically informed and empirical base rather than 

a definitive answer. It sets a new standard for open assessment and 
lays out the necessary path for further study to reduce the performance 
gap, solidify the security-efficiency trade-off, and incorporate a cradle-
to-grave sustainability principle into the core architecture of next-
generation networks.

6. Conclusion
This study shows that AI can make 5G networks more sustainable 

by making them more energy efficient and lowering their carbon 
footprint. It also demonstrates how AI may overcome some of the main 
issues with existing approaches. The primary goal of the project is to 
develop an integrated framework that combines technical performance 
with environmental sustainability. The solution decreased base station 
energy usage by 32.7% ± 2.1% and carbon emissions by 30.4% via 
AI-driven optimization. By resolving three important problems noted 
in earlier research, these results mark a substantial improvement in the 
area.

FL systems solve the age-old problem of striking a balance 
between data privacy and optimization effectiveness. This kind of 
operator cooperation may occur without a noticeable increase in 
performance expenses. Numerous stakeholder assessments (N = 
90) and simulations (N = 1000) have shown the effectiveness of this 
decentralized approach in urban settings. More thorough research 
is required to fully comprehend the 9.7% performance gap in rural 
regions. By allowing users to create networks in real time while 
adhering to privacy regulations, the blockchain-enabled digital twin 
solution expands these possibilities even further.

In a way that had never been done before, the telecom performance 
data and ReCiPe 2016 measurements established a new benchmark 
for determining the environmental impact of networked devices. This 
approach demonstrates not only the amount of carbon emissions that 
are cut during operations but also the impact of AI’s own emissions, 
which was not included in previous assessments of specific companies.

The benefits of these improvements in the real world have been 
confirmed by the industry. For example, 70% of professionals support 
blockchain, while 60% support FL. According to the research, there 
are still issues that make it difficult to accept, especially with regard to 
interoperability standards and observing the regulations. The suggested 
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Domain Key finding Identified barrier Proposed mitigation pathway Research vector
Decentralized 
optimization

32.7% energy saving via 
FL; 9.7% urban-rural gap

Infrastructure disparity; non-
independent and identically 
distributed (IID) data

Develop hardware-aware, 
lightweight FL models for 
edge devices. Incentivize rural 
infrastructure modernization

Edge-native AI; data 
valuation methods for 
FL

Security & trust 18.5% blockchain 
overhead for secure 
coordination

Computational cost; latency 
sensitivity

Co-design of lightweight 
consensus protocols (e.g., PoS 
variants) and hardware security 
modules (HSMs)

Trusted Execution 
Environments (TEEs) 
for FL aggregation

Environmental 
accounting

30.4% operational CO2 
reduction; 8%–12% 
training offset

Lack of full life cycle 
perspective; embodied carbon

Mandate ISO-compliant LCA 
(ReCiPe) reporting; promote 
Green AI benchmarks (e.g., 
efficiency-focused model design)

Carbon-aware model 
training and scheduling

Stakeholder 
adoption

82% demand for 
standardization (IEEE 
P2418.2)

Interoperability; regulatory 
uncertainty

Establish industry consortia 
for Application Programming 
Interface (API) standardization; 
develop regulatory sandboxes for 
multi-operator AI trials

Policy research on data 
sovereignty and AI 
governance in telecom

Table 5
Synthesized research and policy framework: from empirical findings to actionable pathways
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three-phase implementation roadmap addresses these challenges 
via a number of legislative and technical initiatives, including the 
development of hardware-aware AI and the standardization of 
sustainability reporting methods. 

This research makes many recommendations for potential future 
research avenues, including (1) developing edge-native AI systems 
to address rural performance concerns, (2) enhancing FL protocols to 
facilitate applications that use less energy, and (3) creating standardized 
sustainability metrics for 6G network development.

All things considered, the research demonstrates that AI-driven 
optimization is a crucial approach for network architecture going forward 
and a quick fix for issues related to 5G sustainability. The study set the 
bar for research integrating AI and sustainable telecommunications due 
to its thorough approach, which included computer modeling, empirical 
validation, and standardized environmental assessment.

Acknowledgment
The author would like to thank all those involved in the work 

who made it possible to achieve the objectives of the research study.

Ethical Statement
This study does not contain any studies with human or animal 

subjects performed by the author.

Conflicts of Interest 
The author declares that he has no conflicts of interest to this 

work.

Data Availability Statement 
Data sharing is not applicable to this article as no new data were 

created or analyzed in this study.

Author Contribution Statement
Gabriel Silva Atencio: Conceptualization, Methodology, 

Software, Validation, Formal analysis, Investigation, Resources, 
Data Curation, Writing – original draft, Writing – review & editing, 
Visualization, Supervision, Project administration. 

References
  [1]	 Zhu, J., Li, F., & Chen, J. (2024). A survey of blockchain, 

artificial intelligence, and edge computing for Web 3.0. 
Computer Science Review, 54, 100667. https://doi.org/10.1016/j.
cosrev.2024.100667

  [2]	 Li, J., Han, X., Zhang, T., Xiao, J., & Chen, L. (2024). Digital 
intelligence and synergy of pollution reduction and carbon 
reduction: “Dividend” or “gap”?. Chinese Journal of Population, 
Resources and Environment, 22(4), 389–398. https://doi.
org/10.1016/j.cjpre.2024.11.003

  [3]	 Yigitcanlar, T., Kankanamge, N., Regona, M., Ruiz Maldonado, 
A., Rowan, B., Ryu, A., ... & Li, R. Y. M. (2020). Artificial 
intelligence technologies and related urban planning and 
development concepts: How are they perceived and utilized in 
Australia? Journal of Open Innovation: Technology, Market, and 
Complexity, 6(4), 187. https://doi.org/10.3390/joitmc6040187

  [4]	 Yevle, D. V., & Mann, P. S. (2025). Artificial intelligence based 
classification for waste management: A survey based on taxonomy, 

classification & future direction. Computer Science Review, 56, 
100723. https://doi.org/10.1016/j.cosrev.2024.100723

  [5]	 Wang, Q., Li, Y., & Li, R. (2025). Integrating artificial intelligence 
in energy transition: A comprehensive review. Energy Strategy 
Reviews, 57, 101600. https://doi.org/10.1016/j.esr.2024.101600

  [6]	 Patil, A., Iyer, S., López, O. L., Pandya, R. J., Pai, K., Kalla, A., 
& Kallimani, R. (2024). A comprehensive survey on spectrum 
sharing techniques for 5G/B5G intelligent wireless networks: 
Opportunities, challenges and future research directions. 
Computer Networks, 253, 110697. https://doi.org/10.1016/j.
comnet.2024.110697

  [7]	 Bhatia, M., Meenakshi, N., Kaur, P., & Dhir, A. (2024). 
Digital technologies and carbon neutrality goals: An in-depth 
investigation of drivers, barriers, and risk mitigation strategies. 
Journal of Cleaner Production, 451, 141946. https://doi.
org/10.1016/j.jclepro.2024.141946

  [8]	 Williams, L., Sovacool, B. K., & Foxon, T. J. (2022). The energy 
use implications of 5G: Reviewing whole network operational 
energy, embodied energy, and indirect effects. Renewable 
and Sustainable Energy Reviews, 157, 112033. https://doi.
org/10.1016/j.rser.2021.112033

  [9]	 Hafeez, M. A., Procacci, A., Coussement, A., & Parente, A. 
(2024). Challenges and opportunities for the application of 
digital twins in hard-to-abate industries: A review. Resources, 
Conservation and Recycling, 209, 107796. https://doi.
org/10.1016/j.resconrec.2024.107796

[10]	 Hambly, H., & Rajabiun, R. (2021). Rural broadband: Gaps, maps 
and challenges. Telematics and Informatics, 60, 101565. https://
doi.org/10.1016/j.tele.2021.101565

[11]	 Mendonça, S., Damásio, B., de Freitas, L. C., Oliveira, L., 
Cichy, M., & Nicita, A. (2022). The rise of 5G technologies 
and systems: A quantitative analysis of knowledge production. 
Telecommunications Policy, 46(4), 102327. https://doi.
org/10.1016/j.telpol.2022.102327

[12]	 Bibri, S. E., Krogstie, J., Kaboli, A., & Alahi, A. (2024). Smarter 
eco-cities and their leading-edge artificial intelligence of things 
solutions for environmental sustainability: A comprehensive 
systematic review. Environmental Science and Ecotechnology, 
19, 100330. https://doi.org/10.1016/j.ese.2023.100330

[13]	 Quy, V. K., Nguyen, D. C., Van Anh, D., & Quy, N. M. (2024). 
Federated learning for green and sustainable 6G IIoT applications. 
Internet of Things, 25, 101061. https://doi.org/10.1016/j.
iot.2024.101061

[14]	 García-Valls, M., & Chirivella-Ciruelos, A. M. (2024). CoTwin: 
Collaborative improvement of digital twins enabled by 
blockchain. Future Generation Computer Systems, 157, 408–421. 
https://doi.org/10.1016/j.future.2024.03.044

[15]	 Ahmed, S. F., Alam, M. S. B., Hoque, M., Lameesa, A., Afrin, 
S., Farah, T., ... & Muyeen, S. M. (2023). Industrial internet of 
things enabled technologies, challenges, and future directions. 
Computers and Electrical Engineering, 110, 108847. https://doi.
org/10.1016/j.compeleceng.2023.108847

[16]	 Baran, M. L. (2022). Mixed methods research design. In M. 
Khosrow-Pour, S. Clarke, M. E. Jennex, A. Anttiroiko, S. 
Kamel , I. Lee, ..., & V. Weerakkody (Eds.), Research anthology 
on innovative research methodologies and utilization across 
multiple disciplines (pp. 312–333). IGI Global. https://doi.
org/10.4018/978-1-6684-3881-7.ch017

[17]	 Goodfellow, L. T. (2023). An overview of survey research. 
Respiratory Care, 68(9), 1309–1313. https://doi.org/10.4187/
respcare.11041

7

https://doi.org/10.1016/j.cosrev.2024.100667
https://doi.org/10.1016/j.cosrev.2024.100667
https://doi.org/10.1016/j.cjpre.2024.11.003
https://doi.org/10.1016/j.cjpre.2024.11.003
https://doi.org/10.3390/joitmc6040187
https://doi.org/10.1016/j.cosrev.2024.100723
https://doi.org/10.1016/j.esr.2024.101600
https://doi.org/10.1016/j.comnet.2024.110697
https://doi.org/10.1016/j.comnet.2024.110697
https://doi.org/10.1016/j.jclepro.2024.141946
https://doi.org/10.1016/j.jclepro.2024.141946
https://doi.org/10.1016/j.rser.2021.112033
https://doi.org/10.1016/j.rser.2021.112033
https://doi.org/10.1016/j.resconrec.2024.107796
https://doi.org/10.1016/j.resconrec.2024.107796
https://doi.org/10.1016/j.tele.2021.101565
https://doi.org/10.1016/j.tele.2021.101565
https://doi.org/10.1016/j.telpol.2022.102327
https://doi.org/10.1016/j.telpol.2022.102327
https://doi.org/10.1016/j.ese.2023.100330
https://doi.org/10.1016/j.iot.2024.101061
https://doi.org/10.1016/j.iot.2024.101061
https://doi.org/10.1016/j.future.2024.03.044
https://doi.org/10.1016/j.compeleceng.2023.108847
https://doi.org/10.1016/j.compeleceng.2023.108847
https://doi.org/10.4018/978-1-6684-3881-7.ch017
https://doi.org/10.4018/978-1-6684-3881-7.ch017
https://doi.org/10.4187/respcare.11041
https://doi.org/10.4187/respcare.11041


Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

[18]	 Kawar, L. N., Dunbar, G. B., Aquino-Maneja, E. M., Flores, S. 
L., Squier, V. R., & Failla, K. R. (2024). Quantitative, qualitative, 
mixed methods, and triangulation research simplified. The 
Journal of Continuing Education in Nursing, 55(7), 338–344. 
https://doi.org/10.3928/00220124-20240328-03

[19]	 Braun, V., & Clarke, V. (2022). Conceptual and design thinking 
for thematic analysis. Qualitative psychology, 9(1), 3. https://
psycnet.apa.org/doi/10.1037/qup0000196

[20]	 Mahmood, M., Chowdhury, P., Yeassin, R., Hasan, M., Ahmad, T., 
& Chowdhury, N. U. R. (2024). Impacts of digitalization on smart 
grids, renewable energy, and demand response: An updated review 
of current applications. Energy Conversion and Management: X, 
24, 100790. https://doi.org/10.1016/j.ecmx.2024.100790

[21]	 Meenalakshmi, M., Chaturvedi, S., & Dwivedi, V. K. (2024). 
Deep learning-enabled polar code decoders for 5G networks 
and beyond. AEU-International Journal of Electronics and 
Communications, 177, 155220. https://doi.org/10.1016/j.
aeue.2024.155220

[22]	 Adhatarao, S. S., Despotovic, Z., Jorguseski, L., Brandsma, 
E., Corujo, D., & Hecker, A. (2024). Standardization roadmap 
towards sustainable 6G. In Conference on Standards for 
Communications and Networking, 129–134. https://doi.
org/10.1109/CSCN63874.2024.10849720

[23]	 Duan, Y., Guo, F., Gardy, J., Xu, G., Li, X., & Jiang, X. (2024). 
Life cycle assessment of polysilicon photovoltaic modules with 
green recycling based on the ReCiPe method. Renewable Energy, 
236, 121407. https://doi.org/10.1016/j.renene.2024.121407

[24]	 Tan, E. C., Tu, Q., Martins, A. A., Yao, Y., Sunol, A., & Smith, R. 
L. (2025). Uncertainty in inventories for life cycle assessment: 
State-of-the-art, challenges, and new technologies. Environmental 
Progress & Sustainable Energy, e14644. https://doi.org/10.1002/
ep.14644

[25]	 Ali Abd Al-Hameed, K. (2022). Spearman's correlation coefficient 
in statistical analysis. International Journal of Nonlinear Analysis 
and Applications, 13(1), 3249–3255. https://doi.org/10.22075/
ijnaa.2022.6079

[26]	 Iqbal, M., Ma, J., Mushtaq, Z., Ahmad, N., Yousaf, M. Z., 
Tarawneh, B., ... & Zaitsev, I. (2025). Energy efficiency evaluation 
of construction projects using data envelopment analysis and 

Tobit regression. Scientific Reports, 15(1), 11444. https://doi.
org/10.1038/s41598-025-90671-3

[27]	 Kalnins, A., & Praitis Hill, K. (2025). The VIF score. What is it 
good for? Absolutely nothing. Organizational Research Methods, 
28(1), 58–75. https://doi.org/10.1177/10944281231216381

[28]	 John, J., David Amar Raj, R., Karimi, M., Nazari, R., Yanamala, 
R. M. R., & Pallakonda, A. (2025). Artificial intelligence for 
smart cities: A comprehensive review across six pillars and global 
case Studies. Urban Science, 9(7), 249. https://doi.org/10.3390/
urbansci9070249

[29]	 Rahman, M. M., Tabash, M. I., Salamzadeh, A., Abduli, S., & 
Rahaman, M. S. (2022). Sampling techniques (probability) for 
quantitative social science researchers: A conceptual guidelines 
with examples. Seeu Review, 17(1), 42–51. https://doi.
org/10.2478/seeur-2022-0023

[30]	 Makonin, S. (2024). Editorial: Enhancing reproducibility through 
understanding datasets. IEEE Data Descriptions, 1, 1–1. https://
doi.org/10.1109/IEEEDATA.2024.3421108

[31]	 Lorè, F., Basile, P., Appice, A., de Gemmis, M., Malerba, D., & 
Semeraro, G. (2023). An AI framework to support decisions on 
GDPR compliance. Journal of Intelligent Information Systems, 
61(2), 541–568. https://doi.org/10.1007/s10844-023-00782-4

[32]	 Adamson, G., & Herkert, J. (2022). Addressing intelligent systems 
and ethical design in the IEEE code of ethics. In K. Laas, M. 
Davis, & E. Hildt (Eds.), Codes of ethics and ethical guidelines: 
Emerging technologies, changing fields (pp. 145–159). Springer 
Cham. https://doi.org/10.1007/978-3-030-86201-5_8

[33]	 Yildizbasi, A., Celik, S. E., Arioz, Y., Chen, Z., Sun, L., & Ozturk, 
C. (2025). Exploring the synergy between circular economy 
and emerging technologies for transportation infrastructure: 
A systematic literature review. Journal of Cleaner Production, 
144553. https://doi.org/10.1016/j.jclepro.2024.144553

8

How to Cite: Silva-Atencio, G. (2025). AI-Driven 5G Networks: Federated Optimi-
zation for Sustainable Telecommunications. Artificial Intelligence and Applications. 
https://doi.org/10.47852/bonviewAIA52025450

https://doi.org/10.3928/00220124-20240328-03
https://psycnet.apa.org/doi/10.1037/qup0000196
https://psycnet.apa.org/doi/10.1037/qup0000196
https://doi.org/10.1016/j.ecmx.2024.100790
https://doi.org/10.1016/j.aeue.2024.155220
https://doi.org/10.1016/j.aeue.2024.155220
https://doi.org/10.1109/CSCN63874.2024.10849720
https://doi.org/10.1109/CSCN63874.2024.10849720
https://doi.org/10.1016/j.renene.2024.121407
https://doi.org/10.1002/ep.14644
https://doi.org/10.1002/ep.14644
https://doi.org/10.22075/ijnaa.2022.6079
https://doi.org/10.22075/ijnaa.2022.6079
https://doi.org/10.1038/s41598-025-90671-3
https://doi.org/10.1038/s41598-025-90671-3
https://doi.org/10.1177/10944281231216381
https://doi.org/10.3390/urbansci9070249
https://doi.org/10.3390/urbansci9070249
https://doi.org/10.2478/seeur-2022-0023
https://doi.org/10.2478/seeur-2022-0023
https://doi.org/10.1109/IEEEDATA.2024.3421108
https://doi.org/10.1109/IEEEDATA.2024.3421108
https://doi.org/10.1007/s10844-023-00782-4
https://doi.org/10.1007/978-3-030-86201-5_8
https://doi.org/10.1016/j.jclepro.2024.144553
https://doi.org/10.47852/bonviewAIA52025450

