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Abstract: The dynamic system control problem under conditions of a priori uncertainty regarding the parameters of the controlled object is 
considered. The properties of controllers typically used in control systems are studied. Among them are a neural network, a proportional–integral–
derivative (PID) controller, and a learning algorithm. The sign-changing input signal is considered in dynamic systems using the minimum time 
criterion. A dynamic system is represented by the first-order differential equations system, which allows using the state space method in the 
analysis. A feature of the research is the study of the quality of the system tuning under conditions of parametric uncertainty and the presence of 
homogeneous non-Gaussian noise in the phase coordinate measurement channels. The system’s reaction results for the studied approaches for 
the proposed mathematical model are compared. The learning algorithm showed an improvement over conventional methods by at least 40% in 
the evaluated indicators, in which the influence of interference is leveled by introducing a unique function of the “hysteresis” type. The modeling 
results are given in support of the conclusions made.
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1. Introduction
The task of management is widely used in all spheres of human 

activity, and the level of effectiveness of its solution is the most important 
indicator of any system, as well as an indicator of the development of 
the scientific, technical, industrial, and defense potential of each state. 
At the same time, special attention is paid to industrial models in which 
the management of moving or dynamic objects with variable parameters 
is implemented.

Unfortunately, it should be noted today that in the classic formulation 
of the problem, when external influences are not considered, the known 
mathematical model of the dynamic object with the stationary of its 
parameters is actual in simple cases. It does not always meet the operating 
conditions. When designing a control system, it should be considered that 
external influence is not Gauss, acts within a limited time interval, and the 
researcher does not have time to study his statistical characteristics. At 
the functioning stage, these problems have engaged no one as well. The 
mathematical model is not always linear. The specified condition may 
be fair at the narrow interval of the initial characteristics of the dynamic 
object. The order of differential equations describing a dynamic object 
is also not known. However, we can use digital computing systems for 
both the modeling and design of dynamic systems.

In the conditions considered for robotics and dynamic systems 
control tasks, it is appropriate to use methods of teaching the functioning 
control system to achieve the kinematic (calculated) parameters of the 
required movement. In this case, the control system, in addition to the 
usual representation as a system of “controller-dynamic object,” covered 
by feedback, acquires the properties of intellectual due to the use of an 
additional system that studies the nature of input change and output 

parameters of motion and does not act on a dynamic plant, but to the 
controller, changing its parameters so that the purpose of control is 
achieved in the broad range conditions of the environment.

Today, we know most of the learning techniques used in control 
systems have been developed, and their comprehensive use can also 
be effective. The most used are iterative teaching methods, including 
gradient learning methods and neural networks. The latest techniques 
are implemented on programmable logic integrated schemes and with 
the help of special neurochips and neurocomputers. The most famous 
examples of neurocomputers are Synapse neurocomputer (Siemens, 
Germany) and Neuro-matrix processor. They are based on a software 
system that controls computing devices with parallel flows of identical 
commands and multiple data flow, the so-called Multiple Single Instruction 
Multiple Data (MSIMD) architecture. The main paper’s goal is to consider 
the algorithms that can be at the heart of software systems that control 
specified computer devices.

2. Literature Review
An analysis of the available literature shows that neural networks 

are one of the most frequently used machine-learning methods for 
solving various problems in recent years. It is emphasized in the 
reviews by Mahesh [1], Ray [2], Stanley et al. [3], and Zhao et al. [4]. 
Thus, Mahesh [1] proposed a brief overview and some prospects for 
applying machine-learning algorithms to automatic data processing. 
Ray [2] proposed a review of the most frequently used machine-learning 
algorithms. In this review, the author selected an appropriate learning 
algorithm that meets specific task requirements. Key aspects of modern 
neuroevolution, including large-scale computations, novelty, diversity, 
and indirect coding capabilities, as well as the contribution of this field 
to meta-learning and architecture search, are provided in the review 
by Stanley et al. [3]. Zhao et al. [4] presented an overview of neural 
network applications using software-defined network approaches with 
machine learning. Detailed information about neural networks and 
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their applications can be found in the training course developed by 
Gurney [5].

A traditional solution to the construction of effective dynamic 
systems is the use of PID regulators, which are widely used in driving 
complex vehicles, such as unmanned aerial vehicles. However, setting up 
a proportional–integral–derivative (PID) regulator requires certain skills. 
Therefore, to improve the quality of the quadrotor control, Bouzid et al. 
[6] offered the option of using a PID controller with variable coefficients, 
which certainly complicates the structure of the control system and 
requires an increase in the accuracy of measuring its current coordinates. 
Hadid et al. [7] investigated various approaches to constructing a control 
system for a nonlinear dynamic object, such as a quadcopter, in which 
they noted that the PID controller, which is traditionally used in flight 
controllers, is inferior to classical controller implementation options in 
terms of dynamic performance. Guettal et al. [8] developed the control of 
the unmanned aerial vehicle by a backstepping neural network controller, 
which is currently considered an alternative to the PID controller. Cengiz 
et al. [9] proposed to set the weight coefficients of the neural network using 
a genetic algorithm. The proposed approach has an obvious drawback 
associated with the need for a problem solution of local minimums for 
the optimal configuration of the neural network since the real mechanisms 
for solving this problem for genetic algorithms are not yet available 
[10]. Murugesan and Ramasubbu [11] presented a method for evaluating 
the excitation current of the synchronous motor based on the learning 
algorithm to obtain an adequate multiple linear regression model.

Gabella [12] studied the dynamic structure of weights in training a 
feed-forward neural network. Shrestha and Mahmood [13] presented an 
overview of different types of networks, as well as several optimization 
methods that include deep learning for improving accuracy and reducing 
training time. Li et al. [14] offered deep training with the reinforcement 
for navigation of vehicles in free space based on training in virtual space 
and it is transmitted to a vehicle that moves in the real world.

Since a neural network is a rather complex and cumbersome 
structure, one of the available options for tuning the network parameters 
is genetic algorithms. Thus, a methodology for the automatic design 
of a neural network using a particle swarm optimization algorithm, 
which uses various fitness functions to avoid over-fitting and reduce 
the number of connections in the network, was presented by Garro and 
Vazquez [15]. Such et al. [16] trained a deep neural network with several 
million adjustable parameters by a genetic algorithm. Tsmots et al. [17] 
proposed a method for parallel vertical group data processing for neural 
algorithms and neural network structures. Chen and Liu [18] proposed 
an alternative option for deep learning, which involves extensive training 
in a flat network. Ou et al. [19] proposed improving the quality of a deep 
autoencoder-type network using the regularization method.

Alternatives to convolution neural networks are provided in refs. 
[20–23]. Leo and Kalita [20] introduced the concept of incremental 
learning, in which the neural network identifies unknown classes at the 
testing stage and updates itself autonomously if new features are detected. 
To ensure recognition accuracy, the authors introduce a threshold for 
reliable classification. Li and Zhang [21] created a self-organizing learning 
model for a two-layer feed-forward neural network. In this network, the 
network weights optimization is performed with the training errors on 
the training data set using a swarm algorithm. Dai et al. [22] studied 
distributed learning algorithms to bring the neural network closer to multi-
agent reinforcement learning. Huoh et al. [23] proposed a graph neural 
network model that has superior sensitivity and accuracy compared to 
convolution neural networks (CNN) and recurrent neural networks (RNN).

The authors [24–27] propose using adaptation methods in neural 
networks. Sayed [24] reviewed modern achievements in adaptation, 
learning, and optimization in neural networks. Lin [25] proposed a 
learning algorithm similar to the back-propagation algorithm, which does 
not require feedback. In this case, neurons can adapt asynchronously and 

simultaneously, similar to biological neurons. Zhou et al. [26] propose 
an adaptive learning network based on a deep deterministic gradient 
policy with an adaptive neural network of fuzzy inference systems. 

Liu et al. [27] discussed the method of adaptive dynamic 
programming in control problems. Sun et al. [28] proposed a method 
of adaptive dynamic programming for optimal fuel consumption in a 
non-linear system with unknown dynamics in continuous time.

The idea of clustering in neural networks is supported by the authors 
[29, 30]. For example, Heer et al. [29] focused on increasing network 
reliability, for which they chose the greedy and lazy greedy heuristics to 
maximize the clustering coefficient. Yin et al. [30] proposed local closure 
coefficients as a metric for clustering edges based on the general node 
of the neural network.

Neural networks in problems of control of the dynamics of moving 
systems were considered in the works [31–33]. Trischler and D’Eleuterio 
[31] showed the possibility of training a feed-forward neural network to 
reproduce the dynamics of the original system. Li et al. [33] studied the 
problem of rocket control with time control. They proposed a control 
method with training, which provides the desired control time with a 
restriction in the field of view. The training is based on a gradient of the 
error that adjusts the parameter of proportional control. Rosmann et al. 
[34] presented an approach to the synthesis of predictive control of a 
time-optimal model. Laschov and Margaliot [35] considered the problem 
of transferring a Boolean network from a given state to a desired one 
in a minimal time based on the maximum principle. di Bernardo et al. 
[36] proposed a discrete-time minimum control synthesis algorithm for 
discrete-time systems, which is advisable in controlling continuous-time 
discrete plants.

Wilt and Sands [37], Huang and Sands [38], and Pittella and 
Sands [39] propose the use of feedforward control in combination with 
deterministic artificial intelligence (referred to as DAI in the papers) 
for the control of complex systems of various types. The mathematical 
model of the system is assumed to be no higher than a second-order 
differential equation. Deterministic artificial intelligence is defined as the 
computation of the current parameter matrix via pseudo-inversion of a 
linear equation, where both the current control signal and the parameter 
vector of the system are treated as unknowns. However, the presence of 
errors in the system is noted by Huang and Sands [38]. These errors are 
most likely caused by the direct nature of control, which is susceptible 
to interfering signals in the coordinate measurement channels, as well 
as by the use of the singular value decomposition (SVD) algorithm for 
control signal computation.

The analysis of the reviewed literature indicates the relevance of 
investigating both existing and novel artificial intelligence algorithms for 
enhancing the control performance of dynamic systems under interference 
conditions and for mitigating the impact of such disturbances within 
feedback control systems.

3. Problem Statement
A dynamic system is described by a system of first-order 

differential equations in matrix form as follows:

In Equation (1), the following notations are introduced: x is the 
state vector, , u is the control vector, , y is the output vector, 

, and A, B, and C are matrices, . 
The listed vectors change in time, the time variable t in Equation (1) is 
omitted to simplify the notation, the components of matrices A and C are 
considered to be given, do not depend on time t, which corresponds to a 

(1)

2
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stationary system, and matrix B contains unknown parameters associated 
with the gain coefficients in the system. Thus, the system of equations 
(Equation (1)) can include a dynamic object and a controller that provides 
the required shape of the control signal.

Also known are the initial state of the system at the moment t = 0, 
i.e. , which assumes that the system initial state is not at 
the origin of the coordinate grid, and the final state , which is in 
the ε-neighborhood of the origin, i.e. ε , which 
corresponds to the consideration of the system dynamics concerning 
the error.

It is further assumed that the coordinates of the state vector x are 
measured by a limited set of noisy sensors, i.e. there is noise ξ of unknown 
nature in the measurement channels, i.e.

ξ

In Equation (2)  is the measured state vector. This assumption 
is because the researcher does not have enough data to determine the 
static properties of the noise or does not have enough time to study its 
statistical properties. All that is known about the noise signal ξ is that it 
is limited in amplitude, i.e. the inequality is satisfied:

ξ

In Equation (3) Ξ is the maximum noise level in the sensors used 
in the measurement system, which is true in most practical cases, except 
for those where the statistical properties of the noise signal are specified 
in advance.

Then, Equation (2) transform the initial equations system (Equation 
(1)) into the following:

It is assumed that the control system (Equation (4)) ensures the 
movement of the state vector x from the start x(0) to the final state x(tk) 
in a minimal, limited time, i.e.

In Equation (5)  is the function of displacement of the 
coordinates of the dynamic system (Equation (4)) under the influence 
of the control signal u such that the minimum control time tmin is ensured 
under the conditions (Equation (3)) of the problem statement, and U is 
the admissible control signals in the system.

4. Problem Solution
Traditionally, this type of problem is assumed to start for the case 

of known parameters, and then the initial formulation of the problem 
with unknown parameters is considered.

4.1. Problem with known parameters
The classical formulation of the problem for the case with known 

parameters assumes the search for a solution in the class of control 
actions of maximum amplitude of the opposite sign, which corresponds 
to the problem of maximum speed, i.e.  [39]. In this case, 
two types of solution are possible, one of them is in the time plane, 
when it is necessary to determine the moments of switching the control 
signal, and the second is sought in the phase plane, when the change in 

the sign of the control action is determined by the so-called switching 
function:

separating the region of control signals of opposite signs. In Equation (6), 
x is the vector of phase coordinates of the dynamic system, and c is the 
vector of parameters. The structure of the control system is in Figure 1 
and its output signal without noise signal is in Figure 2. The decision in 
analytical form can be found for systems of the Equations (1) and (4), 
the order of which is not higher than the third.

It is assumed that the solution in the phase plane looks simpler and is 
more accurate since the control signal is switched based on measurements 
of the system’s phase coordinates, which are represented by the position 
of the control object and its derivatives.

The search for a solution is somewhat complicated by the 
interference of Equation (3) in the phase coordinate measurement 
channels since interference leads to an erroneous switching of the sign 
of the control signal. The consequence of an error in switching the sign 
of the control is a delay in the control process due to the sliding mode 
during early switching or cyclic switching due to a later switching of 

(2)

(3)

(4)

(5)

(6)

3

 Figure 1
Control system structure
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 Figure 2
Control without interference (𝜉1(𝑡) = 0, 𝜉2(𝑡) = 0) in the phase 

coordinate measurement channels, 𝑥1(𝑡) is the output value, 𝑥2(𝑡) is 
its derivative
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the sign of the control signal to the opposite one. Nevertheless, this 
problem can be solved by introducing hysteresis in Equation (6) based 
on the phase coordinates in the form:

which ensures that the dynamic system reaches the target region, defined 
by the required sign, in the shortest possible time, as specified in Equation 
(5). The consequence phase point falls into the ε-neighborhood of the 
origin, the dimensions of which must be consistent with the initial 
conditions x(0) and the noise level .

The described cases for a control system with a regulator as a 
separating function are shown in Figures 3 and 4.

Introducing coordinate-based hysteresis, as expressed in 
Equation (7), enables control of a dynamic system with known parameters 
in the minimum time specified by Equation (5).

4.2. Control of a dynamic object using a neural 
network

One of the powerful tools in conditions of parametric uncertainty 
is a neural network. A neural network is a distributed and parallel 
system capable of adaptive learning by changing its parameters, which 
are adjusted by analyzing positive and negative influences. The general 
element of a neural network is an artificial neuron, the algorithm of 
which is described by the formulas:

where wi is the weighting factor, i = 1 ... n; n is the number of neuron 
inputs; b is the displacement value; s is the summation result; 𝑥i is the 
component of the input vector (input signal), I = 1 … n; y is the output 
signal of the neuron; f is a nonlinear transformation function (activation 
function).

An artificial neuron in neural networks is an elementary 
data converter. According to Equation (8), it consists of multipliers, 
an adder, and a nonlinear converter. Numbers, so-called weighting 
factors, which change during setting up the neural network, multiply 
the components of the input signal. The adder adds the signals coming 
from the multipliers. The nonlinear converter transforms the received 
signal from the adder into a decision regarding the situation at the 
network’s input.

In the general case, the input signal, weighting coefficients, and 
shift can take actual values and in many practical problems — only some 
fixed values. The output can be both real and integer and is determined 
by the type of the activation function.

4.3. Control via the PID controller
Control systems with PID controllers in the control loop are of 

considerable user and research interests [40]. It is determined primarily 
by the simplicity of the regulator design, the possibility of industrial 
implementation, transparent functionality, and even the possibility 
of implementation with microprocessors. In addition, these devices 
have good technical potential, such as control power and mechanical 
stability, and satisfy the cost-effectiveness criterion.

Along with the listed advantages, PID regulators have a serious 
drawback, primarily related to the complexity of the setting [41]. 
Since its device has parallel-connected components that have their 
regulation parameters, their change has a contradictory effect on the 
regulated process. Thus, an increase in the gain of the proportional 
link from one side leads to a decrease in the system error, and from 
the other side, it reduces the system stability. Increasing the time 
constant of the integrating link, on the one hand, reduces overshooting, 
increases the stabilizing properties of the regulator, and reduces 
the influence of interference but delays the control process. The 
differentiating block minimizes the duration of the transient process 
but increases the risk of high-frequency interference affecting the 
system’s performance.

A PID controller is a device, in which the variable u forms according 
to the following expression:

In Equation (9) t is the adjustment time, K, Ti, and Td are the 
proportional coefficient, integration constant, and differentiation constant, 
respectively.

(7)

(8)

(9)
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 Figure 3
Control in the presence of interference ( ) in the 

channels for measuring phase coordinates without hysteresis
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 Figure 4
Control with interference ( ) in the phase coor-
dinate measurement channels with hysteresis, 𝑥1(𝑡) is the output 

value, 𝑥2(𝑡) is its derivative



4.4. Control via learning
The algorithmic approach to learning assumes the presence of a 

changing vector of system parameters. Then, the goal of teaching is to 
achieve such a state of the system that the system should reach a final 
state. This state is considered optimal among all available alternatives. 
Isolation of the predominant state essentially boils down to the selection 
of some functionals, the extremum of which would correspond to this 
state. If the vector c is a vector of variable parameters, and the functional 
J(c), then the condition of the extremum of the functional, which for 
certainty we will consider the minimum given by the equation:

The physical meaning of the algorithmic approach consists of 
finding the optimal vector с = с* that satisfies Equation (10). A search 
algorithm can be represented in the discrete form as follows:

In Equation (11)  is a square N-dimensional matrix, the elements 
of which are constant or, generally speaking, depend on the current value 
of the vector c [n − 1]. Proper selection of the matrix Г should ensure the 
convergence of c[n] to the optimal value of c*.

5. Simulation
To study the considered algorithms, the object was presented 

in the form of a system of second-order differential equations of the 
Equation (1), in which the matrix A and vector B have the form [42]:

In Equation (12), k is the conversion coefficient, which is 
considered unknown. It is assumed that the control system is equipped 
with a position and speed sensor, which allows measuring the output 
signal 𝑥1(t) and its derivative 𝑥2(t). The sensors are noisy, i.e., the 
measurement occurs under conditions of interfering noise. The input 
signal u(t) is also available for measurement. According to the comments 
made, the matrix C has the form:

It is also assumed that the initial position of the object that should 
be moved to the final state corresponding to some neighborhood of the 
origin is known. The start state of the control object is 𝑥1(0) = −5, 𝑥2(t) = 0. 
When the matrix 𝐶 is written in the Equation (13), the output vector 𝑦 
whole coincides with the state vector 𝑥.

5.1. Neural network
The training of the neural network (see Figure 4) using signals 

distorted by noise, which in the interests of the task was described by 
a uniform distribution, took place in the Matlab environment using the 
feedforwardnet function.

In the modeling, two layers represent the neural network, in which 
the first hidden layer has 17 neurons with a nonlinear activation function, 
and the output layer has one neuron with a linear activation function 
is sufficient. The neural network diagram is shown in Figure 5. The 

Levenberg-Marquardt algorithm was used as the training algorithm, 
and the criterion for the quality of neural network training was the mean 
square error.

The output signals of the system when controlling the neural 
network, assuming that the measurement of the output signals occurred 
without interference, are shown in Figure 6.

Analysis of Figure 6 shows that training the neural network using 
signals distorted by interference has significant errors, although the control 
signal is recognized satisfactorily.

5.2. PID-controller
The simulation of the PID controller, represented by Equation (9), 

with the same system in Simulink is shown in Figures 7 and 8. Figure 7 
shows the measured signals and the control signal with the PID controller 
without interference.

From Figure 7, it is evident that the tuned PID controller tightens 
the processes in the system with an alternating input signal. Similar 
signals in the control system with a PID controller and measurement 
of the output value by a noisy sensor are shown in Figure 8. The noise 
is modeled by a separate generator with a uniform distribution in the 
interval (−0.5 … 0.5)U.

From Figure 8, it is clear that the PID controller copes quite well 
with the problem of control in noisy conditions.

5.3. Learning algorithm
According to the problem conditions, the position of the switching 

function (Equation (6)) in the phase coordinate space is unknown. Its 

(10)

(11)

(12)

(13)
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 Figure 5
The neural network structure in the Matlab environment

 Figure 6
Controlling a system configured by a neural network
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position is determined by the parameter vector , and the 
unknown components of which are subject to determination. In the 
problem under consideration, the unknown parameters are corrected 
following an iterative algorithm that takes into account the position of 
the first switching point relative to the optimal position of the switching 
line, which is taken to be the position at which the phase point falls into 
the ε-neighborhood of the origin. The complete learning algorithm is 
a modification of the general Equation (11), in which the matrix  is 
replaced by a unit coefficient. The Equation (11), which includes the 
coordinates of the desired switching point and accounts for the hysteresis 
defined by Equation (7), is expressed by the following equations:

if  and  with 
l(Tn) = 1 for some  or if  and for 

 for ;

if  and  with 
l(Tn) = 1 for some  or if  and for 

 for ;

if |x(t[n])| < ε , |z(t[n])|  ε  with l(T[n]) = 1 for some T[n] > t[n].
In this algorithm, ε  and ε  are given values that define a given 

ε-neighborhood of the origin in space , , and  
acts as the duration of the movement from the state x(0) to x(tf) in this 
ε-neighborhood at each n-th learning step. In Equations (14)–(18), 
the authors propose a modification of the one in Kucherov et al. [43].

The results of the algorithm are presented in Figures 9 and 10.

(14)

(15)

(16)

(17)

(18)
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 Figure 7
Controlling a system configured by a PID controller

 Figure 8
Signals x1(t), x2(t) and u(t) in a control system with a PID control-

ler with the noisy sensor in the output signal measurement channel

 Figure 9
Signals x1(t), x2(t), and u(t) in a control system with a learning con-
troller with noise in the output signal measurement channel and 

incorrect vector c on the first learning step

 Figure 10
Signals x1(t), x2(t), and u(t) in a control system with a learning con-
troller with noise in the output signal measurement channel on the 

last learning step



The evaluation of the correction results was carried out using the 
Lyapunov-type convergence criterion in the form:

The numbers in Equation (19) correspond to the actual values of 
the uncertainty parameters, increased by 100 times. The function J(i) is 
shown in Figure 11.

The monotonically decreasing nature of the curve constructed 
based on the results of calculating Equation (19) indicates satisfactory 
learning results.

6. Discussion
The methods considered allow controlling a dynamic system; 

however, several comments should be made. It would seem that fine-
tuning a control system with unknown parameters against the interfering 
noise can be ensured by means such as, for example, a PID controller. 
It has become a standard in the field of control systems. However, these 
devices require precise tuning by algorithms, as presented in Kucherov 
et al. [41]. In addition, the presence of an integrator introduces 
additional inertia into the system, which leads to a delay in the control 
process and overshooting, and the effect of noise increases dynamic and 
static errors in control.

The nature of the noise is usually unknown and difficult to predict, 
and for this reason, there is no universal method of countermeasure it. 

Therefore, the paper presents one of the methods of counteraction as 
presented in Kucherov et al. [43], based on hysteresis, for a low signal-
to-noise ratio (SNR).

Similar disadvantages are also present in the neural controller 
based on trained neurons. Due to the simple mathematical model of the 
control object (2–3 orders of differential equation), there is no point 
in complicating the structure of the neural network by increasing the 
layers or the number of neurons due to the increase in the “cost” of the 
controller. The gain in control accuracy and time does not compensate 
for the rise in control value since noise is still present. Nevertheless, 
the learning algorithm synthesized on simple mathematical rules 
allows us to reduce the impact of a priori uncertainty caused by the 
lack of information about the parameters of the object and the nature 
of noise.

Providing sufficient control accuracy in the time domain by 
calculating switching moments is also an erroneous control strategy 
due to their dependence on the object parameters, which can change. 
A possible option for constructing an effective control system can be 
implemented in the phase plane by adjusting unknown coefficients of 
the switching line according to the proposed learning algorithm. The 
presented statements confirm the quantitative indicators of the regulator 
adjustment based on independent measurements, which are presented 
in the Table 1.

The estimates are given for the same dynamic object. However, 
the PID controller was tuned in the absence of interference, and then the 
interference level changed stepwise, so the number of tuning iterations 
is constant and is determined by the performance of the controller, the 
role of which in this case was performed by a computer with installed 
software and a controller-tuning program. The PID controller showed 
stable indicators under interference conditions, but the duration of the 
transient process exceeds adaptive controllers by approximately 3–4 
times.

Although the neural network obtained better results in the index 
of setup time compared to the learning algorithm, the accuracy is 
approximately 2 times less. In addition, the simplicity of the technical 
implementation of the learning algorithm allows it to be recommended 
for use in a promising adaptive regulator to obtain an effective control 
system for dynamic processes.

The main characteristics of the control processes implemented 
by different regulators applied to the same object, under identical initial 
conditions and noise levels, are presented in Table 2.

The error values presented in Table 2 are calculated solely 
for the output coordinate, defined as the ratio of the last value to 
the initial state. The time metric refers to the interval within which 
the output coordinate reaches the required value. The results 
demonstrate the superiority of the proposed controller based on the 
learning algorithm.

(19)

7
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 Figure 11
Function J(i)

Table 1
Parameters of the dynamic system for the studied types of regulators

Regulator
Error, percentage Time, s Number of iterations

SNR=−6 dB SNR=−20 dB SNR=−6 dB SNR=−20 dB SNR=−6 dB SNR=−20 dB
PID 8 15 15 18 15 15
Neural net 25 49 4.08 3.72 19 8
Learning algorithm 10 30 4.32 4.18 10 40
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7. Conclusion
This paper examines modern approaches to the design of control 

systems operating under interference signals acting in coordinate 
measurement channels. These approaches are based on the use of 
artificial intelligence elements, including a PID controller with 
intelligent tuning, a neural network used as a feedforward controller, 
and a controller employing a learning algorithm. Their performance is 
compared to that of an optimal controller.

Controllers based on classical and PID algorithms need to be 
adjusted to obtain the given parameters of the transient process, but 
interference worsens the dynamics of the control process.

A controller based on a neural network needs a reference signal, 
but interference significantly degrades the output signal and does not 
provide acceptable indicators of the transient process. At the same 
time, there is difficulty in modifying the neural network to obtain 
better indicators.

Learning algorithms can be used independently in the controller, 
the regulator structure is greatly simplified, and it is possible to obtain 
acceptable transition process results. To get better results, the learning 
algorithm needs to be complicated due to the refinement of previous 
results and the accumulation of knowledge about the operation of the 
dynamic system.

For the reader’s convenience, all abbreviations and variables used 
in the paper are summarized in Table 3.
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