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Abstract: Two-dimensional (2D) medical ultrasound is a widely used imaging modality for the anatomical and functional assessment of fetal 
development due to its low cost, availability, real-time capability, and the absence of radiation hazards. Head circumference (HC) is an essential 
biometric to measure fetal growth. However, the low signal-to-noise ratio in ultrasound imaging can make it difficult for clinicians to identify the 
fetal plane correctly. Additionally, manually measuring HC can be expensive, involving accurately placing three minor and major parameter points 
from the ultrasound machine. To address these issues, research has been conducted to develop an automated system for measuring HC. This study 
presents a computer-aided diagnosis (CAD) system for the automatic measurement of fetal HC and fetal age using hybrid feature extraction. Using 
Convolutional Neural Networks (CNNs), self-supervised learning (SSL), vision transformers (ViTs), UNet deep learning model for segmentation, 
and Hough transform to measure performance, this study achieved higher performance compared to previous studies with a Dice similarity 
coefficient (DSC) of 97.23 ± 2.78, an average distance factor (ADF)  of 2.8 ± 2.93 mm, a Jaccard Index of 88.57 ± 3.79, and an accuracy of 97.2%. 
After that, we enhance UNet using an attention mechanism that achieved a Dice coefficient of 98.5 ± 2.5, an ADF of 2.4 ± 2.8 mm, and an accuracy 
of 98.1%. This system provides a more cost-effective and accurate measurement of HC, aiding clinicians in assessing fetal development.
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1. Introduction
There has been much research on developing automated methods 

for measuring head circumference (HC) using two-dimensional (2D) 
ultrasound pictures. Because of their low cost, widespread availability, 
real-time capability, and absence of radiation exposure, 2D medical 
ultrasonography (USG) machines have become the primary imaging 
modality for the surveillance of fetal anatomy and function [1]. Usually, 
a standard ultrasound examination is advised between weeks 18 and 22 
of pregnancy. 2D ultrasound devices create diagnostic images doctors 
use to assess fetal development stages [2]. The embryonic growth 
process can be evaluated through multiple qualitative and quantitative 
research approaches. Qualitative analysis of fetal heart physiology 
serves as one investigative method. Through quantitative analysis, fetal 
development assessment utilizes biometric data to estimate gestational 
age and measure fetal weight in order to detect potential fetal anomalies. 
Accurate weight measurements combined with age estimation remain 
necessary to provide top-level care for the unborn child. For a person’s 
biometric profile, their facial features include forehead width, arm 
measurements, and leg length. Accurately determining fetal gestational 

age depends on using HC because this method provides reliable data 
about fetal HC [3].

Healthcare professionals currently conduct HC assessments 
in their regular patient measurement routine through semi-automatic 
methods.  A doctor’s success depends on their understanding of 
anatomical positioning to position the probe correctly. Medical staff 
must precisely determine and categorize maternal tissue on the fetal 
plane before using the ellipse parameter calipers. When calipers are 
correctly placed, the USG machine generates an ellipse and calculates 
its dimensional radius. A low signal-to-noise ratio leads to frequent 
difficulties for clinicians in separating the maternal tissue from the 
fetal plane. Medical practitioners across all levels find it challenging 
and time-consuming to measure fetal biometry manually [4]. Medical 
personnel use automatic methods to measure patient HC by joining 
selected spots on ultrasound pictures’ main and smallest elliptical axes. 
Computing the ellipse circumference allows researchers to define an 
accurate HC representation. The interpretation process encounters 
difficulties associated with ultrasound image noise elements, such as 
speckles and artifacts, which demand expert-level knowledge from 
observers. Observational differences in manual HC marking between 
practitioners result in wide measurement variations [5].

The objective and more accurate fetal HC measurement could be 
achieved by automated methods. The fetal HC is typically determined 
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by identifying the fetal head region of interest (RoI), fitting an ellipse 
inside the RoI, and finally calculating the HC using the adjusted 
circumference. The technique utilized in this paper for fetal head RoI 
localization is a multiscale classifier, such as the Haar cascaded classifier 
algorithm family. This work optimizes the ellipse-fitting algorithm for a 
candidate RoI in the fetal skull. Ellipse fitting algorithms often fall into 
one of three broad classes: statistical, heuristic, or hybrid approaches; 
methods based on clustering or voting; and methods based on geometric 
or algebraic least squares [6]. The noniterative algebraic methods are 
well-suited for real-time applications due to their comparatively easy 
solutions. When dealing with broken or partially occluded ellipses, 
their performance can be reduced due to their sensitivity to outlier 
noise and bias in the estimations. On the other hand, geometric methods 
are more resilient to noise but necessitate iterative calculations that 
get progressively more complex. Even though it relies heavily on a 
predefined training dataset and is not as robust, the clustering method 
can find ellipses quickly. The Hough transform approaches that rely on 
voting are better at avoiding occlusions, but they need an exponentially 
large amount of computation. Statistical models may fail when faced 
with extremely high noise levels, and the Kalman filtering approach 
favors high curvature fits. A normal distribution model or the Hough 
transform in conjunction with least square minimization requires a lot 
of computing power [7]. Machine learning methods have recently been 
increasingly applied to fetal biometry in order to analyze high-level 
features from ultrasound image data. Convolutional Neural Network 
(CNN) model applications are widely used for medical [8], geographical 
[9, 10], and other fields, and their usefulness has been proven. Li 
et al. [11] used a random forest classifier to localize the fetal head and 
employed phase symmetry and ellipse fitting to fit the HC ellipse for 
measurement. However, this approach requires prior knowledge of 
the gestational age and ultrasound scanning depth. Irene et al. [12] 
suggested a CNN in order to identify boundaries of the fetal head in 
ultrasound images that classifies every pixel as one of four groups, 
including maternal network (horizontal patterns), upper head boundary 
(concave arcs), lower head boundary (convex arcs), and background.  
On polar-transformed images, they used a UNet model and they were 
able to complete this multi-class segmentation successfully. 

This paper studies the methodology in determining fetal head 
measurements and estimating gestational age using 2D ultrasound 
images. With the latest improvements in ultrasound imaging technology, 
we provide a thorough analysis of the methods employed for fetal head 
assessment and age estimation in 2D ultrasound scans. We investigate 
multiple ultrasound measurement techniques for fetal heads and age 
measurements within 2D ultrasound images. Section 2 shows related 
work; Section 3 explains our proposed method; Section 4 shows the 
simulation results of our proposed model; and Section 5 shows our 
conclusion and future works.

2. Related Works
Segmenting the fetal head from ultrasound images is a critical 

yet challenging task due to variations in head size and shape and 
the inherently low contrast of ultrasound scans. Recent studies have 
explored various deep-learning architectures to enhance segmentation 
accuracy.

The authors introduced Directed Acyclic Graph (DAG)-based 
extension of the V-Net (DAG V-Net), a deep learning-based method 
specifically designed for fetal head segmentation and HC measurement 
in 2D ultrasound images. Their approach achieved a mean Dice 
similarity coefficient (DSC) of 97.93%, demonstrating the effectiveness 
of V-Net-based architectures in capturing fine details [13].

Similarly, other researchers proposed the Scale Attention 
Pyramid Network (SAPNet), which leveraged an attention mechanism 

to enhance feature extraction, achieving a DSC of 97.94%. This 
highlights the significant role of attention-based architectures in 
improving segmentation accuracy [14].

The authors adopted a regression CNN for fetal head delineation, 
integrating ellipse fitting with an iterative closest point algorithm and a 
random sample consensus (RANSAC) method. Their approach attained 
a DSC of 97.95%, showcasing the advantages of combining deep 
learning with geometric modelling for precise HC measurement [15].

This paper introduced the Fast Double Branch Network (FDB-
Net), which utilized dilated convolutions to segment the fetal skull in 
ultrasound images, achieving a DSC of 97.98%. The use of dilated 
convolutions proved effective in capturing both fine details and broader 
contextual information [16].

Researchers explored a region-based convolutional approach 
using Mask-R2CNN for fetal head segmentation, achieving a Hausdorff 
Distance (HD) absolute difference (AD) of 1.95 mm, highlighting the 
significance of region-based deep learning models for more precise 
medical imaging [17]. 

Ghelich Oghli et al. [18] developed a CNN-based architecture 
for HC biometry measurement, attaining a DSC of 97.20% and 
demonstrating the feasibility of CNN-based segmentation for automatic 
fetal biometry analysis. Fiorentino et al. employed a regression CNN 
for HC segmentation, achieving an AD of 1.90 mm, further validating 
the accuracy of deep learning models for HC estimation [19].

Several studies have enhanced traditional architectures to 
improve segmentation accuracy. Ashkani Chenarlogh et al. [20] 
introduced a modified UNet for fetal head segmentation, achieving 
a DSC of 97.62%, demonstrating that optimizing UNet architectures 
can significantly refine segmentation results. Farsana and Kowsalya 
[21] employed a dilated multi-scale LinkNet model with a merged 
self-attention mechanism, reaching a DSC of 96.37%, reinforcing the 
effectiveness of attention mechanisms in segmentation. Additionally, 
Zeng et al. [22] proposed a fully CNN-based model incorporating 
multiple design elements, achieving a DSC of 97.61% and an HD 
AD of 1.97 mm, further demonstrating the efficacy of advanced CNN 
models in fetal head segmentation.

These studies collectively highlight the importance of integrating 
attention mechanisms, dilated convolutions, and advanced CNN 
architectures in order to enhance segmentation accuracy. Building on 
these advancements, our proposed method employs a hybrid approach 
that combines Convolutional Neural Networks (CNNs), self-supervised 
learning (SSL), and vision transformers (ViTs) while integrating an 
attention-enhanced UNet. This approach ensures more effective feature 
extraction and improved segmentation performance, addressing the 
challenges posed by low-contrast ultrasound images and variations in 
fetal head morphology.

3. Materials and Methods
The section describes the procedures for building an automatic 

system that measures fetal HC from 2D ultrasound images. The 
methodology structure consists of four sequential steps that begin with 
dataset collection followed by hybrid CNN along with SSL combined 
with ViTs for feature extraction. Then, the steps proceed to segment the 
fetal head using the UNet deep learning model, which measures the size 
with the Hough transform, as illustrated in Figure 1. Each stage of the 
procedure contains specific methods to measure HC efficiently, which 
enhances clinical decision-making capabilities.

3.1. Phase 1: dataset collection
We used the publicly available HC18 dataset [23], hosted on the 

Grand Challenge platform, which contains 1,334 2D ultrasound pictures 
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of fetal heads. We employed 999 images for training purposes and 335 
images for testing purposes. Each image features specific data due to its 
resolution of 800 × 540 pixels per picture, while pixel widths vary from 
0.052 to 0.326 mm. The dataset called HC18 functions as a standard 
research tool for tracking fetal growth because it contains ongoing HC data 
from numerous pregnancy cases. Our computer-aided diagnosis (CAD) 
system benefits from this dataset structure to achieve generalization 
across different gestational ages along with pregnancy circumstances. The 
photographic data includes direct measurements of HC that researchers 
took from the predefined “standard plane” area of the fetal head. System 
measurements are accurate and in line with clinical standards as they are 
focused on this plane. The HC18 provides better convenience through a 
larger collection of maternal and fetal measurement variables, including 
age, body mass index (BMI), and ethnicity. All pregnancy results, such 
as small-for-gestational-age (SGA) and low birth weight and full-term 
and preterm births, are present in the dataset to support extensive fetal 
development analysis, as Figure 2 shows examples of the data samples.

3.2. Phase 2: hybrid feature extraction using CNNs, 
SSL, and ViTs

In this phase, we aim to extract relevant and meaningful features 
from ultrasound images of the fetal head using a combination of 
modern feature extraction techniques: pretrained CNNs, SSL, and 
ViTs. The method employs multiple components intended to extract 
information from images at local scales and integrate it with extended 
global contextual knowledge [24]. 

The first step includes utilizing EfficientNet [25] as a pretrained 
CNN foundation to derive local features from ultrasound images, which 
encompass edges alongside textures and basic anatomical structures. 
The models produce feature maps that supply detailed representations 
of low- and mid-level image features needed to detect fetal head 
structures. Medical imaging tasks utilize pretrained CNNs because they 
show effective domain generalization, according to Aggarwal et al. [26] 
and Kumar et al. [27].

The Momentum Contrast (MoCo)  SSL technique [28] is used 
for feature extraction with a large unlabeled set of ultrasound images. 
Through SSL, the model develops separate discriminative feature 
representations by learning from unlabeled data and identifies higher-
level image features that supplement the locally extracted features 
from a CNN. SSL functions as a powerful procedure that teaches 
representation learning in medical imaging as well as additional domains 
[29]. SSL assists the model in learning important patterns in ultrasound 
images by comparing similar and different examples. This allows the 
model to understand things such as the format and feel the fetal head 
without unlabelled data. That is difficult when we select manually, but 
it is necessary to get accurate results. SSL also helps the model work 
better with new or different images and already supports CNN.

We use ViTs [30] in obtaining long-range dependency modelling 
while capturing global context because they excel at spatial relationship 
processing across image regions. The precise location abilities make 
this technique useful for visualizing anatomical structures with multiple 
parts, including the fetal skull. The features extracted from both CNN 
and SSL models enter the ViT for processing so that the model can gain 
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simultaneous comprehension of the whole image. ViTs significantly 
benefit medical imaging tasks because these models establish connections 
between global context and distant element dependencies [31, 32]. 

The combined features extracted from CNN, along with SSL and 
ViT models, become one unified vector before undergoing refinement 
through attention mechanisms which emphasize significant features. 
Research shows that these methods have been proven most beneficial 
for medical imaging because they enable researchers to concentrate on 
essential areas of interest [33]. Finally, the fused feature vector proceeds 
to a neural network with Recurrent Neural Network (RNN)-based 
architecture or alternative classification, or segmentation structure 
based on the particular task of fetal head segmentation or disease 
detection. Medical imaging analysis heavily relies on RNNs because 
these networks process complex operations with high precision, as 
reported in Litjens et al. [34].

3.3. Phase 3: fetal head segmentation using UNet
After extracting features, they are used to train fetal skull 

classification. This is done by feeding feature vectors to the classifier 
to detect patterns in the feature vectors that can be used to identify the 
fetal skull. This is done through several steps, such as feature selection, 
training, and testing, until the classifier can classify the fetal skull in a 
given ultrasound image.

 For this purpose, in the first step, we train the UNet network and 
autoencoder to find and select the fetal head. The UNet architecture is 
a fully CNN tailored for biomedical picture segmentation [35]. UNet 
helps us with detailed specifications, and AE helps us with the specific 

fetal head area. In the next step, we select the head of the fetus and use 
contouring to improve the result. The tan ellipse and the last step are 
for the final area of the Feet Ellipse. The UNet network has been used 
in the proposed CAD systems for fetal HC due to its accurate, fast, and 
reliable segmentation of various medical images [36]. The proposed 
modification to traditional UNet architecture focuses on improving 
fetal HC identification through the methods it introduced. The approach 
combines hybrid feature extraction using CNNs, SSL, and ViTs before 
segmentation with contour refinement through elliptical fitting and 
optimized convolutional layers for ultrasound image feature extraction. 
This network is very effective in accurately drawing anatomical 
structures such as fetal HC. UNet can accurately and efficiently 
diagnose the fetal head. In addition, the classification produced by UNet 
can be used to compare fetal HC relative to gestational age, which can 
help determine whether the fetus is developing typically or if there is 
cause for concern [37]. The UNet deep network used has the following 
structure in Figure 3.

This U-shaped model specifies that the expansion and 
contraction routes each include three convolutional blocks. There are 
two convolution layers: one with a 2 × 2 max-pooling layer and one 
with a block in the shrinking route. As illustrated in Figure 3, there is 
another block that includes a 2 × 2 upsampling layer in the broad route, 
a merge layer that joins the shrinking path with the matching block, 
a dropout layer, and two convolution layers. Two convolution layers 
make up the connecting route, as seen in the image. In the end, the layer 
that produces the pixel class scores is a 1 × 1 convolution layer that uses 
sigmoid activation and a single filter. In the contraction route of each 
convolutional layer in blocks 1, 2, and 3, there are 112, 224, and 448 
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filters, respectively. In the expansion path, there are 224, 122, and 122 
filters in blocks 5, 6, and 7. Along the connection route, you will find 
448 filters for each convolution layer.

Based on Figure 3, the proposed UNet network has two main 
parts: an encoder and a decoder. The encoder part of the UNet network, 
proposed by this research to detect fetal HC, is responsible for extracting 
information from input images and features that can detect fetal HC. 
This section takes ultrasound images and extracts critical features such 
as shape, size, texture, colour, and other features after the extracted 
features are passed to the decoder layers. These are converted into 
labels or predicted values for the image.

Mathematically, assuming f(x) denotes the input picture, each 
convolution operation inside the UNet architecture employs a kernel K 
on f(x) to generate an output feature map, expressed as:

Equation (1) illustrates how a convolution operation enables the 
model to extract features concerning space in the input image. If the 
number of encoder layers in the UNet network is increased, the model’s 
accuracy in detecting fetal HC can be improved. This is because each 
layer in the encoder increases the network’s capacity to gain a deeper 
understanding of the data, allowing the model to increase its accuracy 
with better feature extraction capabilities. However, the number of 
layers increases beyond a certain point. In that case, it can add to the 
data, leading to poor generalization performance on new data, which we 
have avoided in the proposed model.

On the other hand, the decoder section in the UNet network is 
responsible for upgrading the scale of filtered information from the 
encryption stage. It combines the encoded features from the encoding 
step with the original image information by repeatedly applying shifted 
convolutions. 

The regular UNet architecture has difficulty working with 
noisy images with inconsistent contrast levels, producing inferior 
fetal head segmentation. Our enhanced UNet uses extract feature-
based preprocessing to enhance edge structure and reduce background 
interference, thus solving previous model limitations. Implementing 
contour refinement techniques produces accurate segmentations when 
operating under low-contrast conditions.

This upscaling process reconstructs the original input image 
scale. In the case of the UNet network proposed for fetal HC detection 
research, the receiver acts as a detector. It magnifies the filtered image 
to search for the contours and shape of the HC.

Increasing the number of decoder layers in a UNet network can 
also improve the accuracy of network results because this increase 
allows the network to extract more specific features from the input data. 
However, this increase can also lead to increased model complexity and 
longer training time. In addition, if the number of layers is increased 
too much, it can lead to overfitting, which reduces the model’s 
generalizability in fetal HC detection.

Upsampling using transpose convolution may be mathematically 
expressed as:

As Equation (2) reads, the transposed convolution feature 
combines learned encoded features with spatial features of previous 
layers to recreate an image of the original scale. To detect fetal HC, 
the decoder enlarges the processed picture to identify the contours and 
forms of the HC.

The MaxPool layer in the UNet network reduces the spatial 
resolution of the input feature maps. This size reduction allows for more 

efficient network training as it reduces the parameters and computations 
required to process the data without compromising essential properties. 
For example, if f(x) denotes the input feature map, the max-pooling 
process may be articulated as:

As Equation (3) mentions, the most outstanding value within a 
predefined sliding window is chosen in max-pooling, which retains the 
most pronounced features. In addition, the MaxPool layer is also helpful 
during segmentation because it brings together the corresponding pixel 
features and makes learning the segmentation mask for the network 
easier.

The number of MaxPool layers in the UNet network proposed 
by this research is essential for fetal HC detection because it affects 
the model’s accuracy. By increasing the encoder layers, the model can 
more accurately capture the low-level features of images needed for 
HC detection and reduce false positives and negatives. Additionally, 
a deeper encoder can produce better segmentation boundaries. This is 
important for accurate fetal HC detection, as the boundaries of the HC 
must be determined.

The convolutional layers of UNet facilitate feature extraction by 
convolving the input data with adjustable filter weights. The convolution 
process at each layer generates feature maps for detecting fetal HC, 
given the input feature map f (x) and the filter weights W.

These feature maps traverse following layers to accurately 
categorize fetal HC.

Augmenting the depth of decoder layers might enhance accuracy 
by improving the model’s capacity to capture intricate features. 
Nonetheless, it is important to maintain a balance to prevent overfitting, 
which might adversely affect the generalizability of the fetal HC 
detection model.

3.4. Phase 4: enhanced UNet using attention 
mechanism

While the UNet architecture has shown success in fetal head 
segmentation, its performance can be further improved, particularly 
in the presence of noisy ultrasound images with low contrast. To 
enhance the segmentation process, we introduce the Attention-UNet, 
which integrates attention mechanisms to focus more accurately on 
the relevant regions of the image, such as the fetal head. The attention 
mechanism helps the model distinguish between the foreground (the 
fetal head) and the background, reducing false positives and improving 
segmentation precision [38].

In this approach, attention gates (AGs) are incorporated into the 
skip connections between the encoder and the decoder of the UNet [39]. 
These gates allow the model to selectively focus on the features that 
are important for fetal head segmentation, filtering out irrelevant or 
distracting background information. The attention mechanism improves 
the model’s ability to prioritize crucial parts of the image while 
suppressing noise or irrelevant areas, leading to better segmentation 
results, particularly in challenging ultrasound images [40].

The Attention-UNet architecture retains the core structure of the 
original UNet, including the encoder–decoder pathways [41], but adds 
the attention gates in the skip connections. These gates allow the model 
to dynamically adjust the focus based on the features being processed, 
ensuring that the most relevant features for detecting the fetal head are 
given more weight during training and prediction.

The Attention-UNet is trained using a loss function that combines 
binary cross-entropy loss and Dice loss [42], which helps improve the 
model’s ability to handle class imbalance and accurately localize the 
boundaries of the fetal head.

(1)

(2)

(3)
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3.5. Phase 5: Hough transform
The Circular Hough Transform (CHT) is an algorithm employed 

to identify circles within an image. This algorithm leverages edge 
detection within the image to mathematically identify circles [43]. 
Because it is highly accurate and efficacious, it is widely used in 
computer vision and image analysis for applications including object 
recognition, contour detection, and fetal head detection, which is used 
in this research.

The Hough transform is an algorithmic solution that can automate 
measurement of the fetal HC and fetal age in 2D ultrasound images 
[44]. This application of the algorithmic method enables accurate, 
reliable measurements of both HC and fetal age, which are critical 
diagnostic factors for prenatal examinations. The Hough transformation 
enables the extraction of fetal HC, providing an accurate estimate of 
fetal age, which is necessary in determining the necessary medical 
interventions for the developing fetus. To detect a circle through the 
Hough algorithm, we must specify several parameters, including: the 
circle’s center is located at the coordinates (x_0, y_0); its radius is R.

The equation of the circle can be written as follows: 

Equation (4) shows that every point (x, y) on the circle perimeter 
fulfils this relation. To detect a circle using Hough’s algorithm in an 
image, the following steps need to be taken: Firstly, we need to identify 
the edges of the desired image with the help of edge detectors such as 
Canny. Secondly, we must consider a threshold limit for the optimum 
values of the radius, both the minimum and maximum. Finally, the 
process of Hough transformation is applied to identify and locate circles 
within the image.

In the proposed method, we initially isolate the precise position 
of the fetus’ head, estimate its area, and ultimately account for the fact 
that the largest diameter present in recorded images is 1.13 times the 
size of the smaller diameter. In our model, we approximate the fetal 
head shape using an ellipse, where:

1)  a and b represent the semi-major and semi-minor axes, respectively,
2)  s represents the elliptical area (in mm²), and
3)  p represents the elliptical perimeter (in mm).

The area of the ellipse is calculated by Equation (5) and the 
perimeter approximated by Equation (6):

In order to isolate the semi-major axis, a, we rewrite Equation (5) 
as follows, Equation (7):

Solving for a, we get Equation (8):

p will be the right-hand side of the area s as in Equation (9):

Once we have measured the fetal HC, we can calculate the 
probable gestational age of the fetus via a linear correlation, which is 
universal as seen below in Equation (10):

In this case, GA is gestational age in weeks, and a and b are 
constants specific to the population. To directly compute gestational 
age, we apply a modified form commonly taken by prior studies [45], 
and given in Equation (11), to our study:

While the Hough transform is effective for circular shape 
detection, it has some limitations. Most notably, its performance is 
sensitive to parameter tuning, such as the range of expected radii and 
the threshold for edge detection. Incorrect settings may result in false 
detections or missed features, especially in noisy ultrasound images. 
Additionally, its computational complexity increases with image 
resolution and the number of circles to detect. As potential alternatives, 
methods such as ellipse-specific regression networks, deformable active 
contours (snakes), or machine learning-based shape fitting techniques 
may offer better adaptability and robustness in challenging imaging 
conditions. These approaches can be explored in future work to further 
improve measurement reliability.

4. Implementation and Simulation
The simulation of the proposed method is done in Python. 

Python is a more robust language than MATLAB for programming 
CAD systems for fetal HC. In other words, Python has a greater variety 
of numerical libraries and a more robust set of language features. 
Python also allows object-oriented paradigms to structure complex 
computations or develop larger software projects. Python enables the 
use of a more significant number of model-based interpretations and 
problem-solving strategies, which can help improve the accuracy and 
reliability of the CAD system. Of course, as a more general advantage, 
Python is more affordable than MATLAB and allows developers 
to save on license fees. Finally, Python is more accessible for code 
and development than MATLAB, which may lead to faster system 
development and deployment. Therefore, it has been used to simulate 
the proposed method.

4.1. Simulation results
Table 1 describes the simulation results for some sample images, 

pixel size, and HC size in millimetres (mm).
For example, if we want to estimate the age of the fetus from 

HC, we use Chen et al.’s [40] article. For example, if the HC was 18.69, 

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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Row Filename Pixel size (mm) HC (mm)
1 000_HC.png 0.069136 44.30
2 001_HC.png 0.089659 56.81
3 002_HC.png 0.062033 68.75
4 003_HC.png 0.091291 69.00
5 004_HC.png 0.061240 59.81

Table 1
Simulation results
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the estimated age is 21 weeks. We use the following Equation (11) to 
estimate the age of the fetus.

In the above relationship, Age(week) is the age of the fetus in 
weeks. The position of the fetal head is directly related to the area of the 
fetal head. The simulation results are shown in the following Figure 4.

Figure 5 is the final result after masking to find the HC and age 
of the fetus.

For this sample image, the estimated age of the fetus is 23 weeks, 
based on counting the number of white pixels and using the equation 
provided with scaling.

4.2. Discussion and comparison
Moccia et al. [17] and Sobhaninia et al. [44] have presented a 

network similar to the proposed method of this research. The accuracy 
results of the proposed method compared to Moccia et al. [17] and 
Sobhaninia et al. [44] are presented in the table below. As it is known, 
the proposed method is more accurate than the other two methods. 
In fetal ultrasound image segmentation methods with deep learning, 
average distance factor (ADF) and DSC score parameters are also used 
for comparison. Table 2 explains the comparison between our proposed 
model and other studies.

The simulation results show that the proposed UNet method 
of this research has main advantages for practical applications. In 
fact, in addition to having a basic and standardized architecture, 
the proposed method UNet with attention mechanism also has good 
accuracy. The results presented in the table show that the proposed 
method has the highest accuracy. Also, the proposed method is 
simulated on a standard dataset. However, this method still has 
limitations; one of the most important limitations of the proposed 
method is the lack of access to a large dataset. If this limitation is 
removed, it is possible to examine the advantages and disadvantages 
of the proposed method.

5. Conclusion and Future Works
This study presents a CAD method for the automated assessment 

of fetal HC and gestational age using 2D ultrasound pictures. We 
successfully created a system that delivers precise and efficient 
measurements by utilizing the HC18 dataset and implementing a 
multi-phase approach, including preprocessing, feature extraction 
using CNNs, SSL, and ViTs, and segmentation via a UNet deep 
learning model. The system attained a Dice coefficient of 97.23 ± 
2.78, an ADF of 2.8 ± 2.93 mm, and an accuracy of 97.2%, indicating 
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 Figure 5
Final result after masking to find head circumference (HC) and fetal age

 Figure 4
Simulation results
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its capability to aid doctors in assessing fetal growth. After that, we 
enhanced UNet using attention mechanism that achieved a Dice 
coefficient of 98.5 ± 2.5, an ADF of 2.4 ± 2.8 mm, and an accuracy 
of 98.1%. This method mitigates the constraints of poor signal-
to-noise ratios and human measurement inaccuracies in ultrasonic 
imaging. The suggested approach provides a cost-efficient and 
dependable instrument for automating the determination of fetal HC, 
demonstrating significant promise for clinical use. In the future, we 
recommend augmenting the dataset to include a more comprehensive 
array of fetal diseases and gestational ages to enhance the model’s 
generalizability.

Furthermore, integrating sophisticated picture augmentation 
methods and hybrid deep learning frameworks may significantly 
improve segmentation precision. Integrating real-time data into 
clinical practice is a primary objective, facilitating prompt feedback 
for healthcare professionals. Ultimately, augmenting the system to 
automate the assessment of other fetal indicators, like femur length and 
belly circumference, would enhance its clinical use.
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