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Abstract: Two-dimensional (2D) medical ultrasound is a widely used imaging modality for the anatomical and functional assessment of fetal
development due to its low cost, availability, real-time capability, and the absence of radiation hazards. Head circumference (HC) is an essential
biometric to measure fetal growth. However, the low signal-to-noise ratio in ultrasound imaging can make it difficult for clinicians to identify the
fetal plane correctly. Additionally, manually measuring HC can be expensive, involving accurately placing three minor and major parameter points
from the ultrasound machine. To address these issues, research has been conducted to develop an automated system for measuring HC. This study
presents a computer-aided diagnosis (CAD) system for the automatic measurement of fetal HC and fetal age using hybrid feature extraction. Using
Convolutional Neural Networks (CNNs), self-supervised learning (SSL), vision transformers (ViTs), UNet deep learning model for segmentation,
and Hough transform to measure performance, this study achieved higher performance compared to previous studies with a Dice similarity
coefficient (DSC) 0f 97.23 + 2.78, an average distance factor (ADF) of 2.8 +2.93 mm, a Jaccard Index of 88.57 + 3.79, and an accuracy of 97.2%.
After that, we enhance UNet using an attention mechanism that achieved a Dice coefficient of 98.5 + 2.5, an ADF of 2.4 + 2.8 mm, and an accuracy

0f 98.1%. This system provides a more cost-effective and accurate measurement of HC, aiding clinicians in assessing fetal development.
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1. Introduction

There has been much research on developing automated methods
for measuring head circumference (HC) using two-dimensional (2D)
ultrasound pictures. Because of their low cost, widespread availability,
real-time capability, and absence of radiation exposure, 2D medical
ultrasonography (USG) machines have become the primary imaging
modality for the surveillance of fetal anatomy and function [1]. Usually,
a standard ultrasound examination is advised between weeks 18 and 22
of pregnancy. 2D ultrasound devices create diagnostic images doctors
use to assess fetal development stages [2]. The embryonic growth
process can be evaluated through multiple qualitative and quantitative
research approaches. Qualitative analysis of fetal heart physiology
serves as one investigative method. Through quantitative analysis, fetal
development assessment utilizes biometric data to estimate gestational
age and measure fetal weight in order to detect potential fetal anomalies.
Accurate weight measurements combined with age estimation remain
necessary to provide top-level care for the unborn child. For a person’s
biometric profile, their facial features include forehead width, arm
measurements, and leg length. Accurately determining fetal gestational
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age depends on using HC because this method provides reliable data
about fetal HC [3].

Healthcare professionals currently conduct HC assessments
in their regular patient measurement routine through semi-automatic
methods. A doctor’s success depends on their understanding of
anatomical positioning to position the probe correctly. Medical staff
must precisely determine and categorize maternal tissue on the fetal
plane before using the ellipse parameter calipers. When calipers are
correctly placed, the USG machine generates an ellipse and calculates
its dimensional radius. A low signal-to-noise ratio leads to frequent
difficulties for clinicians in separating the maternal tissue from the
fetal plane. Medical practitioners across all levels find it challenging
and time-consuming to measure fetal biometry manually [4]. Medical
personnel use automatic methods to measure patient HC by joining
selected spots on ultrasound pictures’ main and smallest elliptical axes.
Computing the ellipse circumference allows researchers to define an
accurate HC representation. The interpretation process encounters
difficulties associated with ultrasound image noise elements, such as
speckles and artifacts, which demand expert-level knowledge from
observers. Observational differences in manual HC marking between
practitioners result in wide measurement variations [5].

The objective and more accurate fetal HC measurement could be
achieved by automated methods. The fetal HC is typically determined
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by identifying the fetal head region of interest (Rol), fitting an ellipse
inside the Rol, and finally calculating the HC using the adjusted
circumference. The technique utilized in this paper for fetal head Rol
localization is a multiscale classifier, such as the Haar cascaded classifier
algorithm family. This work optimizes the ellipse-fitting algorithm for a
candidate Rol in the fetal skull. Ellipse fitting algorithms often fall into
one of three broad classes: statistical, heuristic, or hybrid approaches;
methods based on clustering or voting; and methods based on geometric
or algebraic least squares [6]. The noniterative algebraic methods are
well-suited for real-time applications due to their comparatively easy
solutions. When dealing with broken or partially occluded ellipses,
their performance can be reduced due to their sensitivity to outlier
noise and bias in the estimations. On the other hand, geometric methods
are more resilient to noise but necessitate iterative calculations that
get progressively more complex. Even though it relies heavily on a
predefined training dataset and is not as robust, the clustering method
can find ellipses quickly. The Hough transform approaches that rely on
voting are better at avoiding occlusions, but they need an exponentially
large amount of computation. Statistical models may fail when faced
with extremely high noise levels, and the Kalman filtering approach
favors high curvature fits. A normal distribution model or the Hough
transform in conjunction with least square minimization requires a lot
of computing power [7]. Machine learning methods have recently been
increasingly applied to fetal biometry in order to analyze high-level
features from ultrasound image data. Convolutional Neural Network
(CNN) model applications are widely used for medical [8], geographical
[9, 10], and other fields, and their usefulness has been proven. Li
et al. [11] used a random forest classifier to localize the fetal head and
employed phase symmetry and ellipse fitting to fit the HC ellipse for
measurement. However, this approach requires prior knowledge of
the gestational age and ultrasound scanning depth. Irene et al. [12]
suggested a CNN in order to identify boundaries of the fetal head in
ultrasound images that classifies every pixel as one of four groups,
including maternal network (horizontal patterns), upper head boundary
(concave arcs), lower head boundary (convex arcs), and background.
On polar-transformed images, they used a UNet model and they were
able to complete this multi-class segmentation successfully.

This paper studies the methodology in determining fetal head
measurements and estimating gestational age using 2D ultrasound
images. With the latest improvements in ultrasound imaging technology,
we provide a thorough analysis of the methods employed for fetal head
assessment and age estimation in 2D ultrasound scans. We investigate
multiple ultrasound measurement techniques for fetal heads and age
measurements within 2D ultrasound images. Section 2 shows related
work; Section 3 explains our proposed method; Section 4 shows the
simulation results of our proposed model; and Section 5 shows our
conclusion and future works.

2. Related Works

Segmenting the fetal head from ultrasound images is a critical
yet challenging task due to variations in head size and shape and
the inherently low contrast of ultrasound scans. Recent studies have
explored various deep-learning architectures to enhance segmentation
accuracy.

The authors introduced Directed Acyclic Graph (DAG)-based
extension of the V-Net (DAG V-Net), a deep learning-based method
specifically designed for fetal head segmentation and HC measurement
in 2D ultrasound images. Their approach achieved a mean Dice
similarity coefficient (DSC) of 97.93%, demonstrating the effectiveness
of V-Net-based architectures in capturing fine details [13].

Similarly, other researchers proposed the Scale Attention
Pyramid Network (SAPNet), which leveraged an attention mechanism
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to enhance feature extraction, achieving a DSC of 97.94%. This
highlights the significant role of attention-based architectures in
improving segmentation accuracy [14].

The authors adopted a regression CNN for fetal head delineation,
integrating ellipse fitting with an iterative closest point algorithm and a
random sample consensus (RANSAC) method. Their approach attained
a DSC of 97.95%, showcasing the advantages of combining deep
learning with geometric modelling for precise HC measurement [15].

This paper introduced the Fast Double Branch Network (FDB-
Net), which utilized dilated convolutions to segment the fetal skull in
ultrasound images, achieving a DSC of 97.98%. The use of dilated
convolutions proved effective in capturing both fine details and broader
contextual information [16].

Researchers explored a region-based convolutional approach
using Mask-R2CNN for fetal head segmentation, achieving a Hausdorff
Distance (HD) absolute difference (AD) of 1.95 mm, highlighting the
significance of region-based deep learning models for more precise
medical imaging [17].

Ghelich Oghli et al. [18] developed a CNN-based architecture
for HC biometry measurement, attaining a DSC of 97.20% and
demonstrating the feasibility of CNN-based segmentation for automatic
fetal biometry analysis. Fiorentino et al. employed a regression CNN
for HC segmentation, achieving an AD of 1.90 mm, further validating
the accuracy of deep learning models for HC estimation [19].

Several studies have enhanced traditional architectures to
improve segmentation accuracy. Ashkani Chenarlogh et al. [20]
introduced a modified UNet for fetal head segmentation, achieving
a DSC of 97.62%, demonstrating that optimizing UNet architectures
can significantly refine segmentation results. Farsana and Kowsalya
[21] employed a dilated multi-scale LinkNet model with a merged
self-attention mechanism, reaching a DSC of 96.37%, reinforcing the
effectiveness of attention mechanisms in segmentation. Additionally,
Zeng et al. [22] proposed a fully CNN-based model incorporating
multiple design elements, achieving a DSC of 97.61% and an HD
AD of 1.97 mm, further demonstrating the efficacy of advanced CNN
models in fetal head segmentation.

These studies collectively highlight the importance of integrating
attention mechanisms, dilated convolutions, and advanced CNN
architectures in order to enhance segmentation accuracy. Building on
these advancements, our proposed method employs a hybrid approach
that combines Convolutional Neural Networks (CNNs), self-supervised
learning (SSL), and vision transformers (ViTs) while integrating an
attention-enhanced UNet. This approach ensures more effective feature
extraction and improved segmentation performance, addressing the
challenges posed by low-contrast ultrasound images and variations in
fetal head morphology.

3. Materials and Methods

The section describes the procedures for building an automatic
system that measures fetal HC from 2D ultrasound images. The
methodology structure consists of four sequential steps that begin with
dataset collection followed by hybrid CNN along with SSL combined
with ViTs for feature extraction. Then, the steps proceed to segment the
fetal head using the UNet deep learning model, which measures the size
with the Hough transform, as illustrated in Figure 1. Each stage of the
procedure contains specific methods to measure HC efficiently, which
enhances clinical decision-making capabilities.

3.1. Phase 1: dataset collection

We used the publicly available HC18 dataset [23], hosted on the
Grand Challenge platform, which contains 1,334 2D ultrasound pictures
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Figure 1
Methodology of study

of fetal heads. We employed 999 images for training purposes and 335
images for testing purposes. Each image features specific data due to its
resolution of 800 x 540 pixels per picture, while pixel widths vary from
0.052 to 0.326 mm. The dataset called HC18 functions as a standard
research tool for tracking fetal growth because it contains ongoing HC data
from numerous pregnancy cases. Our computer-aided diagnosis (CAD)
system benefits from this dataset structure to achieve generalization
across different gestational ages along with pregnancy circumstances. The
photographic data includes direct measurements of HC that researchers
took from the predefined “standard plane” area of the fetal head. System
measurements are accurate and in line with clinical standards as they are
focused on this plane. The HC18 provides better convenience through a
larger collection of maternal and fetal measurement variables, including
age, body mass index (BMI), and ethnicity. All pregnancy results, such
as small-for-gestational-age (SGA) and low birth weight and full-term
and preterm births, are present in the dataset to support extensive fetal
development analysis, as Figure 2 shows examples of the data samples.

3.2. Phase 2: hybrid feature extraction using CNNs,
SSL, and ViTs

In this phase, we aim to extract relevant and meaningful features
from ultrasound images of the fetal head using a combination of
modern feature extraction techniques: pretrained CNNs, SSL, and
ViTs. The method employs multiple components intended to extract
information from images at local scales and integrate it with extended
global contextual knowledge [24].

Phase 3: U-Net Segmentation

: Phase 4: Enh U-Net by A

The first step includes utilizing EfficientNet [25] as a pretrained
CNN foundation to derive local features from ultrasound images, which
encompass edges alongside textures and basic anatomical structures.
The models produce feature maps that supply detailed representations
of low- and mid-level image features needed to detect fetal head
structures. Medical imaging tasks utilize pretrained CNNs because they
show effective domain generalization, according to Aggarwal et al. [26]
and Kumar et al. [27].

The Momentum Contrast (MoCo) SSL technique [28] is used
for feature extraction with a large unlabeled set of ultrasound images.
Through SSL, the model develops separate discriminative feature
representations by learning from unlabeled data and identifies higher-
level image features that supplement the locally extracted features
from a CNN. SSL functions as a powerful procedure that teaches
representation learning in medical imaging as well as additional domains
[29]. SSL assists the model in learning important patterns in ultrasound
images by comparing similar and different examples. This allows the
model to understand things such as the format and feel the fetal head
without unlabelled data. That is difficult when we select manually, but
it is necessary to get accurate results. SSL also helps the model work
better with new or different images and already supports CNN.

We use ViTs [30] in obtaining long-range dependency modelling
while capturing global context because they excel at spatial relationship
processing across image regions. The precise location abilities make
this technique useful for visualizing anatomical structures with multiple
parts, including the fetal skull. The features extracted from both CNN
and SSL models enter the ViT for processing so that the model can gain

Figure 2
Samples of dataset
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simultaneous comprehension of the whole image. ViTs significantly
benefit medical imaging tasks because these models establish connections
between global context and distant element dependencies [31, 32].

The combined features extracted from CNN, along with SSL and
ViT models, become one unified vector before undergoing refinement
through attention mechanisms which emphasize significant features.
Research shows that these methods have been proven most beneficial
for medical imaging because they enable researchers to concentrate on
essential areas of interest [33]. Finally, the fused feature vector proceeds
to a neural network with Recurrent Neural Network (RNN)-based
architecture or alternative classification, or segmentation structure
based on the particular task of fetal head segmentation or disease
detection. Medical imaging analysis heavily relies on RNNs because
these networks process complex operations with high precision, as
reported in Litjens et al. [34].

3.3. Phase 3: fetal head segmentation using UNet

After extracting features, they are used to train fetal skull
classification. This is done by feeding feature vectors to the classifier
to detect patterns in the feature vectors that can be used to identify the
fetal skull. This is done through several steps, such as feature selection,
training, and testing, until the classifier can classify the fetal skull in a
given ultrasound image.

For this purpose, in the first step, we train the UNet network and
autoencoder to find and select the fetal head. The UNet architecture is
a fully CNN tailored for biomedical picture segmentation [35]. UNet
helps us with detailed specifications, and AE helps us with the specific

fetal head area. In the next step, we select the head of the fetus and use
contouring to improve the result. The tan ellipse and the last step are
for the final area of the Feet Ellipse. The UNet network has been used
in the proposed CAD systems for fetal HC due to its accurate, fast, and
reliable segmentation of various medical images [36]. The proposed
modification to traditional UNet architecture focuses on improving
fetal HC identification through the methods it introduced. The approach
combines hybrid feature extraction using CNNs, SSL, and ViTs before
segmentation with contour refinement through elliptical fitting and
optimized convolutional layers for ultrasound image feature extraction.
This network is very effective in accurately drawing anatomical
structures such as fetal HC. UNet can accurately and efficiently
diagnose the fetal head. In addition, the classification produced by UNet
can be used to compare fetal HC relative to gestational age, which can
help determine whether the fetus is developing typically or if there is
cause for concern [37]. The UNet deep network used has the following
structure in Figure 3.

This U-shaped model specifies that the expansion and
contraction routes each include three convolutional blocks. There are
two convolution layers: one with a 2 x 2 max-pooling layer and one
with a block in the shrinking route. As illustrated in Figure 3, there is
another block that includes a 2 x 2 upsampling layer in the broad route,
a merge layer that joins the shrinking path with the matching block,
a dropout layer, and two convolution layers. Two convolution layers
make up the connecting route, as seen in the image. In the end, the layer
that produces the pixel class scores is a 1 x 1 convolution layer that uses
sigmoid activation and a single filter. In the contraction route of each
convolutional layer in blocks 1, 2, and 3, there are 112, 224, and 448

Figure 3
Proposed UNet deep network
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filters, respectively. In the expansion path, there are 224, 122, and 122
filters in blocks 5, 6, and 7. Along the connection route, you will find
448 filters for each convolution layer.

Based on Figure 3, the proposed UNet network has two main
parts: an encoder and a decoder. The encoder part of the UNet network,
proposed by this research to detect fetal HC, is responsible for extracting
information from input images and features that can detect fetal HC.
This section takes ultrasound images and extracts critical features such
as shape, size, texture, colour, and other features after the extracted
features are passed to the decoder layers. These are converted into
labels or predicted values for the image.

Mathematically, assuming f(x) denotes the input picture, each
convolution operation inside the UNet architecture employs a kernel K
on f(x) to generate an output feature map, expressed as:

(M

Equation (1) illustrates how a convolution operation enables the
model to extract features concerning space in the input image. If the
number of encoder layers in the UNet network is increased, the model’s
accuracy in detecting fetal HC can be improved. This is because each
layer in the encoder increases the network’s capacity to gain a deeper
understanding of the data, allowing the model to increase its accuracy
with better feature extraction capabilities. However, the number of
layers increases beyond a certain point. In that case, it can add to the
data, leading to poor generalization performance on new data, which we
have avoided in the proposed model.

On the other hand, the decoder section in the UNet network is
responsible for upgrading the scale of filtered information from the
encryption stage. It combines the encoded features from the encoding
step with the original image information by repeatedly applying shifted
convolutions.

The regular UNet architecture has difficulty working with
noisy images with inconsistent contrast levels, producing inferior
fetal head segmentation. Our enhanced UNet uses extract feature-
based preprocessing to enhance edge structure and reduce background
interference, thus solving previous model limitations. Implementing
contour refinement techniques produces accurate segmentations when
operating under low-contrast conditions.

This upscaling process reconstructs the original input image
scale. In the case of the UNet network proposed for fetal HC detection
research, the receiver acts as a detector. It magnifies the filtered image
to search for the contours and shape of the HC.

Increasing the number of decoder layers in a UNet network can
also improve the accuracy of network results because this increase
allows the network to extract more specific features from the input data.
However, this increase can also lead to increased model complexity and
longer training time. In addition, if the number of layers is increased
too much, it can lead to overfitting, which reduces the model’s
generalizability in fetal HC detection.

Upsampling using transpose convolution may be mathematically
expressed as:

\

fu(z) = f(2)*K. @

As Equation (2) reads, the transposed convolution feature
combines learned encoded features with spatial features of previous
layers to recreate an image of the original scale. To detect fetal HC,
the decoder enlarges the processed picture to identify the contours and
forms of the HC.

The MaxPool layer in the UNet network reduces the spatial
resolution of the input feature maps. This size reduction allows for more

efficient network training as it reduces the parameters and computations
required to process the data without compromising essential properties.
For example, if f(x) denotes the input feature map, the max-pooling
process may be articulated as:

Fmazpool(z) = maz{f(z;;)} Vi,j € window. 3)

As Equation (3) mentions, the most outstanding value within a
predefined sliding window is chosen in max-pooling, which retains the
most pronounced features. In addition, the MaxPool layer is also helpful
during segmentation because it brings together the corresponding pixel
features and makes learning the segmentation mask for the network
easier.

The number of MaxPool layers in the UNet network proposed
by this research is essential for fetal HC detection because it affects
the model’s accuracy. By increasing the encoder layers, the model can
more accurately capture the low-level features of images needed for
HC detection and reduce false positives and negatives. Additionally,
a deeper encoder can produce better segmentation boundaries. This is
important for accurate fetal HC detection, as the boundaries of the HC
must be determined.

The convolutional layers of UNet facilitate feature extraction by
convolving the input data with adjustable filter weights. The convolution
process at each layer generates feature maps for detecting fetal HC,
given the input feature map f(x) and the filter weights .

These feature maps traverse following layers to accurately
categorize fetal HC.

Augmenting the depth of decoder layers might enhance accuracy
by improving the model’s capacity to capture intricate features.
Nonetheless, it is important to maintain a balance to prevent overfitting,
which might adversely affect the generalizability of the fetal HC
detection model.

3.4. Phase 4: enhanced UNet using attention
mechanism

While the UNet architecture has shown success in fetal head
segmentation, its performance can be further improved, particularly
in the presence of noisy ultrasound images with low contrast. To
enhance the segmentation process, we introduce the Attention-UNet,
which integrates attention mechanisms to focus more accurately on
the relevant regions of the image, such as the fetal head. The attention
mechanism helps the model distinguish between the foreground (the
fetal head) and the background, reducing false positives and improving
segmentation precision [38].

In this approach, attention gates (AGs) are incorporated into the
skip connections between the encoder and the decoder of the UNet [39].
These gates allow the model to selectively focus on the features that
are important for fetal head segmentation, filtering out irrelevant or
distracting background information. The attention mechanism improves
the model’s ability to prioritize crucial parts of the image while
suppressing noise or irrelevant areas, leading to better segmentation
results, particularly in challenging ultrasound images [40].

The Attention-UNet architecture retains the core structure of the
original UNet, including the encoder—decoder pathways [41], but adds
the attention gates in the skip connections. These gates allow the model
to dynamically adjust the focus based on the features being processed,
ensuring that the most relevant features for detecting the fetal head are
given more weight during training and prediction.

The Attention-UNet is trained using a loss function that combines
binary cross-entropy loss and Dice loss [42], which helps improve the
model’s ability to handle class imbalance and accurately localize the
boundaries of the fetal head.
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3.5. Phase 5: Hough transform

The Circular Hough Transform (CHT) is an algorithm employed
to identify circles within an image. This algorithm leverages edge
detection within the image to mathematically identify circles [43].
Because it is highly accurate and efficacious, it is widely used in
computer vision and image analysis for applications including object
recognition, contour detection, and fetal head detection, which is used
in this research.

The Hough transform is an algorithmic solution that can automate
measurement of the fetal HC and fetal age in 2D ultrasound images
[44]. This application of the algorithmic method enables accurate,
reliable measurements of both HC and fetal age, which are critical
diagnostic factors for prenatal examinations. The Hough transformation
enables the extraction of fetal HC, providing an accurate estimate of
fetal age, which is necessary in determining the necessary medical
interventions for the developing fetus. To detect a circle through the
Hough algorithm, we must specify several parameters, including: the
circle’s center is located at the coordinates (x_0, y 0); its radius is R.

The equation of the circle can be written as follows:

(z —z0)* + (y — y0)’ = R? )

Equation (4) shows that every point (x, y) on the circle perimeter
fulfils this relation. To detect a circle using Hough’s algorithm in an
image, the following steps need to be taken: Firstly, we need to identify
the edges of the desired image with the help of edge detectors such as
Canny. Secondly, we must consider a threshold limit for the optimum
values of the radius, both the minimum and maximum. Finally, the
process of Hough transformation is applied to identify and locate circles
within the image.

In the proposed method, we initially isolate the precise position
of the fetus’ head, estimate its area, and ultimately account for the fact
that the largest diameter present in recorded images is 1.13 times the
size of the smaller diameter. In our model, we approximate the fetal
head shape using an ellipse, where:

1) a and b represent the semi-major and semi-minor axes, respectively,
2) s represents the elliptical area (in mm?), and
3) p represents the elliptical perimeter (in mm).

The area of the ellipse is calculated by Equation (5) and the
perimeter approximated by Equation (6):

s =n%¥a*b = 7*1.13a° (5)
p=rmn(a+b) = r*2.13a% (©6)

In order to isolate the semi-major axis, @, we rewrite Equation (5)
as follows, Equation (7):

2 _

Solving for a, we get Equation (8):

a= /1t ®)

p will be the right-hand side of the area s as in Equation (9):

p=2.13*%r ~ 3.55154/s. )

R N—
1.13*r
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Once we have measured the fetal HC, we can calculate the
probable gestational age of the fetus via a linear correlation, which is
universal as seen below in Equation (10):

HC = a + b*GA. (10)

In this case, GA is gestational age in weeks, and a and b are
constants specific to the population. To directly compute gestational
age, we apply a modified form commonly taken by prior studies [45],
and given in Equation (11), to our study:

Age(week) = 1.0787*HC(mm). (11

While the Hough transform is effective for circular shape
detection, it has some limitations. Most notably, its performance is
sensitive to parameter tuning, such as the range of expected radii and
the threshold for edge detection. Incorrect settings may result in false
detections or missed features, especially in noisy ultrasound images.
Additionally, its computational complexity increases with image
resolution and the number of circles to detect. As potential alternatives,
methods such as ellipse-specific regression networks, deformable active
contours (snakes), or machine learning-based shape fitting techniques
may offer better adaptability and robustness in challenging imaging
conditions. These approaches can be explored in future work to further
improve measurement reliability.

4. Implementation and Simulation

The simulation of the proposed method is done in Python.
Python is a more robust language than MATLAB for programming
CAD systems for fetal HC. In other words, Python has a greater variety
of numerical libraries and a more robust set of language features.
Python also allows object-oriented paradigms to structure complex
computations or develop larger software projects. Python enables the
use of a more significant number of model-based interpretations and
problem-solving strategies, which can help improve the accuracy and
reliability of the CAD system. Of course, as a more general advantage,
Python is more affordable than MATLAB and allows developers
to save on license fees. Finally, Python is more accessible for code
and development than MATLAB, which may lead to faster system
development and deployment. Therefore, it has been used to simulate
the proposed method.

4.1. Simulation results

Table 1 describes the simulation results for some sample images,
pixel size, and HC size in millimetres (mm).

For example, if we want to estimate the age of the fetus from
HC, we use Chen et al.’s [40] article. For example, if the HC was 18.69,

Table 1
Simulation results
Row Filename Pixel size (mm) HC (mm)
1 000_HC.png 0.069136 44.30
2 001 _HC.png 0.089659 56.81
3 002 _HC.png 0.062033 68.75
4 003 _HC.png 0.091291 69.00
5 004 HC.png 0.061240 59.81
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the estimated age is 21 weeks. We use the following Equation (11) to
estimate the age of the fetus.

In the above relationship, Age(week) is the age of the fetus in
weeks. The position of the fetal head is directly related to the area of the
fetal head. The simulation results are shown in the following Figure 4.

Figure 5 is the final result after masking to find the HC and age
of the fetus.

For this sample image, the estimated age of the fetus is 23 weeks,
based on counting the number of white pixels and using the equation
provided with scaling.

4.2. Discussion and comparison

Moccia et al. [17] and Sobhaninia et al. [44] have presented a
network similar to the proposed method of this research. The accuracy
results of the proposed method compared to Moccia et al. [17] and
Sobhaninia et al. [44] are presented in the table below. As it is known,
the proposed method is more accurate than the other two methods.
In fetal ultrasound image segmentation methods with deep learning,
average distance factor (ADF) and DSC score parameters are also used
for comparison. Table 2 explains the comparison between our proposed
model and other studies.

The simulation results show that the proposed UNet method
of this research has main advantages for practical applications. In
fact, in addition to having a basic and standardized architecture,
the proposed method UNet with attention mechanism also has good
accuracy. The results presented in the table show that the proposed
method has the highest accuracy. Also, the proposed method is
simulated on a standard dataset. However, this method still has
limitations; one of the most important limitations of the proposed
method is the lack of access to a large dataset. If this limitation is
removed, it is possible to examine the advantages and disadvantages
of the proposed method.

5. Conclusion and Future Works

This study presents a CAD method for the automated assessment
of fetal HC and gestational age using 2D ultrasound pictures. We
successfully created a system that delivers precise and efficient
measurements by utilizing the HC18 dataset and implementing a
multi-phase approach, including preprocessing, feature extraction
using CNNs, SSL, and ViTs, and segmentation via a UNet deep
learning model. The system attained a Dice coefficient of 97.23 +
2.78, an ADF of 2.8 + 2.93 mm, and an accuracy of 97.2%, indicating

Figure 4
Simulation results
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Figure 5
Final result after masking to find head circumference (HC) and fetal age
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Table 2
Comparison with other studies
Jaccard
Study Dice parameter ADF (mm) Architecture used Index Acc %
[13] 97.93% 1.77 + 1.69 Deeply Supervised Attention-Gated V-Net Nal Nal
[15] 97.95% + 1.12% —0.11 £ 2.67 CNN with Gaussian Map & Ellipse Nal Nal
Fitting (RANSAC & ICP)
[16] 97.98% + 1.30% 1.75 + 1.60 CNN with Double-Branch Structure for Nal Nal
Fetal Skull Boundary Segmentation
[17] Nal 1.95+1.92 Mask-R2CNN (Mask-RCNN-based, HC Nal Nal
Distance-field Regression)
[18] 98% 1.14 Attention MFP-UNet (CNN with Nal Nal
Attention Gates and Multi-Feature
Pyramid UNet)
[19] 97.75 £ 1.32% 1.90+1.76 Regression CNN (Region-proposal CNN Nal Nal
for Head Localization + Regression CNN
for HC Delineation)
[20] 97.45% Nal Fast and Accurate UNet 95% Nal
[21] 96.37% 1.35 Dilated Multi-Scale-LinkNet with Merged Nal Nal
Self Attention
[22] 97.61% 1.97 Lightweight Deep CNN with Sequential Nal Nal
Prediction
[44] 96.84+2.89% 2.2+1.87 Hough Transform, Dynamic 87.13+2.4 97
Programming and an Ellipse Fit
Our proposal 97.23+2.78% 2.8£2.93 UNet Deep Network 88.57£3.79 97.2
Our proposal 98.5+2.5% 24+£28 UNet + Attention Mechanism 90.2+34 98.1

its capability to aid doctors in assessing fetal growth. After that, we
enhanced UNet using attention mechanism that achieved a Dice
coefficient of 98.5 &= 2.5, an ADF of 2.4 + 2.8 mm, and an accuracy
of 98.1%. This method mitigates the constraints of poor signal-
to-noise ratios and human measurement inaccuracies in ultrasonic
imaging. The suggested approach provides a cost-efficient and
dependable instrument for automating the determination of fetal HC,
demonstrating significant promise for clinical use. In the future, we
recommend augmenting the dataset to include a more comprehensive
array of fetal diseases and gestational ages to enhance the model’s
generalizability.

Furthermore, integrating sophisticated picture augmentation
methods and hybrid deep learning frameworks may significantly
improve segmentation precision. Integrating real-time data into
clinical practice is a primary objective, facilitating prompt feedback
for healthcare professionals. Ultimately, augmenting the system to
automate the assessment of other fetal indicators, like femur length and
belly circumference, would enhance its clinical use.
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