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Abstract: Cardiovascular disease (CVD) remains one of the leading health dilemmas all over the world, and it is among the leading causes of 
morbidity and mortality. To solve this problem, more than traditional diagnostic methods are needed; smart decision support systems (DSS) are 
required to help clinicians recognize the condition at an early stage and provide advice on treatment regimens. We develop an improved DSS with 
multiple machine learning (ML) techniques in cardiovascular risk prediction. Our framework is also focused on clinical applications, as compared 
to many other prior models that are seen as only theoretically viable. To determine its adequacy, eight ML and deep learning (DL) models were 
trained and optimized on a clinical set founded on feature selection and hyper-parameter tuning schemes. Among these, the XGBoost classifier 
exceeded by far the others in terms of accuracy, interpretability, and speed of computation and its operation, and as such would be the best 
candidate to deploy. Another characteristic of our system is that the Shapley Additive Explanations (SHAP) analysis is applied, which facilitates 
increasing the confidence of the results by clearly indicating how they may be compiled for clinicians. The benefits of the proposed DSS lie not 
only in supporting accurate diagnosis but also in translating to real-time reports and recommendations, which are both actionable and supportive 
of patient management. Additionally, its architecture is scalable and can fit in a variety of healthcare systems and help address the issue of early 
intervention to reduce the burden of CVD as a whole.
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1. Introduction
Cardiovascular disease (CVD) remains one of the most serious 

health challenges worldwide, contributing to nearly 17.9 million deaths 
annually and creating a heavy burden on healthcare resources. Although 
significant progress has been made in diagnostic technologies, the 
early detection of CVD remains challenging. This is largely due to the 
diversity of symptoms, differences among patient populations, and the 
increasing volume of clinical data that physicians must interpret in real 
time. Conventional risk scoring systems, such as the Framingham Risk 
Score and atherosclerotic cardiovascular disease (ASCVD) models, 
provide only generalized population-level estimates and often fail to 
capture individual variations. In contrast, recent advances in machine 
learning (ML) and deep learning (DL) have opened opportunities for 
more personalized and accurate CVD predictions [1, 2]. 

In recent years, a growing body of evidence has highlighted 
the promise of ML [3, 4] and DL methods in disease diagnosis and 
prognosis [5, 6]. By utilizing historical patient records, these models 
can extract complex relationships among attributes and accurately 
predict disease occurrence. For instance, Random Forest (RF) has 

demonstrated reliable classification of cardiovascular risks [7], Support 
Vector Machines (SVM) have shown strength in handling non-linear 
decision boundaries [8], Convolutional Neural Networks (CNNs) have 
been effective for medical image-based predictions [9], and gradient-
boosting algorithms such as XGBoost have achieved remarkable 
success by combining high accuracy with computational efficiency 
[10]. More recent studies further confirmed that ML-based decision 
support systems (DSS) can improve diagnostic precision and assist 
physicians in making evidence-based treatment choices [11, 12].

In spite of these developments, current Artificial Intelligence 
(AI)-based methods have several shortcomings: they tend to be opaque 
and have limited interpretability, consume a significant amount of 
computational resources at the cost of real-time implementation, and 
fail to provide actionable information that could be used to manage 
patients [13]. To address these issues, this paper proposes a DSS that 
would integrate numerous clinical variables, ensure interpretable 
results, and enable working in a hospital setting efficiently [14]. By 
comparing them on a curated clinical dataset with feature selection 
and hyperparameter optimization to enhance reliable performance [15, 
16], XGBoost was the best of all the classifiers, with high accuracy 
and scalability in addition to fast inference time. It is important to note 
that the proposed framework combines Shapley Additive Explanations 
(SHAP) analysis, enabling clinicians to understand the role each feature 
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plays in each prediction [17, 18]. The reason is that this integration 
specifically tackles the historical problem of this research, which can be 
explained as follows:

1.  Evolution of a thorough DSS that is specific to CVD forecasting and 
guidance.

2.  Comparative analysis of eight ML and DL models working with 
clinical data to outline their advantages and weaknesses.

3.  The conclusion that it is possible to identify XGBoost algorithm as 
the one that is most reliable and that it combines high predictive 
accuracy and ability to be used in real time.

4.  Integrating SHAP-based explainability to make it transparent and 
cultivate clinical trust.

The remainder of the paper is arranged as follows. Section 2 is 
the literature review of the current studies of CVD prediction. Section 3 
offers the proposed methodology and DSS framework. Section 4 is the 
experimental evaluation and comparative results. Section 5 concludes 
the paper and provides directions for future research. 

2. Related Work
Integration of ML and DL in medicine, especially in CVD 

prediction and management, has received a lot of attention. As the 
frequency of CVD continues to mount, scholars are looking more into 
computational methods of diagnosis to devise a mechanism to process 
complex levels of data and contribute to an early screening. This is a 
review that highlights some of the current contributions, focusing on 
the use of various algorithms, their shortcomings, and their implication 
on their clinical performance. Other studies compared ML models of 
CVD prediction on a variety of data and feature selection approaches. 
Taylan et al. [19] used support vector regression, multivariate adaptive 
regression splines, M5Tree, neural networks, and other strategies to 
enhance the process of cardiovascular diagnosis. They showed that the 
accuracy of the Adaptive Neuro-Fuzzy Inference System (ANFIS) was 
highly enhanced by the transformation of mixed data into statistical and 
ANFIS, where ANFIS results were the top gains, totaling 95.56% during 
the training phase. Using a similar technique, Biswas et al. [20] also 
utilized feature selection procedures, such as Chi-square test, Analysis 
of Variance (ANOVA), and mutual information, to narrow their input 
in training six ML classifiers. Their experiments revealed that with a 
chosen subset, RF worked the best, producing a classification accuracy 
of 94.51%, high sensitivity, and specificity. These results help highlight 
the role of feature engineering and model optimization in increasing the 
predictive reliability. 

Previously published articles have revealed that ML-based 
models can be personalized to the particular datasets and hospital 
processes. Subramani et al. [21] applied category models to the Heart 
Dataset and achieved almost 96% in accuracy in the various measures. 
On the same note, Stonier et al. [11] designed a forecasting model 
based on electronic health records (EHRs) and diagnostic reports. 
Using the RF, regression-based procedures, and the K-nearest neighbor 
imputation techniques, their system was capable of achieving the 
accuracy of 88.52%, which demonstrated the feasibility of applying ML 
to incomplete or dirty clinical information. These papers demonstrate 
the manner in which traditional ML models when paired with suitable 
preprocessing and feature selection can provide economic and efficient 
diagnostic modalities.

Another denser system is deep learning and hybrid systems that 
were also popular because they are capable of learning the complex 
nonlinear relationships on large datasets. The model was proposed 
in order to improve architectural design and minimize features, 
respectively. Revathi et al. [22] presented Optimally Configured and 
Improved LSTM (OCI-LSTM), which replaced the Genetic Algorithm 

and the Salp Swarm Algorithm. The tested system demonstrated the 
capabilities of the DL framework in conjunction with optimization 
approaches by predicting with an accuracy of 97.11%. Similarly, the 
work of Singh et al. [23] aimed at overcoming the issue of forecasting 
congestive heart failure (CHF) through C4.5 implementation to remove 
outliers and K-Nearest Neighbors (KNN) implementation to satisfy 
gaps in the data. Their hybrid framework benchmarked various ML 
and DL classifiers and achieved a high F1-score (97.03%) and accuracy 
(95.30). Another particular application, the ML-based Congenital 
Heart Disease Prediction Method (ML-CHDPM), was developed by 
Pachiyannan et al. [12] using clinical features and demographic data 
that detected features of congenital heart disease in expectant mothers. 
This model’s average recall and accuracy were 96.25% and 94.28%, 
respectively.

Simultaneously, DSS are being developed with AI to support 
the time when they can be implemented in the real-world healthcare 
situation. Almansouri et al. [24] analyzed the use of AI in many different 
cardiovascular diseases, such as atrial fibrillation, valvular heart 
disease, and cardiomyopathies. In their review, they confirmed that not 
only is diagnostic performance increased with the help of AI but also 
treatment, as novel associations hidden in clinical data are uncovered. 
Takale et al. [25] developed a DSS in the Intensive Care Unit (ICU), 
i.e., a system that forecasted the mean arterial pressure (MAP) in real 
time. Accessing the hierarchical temporal memory models of the vital 
signs for continuous monitoring, the system provided prospective 
warnings to clinicians, indicating the effectiveness of the AI in critical 
care monitoring. In a separate publication, Nandy et al. [26] devised a 
swarm-artificial neural network (Swarm-ANN) that utilized heuristic 
updates to augment the prediction accuracy, achieving a predictive 
accuracy of 9578%. Rana and Shuford [27] also identified the extended 
role of AI in healthcare operations to include medical imaging, remote 
patient monitoring, clinical decision support, and brought up ethical 
and regulatory considerations of the widespread use of AI in healthcare. 

Together, these tests demonstrate that both ML and DL are capable 
of achieving remarkably high diagnostic performance accuracies, 
frequently exceeding 90% under experimental settings. Some recurring 
limitations do exist, however. Numerous models remain black boxes in 
which only the result matters, the interpretation is less, and the clinical 
trust is diminished. The others need a huge amount of computing 
resources, and thus may have limited usage in real-time hospital setups. 
Also, such training on small and/or biased training datasets may be an 
obstacle to their generalization across other populations, which may 
result in unequal performance across various clinical contexts. These 
deficits make it necessary to have more solid, understandable, and 
computationally lightweight models. 

The current work extends this concept by suggesting a SHAP-
enhanced XGBoost model. This method does not only preserve the high 
level of predictive accuracy but also provides transparency in feature 
contributions, which is critical to clinicians to interpret the justifications 
on the output of models. The proposed system addresses the trade-off 
between accuracy, interpretability and efficiency and is therefore rather 
poised to render the existing challenges as well as able to facilitate 
the practical scaling of CVD prediction and management to the real 
world. A brief overview of prior research has been provided in Table 1, 
whereas Table 2 has listed some of the different DSS methodologies and 
their main characteristics and strengths/weaknesses.

3. Proposed Methodology
The proposed Cardiovascular Disease Detection DSS will assist 

clinicians in making interpretable and timely decisions about patients 
by assessing their risk. Its workflow runs in phases specific to clinical 
data processing, predictive modeling, interpretability, and a final 
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step of a user interface, configured for healthcare environments. The 
proposed aim is to increase the rate of early diagnosis, guide treatment 
interventions, and help in decision-making in the day-to-day practice 
using the latest ML methods. The DSS has a layered structure, which 
helps in the segregation of various tasks to make the handling of this 
data and proactive analysis efficient. It is a combination of various 
related modules that include data collection, preprocessing, model 
inference, explainability, and visualization. Patient data is initially 
obtained from out-of-hospital data stores, cleaned up to cover missing 
records, translated into machine language, and filtered out to keep just 
the important characteristics. This processed data is then sent to the 
XGBoost algorithm, which labels the patient into risk sets depending 
on how likely they are to develop cardiovascular disease.

Information from the SHAP-based module explaining the most 
important aspects shaping a given prediction is useful to increase the 
interpretability and trustworthiness of the predictions made by the 
DSS. This proves that the doctors and other medical experts will be 
in a position to comprehend the rationale behind each choice. Figure 1 
shows the block diagram of the ML modeling.

3.1. Data pre-processing
A comprehensive pre-processing pipeline was implemented to 

verify that the dataset was suitable for modeling. Initially, the dataset 
was imported from an Excel file and saved as a Pandas DataFrame. The 
preprocessing technique began by separating the features (independent 

3

References Methodology and technology Improvements Limitations
Taylan et al. [19] Hybrid approach using ML and ANFIS Enhanced predictive accuracy to 

96.56%
Limited populations and 
potential implementation 
challenges in clinical settings

Biswas et al. [20] ML and feature selection techniques 
(ANOVA F-value, Chi-square) are used.

Enhanced predictive accuracy to 
94.51% using Random Forest

Limited data (303 records) may 
affect the predictive model.

Almansouri et al. [24] AI and ML-based algorithms are used. Enhanced efficiency in 
diagnosing CVD

Challenges of biased data

Subramani et al. [21] Gradient-boosting Decision Trees 
(GBDT), the SHAP method for feature 
selection, and ML algorithms are used.

Improved prediction accuracy 
with 8:2 train-test split

The potential complexity and 
computational expense

Stonier et al. [11] Random forest ML algorithm is used. Improved prediction accuracy of 
88.52%

A potential challenge is to 
handle a large dataset.

Pachiyannan et al. [12] Machine Learning-based Congenital 
Heart Disease Prediction Methods 
(ML-CHDPM) are used.

Improved prediction accuracy of 
96.51%

A potential challenge in 
generalizing the model to 
diverse populations

Singh et al. [23] Integrated ML and DL models for the 
detection of congestive heart failure 

Improved prediction accuracy of 
95.30%

The limitation is a sparse and 
inconsistent dataset.

Revathi et al. [22] The OCI-LSTM model has been optimally 
configured and improved.

Improved prediction accuracy of 
97.11%

The OCI-LSTM model might 
be time consuming and 
complicated.

Table 1
Summary of related work with their proposed methodology, improvements, and limitations

References Approach Key features Strengths Limitations
Taylan et al. [19] Hybrid ML + ANFIS Feature selection, Adaptive 

Neuro-Fuzzy Inference 
System (ANFIS)

High accuracy (96.56%), 
robust learning

Limited population, 
clinical deployment 
challenges

Biswas et al. [20] ML models (RF, SVM, LR) 
with Feature Selection

Chi-square, ANOVA-based 
feature selection

Achieved 94.51% 
accuracy using RF

Limited dataset (303 
records), potential bias

Stonier et al. [11] Random Forest-based CVD 
Risk Prediction

Uses clinical diagnostic 
reports

88.52% accuracy, practical 
application

Struggles with large 
datasets

Pachiyannan et al. 
[12]

ML-CHDPM for Congenital 
Heart Disease

Uses demographic & clinical 
features

High accuracy (96.51%) Hard to generalize to 
diverse populations

Singh et al. [23] Integrated ML & DL models KNN, RF, SVM, DNN 95.30% accuracy, opti-
mized model selection

Sparse dataset, 
preprocessing complexity

Revathi et al. [22] Optimally Configured 
LSTM (OCI-LSTM)

Feature selection, genetic 
algorithm tuning

High accuracy (97.11%), 
deep learning capability

Computationally 
expensive, high resource 
demand

Proposed 
Approach

XGBoost-based ML DSS 
with SHAP Explainability

Hyperparameter tuning, 
real-time integration, 
feature importance using 
SHAP

98% accuracy, high 
interpretability, real-time 
usability

Relies on existing ML 
models, lacks hybrid 
methodology

Table 2
A comparison of the proposed technique with cutting-edge decision support systems for cardiovascular disease diagnosis
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variables) from the labels (dependent variables). The dataset had 
both numerical and qualitative properties, necessitating different 
handling methodologies. Missing values in numerical characteristics 
were handled using mean imputation, substituting absent entries with 
the mean value of the relevant column. To ensure consistency in 
categorical variables, missing values were imputed using the mode 
of each respective column. These categorical variables were then 
encoded using OneHotEncoder, converting them into a binary matrix 
representation to make them compatible with ML algorithms. After 
dealing with missing data, numerical characteristics were standardized 
using ‘StandardScaler’ to ensure all variables had a mean of zero and 
a standard deviation of one. This transformation helps eliminate biases 
arising from different features and scales, thereby enhancing the stability 
of gradient-based learning to identify the most relevant attributes 
contributing to cardiovascular disease prediction. This technique 
systematically removes less important features, which improves model 
generalization and computational efficiency. The complete data pre-
processing procedure is shown in Figure 2.

3.2. Feature engineering
Feature engineering was a main step of the proposed framework 

in refining the dataset and improving the overall performance of the 
cardiovascular disease prediction model. To maximize predictive 
accuracy, a structured approach was adopted to both clean existing 
features and generate new ones that could better capture hidden patterns. 
One such feature, termed Age_Cholesterol_Interaction, combined 
information from age and cholesterol level to test whether their joint 
effect posed a higher risk than each factor considered independently. 
In addition, the age variable was transformed into three discrete 
categories, young, middle-aged, and senior, which enabled the model 
to identify risk trends more effectively across different life stages and 
highlight the populations most vulnerable to cardiovascular disease. To 
accommodate probable non-linear correlations in the data, polynomial 
features were created by squaring critical variables. For example, the 
Cholesterol variable was changed into a derived feature, Cholesterol_
Squared, allowing the model to capture non-linear effects that would 
not be visible in its original form. One-hot encoding was used to encode 
categorical information, such as gender and Chest Pain Type, yielding 
binary indicators. This transformation enabled the model to efficiently 
analyze categorical input by treating each category as a distinct feature. 
Furthermore, numerical characteristics were normalized with the 
StandardScaler, resulting in a mean of zero and a standard deviation 
of one. This standardization prevented more significant characteristics 
from disproportionately influencing the model’s learning process. 
The Recursive Feature Elimination (RFE) approach was employed 
to identify the most significant predictors of cardiovascular disease. 
This strategy methodically eliminated less significant elements while 
retaining the most influential ones, selecting five main attributes: age, 
cholesterol, type of chest pain, fasting blood sugar, and the resultant 
age-cholesterol interaction. These characteristics were shown to 
significantly improve the model’s predicted accuracy. The summary of 
engineered features is shown in Table 3.

4

Figure 2
Detailed block diagram illustrating the preprocessing workflow, 
including exploratory data analysis, feature engineering, model 

training, hyper-parameter optimization, and classification

Figure 1
Block diagram of the machine learning modeling framework

Feature Description

Selected 
for the final 

model
Age Age of patient Yes
Cholesterol Cholesterol level 

(original and 
squared)

Yes

Chest pain type Type of chest pain 
experienced

Yes

Resting blood pressure Blood pressure 
during rest

No

Fasting blood sugar Blood sugar level 
after fasting

Yes

Gender Male or female No
Age_Cholesterol_Interaction Interaction between 

age and cholesterol
Yes

Cholesterol_Squared Cholesterol level 
squared

Yes

Cardio_Risk_Score Composite risk 
score combining key 
factors

Yes

Table 3
Summary of the feature engineering techniques with 

corresponding descriptions 
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3.3. Training process
DSS is largely resting on the XGBoost model. The training process 

involves several key steps: choosing relevant features, preparing the 
data, and training the model with the most appropriate hyperparameters. 
To reduce errors and address missing values, the pretreatment step 
plays a crucial role in cleaning and refining the data. It is after feature 
selection using correlation analysis and RFE that the most significant 
predictors are identified. XGBoost included hyperparameters, which 
are the learning rate, maximum depth of trees, the number of estimators, 
and the subsampling ratios; these parameters were optimized by the 
grid search and 10-fold cross-validation. Best accuracy in validation 
was accomplished in the final setting (Table 4). The values of the 
feature attributions were computed after training with SHAP-based 
interpretability to enable physicians to understand the influences of 
specific traits on the prediction outcome. This interpretable procedure 
ensures that the DSS obtains a good predicted accuracy, and at the same 
time, it is completely transparent in clinical practice.

In XGBoost, important parameters, including the learning rate 
(eta) and maximum tree depth (dmax) were customized to achieve 
a better prediction accuracy and limit overfitting. The prediction 
formulation in gradient boosting is set as:

Additional ML models were trained and tested for performance 
benchmarking. Their findings are reported in the Experimental Setup 
and Results sections as baseline comparisons.

3.4. Explainability and interpretability using SHAP 
analysis

Explainability in AI-based healthcare systems is essential because 
physicians must be able to trust and be aware of model decisions. The 
DSS implements SHAP analysis to offer feedback on feature importance 
and individual predictions. All characteristics are evaluated with SHAP 
relevance scores, allowing physicians to identify which characteristic 
has a notable effect on the classification of a patient. The DSS gives 
local and global explanations of interpretability. The significance of the 
risk factors is determined by global interpretability, which determines 
cholesterol levels, blood pressure, and smoking habits among the 
most essential risk factors in model behavior. Local interpretability 
gives individual explanations of individual patient cases and can allow 
clinicians to conduct individual assessments. The data is displayed in 
the form of SHAP summary charts, dependent plots, and force plots, 
facilitating openness and increasing clinician trust in the DSS.

3.5. System implementation and deployment
The DSS is deployed on a cloud-based infrastructure for real-time 

computation and fast retrieval. The backend of the system is built using 
Python and Flask, enabling ML inference as well as handling front-end 
requests. The front end is built with Django, offering an interactive web-
based interface for medical professionals to analyze patient information 
and gain AI-driven insights. Patient data and system forecasts are stored 
in a MySQL database, facilitating systematic management of the data. 
The implementation is hosted on AWS (Amazon Web Services) or GCP 
(Google Cloud Platform) cloud infrastructure, making the DSS scalable, 
secure, and accessible to telemedicine applications and hospitals. 
An Application Programming Interface (API)-based interface with 
EHRs enables the DSS to integrate seamlessly with existing medical 
workflows, eliminating the need for extensive manual data entry and 
providing real-time decision support. To respond to the needs of non-
specialist practitioners, the DSS features a simple and user-friendly 
interface with minimal technical settings. Hyperparameter optimization 
and preprocessing operations are completely annotated within the 
backend pipeline and do not necessitate any user-level adjustments. 
Clinicians enter basic patient information into the interface, and the 
system performs feature selection, scaling, and prediction transparently. 
This design makes certain that the system is usable and accessible in 
actual clinical settings without requiring technical proficiency. 

3.6. Hyperparameter optimization
To ensure a fair and rigorous evaluation, each ML model was 

trained using both default and optimized setups. Hyperparameter 
optimization was performed using an exhaustive grid search approach 
combined with 10-fold cross-validation, which systematically 
examined alternative parameter values to select the combination that 
maximized validation accuracy. For example, in the case of XGBoost, 
we experimented with different values of learning rate, maximum 
depth, and subsample ratios. In contrast, for RF, we adjusted the number 
of estimators and maximum features. Table 4 summarizes the final 

(1)

5

Algorithm Key hyperparameters
XGBoost ‘n_estimators’: number of boosting rounds = 200

‘learning_rate’: step size shrinkage = 0.1
‘max_depth’: maximum depth of each tree = 5
‘subsample’: fraction of samples used for training 
each tree = 0.8
‘colsample_bytree’: fraction of features used for 
each tree = 0.8

Table 4
Key hyperparameters for the XGBoost algorithm along with 
functional descriptions and significance in improving model 

performance

Evaluation 
metric Description 

DSS 
performance 

Accuracy Measures how often the DSS 
correctly classifies patient risk.

98%

Precision Assesses the proportion of actual 
positive cases among predicted 
positive instances.

98%

Recall Evaluates the ability to detect 
actual CVD cases.

99%

F1-score Balances precision and recall for 
overall model performance.

98%

AUC-ROC 
score

Determines the model's ability to 
distinguish between positive and 
negative cases.

98%

Response 
time 

Measures the average time 
taken for the DSS to generate a 
prediction.

<1

User feedback Collected from healthcare 
professionals to assess usability 
and integration ease.

Positive 

AUC-ROC: Area Under the Receiver Operating Characteristics Curve

Table 5
Evaluation results of the proposed decision support system, 

highlighting its predictive performance
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tuned values that resulted in optimal performance, and these optimized 
parameters were consistently employed in the subsequent studies. 
This procedure ensures that the published results reflect the optimal 
performance for each model, rather than relying on arbitrary or default 
parameters. Table 5 shows the evaluation results of the proposed DSS.

4. Experimental Evaluation

4.1. Dataset and evaluation
The dataset used in this study was collected from the Pakistan 

Ordnance Factories (POF) Hospital, Wah Cantt. We have made this 
dataset publicly available for researchers to access. It has detailed 
patient data, which is essential for predicting cardiovascular outcomes 
using ML algorithms. The dataset comprises many variables, 
including Age, Gender, Chest Pain Type, Resting Blood Pressure, 
Cholesterol Levels, Fasting Blood Sugar, Oxygen Saturation, Heart 
Rate, and others. These features were carefully selected based on 
their significance in predicting cardiovascular disease. The dataset 
comprises 1074 rows of patient data, and Table 6 presents a summary 
of the dataset. Where ‘Age’, ’Gender’, ‘Chest pain type’, ‘Upper Limit 
B.P’, ‘Lower Limit B.P’, ‘Fasting blood sugar’, ‘Oxygen saturation’, 
‘Heart rate’, ‘ECG’, ‘Smoker’, ‘Family diabetes’, and ‘Family heart’ 
are known as conditional attributes. And ‘Disease label’ is a decision 
attribute. The correlation matrix of the dataset is presented in Figure 3. 
Figure 4 categorizes the disease with different levels of sensor values. 
The characteristics of the Dataset Parameters are listed in Table 7, and 
the dataset’s statistical information is provided in Table 8. Moreover, 
parametric values of diseases are shown in Figures 5, 6, 7, 8, and 9. 
The data were preprocessed to remove missing values and standardize 
numerical characteristics. To evaluate the model’s performance, 
the dataset was split into 80% training and 20% testing sets, which 
ensures that the model has sufficient exposure to diverse cases before 
evaluation. Additionally, Stratified k-fold cross-validation (k = 5) was 
utilized to minimize the risk of data imbalance and ensure that each 
model was trained on diverse subsets of the dataset. Techniques such 
as the Synthetic Minority Over-Sampling Technique (SMOTE) were 
employed to address class imbalance, ensuring fair model evaluation 
across both majority and minority classes. 

4.2. Implementation details
All experiments were conducted in Python using the Scikit-learn 

and XGBoost modules. The training was conducted using a machine 
equipped with an Intel Core i7 processor, 32 GB of RAM, and an 
NVIDIA RTX GPU. The hyperparameters were tuned using grid search 

and 10-fold cross-validation. The settings for XGBoost were as follows: 
learning rate = 0.05, maximum depth = 6, n_estimators = 300, and 
subsample = 0.8. These parameters were consistently used throughout 
the studies to ensure fairness and repeatability.

4.3. Ablation study
We performed an ablation study to determine the contribution 

of each component of the proposed framework. First, we examined the 
performance of XGBoost with and without feature selection, finding 
that RFE increased accuracy by approximately 2%. Second, the effect of 
hyperparameter adjustment was investigated, with optimized XGBoost 
achieving 98.0% accuracy compared to 95.8% with default settings. 
Finally, the introduction of SHAP explainability was tested; while it did 
not directly boost accuracy, it did improve interpretability and clinical 
usefulness by emphasizing feature importance for each prediction.

4.4. Experiments on disease detection
The proposed XGBoost-based DSS provided better results in the 

prediction of cardiovascular diseases because of using the optimized 
pipeline. In the test dataset, the system achieved an accuracy of 98.0%, 
precision of 98.1%, recall of 97.9%, and an F1-score of 98.0%. Such 
findings demonstrate the stability of the framework and its capacity 
to deal with real clinical data at the high level of reliability, as 
demonstrated by Equations (3)–(7). In addition to predictive quality, 
the DSS incorporates SHAP-based explainability providing clinicians 
with the insights into how specific characteristics of individual patients, 
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Age Gender

Chest 
pain 
type

Upper 
Limit 
B. P

Lower 
Limit 
B.P Cholesterol

Fasting 
blood 
sugar

Oxygen 
saturation

Heart 
rate ECG Smoker

Family 
diabetes

Family 
heart

Disease 
label

56 Male 3 138 65 140 386 89 82 4 0 1 1 MI
66 Female 3 129 69 182 108 88 94 4 1 1 1 MI
76 Female 3 125 96 201 141 90 71 4 1 1 1 Angina
60 Female 2 129 82 240 184 88 82 4 1 1 1 NCCP
48 Male 4 233 160 244 186 98 91 2 0 1 1 Angina
43 Male 2 165 209 209 95 94 91 3 1 0 0 SI
71 Female 4 170 244 142 77 96 70 2 0 0 1 MI

Table 6
Summary of the dataset, including Age, Gender, Chest pain type, Upper Limit BP, Lower Limit BP, Cholesterol, Fasting blood sugar,  

Oxygen saturation, Heart rate, ECG, Smoker, Family diabetes, Family heart, and Disease Label

 Figure 3
Matrix correlation of the dataset
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e.g., blood pressure, cholesterol, and age contribute to the final 
diagnosis. The strong performance and clarity of reasoning not only 
helps in the improvement of diagnostic reliability but also increases 
physician confidence that they are ready to use the system in practical 
ways. 

where  is the observed accuracy (e.g., 95%), Z is the critical value 
from the standard normal distribution, and n is the total number of test 
samples.

(3)

(4)

(5)

(6)

(7)
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 Figure 5
Parametric values of angina

 Figure 4
Categorization of disease with different levels of sensor values

Sr. no. Feature name Feature type Feature units Feature values
1 Patient-ID Numeric Numbers 1, 2, 3
2 Age Numeric Years 20–100
3 Gender Numeric {0: female; 1: male} 0, 1
4 Systolic BP (Upper Limit) Numeric mmHg 80–250
5 Diastolic BP (Lower Limit) Numeric mmHg 40–160
6 Oxygen saturation Numeric % 70–100
7 Heart rate Numeric Beats/minute 50–200
8 ECG readings Categorical {1: normal; 2: left-ventricular hypertrophy; 3: ST-T 

wave abnormality; 4: MI}
1, 2, 3, 4

9 Heart disease label Categorical {Myocardial Infarction (MI), Angina, Non-cardiac 
Chest Pain (NCCP), Silent Ischemia (SI)}

1, 2, 3, 4

Table 7
Characteristics of the dataset parameters, including feature name, feature type, feature units, and feature values

Total number of patients: 1070
Age Male Female
Range 33-94 23-88
Mean ± std. dev 63.82±12.60 60±11.92
Disease labels
NCCP 33 107
SI 63 77
Angina 295 115
MI 283 87

Table 8
Statistical information of the dataset
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4.5. Comparative study with recent methods
The performance of the proposed method was compared with that 

of several recent state-of-the-art models. Table 11 brings the comparative 
results. In this comparison, the XGBoost-based DSS augmented with 
SHAP explainability reached an accuracy of 98.0%, which is ahead of 
most other approaches. These results are indicative of the predictive 
power of the system in combination with its interpretability, an attribute 
likely to be lacking in high-performing black-box systems. 

5. Results and Discussions

5.1. Model performance
The evaluation of eight ML models revealed considerable 

differences in predicted performance. As indicated in Section 3, 

XGBoost achieved the highest accuracy rate of 98%, surpassing all 
other models on key assessment measures, including precision, recall, 
F1-score, and AUC-ROC. The findings in Table 9 demonstrate that 
XGBoost is the most successful model for categorizing cardiovascular 
diseases. Figure 10 shows a thorough confusion matrix for XGBoost, 
demonstrating the model’s capacity to distinguish between positive and 
negative situations. To validate the statistical significance of XGBoost’s 
superior performance, we used the Wilcoxon signed-rank test to 
compare its predictions to those of the second-best model, LightGBM. 
The test yielded a statistically significant performance gain for XGBoost 
compared to LightGBM (p-value < 0.05). Additionally, McNemar’s test 
was used to compare the misclassification patterns of XGBoost with 
those of other classifiers. The results showed a considerable reduction 
in false negatives, showing that XGBoost can provide more trustworthy 
predictions for high-risk patients. The addition of confidence intervals 
for important performance measures validates the model’s accuracy 
in predicting. The findings of these statistical tests are described in 
Table 10.

The performance improvements achieved through 
hyperparameter modification were quantitatively confirmed by 
comparing the default settings with the improved ones. The findings 
presented in this study are based on the optimal parameters outlined 
in Table 4. For example, XGBoost’s accuracy increased from 95.8% 
with default settings to 98.0% following optimization, resulting in 
advances in precision, recall, and F1-score. Similarly, RF and SVM 
achieved 1–2% higher F1-scores after adjusting their depth, kernel, 
and estimator-related parameters. These changes, although seemingly 
minor, are statistically significant and demonstrate that the optimization 
procedure had a direct impact on improving model performance. By 
explicitly adjusting hyperparameters, we achieved a fair comparison of 
models and increased the robustness of the proposed DSS.

5.2. Comparative analysis
Classification accuracy is not the best performance metric for 

unbalanced datasets. To address this issue, authors often employed 
additional performance measurements [28]. With diagonal entries 
denoting successfully recognized samples as positive or negative and 
off-diagonal elements denoting misclassification, the confusion matrix 
is often used to express a classifier’s classification results. As a result, 
criteria for performance enhancement, such as ROC curve, F1-score, 
recall (sensitivity), accuracy, and precision, are used. Equations 8, 9, 10, 
and 11 can be used to compute the accuracy, recall, precision, and F1 
score, respectively. The number of False Positive (FP), False Negative 
(FN), True Positive (TP), and True Negative (TN) samples in the test 
dataset serves as the basis for these calculations [29]. The comparative 
analysis of the algorithms, as presented in Table 11, indicates that 
although models such as LightGBM and CatBoost achieved impressive 
results, they did not surpass XGBoost in terms of overall accuracy 
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 Figure 9
Proposed decision support system (DSS) block diagram

 Figure 6
Parametric values of Myocardial Infarction (MI)

 Figure 8
Parametric values of Stable Ischemia (SI)

 Figure 7
Parametric values of Non-Cardiac Chest Pain (NCCP)
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and robustness. LightGBM achieved an accuracy of 92.34%, which, 
although commendable, fell short of the performance of XGBoost. 
Logistic Regression (LR) and K-nearest neighbors, classic algorithms, 
were not as efficient in capturing the complicated interconnections 
among cardiovascular risk variables. Confusion matrices of all eight 
algorithms are shown in Figures 11 and 12. Our study involved 
comparing the performance of XGBoost with other cutting-edge 
algorithms recently developed for comparable applications, as shown 
in Table 2. The results show that our DSS, utilizing XGBoost as the 
primary model, outperforms these modern approaches in terms of 
prediction accuracy and efficiency. This highlights the need to employ 
advanced, finely tuned algorithms in clinical decision-making tools to 
enhance patient care and outcomes. SHAP values were used to assess 
the impact of features on inaccurate predictions, thereby furthering the 
study of misclassification errors.

5.3. Comparative analysis of eight ML models
Comparative analysis of eight ML models showed that XGBoost 

consistently exhibited superior generalization ability and predictive 
accuracy. The metrics performance of each model is presented in 
Table 11. Based on its robust performance, XGBoost was chosen as the 
accurate model for integration into the DSS.

5.4. Ethical consideration
The patient data used in this study were collected from POF 

Hospital, Pakistan, in full compliance with ethical guidelines and 
regulations. All methods were conducted in accordance with the 
relevant institutional and national ethical guidelines. The Department 
of Cardiology of POF Hospital, Wah Cantt, reviewed and approved the 
study protocol. Informed consent was obtained from all subjects and 
their legal guardians before data collection.

5.5. Discussions of findings
The results of the present research substantiate the power of 

the advanced XGBoost algorithm, which shows evident superiorities 
over the traditional ML methods in the prediction of cardiovascular 
disease. The practitioners in healthcare can employ proper forecasts 
by incorporating XGBoost into our DSS. The high performance of 
XGBoost with the data within its system can be explained by the fact 
that it works with both numeric and categorical values quite efficiently, 
is less prone to overfitting, and can discern the rather complicated data 
connections that were non-linear. We have also, though, found that 
careful hyperparameter tuning is essential to achieving the best results 
as even the strongest algorithms are limited by how they are set up. 
Figure 13 shows the block diagram of the entire proposed methodology. 
Moreover, compared to other studies, which only considered the 
accuracy aspect, our model incorporates the feature relevance rankings 
as determined by SHAP-based explainability, which will assist medical 
personnel to gain more insights on the basis of the predictions of the 
model. This is one of the ways to eliminate one of the most significant 
limitations to the implementation of AI in healthcare. The imbalance 
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Algorithm Accuracy Precision F1 score Recall ROC
Random Forest 0.97 0.92 0.95 0.93 0.91
SVM 0.97 0.89 0.93 0.90 0.89
XG Boost 0.98 0.98 0.98 0.99 0.98
KNN 0.95 0.92 0.93 0.93 0.94
Logistic Regression 0.95 0.86 0.89 0.90 0.93
Light GBM 0.97 0.92 0.95 0.93 0.92
CatBoost 0.97 0.89 0.93 0.90 0.91
Multi-level perceptron (MLP) 0.95 0.91 0.90 0.96 0.96

Table 9
Performance metrics for the proposed model with other machine learning algorithms

 Figure 10
Confusion matrix of XGBoost

Test Compared models Test statistics p-value Significance 
Wilcoxon Signed-Rank test XGBoost vs LightGBM 2.45 <0.05 Statistically significant 
McNemar's test XGBoost vs RF 3.12 <0.05 Statistically significant 
Confidence interval (95%) XGBoost [96.8%, 99.2%] - High reliability 

Table 10
Summary of statistical test, including test type across ML models, test statistics, p-value, and its significance
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between the classes is minor in the used dataset. MDPsmote was 
used to overcome that. On the whole, this requirement needs to be 
fully tested with a real-world time-sensitive issue. Implementation in 
clinical practice requiring seamless adaptation to existing workflows in 

the hospital, establishing reliable API connections with EHR systems, 
and achieving real-time risk predictions fast enough to inform clinical 
decision support, among other practical considerations, are a few of the 
hurdles that must be addressed when implementing DSS in a clinical 
setting. 

The real-time processing capability is frequently prohibitive 
in traditional ML models, and our design can improve computational 
efficiency such that predictions are computed in milliseconds. The 
migration to the cloud via AWS or Google Cloud can increase the 
flexibility and availability of the application to many healthcare 
organizations. In applying this in medical practice in a real environment, 
it is essential to validate, comply with regulations, and cooperate with 
medical professionals to optimize the system in accordance with 
medical practice. Solving these integration issues will ensure that there 
is popular use and trust in AI-improved DSS.

5.6. Comparison with recent approaches
The proposed XGBoost ML model was compared with other 

existing ML algorithms on the effectiveness of diagnosing cardiovascular 
diseases using Table 11. The hybrid ML and ANFIS approach by Taylan 
et al. [19] resulted in an accuracy of 96.56%, but Biswas et al. [20] and 
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References Approach Accuracy
Taylan et al. [19] Hybrid approach ML and 

ANFIS.
96.56%

Biswas et al. [20] Random Forest 94.51%
Stonier et al. [11] Random Forest 88.52%
Pachiyannan et al. [12] ML-CHDPM model 96.51%
Singh et al. [23] Integrated ML and DL 

models
95.30%

Revathi et al. [22] OCI-LSTM model. 97.11%
Proposed approach XGBoost ML model 98.00%

Table 11
Comparison of the machine learning (ML) model with recent 

approaches

 Figure 11
Confusion matrix of a) CatBoost, b) k-NN, c) LightGBM, and d) logistic regression
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Stonier et al. [11] used RF type models to obtain the level of accuracy 
of 94.51% and 88.52%, respectively. As the relative accuracies of 
96.51% and 95.30% are competitive in cases of ML-CHDPM [12] 
and Integrated ML and DL models [23], their performance was lower 
than the results of the proposed model. Moreover, Revathi et al. [22] 
represented an OCI-LSTM model with an accuracy of 97.11%, which 
proves the effectiveness of DL methods. Nevertheless, the XGBoost 
model surpasses all other alternatives in its predictive ability, recording 
98% accuracy. This is because of its capacity to address complicated 
interactions in the features, resistance to overfitting, and the ease of 
computation. This is demonstrated in the findings that XGBoost is a 
rather stable and comprehensible model and is therefore well-suited to 
the clinical DSS in the real-world healthcare environment. 

A comparative analysis of the existing DSS on the prediction 
of cardiovascular disease is necessary in order to place the proposed 
approach into the current scientific literature review. A review of the 
current DSS methodologies demonstrates how much ground has 
been gained in predicting CVD, as well as the setbacks that particular 
methods have. Taylan et al. [19] used a mixed ML method and included 
an ANFIS that demonstrated a high value of precision—96.56%. Its 
small size and issues of likely implementation, however, preclude its 
use in the clinic. Biswas et al. [20] also used a variety of ML models, 
including RF, SVM, and LR, and feature selection procedures of Chi-
square and ANOVA. Although the model had 94.51% precision, it had a 
low utility given the small dataset that was used in the training, and this 
may cause biases in the real-world application. 

Additional studies have attempted other ways of enhancing 
the prediction accuracy. Stonier et al. [11] also relied on a RF-based 
approach, and they used clinical diagnostic reports and received an 
accuracy of 88.52%, which indicates high practical usefulness; however, 
they faced the problem of large datasets. Pachiyannan et al. [12] 
proposed a congenital heart disease prediction method (ML-CHDPM) 
using a ML technique that combines demographic and clinical data 
and demonstrates the highest level of accuracy of 96.51%. It is quite 
difficult to generalize the concept to different populations, though. 
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 Figure 13
Overall block diagram of the proposed methodology

 Figure 12
Confusion matrix of a) MLP, b) Random Forest, c) SVM, and d) XGBoost
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Some interest has also been given to integrated machine learning 
and deep learning (ML-DL) models. Singh et al. [23] presented the 
investigation of enhanced model choice with 95.30% accuracy on KNN, 
RF, SVM, and DNN. Nonetheless, due to a small amount of data and 
the challenge of preprocessing, it is challenging to use practically. The 
optimally designed OCI-LSTM model suggested by Revathi et al. [22] 
was tuned by feature selection and genetic algorithm, and an accuracy 
of 97.11% was obtained. Although it shows a great predictive ability, 
the model consumes a lot of resources, thus limiting its application in 
real-time scenarios. Although the proposed DSS is accurate and easily 
interpretable, it relies more on existing ML algorithms than advance the 
new type of hybrid technique. 

Table 12 is a comparison of the proposed DSS with numerous 
state-of-the-art systems announced in 2025. Although utilizing 
lightweight CNN models [29] provided the highest accuracy (99.29%), 
most of the remaining techniques, such as SCORE2 (95.0%) and 
PSO-NN (96.51%), or deep-learning frameworks [33, 35, 36] reached 
accuracies between 90% and 96% [37, 38]. The proposed DSS [39, 40] 
demonstrated good performance (98% accuracy) with regard to that of 
the best models, in addition to the special advantage of interpretability 
via SHAP and practical usability in the clinical setting. In contrast to 
pure black-box approaches to DL, such as neural networks, our DSS 
is both highly predictive and transparent, thus providing its improved 
feasibility of responsible use in real-life clinical settings. 

6. Conclusion
To facilitate clinical decision-making with respect to early 

recognition of cardiovascular disease and its management, the proposed 
DSS has contributed significantly to clinical decision-making. The 
optimized ML algorithm referred to as XGBoost is highly efficient 
and provides highly accurate predictions. This provides medical 
practitioners the ability to make safe treatment choices. The results 
of the study show that XGBoost is significantly better than training 
on traditional ML models when dealing with complex, non-linear 
correlations, good control of a wide range of input data, and the risk 
of overfitting is minimized. SHAP-based explainability puts medical 
professionals at greater confidence when making forecasts that are 
interpretable. The model itself is at the cutting-edge of precision, but 
even with that, it must be finely tuned in its hyperparameters in order 
to optimize its efficiency. In future research, research on hybrid ML-DL 
methods and the extension of the scope of datasets to deliver robust 
models and clinical applicability should be considered.

6.1. Limitations and future work
There is a lack of extensive clinical trials conducted in more than 

one institution as well as a wide variety of patient demographics. The 

clinical validation on an unrestricted scale is needed to determine the 
utility and reliability of the DSS in diverse real life settings despite the 
excellent predictive performance of the DSS on the acquired data. In the 
future, we plan to partner a number of medical facilities and engage in a 
large-scale clinical study that will evaluate how generalizable the model 
is and improve its clinical acceptance. We also wish to advance our DSS 
by investigating ways in which techniques of the latest super-modern 
technologies might be applied, that is, DL involving neural networks 
and transformer structures. These methods have produced promising 
outcome in some of the medical applications. The systematic expansion 
of the data to include more demographics, as well as sample size, is 
another great step forward in providing the system with the ability to 
generate useful predictions which can be applied to a bigger population. 
We would also like to add real-time data streams and continuous learning 
processes to the DSS. With the DSS, as new data on patients comes into 
effect, its suggestions and forecasts could be adjusted accordingly. The 
interpretability of the system will also be made better by the following 
initiatives, which make it easier by medical professionals to use, 
clarifying the key decision-making process. Causal inference models, 
counterfactual explanations, and other explainability methods are the 
proposed directions of future studies that should help to create more 
trust in healthcare-related decisions powered by AI. By assisting the 
physician to determine whether or not human intervention is needed, a 
confidence score system should also decrease the dependence on model 
results in uncertain cases.
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References Approach Accuracy (%)
Cao et al. [30] MFS-DLPSO-XGBoost model 74.70 
Hasan et al. [29] Lightweight Convolutional Neural Network1 (CNN) 99.29 

Hageman et al. [31] SCORE2 models 95.00 
Liu et al. (2025) [32] Particle Swarm Optimization and Neural Network based an Integrated Framework (PSO-NN) 96.51 
Syed et al. [33] Deep-learning AI model 95.00 
Bandyopadhyay et al. [34] Stacked Meta Neural Network2 (SMNN) 90.50
Proposed approach XGBoost-based ML DSS with SHAP Explainability 98.00% 

1https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
2https://www.sciencedirect.com/topics/chemical-engineering/neural-network

Table 12
Comparison of the proposed approach with recent state-of-the-art techniques (2025 studies) for cardiovascular disease prediction

https://github.com/zubi00/CardioviscularDataset
https://github.com/zubi00/CardioviscularDataset
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
https://www.sciencedirect.com/topics/chemical-engineering/neural-network
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