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Abstract: Cardiovascular disease (CVD) remains one of the leading health dilemmas all over the world, and it is among the leading causes of
morbidity and mortality. To solve this problem, more than traditional diagnostic methods are needed; smart decision support systems (DSS) are
required to help clinicians recognize the condition at an early stage and provide advice on treatment regimens. We develop an improved DSS with
multiple machine learning (ML) techniques in cardiovascular risk prediction. Our framework is also focused on clinical applications, as compared
to many other prior models that are seen as only theoretically viable. To determine its adequacy, eight ML and deep learning (DL) models were
trained and optimized on a clinical set founded on feature selection and hyper-parameter tuning schemes. Among these, the XGBoost classifier
exceeded by far the others in terms of accuracy, interpretability, and speed of computation and its operation, and as such would be the best
candidate to deploy. Another characteristic of our system is that the Shapley Additive Explanations (SHAP) analysis is applied, which facilitates
increasing the confidence of the results by clearly indicating how they may be compiled for clinicians. The benefits of the proposed DSS lie not
only in supporting accurate diagnosis but also in translating to real-time reports and recommendations, which are both actionable and supportive
of patient management. Additionally, its architecture is scalable and can fit in a variety of healthcare systems and help address the issue of early
intervention to reduce the burden of CVD as a whole.
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1. Introduction demonstrated reliable classification of cardiovascular risks [7], Support
Vector Machines (SVM) have shown strength in handling non-linear
decision boundaries [8], Convolutional Neural Networks (CNNs) have
been effective for medical image-based predictions [9], and gradient-

Cardiovascular disease (CVD) remains one of the most serious
health challenges worldwide, contributing to nearly 17.9 million deaths
annually and creating a heavy burden on healthcare resources. Although osting algorithms such as XGBoost have achieved remarkable
significant progress has been made in diagnostic technologies, the . .o by combining high accuracy with computational efficiency
early detection of CVD remains challenging. This is largely due to the [10]. More recent studies further confirmed that ML-based decision
diversity of symptoms, differences among patient populations, and the support systems (DSS) can improve diagnostic precision and assist

mcreaélng volgmelof clllmca! data that physulzllans ?“St 1n§erp;et n r?zii physicians in making evidence-based treatment choices [11, 12].
time. Conventional risk scoring systems, such as the Framingham Ris In spite of these developments, current Artificial Intelligence

Scor§ and atheroscle.rotlc cardloyascular dlse?ase (ASCVD) moqels, (Al)-based methods have several shortcomings: they tend to be opaque
provide only generalized population-level estimates and often fail to . . - L
and have limited interpretability, consume a significant amount of

cap tu.re individual variations. .In contrast, recent advances in m?Chine computational resources at the cost of real-time implementation, and
learning (ML)_ and deep learing (DL) hahveiopened opportunities for fail to provide actionable information that could be used to manage
more personalized and accurate. CvD predlctlogs [1,2]. . patients [13]. To address these issues, this paper proposes a DSS that
In r ccent years, a growing body of e.V1de.nce has. hlghl}ghted would integrate numerous clinical variables, ensure interpretable

the promise of ML [3,_4].and pL methodg in discase diagnosis and results, and enable working in a hospital setting efficiently [14]. By
prognosis [3, 6]. By utilizing historical patient records, these models comparing them on a curated clinical dataset with feature selection
can .extra.ct complex relationship.s among attributes and accurately and hyperparameter optimization to enhance reliable performance [15,
predict disease occurrence. For instance, Random Forest (RF) has 16], XGBoost was the best of all the classifiers, with high accuracy
and scalability in addition to fast inference time. It is important to note
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plays in each prediction [17, 18]. The reason is that this integration
specifically tackles the historical problem of this research, which can be
explained as follows:

1. Evolution of a thorough DSS that is specific to CVD forecasting and
guidance.

2. Comparative analysis of eight ML and DL models working with
clinical data to outline their advantages and weaknesses.

3. The conclusion that it is possible to identify XGBoost algorithm as
the one that is most reliable and that it combines high predictive
accuracy and ability to be used in real time.

4. Integrating SHAP-based explainability to make it transparent and
cultivate clinical trust.

The remainder of the paper is arranged as follows. Section 2 is
the literature review of the current studies of CVD prediction. Section 3
offers the proposed methodology and DSS framework. Section 4 is the
experimental evaluation and comparative results. Section 5 concludes
the paper and provides directions for future research.

2. Related Work

Integration of ML and DL in medicine, especially in CVD
prediction and management, has received a lot of attention. As the
frequency of CVD continues to mount, scholars are looking more into
computational methods of diagnosis to devise a mechanism to process
complex levels of data and contribute to an early screening. This is a
review that highlights some of the current contributions, focusing on
the use of various algorithms, their shortcomings, and their implication
on their clinical performance. Other studies compared ML models of
CVD prediction on a variety of data and feature selection approaches.
Taylan et al. [19] used support vector regression, multivariate adaptive
regression splines, M5Tree, neural networks, and other strategies to
enhance the process of cardiovascular diagnosis. They showed that the
accuracy of the Adaptive Neuro-Fuzzy Inference System (ANFIS) was
highly enhanced by the transformation of mixed data into statistical and
ANFIS, where ANFIS results were the top gains, totaling 95.56% during
the training phase. Using a similar technique, Biswas et al. [20] also
utilized feature selection procedures, such as Chi-square test, Analysis
of Variance (ANOVA), and mutual information, to narrow their input
in training six ML classifiers. Their experiments revealed that with a
chosen subset, RF worked the best, producing a classification accuracy
of 94.51%, high sensitivity, and specificity. These results help highlight
the role of feature engineering and model optimization in increasing the
predictive reliability.

Previously published articles have revealed that ML-based
models can be personalized to the particular datasets and hospital
processes. Subramani et al. [21] applied category models to the Heart
Dataset and achieved almost 96% in accuracy in the various measures.
On the same note, Stonier et al. [11] designed a forecasting model
based on electronic health records (EHRs) and diagnostic reports.
Using the RF, regression-based procedures, and the K-nearest neighbor
imputation techniques, their system was capable of achieving the
accuracy of 88.52%, which demonstrated the feasibility of applying ML
to incomplete or dirty clinical information. These papers demonstrate
the manner in which traditional ML models when paired with suitable
preprocessing and feature selection can provide economic and efficient
diagnostic modalities.

Another denser system is deep learning and hybrid systems that
were also popular because they are capable of learning the complex
nonlinear relationships on large datasets. The model was proposed
in order to improve architectural design and minimize features,
respectively. Revathi et al. [22] presented Optimally Configured and
Improved LSTM (OCI-LSTM), which replaced the Genetic Algorithm

and the Salp Swarm Algorithm. The tested system demonstrated the
capabilities of the DL framework in conjunction with optimization
approaches by predicting with an accuracy of 97.11%. Similarly, the
work of Singh et al. [23] aimed at overcoming the issue of forecasting
congestive heart failure (CHF) through C4.5 implementation to remove
outliers and K-Nearest Neighbors (KNN) implementation to satisty
gaps in the data. Their hybrid framework benchmarked various ML
and DL classifiers and achieved a high F1-score (97.03%) and accuracy
(95.30). Another particular application, the ML-based Congenital
Heart Disease Prediction Method (ML-CHDPM), was developed by
Pachiyannan et al. [12] using clinical features and demographic data
that detected features of congenital heart disease in expectant mothers.
This model’s average recall and accuracy were 96.25% and 94.28%,
respectively.

Simultaneously, DSS are being developed with Al to support
the time when they can be implemented in the real-world healthcare
situation. Almansouri et al. [24] analyzed the use of Al in many different
cardiovascular diseases, such as atrial fibrillation, valvular heart
disease, and cardiomyopathies. In their review, they confirmed that not
only is diagnostic performance increased with the help of Al but also
treatment, as novel associations hidden in clinical data are uncovered.
Takale et al. [25] developed a DSS in the Intensive Care Unit (ICU),
i.e., a system that forecasted the mean arterial pressure (MAP) in real
time. Accessing the hierarchical temporal memory models of the vital
signs for continuous monitoring, the system provided prospective
warnings to clinicians, indicating the effectiveness of the Al in critical
care monitoring. In a separate publication, Nandy et al. [26] devised a
swarm-artificial neural network (Swarm-ANN) that utilized heuristic
updates to augment the prediction accuracy, achieving a predictive
accuracy of 9578%. Rana and Shuford [27] also identified the extended
role of Al in healthcare operations to include medical imaging, remote
patient monitoring, clinical decision support, and brought up ethical
and regulatory considerations of the widespread use of Al in healthcare.

Together, these tests demonstrate that both ML and DL are capable
of achieving remarkably high diagnostic performance accuracies,
frequently exceeding 90% under experimental settings. Some recurring
limitations do exist, however. Numerous models remain black boxes in
which only the result matters, the interpretation is less, and the clinical
trust is diminished. The others need a huge amount of computing
resources, and thus may have limited usage in real-time hospital setups.
Also, such training on small and/or biased training datasets may be an
obstacle to their generalization across other populations, which may
result in unequal performance across various clinical contexts. These
deficits make it necessary to have more solid, understandable, and
computationally lightweight models.

The current work extends this concept by suggesting a SHAP-
enhanced XGBoost model. This method does not only preserve the high
level of predictive accuracy but also provides transparency in feature
contributions, which is critical to clinicians to interpret the justifications
on the output of models. The proposed system addresses the trade-off
between accuracy, interpretability and efficiency and is therefore rather
poised to render the existing challenges as well as able to facilitate
the practical scaling of CVD prediction and management to the real
world. A brief overview of prior research has been provided in Table 1,
whereas Table 2 has listed some of the different DSS methodologies and
their main characteristics and strengths/weaknesses.

3. Proposed Methodology

The proposed Cardiovascular Disease Detection DSS will assist
clinicians in making interpretable and timely decisions about patients
by assessing their risk. Its workflow runs in phases specific to clinical
data processing, predictive modeling, interpretability, and a final
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Table 1
Summary of related work with their proposed methodology, improvements, and limitations

References Methodology and technology

Improvements

Limitations

Taylan et al. [19] Hybrid approach using ML and ANFIS

Biswas et al. [20] ML and feature selection techniques

(ANOVA F-value, Chi-square) are used.

Almansouri et al. [24] Al and ML-based algorithms are used.

Subramani et al. [21] Gradient-boosting Decision Trees
(GBDT), the SHAP method for feature

selection, and ML algorithms are used.
Stonier et al. [11] Random forest ML algorithm is used.
Pachiyannan et al. [12] Machine Learning-based Congenital
Heart Disease Prediction Methods
(ML-CHDPM) are used.
Integrated ML and DL models for the
detection of congestive heart failure
The OCI-LSTM model has been optimally
configured and improved.

Singh et al. [23]

Revathi et al. [22]

Enhanced predictive accuracy to
96.56%

Enhanced predictive accuracy to
94.51% using Random Forest
Enhanced efficiency in
diagnosing CVD

Improved prediction accuracy
with 8:2 train-test split

Improved prediction accuracy of
88.52%

Improved prediction accuracy of
96.51%

Improved prediction accuracy of
95.30%

Improved prediction accuracy of
97.11%

Limited populations and
potential implementation
challenges in clinical settings
Limited data (303 records) may
affect the predictive model.
Challenges of biased data

The potential complexity and
computational expense

A potential challenge is to
handle a large dataset.

A potential challenge in
generalizing the model to
diverse populations

The limitation is a sparse and
inconsistent dataset.

The OCI-LSTM model might
be time consuming and

complicated.
Table 2
A comparison of the proposed technique with cutting-edge decision support systems for cardiovascular disease diagnosis
References Approach Key features Strengths Limitations
Taylan et al. [19] Hybrid ML + ANFIS Feature selection, Adaptive High accuracy (96.56%), Limited population,

Biswas et al. [20]

Stonier et al. [11]

Pachiyannan et al.
[12]

Singh et al. [23]

Revathi et al. [22]

Proposed
Approach

ML models (RF, SVM, LR)
with Feature Selection

Random Forest-based CVD
Risk Prediction

ML-CHDPM for Congenital
Heart Disease

Integrated ML & DL models

Optimally Configured
LSTM (OCI-LSTM)

XGBoost-based ML DSS
with SHAP Explainability

Neuro-Fuzzy Inference
System (ANFIS)
Chi-square, ANOVA-based
feature selection

Uses clinical diagnostic
reports

Uses demographic & clinical
features

KNN, RF, SVM, DNN

Feature selection, genetic
algorithm tuning

Hyperparameter tuning,
real-time integration,
feature importance using

robust learning

Achieved 94.51%
accuracy using RF

88.52% accuracy, practical
application

High accuracy (96.51%)

95.30% accuracy, opti-
mized model selection
High accuracy (97.11%),
deep learning capability

98% accuracy, high
interpretability, real-time
usability

clinical deployment
challenges

Limited dataset (303
records), potential bias

Struggles with large
datasets

Hard to generalize to
diverse populations

Sparse dataset,
preprocessing complexity
Computationally
expensive, high resource
demand

Relies on existing ML
models, lacks hybrid
methodology

SHAP

step of a user interface, configured for healthcare environments. The
proposed aim is to increase the rate of early diagnosis, guide treatment
interventions, and help in decision-making in the day-to-day practice
using the latest ML methods. The DSS has a layered structure, which
helps in the segregation of various tasks to make the handling of this
data and proactive analysis efficient. It is a combination of various
related modules that include data collection, preprocessing, model
inference, explainability, and visualization. Patient data is initially
obtained from out-of-hospital data stores, cleaned up to cover missing
records, translated into machine language, and filtered out to keep just
the important characteristics. This processed data is then sent to the
XGBoost algorithm, which labels the patient into risk sets depending
on how likely they are to develop cardiovascular disease.

Information from the SHAP-based module explaining the most
important aspects shaping a given prediction is useful to increase the
interpretability and trustworthiness of the predictions made by the
DSS. This proves that the doctors and other medical experts will be
in a position to comprehend the rationale behind each choice. Figure 1
shows the block diagram of the ML modeling.

3.1. Data pre-processing

A comprehensive pre-processing pipeline was implemented to
verify that the dataset was suitable for modeling. Initially, the dataset
was imported from an Excel file and saved as a Pandas DataFrame. The
preprocessing technique began by separating the features (independent
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Figure 1
Block diagram of the machine learning modeling framework
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variables) from the labels (dependent variables). The dataset had
both numerical and qualitative properties, necessitating different
handling methodologies. Missing values in numerical characteristics
were handled using mean imputation, substituting absent entries with
the mean value of the relevant column. To ensure consistency in
categorical variables, missing values were imputed using the mode
of each respective column. These categorical variables were then
encoded using OneHotEncoder, converting them into a binary matrix
representation to make them compatible with ML algorithms. After
dealing with missing data, numerical characteristics were standardized
using ‘StandardScaler’ to ensure all variables had a mean of zero and
a standard deviation of one. This transformation helps eliminate biases
arising from different features and scales, thereby enhancing the stability
of gradient-based learning to identify the most relevant attributes
contributing to cardiovascular disease prediction. This technique
systematically removes less important features, which improves model
generalization and computational efficiency. The complete data pre-
processing procedure is shown in Figure 2.

Figure 2
Detailed block diagram illustrating the preprocessing workflow,
including exploratory data analysis, feature engineering, model
training, hyper-parameter optimization, and classification
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3.2. Feature engineering

Feature engineering was a main step of the proposed framework
in refining the dataset and improving the overall performance of the
cardiovascular disease prediction model. To maximize predictive
accuracy, a structured approach was adopted to both clean existing
features and generate new ones that could better capture hidden patterns.
One such feature, termed Age Cholesterol Interaction, combined
information from age and cholesterol level to test whether their joint
effect posed a higher risk than each factor considered independently.
In addition, the age variable was transformed into three discrete
categories, young, middle-aged, and senior, which enabled the model
to identify risk trends more effectively across different life stages and
highlight the populations most vulnerable to cardiovascular disease. To
accommodate probable non-linear correlations in the data, polynomial
features were created by squaring critical variables. For example, the
Cholesterol variable was changed into a derived feature, Cholesterol
Squared, allowing the model to capture non-linear effects that would
not be visible in its original form. One-hot encoding was used to encode
categorical information, such as gender and Chest Pain Type, yielding
binary indicators. This transformation enabled the model to efficiently
analyze categorical input by treating each category as a distinct feature.
Furthermore, numerical characteristics were normalized with the
StandardScaler, resulting in a mean of zero and a standard deviation
of one. This standardization prevented more significant characteristics
from disproportionately influencing the model’s learning process.
The Recursive Feature Elimination (RFE) approach was employed
to identify the most significant predictors of cardiovascular disease.
This strategy methodically eliminated less significant elements while
retaining the most influential ones, selecting five main attributes: age,
cholesterol, type of chest pain, fasting blood sugar, and the resultant
age-cholesterol interaction. These characteristics were shown to
significantly improve the model’s predicted accuracy. The summary of
engineered features is shown in Table 3.

Table 3
Summary of the feature engineering techniques with
corresponding descriptions

Selected
for the final
Feature Description model
Age Age of patient Yes
Cholesterol Cholesterol level Yes
(original and
squared)
Chest pain type Type of chest pain Yes
experienced
Resting blood pressure Blood pressure No
during rest
Fasting blood sugar Blood sugar level Yes
after fasting
Gender Male or female No
Age Cholesterol_Interaction  Interaction between  Yes
age and cholesterol
Cholesterol Squared Cholesterol level Yes
squared
Cardio_Risk Score Composite risk Yes

score combining key
factors
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3.3. Training process

DSS s largely resting on the XGBoost model. The training process
involves several key steps: choosing relevant features, preparing the
data, and training the model with the most appropriate hyperparameters.
To reduce errors and address missing values, the pretreatment step
plays a crucial role in cleaning and refining the data. It is after feature
selection using correlation analysis and RFE that the most significant
predictors are identified. XGBoost included hyperparameters, which
are the learning rate, maximum depth of trees, the number of estimators,
and the subsampling ratios; these parameters were optimized by the
grid search and 10-fold cross-validation. Best accuracy in validation
was accomplished in the final setting (Table 4). The values of the
feature attributions were computed after training with SHAP-based
interpretability to enable physicians to understand the influences of
specific traits on the prediction outcome. This interpretable procedure
ensures that the DSS obtains a good predicted accuracy, and at the same
time, it is completely transparent in clinical practice.

In XGBoost, important parameters, including the learning rate
(eta) and maximum tree depth (dmax) were customized to achieve
a better prediction accuracy and limit overfitting. The prediction
formulation in gradient boosting is set as:

9= 211\[41:1 'Ymhm(x) (1)

Additional ML models were trained and tested for performance
benchmarking. Their findings are reported in the Experimental Setup
and Results sections as baseline comparisons.

3.4. Explainability and interpretability using SHAP
analysis

Explainability in Al-based healthcare systems is essential because
physicians must be able to trust and be aware of model decisions. The
DSS implements SHAP analysis to offer feedback on feature importance
and individual predictions. All characteristics are evaluated with SHAP
relevance scores, allowing physicians to identify which characteristic
has a notable effect on the classification of a patient. The DSS gives
local and global explanations of interpretability. The significance of the
risk factors is determined by global interpretability, which determines
cholesterol levels, blood pressure, and smoking habits among the
most essential risk factors in model behavior. Local interpretability
gives individual explanations of individual patient cases and can allow
clinicians to conduct individual assessments. The data is displayed in
the form of SHAP summary charts, dependent plots, and force plots,
facilitating openness and increasing clinician trust in the DSS.

Table 4
Key hyperparameters for the XGBoost algorithm along with
functional descriptions and significance in improving model

performance
Algorithm Key hyperparameters
XGBoost ‘n_estimators’: number of boosting rounds =200

‘learning_rate’: step size shrinkage = 0.1
‘max_depth’: maximum depth of each tree = 5

‘subsample’: fraction of samples used for training
each tree = 0.8

‘colsample bytree’: fraction of features used for
each tree = 0.8

3.5. System implementation and deployment

The DSS is deployed on a cloud-based infrastructure for real-time
computation and fast retrieval. The backend of the system is built using
Python and Flask, enabling ML inference as well as handling front-end
requests. The front end is built with Django, offering an interactive web-
based interface for medical professionals to analyze patient information
and gain Al-driven insights. Patient data and system forecasts are stored
in a MySQL database, facilitating systematic management of the data.
The implementation is hosted on AWS (Amazon Web Services) or GCP
(Google Cloud Platform) cloud infrastructure, making the DSS scalable,
secure, and accessible to telemedicine applications and hospitals.
An Application Programming Interface (API)-based interface with
EHRs enables the DSS to integrate seamlessly with existing medical
workflows, eliminating the need for extensive manual data entry and
providing real-time decision support. To respond to the needs of non-
specialist practitioners, the DSS features a simple and user-friendly
interface with minimal technical settings. Hyperparameter optimization
and preprocessing operations are completely annotated within the
backend pipeline and do not necessitate any user-level adjustments.
Clinicians enter basic patient information into the interface, and the
system performs feature selection, scaling, and prediction transparently.
This design makes certain that the system is usable and accessible in
actual clinical settings without requiring technical proficiency.

3.6. Hyperparameter optimization

To ensure a fair and rigorous evaluation, each ML model was
trained using both default and optimized setups. Hyperparameter
optimization was performed using an exhaustive grid search approach
combined with 10-fold cross-validation, which systematically
examined alternative parameter values to select the combination that
maximized validation accuracy. For example, in the case of XGBoost,
we experimented with different values of learning rate, maximum
depth, and subsample ratios. In contrast, for RF, we adjusted the number
of estimators and maximum features. Table 4 summarizes the final

Table 5
Evaluation results of the proposed decision support system,
highlighting its predictive performance

Evaluation DSS
metric Description performance
Accuracy Measures how often the DSS 98%
correctly classifies patient risk.
Precision Assesses the proportion of actual 98%
positive cases among predicted
positive instances.
Recall Evaluates the ability to detect 99%
actual CVD cases.
F1-score Balances precision and recall for 98%
overall model performance.
AUC-ROC Determines the model's ability to 98%
score distinguish between positive and
negative cases.
Response Measures the average time <1
time taken for the DSS to generate a
prediction.
User feedback Collected from healthcare Positive

professionals to assess usability
and integration ease.

AUC-ROC: Area Under the Receiver Operating Characteristics Curve
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tuned values that resulted in optimal performance, and these optimized
parameters were consistently employed in the subsequent studies.
This procedure ensures that the published results reflect the optimal
performance for each model, rather than relying on arbitrary or default
parameters. Table 5 shows the evaluation results of the proposed DSS.

4. Experimental Evaluation

4.1. Dataset and evaluation

The dataset used in this study was collected from the Pakistan
Ordnance Factories (POF) Hospital, Wah Cantt. We have made this
dataset publicly available for researchers to access. It has detailed
patient data, which is essential for predicting cardiovascular outcomes
using ML algorithms. The dataset comprises many variables,
including Age, Gender, Chest Pain Type, Resting Blood Pressure,
Cholesterol Levels, Fasting Blood Sugar, Oxygen Saturation, Heart
Rate, and others. These features were carefully selected based on
their significance in predicting cardiovascular disease. The dataset
comprises 1074 rows of patient data, and Table 6 presents a summary
of the dataset. Where ‘Age’, ’Gender’, ‘Chest pain type’, ‘Upper Limit
B.P’, ‘Lower Limit B.P’, ‘Fasting blood sugar’, ‘Oxygen saturation’,
‘Heart rate’, ‘ECG’, ‘Smoker’, ‘Family diabetes’, and ‘Family heart’
are known as conditional attributes. And ‘Disease label” is a decision
attribute. The correlation matrix of the dataset is presented in Figure 3.
Figure 4 categorizes the disease with different levels of sensor values.
The characteristics of the Dataset Parameters are listed in Table 7, and
the dataset’s statistical information is provided in Table 8. Moreover,
parametric values of diseases are shown in Figures 5, 6, 7, 8, and 9.
The data were preprocessed to remove missing values and standardize
numerical characteristics. To evaluate the model’s performance,
the dataset was split into 80% training and 20% testing sets, which
ensures that the model has sufficient exposure to diverse cases before
evaluation. Additionally, Stratified k-fold cross-validation (k = 5) was
utilized to minimize the risk of data imbalance and ensure that each
model was trained on diverse subsets of the dataset. Techniques such
as the Synthetic Minority Over-Sampling Technique (SMOTE) were
employed to address class imbalance, ensuring fair model evaluation
across both majority and minority classes.

4.2. Implementation details

All experiments were conducted in Python using the Scikit-learn
and XGBoost modules. The training was conducted using a machine
equipped with an Intel Core i7 processor, 32 GB of RAM, and an
NVIDIA RTX GPU. The hyperparameters were tuned using grid search

Figure 3
Matrix correlation of the dataset
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and 10-fold cross-validation. The settings for XGBoost were as follows:
learning rate = 0.05, maximum depth = 6, n_estimators = 300, and
subsample = 0.8. These parameters were consistently used throughout
the studies to ensure fairness and repeatability.

4.3. Ablation study

We performed an ablation study to determine the contribution
of each component of the proposed framework. First, we examined the
performance of XGBoost with and without feature selection, finding
that RFE increased accuracy by approximately 2%. Second, the effect of
hyperparameter adjustment was investigated, with optimized XGBoost
achieving 98.0% accuracy compared to 95.8% with default settings.
Finally, the introduction of SHAP explainability was tested; while it did
not directly boost accuracy, it did improve interpretability and clinical
usefulness by emphasizing feature importance for each prediction.

4.4. Experiments on disease detection

The proposed XGBoost-based DSS provided better results in the
prediction of cardiovascular diseases because of using the optimized
pipeline. In the test dataset, the system achieved an accuracy of 98.0%,
precision of 98.1%, recall of 97.9%, and an Fl-score of 98.0%. Such
findings demonstrate the stability of the framework and its capacity
to deal with real clinical data at the high level of reliability, as
demonstrated by Equations (3)—(7). In addition to predictive quality,
the DSS incorporates SHAP-based explainability providing clinicians
with the insights into how specific characteristics of individual patients,

Table 6
Summary of the dataset, including Age, Gender, Chest pain type, Upper Limit BP, Lower Limit BP, Cholesterol, Fasting blood sugar,
Oxygen saturation, Heart rate, ECG, Smoker, Family diabetes, Family heart, and Disease Label

Chest Upper Lower Fasting

pain  Limit  Limit blood Oxygen Heart Family Family Disease
Age Gender  type B.P B.P  Cholesterol sugar saturation rate ECG Smoker diabetes heart label
56 Male 3 138 65 140 386 89 82 4 0 1 1 MI
66 Female 3 129 69 182 108 88 94 4 1 1 1 MI
76 Female 3 125 96 201 141 90 71 4 1 1 1 Angina
60 Female 2 129 82 240 184 88 82 4 1 1 1 NCCP
48 Male 4 233 160 244 186 98 91 2 0 1 1 Angina
43 Male 2 165 209 209 95 94 91 3 1 0 ST
71 Female 4 170 244 142 77 96 70 2 0 1 MI
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Figure 4
Categorization of disease with different levels of sensor values

Disease
Class
Blood ECG
Pressure
Low Oximeter Heart » Normal
Normal Rate +  Left Ventricular Hypertrophy
Elevated + ST-T wave Abnormality
High Abnormality
Low Low
Moderate Athletic People
Normal Normal
Elevated
High
Table 7

Characteristics of the dataset parameters, including feature name, feature type, feature units, and feature values

Sr. no. Feature name Feature type Feature units Feature values
1 Patient-1D Numeric Numbers 1,2,3
2 Age Numeric Years 20-100
3 Gender Numeric {0: female; 1: male} 0,1
4 Systolic BP (Upper Limit) Numeric mmHg 80-250
5 Diastolic BP (Lower Limit) Numeric mmHg 40-160
6 Oxygen saturation Numeric % 70-100
7 Heart rate Numeric Beats/minute 50-200
8 ECG readings Categorical {1: normal; 2: left-ventricular hypertrophy; 3: ST-T 1,2,3,4
wave abnormality; 4: MI}
9 Heart disease label Categorical {Myocardial Infarction (MI), Angina, Non-cardiac 1,2,3,4

Chest Pain (NCCP), Silent Ischemia (SI)}

Table 8
Statistical information of the dataset

Total number of patients: 1070

Age Male Female
Range 33-94 23-88
Mean + std. dev 63.82+12.60 60+11.92
Disease labels

NCCP 33 107

SI 63 77
Angina 295 115
MI 283 87

e.g., blood pressure, cholesterol, and age contribute to the final
diagnosis. The strong performance and clarity of reasoning not only
helps in the improvement of diagnostic reliability but also increases
physician confidence that they are ready to use the system in practical
ways.

— TP+TN
Accuracy(Acc) = TP+FP+TNTTN 3)
_ __ o precision*recall
F1 SCOTC(F].) - 2prec’ision+’recall “4)

Figure 5
Parametric values of angina
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where p is the observed accuracy (e.g., 95%), Z is the critical value
from the standard normal distribution, and n is the total number of test
samples.
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Figure 6
Parametric values of Myocardial Infarction (MI)
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Parametric values of Non-Cardiac Chest Pain (NCCP)
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Parametric values of Stable Ischemia (SI)
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4.5. Comparative study with recent methods

The performance of the proposed method was compared with that
of'several recent state-of-the-art models. Table 11 brings the comparative
results. In this comparison, the XGBoost-based DSS augmented with
SHAP explainability reached an accuracy of 98.0%, which is ahead of
most other approaches. These results are indicative of the predictive
power of the system in combination with its interpretability, an attribute
likely to be lacking in high-performing black-box systems.

5. Results and Discussions

5.1. Model performance

The evaluation of eight ML models revealed considerable
differences in predicted performance. As indicated in Section 3,

Figure 9
Proposed decision support system (DSS) block diagram
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XGBoost achieved the highest accuracy rate of 98%, surpassing all
other models on key assessment measures, including precision, recall,
Fl-score, and AUC-ROC. The findings in Table 9 demonstrate that
XGBoost is the most successful model for categorizing cardiovascular
diseases. Figure 10 shows a thorough confusion matrix for XGBoost,
demonstrating the model’s capacity to distinguish between positive and
negative situations. To validate the statistical significance of XGBoost’s
superior performance, we used the Wilcoxon signed-rank test to
compare its predictions to those of the second-best model, Light GBM.
The test yielded a statistically significant performance gain for XGBoost
compared to LightGBM (p-value < 0.05). Additionally, McNemar’s test
was used to compare the misclassification patterns of XGBoost with
those of other classifiers. The results showed a considerable reduction
in false negatives, showing that XGBoost can provide more trustworthy
predictions for high-risk patients. The addition of confidence intervals
for important performance measures validates the model’s accuracy
in predicting. The findings of these statistical tests are described in
Table 10.

The  performance  improvements  achieved  through
hyperparameter modification were quantitatively confirmed by
comparing the default settings with the improved ones. The findings
presented in this study are based on the optimal parameters outlined
in Table 4. For example, XGBoost’s accuracy increased from 95.8%
with default settings to 98.0% following optimization, resulting in
advances in precision, recall, and Fl-score. Similarly, RF and SVM
achieved 1-2% higher Fl-scores after adjusting their depth, kernel,
and estimator-related parameters. These changes, although seemingly
minor, are statistically significant and demonstrate that the optimization
procedure had a direct impact on improving model performance. By
explicitly adjusting hyperparameters, we achieved a fair comparison of
models and increased the robustness of the proposed DSS.

5.2. Comparative analysis

Classification accuracy is not the best performance metric for
unbalanced datasets. To address this issue, authors often employed
additional performance measurements [28]. With diagonal entries
denoting successfully recognized samples as positive or negative and
off-diagonal elements denoting misclassification, the confusion matrix
is often used to express a classifier’s classification results. As a result,
criteria for performance enhancement, such as ROC curve, Fl-score,
recall (sensitivity), accuracy, and precision, are used. Equations 8, 9, 10,
and 11 can be used to compute the accuracy, recall, precision, and F1
score, respectively. The number of False Positive (FP), False Negative
(FN), True Positive (TP), and True Negative (TN) samples in the test
dataset serves as the basis for these calculations [29]. The comparative
analysis of the algorithms, as presented in Table 11, indicates that
although models such as LightGBM and CatBoost achieved impressive
results, they did not surpass XGBoost in terms of overall accuracy
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Table 9
Performance metrics for the proposed model with other machine learning algorithms
Algorithm Accuracy Precision F1 score Recall ROC
Random Forest 0.97 0.92 0.95 0.93 0.91
SVM 0.97 0.89 0.93 0.90 0.89
XG Boost 0.98 0.98 0.98 0.99 0.98
KNN 0.95 0.92 0.93 0.93 0.94
Logistic Regression 0.95 0.86 0.89 0.90 0.93
Light GBM 0.97 0.92 0.95 0.93 0.92
CatBoost 0.97 0.89 0.93 0.90 091
Multi-level perceptron (MLP) 0.95 0.91 0.90 0.96 0.96
Figure 10 5.3. Comparative analysis of eight ML models
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and robustness. LightGBM achieved an accuracy of 92.34%, which,
although commendable, fell short of the performance of XGBoost.
Logistic Regression (LR) and K-nearest neighbors, classic algorithms,
were not as efficient in capturing the complicated interconnections
among cardiovascular risk variables. Confusion matrices of all eight
algorithms are shown in Figures 11 and 12. Our study involved
comparing the performance of XGBoost with other cutting-edge
algorithms recently developed for comparable applications, as shown
in Table 2. The results show that our DSS, utilizing XGBoost as the
primary model, outperforms these modern approaches in terms of
prediction accuracy and efficiency. This highlights the need to employ
advanced, finely tuned algorithms in clinical decision-making tools to
enhance patient care and outcomes. SHAP values were used to assess
the impact of features on inaccurate predictions, thereby furthering the
study of misclassification errors.

Comparative analysis of eight ML models showed that XGBoost
consistently exhibited superior generalization ability and predictive
accuracy. The metrics performance of each model is presented in
Table 11. Based on its robust performance, XGBoost was chosen as the
accurate model for integration into the DSS.

5.4. Ethical consideration

The patient data used in this study were collected from POF
Hospital, Pakistan, in full compliance with ethical guidelines and
regulations. All methods were conducted in accordance with the
relevant institutional and national ethical guidelines. The Department
of Cardiology of POF Hospital, Wah Cantt, reviewed and approved the
study protocol. Informed consent was obtained from all subjects and
their legal guardians before data collection.

5.5. Discussions of findings

The results of the present research substantiate the power of
the advanced XGBoost algorithm, which shows evident superiorities
over the traditional ML methods in the prediction of cardiovascular
disease. The practitioners in healthcare can employ proper forecasts
by incorporating XGBoost into our DSS. The high performance of
XGBoost with the data within its system can be explained by the fact
that it works with both numeric and categorical values quite efficiently,
is less prone to overfitting, and can discern the rather complicated data
connections that were non-linear. We have also, though, found that
careful hyperparameter tuning is essential to achieving the best results
as even the strongest algorithms are limited by how they are set up.
Figure 13 shows the block diagram of the entire proposed methodology.
Moreover, compared to other studies, which only considered the
accuracy aspect, our model incorporates the feature relevance rankings
as determined by SHAP-based explainability, which will assist medical
personnel to gain more insights on the basis of the predictions of the
model. This is one of the ways to eliminate one of the most significant
limitations to the implementation of Al in healthcare. The imbalance

Table 10
Summary of statistical test, including test type across ML models, test statistics, p-value, and its significance
Test Compared models Test statistics p-value Significance
Wilcoxon Signed-Rank test XGBoost vs Light GBM 2.45 <0.05 Statistically significant
McNemar's test XGBoost vs RF 3.12 <0.05 Statistically significant
Confidence interval (95%) XGBoost [96.8%, 99.2%)] - High reliability
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Table 11
Comparison of the machine learning (ML) model with recent
approaches
References Approach Accuracy
Taylan et al. [19] Hybrid approach ML and 96.56%
ANFIS.
Biswas et al. [20] Random Forest 94.51%
Stonier et al. [11] Random Forest 88.52%
Pachiyannan et al. [12] ML-CHDPM model 96.51%
Singh et al. [23] Integrated ML and DL 95.30%
models
Revathi et al. [22] OCI-LSTM model. 97.11%
Proposed approach XGBoost ML model 98.00%

between the classes is minor in the used dataset. MDPsmote was
used to overcome that. On the whole, this requirement needs to be
fully tested with a real-world time-sensitive issue. Implementation in
clinical practice requiring seamless adaptation to existing workflows in

the hospital, establishing reliable API connections with EHR systems,
and achieving real-time risk predictions fast enough to inform clinical
decision support, among other practical considerations, are a few of the
hurdles that must be addressed when implementing DSS in a clinical
setting.

The real-time processing capability is frequently prohibitive
in traditional ML models, and our design can improve computational
efficiency such that predictions are computed in milliseconds. The
migration to the cloud via AWS or Google Cloud can increase the
flexibility and availability of the application to many healthcare
organizations. In applying this in medical practice in a real environment,
it is essential to validate, comply with regulations, and cooperate with
medical professionals to optimize the system in accordance with
medical practice. Solving these integration issues will ensure that there
is popular use and trust in Al-improved DSS.

5.6. Comparison with recent approaches

The proposed XGBoost ML model was compared with other
existing ML algorithms on the effectiveness of diagnosing cardiovascular
diseases using Table 11. The hybrid ML and ANFIS approach by Taylan
et al. [19] resulted in an accuracy of 96.56%, but Biswas et al. [20] and

Figure 11
Confusion matrix of a) CatBoost, b) k-NN, ¢) LightGBM, and d) logistic regression
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Figure 12
Confusion matrix of a) MLP, b) Random Forest, ¢c) SVM, and d) XGBoost
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Figure 13
Overall block diagram of the proposed methodology
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Stonier et al. [11] used RF type models to obtain the level of accuracy
of 94.51% and 88.52%, respectively. As the relative accuracies of
96.51% and 95.30% are competitive in cases of ML-CHDPM [12]
and Integrated ML and DL models [23], their performance was lower
than the results of the proposed model. Moreover, Revathi et al. [22]
represented an OCI-LSTM model with an accuracy of 97.11%, which
proves the effectiveness of DL methods. Nevertheless, the XGBoost
model surpasses all other alternatives in its predictive ability, recording
98% accuracy. This is because of its capacity to address complicated
interactions in the features, resistance to overfitting, and the ease of
computation. This is demonstrated in the findings that XGBoost is a
rather stable and comprehensible model and is therefore well-suited to
the clinical DSS in the real-world healthcare environment.

Predicted Label

A comparative analysis of the existing DSS on the prediction
of cardiovascular disease is necessary in order to place the proposed
approach into the current scientific literature review. A review of the
current DSS methodologies demonstrates how much ground has
been gained in predicting CVD, as well as the setbacks that particular
methods have. Taylan et al. [19] used a mixed ML method and included
an ANFIS that demonstrated a high value of precision—96.56%. Its
small size and issues of likely implementation, however, preclude its
use in the clinic. Biswas et al. [20] also used a variety of ML models,
including RF, SVM, and LR, and feature selection procedures of Chi-
square and ANOVA. Although the model had 94.51% precision, it had a
low utility given the small dataset that was used in the training, and this
may cause biases in the real-world application.

Additional studies have attempted other ways of enhancing
the prediction accuracy. Stonier et al. [11] also relied on a RF-based
approach, and they used clinical diagnostic reports and received an
accuracy of 88.52%, which indicates high practical usefulness; however,
they faced the problem of large datasets. Pachiyannan et al. [12]
proposed a congenital heart disease prediction method (ML-CHDPM)
using a ML technique that combines demographic and clinical data
and demonstrates the highest level of accuracy of 96.51%. It is quite
difficult to generalize the concept to different populations, though.

11
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Table 12
Comparison of the proposed approach with recent state-of-the-art techniques (2025 studies) for cardiovascular disease prediction

References Approach Accuracy (%)
Cao et al. [30] MEFS-DLPSO-XGBoost model 74.70
Hasan et al. [29] Lightweight Convolutional Neural Network! (CNN) 99.29
Hageman et al. [31] SCORE2 models 95.00
Liu et al. (2025) [32] Particle Swarm Optimization and Neural Network based an Integrated Framework (PSO-NN) 96.51
Syed et al. [33] Deep-learning Al model 95.00
Bandyopadhyay et al. [34]  Stacked Meta Neural Network® (SMNN) 90.50
Proposed approach XGBoost-based ML DSS with SHAP Explainability 98.00%

'https://www.sciencedirect.com/topics/engineering/convolutional-neural-network

*https://www.sciencedirect.com/topics/chemical-engineering/neural-network

Some interest has also been given to integrated machine learning
and deep learning (ML-DL) models. Singh et al. [23] presented the
investigation of enhanced model choice with 95.30% accuracy on KNN,
RF, SVM, and DNN. Nonetheless, due to a small amount of data and
the challenge of preprocessing, it is challenging to use practically. The
optimally designed OCI-LSTM model suggested by Revathi et al. [22]
was tuned by feature selection and genetic algorithm, and an accuracy
of 97.11% was obtained. Although it shows a great predictive ability,
the model consumes a lot of resources, thus limiting its application in
real-time scenarios. Although the proposed DSS is accurate and easily
interpretable, it relies more on existing ML algorithms than advance the
new type of hybrid technique.

Table 12 is a comparison of the proposed DSS with numerous
state-of-the-art systems announced in 2025. Although utilizing
lightweight CNN models [29] provided the highest accuracy (99.29%),
most of the remaining techniques, such as SCORE2 (95.0%) and
PSO-NN (96.51%), or deep-learning frameworks [33, 35, 36] reached
accuracies between 90% and 96% [37, 38]. The proposed DSS [39, 40]
demonstrated good performance (98% accuracy) with regard to that of
the best models, in addition to the special advantage of interpretability
via SHAP and practical usability in the clinical setting. In contrast to
pure black-box approaches to DL, such as neural networks, our DSS
is both highly predictive and transparent, thus providing its improved
feasibility of responsible use in real-life clinical settings.

6. Conclusion

To facilitate clinical decision-making with respect to early
recognition of cardiovascular disease and its management, the proposed
DSS has contributed significantly to clinical decision-making. The
optimized ML algorithm referred to as XGBoost is highly efficient
and provides highly accurate predictions. This provides medical
practitioners the ability to make safe treatment choices. The results
of the study show that XGBoost is significantly better than training
on traditional ML models when dealing with complex, non-linear
correlations, good control of a wide range of input data, and the risk
of overfitting is minimized. SHAP-based explainability puts medical
professionals at greater confidence when making forecasts that are
interpretable. The model itself is at the cutting-edge of precision, but
even with that, it must be finely tuned in its hyperparameters in order
to optimize its efficiency. In future research, research on hybrid ML-DL
methods and the extension of the scope of datasets to deliver robust
models and clinical applicability should be considered.

6.1. Limitations and future work

There is a lack of extensive clinical trials conducted in more than
one institution as well as a wide variety of patient demographics. The

12

clinical validation on an unrestricted scale is needed to determine the
utility and reliability of the DSS in diverse real life settings despite the
excellent predictive performance of the DSS on the acquired data. In the
future, we plan to partner a number of medical facilities and engage in a
large-scale clinical study that will evaluate how generalizable the model
is and improve its clinical acceptance. We also wish to advance our DSS
by investigating ways in which techniques of the latest super-modern
technologies might be applied, that is, DL involving neural networks
and transformer structures. These methods have produced promising
outcome in some of the medical applications. The systematic expansion
of the data to include more demographics, as well as sample size, is
another great step forward in providing the system with the ability to
generate useful predictions which can be applied to a bigger population.
We would also like to add real-time data streams and continuous learning
processes to the DSS. With the DSS, as new data on patients comes into
effect, its suggestions and forecasts could be adjusted accordingly. The
interpretability of the system will also be made better by the following
initiatives, which make it easier by medical professionals to use,
clarifying the key decision-making process. Causal inference models,
counterfactual explanations, and other explainability methods are the
proposed directions of future studies that should help to create more
trust in healthcare-related decisions powered by Al. By assisting the
physician to determine whether or not human intervention is needed, a
confidence score system should also decrease the dependence on model
results in uncertain cases.
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