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Abstract: In this work, we address a realistic case of unsupervised domain adaptation, where the source label set subsumes that of the target. This
relaxation in the requirement of an identical label set assumption, as witnessed in the standard closed-set variant, poses a challenging obstacle of
negative transfer that potentially misleads the learning process from the intended target classification objective. To counteract this issue, we propose
a novel framework for a partial domain adaptation setup that enforces domain and category-level alignments through optimization of intra- and
inter-class distances, uncertainty suppression on classifier predictions, and target supervision with an adaptive consensus-based sample filtering. In
this work, we aim to modify the latent space arrangement where samples from identical classes are forced to reside in close proximity while that
from distinct classes are well separated in a domain-agnostic fashion. In addition, the proposed model addresses a challenging issue of uncertainty
propagation by employing a complement entropy objective that requires the incorrect classes to have uniformly distributed low-prediction
probabilities. Target supervision is ensured by employing a robust technique for adaptive pseudo-label generation using a nonparametric
classifier. The methodology employs a strategy that permits supervision from target samples with prediction probabilities higher than an
adaptive threshold. We conduct experiments involving a range of partial domain adaptation tasks on two benchmark datasets to thoroughly
assess the proposed model’s performance against the state-of-the-art methods. In addition, we performed an ablation study to validate the
necessity of the incorporated modules and highlight their contribution to the proposed framework. The experimental findings obtained
manifest the superior performance of the proposed model when compared to the benchmarks.

Keywords: partial domain adaptation, domain adaptation, conditional distribution alignment, complement entropy objective, object
recognition, pseudo-label-based supervision

1. Introduction

Deep neural networks have remarkably improved the performance
of a wide range of frameworks designed to address complex machine
learning tasks (Choudhuri et al., 2018; Dang et al., 2019; Guo et al.,
2021; Liu et al, 2021; Wang et al., 2019). The availability of
extensive annotated data is a prerequisite for the generalizability of
such models. In some real-world situations where data collection and
subsequent annotation involve high costs, this supervision utilizing
richly annotated data is often challenging. By transferring useful
information from a large-scale dataset that has previously been
labeled in a relevant area, domain adaptation (da) approaches (Ganin
et al., 2016; Li et al., 2020) can mitigate this annotation demand. An
implicit assumption by the majority of the currently employed da
approaches (Ganin & Lempitsky, 2015; Ganin et al., 2016; Li et al.,
2020) is that labeled and unlabeled domains share an identical label
set. However, acquiring a source with a suitable label set under such
a rigorous label space constraint is highly challenging in practice.
This restriction is relaxed in a partial domain adaptation (pda) setup
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(Cao et al., 2018b), which caters to a more realistic scenario where
the source label set subsumes the target label set (Figure 1 highlights
the difference in the label set relationships between the two domains
in closed-set and partial domain adaptation).

Although the constraint relaxation increases the likelihood of
large-scale labeled dataset availability to serve as the source
domain, it introduces the issue of unwanted information transfer
from classes private to the source (negative transfer) (Cao et al.,
2018b, 2019), impairing the effectiveness of classification
framework. Existing approaches (Cao et al., 2018a, 2018b, 2019;
Zhang et al., 2018) have sought to down-weight these samples
either by reweighting them or by aggregating all target sample
predictions at the category level to determine the common class
information existing between the domains. However, such an
estimation is noise-prone, especially at the initial stages of classifier
training, and could adversely affect the learning process by
misleading it from the intended objective. In this work, we train the
classifier on the entire source data while ensuring the category
distributions are well separated (see Figure 2). This is achieved
using objectives that yield more distinct class distributions in a
domain-agnostic setup.

© The Author(s) 2023. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
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Figure 1
Closed-set and partial domain adaptation scenarios
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Figure 2
Significance of domain + class distribution alignment
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The standard domain adaptation approaches often trade off
feature discriminability for feature transferability when using
cross-entropy loss in the labeled source domain. Despite
witnessing a reduction in the domain shift, the classifier may thus
perform worse on the target data. This is because the source
classes are not evenly spaced from one another and may cause
confusion (or uncertainty) to spread to the target predictions (an
issue coined as uncertainty propagation). Some unlabeled target
data that might be readily misclassified are pushed to match these
source data during domain alignment. The classification heads of
the existing domain adaptation models (Cao et al., 2018a; Ganin
et al., 2016; Zhang et al., 2018) often overlook such a significant
issue and apply the standard cross-entropy loss in the labeled
source domain to learn transferable features across domains
relevant to the classification task. This loss exclusively supervises
the ground-truth class and disregards the scores of the incorrect
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classes. Consequently, samples lying at the decision boundaries of
two nearby classes might confuse the classifier, eventually leading
to uncertainty propagation. Prior approaches (Kumar et al., 2018;
Shu et al., 2018) have addressed this issue by focusing on
increasing the gap between two distinct classes using adversarial
training (Miyato et al., 2018). However, the increased set of
parameters that require tuning in these models elevates the model
complexity. In this work, we follow an objective training approach
presented by Chen et al. (2018) and incorporate a complement
entropy objective module in the proposed network that enforces
uniformly distributed low-probability values among the incorrect
classes. This objective is defined as the average of sample-wise
entropy over complement categories in a mini-batch. The predicted
probability of complement classes is neutralized as the number of
classes increases by maximizing the complement entropy (since
entropy is maximized when events are equally likely to occur). In
other words, increasing complement entropy evenly distributes the
complement classes” expected probability. This reduces the
likelihood of an incorrect category (a) having an adequately high-
prediction probability and (b) challenging the ground-truth category.

Prior works (Cao et al., 2018a, 2018b, 2019; Choudhuri et al.,
2020, 2022; Zhang et al., 2018) achieve domain invariance by
aligning the distributions of two domains via an adversarial
objective. This, however, is not a sufficient condition for improving
the target classifier performance (Jing et al., 2020). In this approach,
we leverage the pseudo-labeling technique for target supervision,
which is essential for domain and class-level alignment. Since most
of the pseudo-labels generated at the initial stages of model training
are unreliable and could cause the learning process to deviate from
its intended objective, we utilize a nonparametric classifier that
measures a sample’s likelihood of being assigned to a source
cluster. Subsequent selection is conducted to obtain a subset of the
target samples that yield correct class prediction probabilities higher
than an adaptive threshold parameter. These predictions, aggregated
over a fixed number of iterations for increased robustness, are
utilized for target supervision.

To sum up, we have made the following contributions to
this work:

* A strategy to modify the latent space arrangement by maximizing
the intra-category compactness and the inter-category separation in
conjunction with achieving domain alignment.

* A technique to reduce uncertainty propagation in the classifier
from hard samples, using a complement entropy objective.

* A robust and adaptive method for target supervision using high-
confidence samples in the target domain.

2. Related Work

The effectiveness of the modern transfer learning approaches for
mitigating domain discrepancy and transferring underlying information
between domains has been thoroughly examined in several existing
works (Hoffman et al., 2014; Oquab et al., 2014; Yosinski et al.,
2014). This encourages remarkable research efforts in many
applications and minimizes a load of manual labeling by analyzing
the information from other sources. A majority of the present works
address the domain discrepancy problem through learning domain-
invariant representations or applying instance reweighting schemes
(Pan & Yang, 2010). The feature learning strategies primarily focus
on generating latent subspaces that capture the properties of both
domains. For instance, the authors in Ghifary et al. (2016) present a
strategy for minimizing the domain distribution differences while
preserving class discriminability. The Transfer Component Analysis
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framework, proposed by Pan et al. (2010) utilizes the Maximum Mean
Discrepancy (MMD) metric to learn transferable components in the
Reproducing Kernel Hilbert Space (RKHS) to reduce the marginal
distribution gap between two domains. The work proposed in Long
et al. (2013) employs a pseudo-labeling technique to jointly align the
source and target domain’s marginal and conditional distributions by
minimizing the distance between the representative centers of the
two domains and the proximity of instances from the same category.
The classical instance reweighting schemes (Chen et al., 2011;
Huang et al., 2006) address the adaptation task by reweighting the
source samples. However, these approaches yield unsatisfactory
performance on complex adaptation tasks since they operate by
learning shallow features for both domains.

To eliminate this issue, recent adaptation works have leveraged
deep learning frameworks to disentangle different factors of
variations behind data and learn complex representations which
exhibit satisfactory transferability across similar tasks (Tzeng et al.,
2014; Yosinski et al., 2014). These works estimate the distribution
means and match them in the adaptation layers. For instance, Tzeng
et al. work on Deep Domain Confusion (Tzeng et al., 2014) utilizes
a domain confusion loss by leveraging the MMD metric to learn the
domain-invariant representations. A similar line of work (Zhang
et al., 2018) effectively aligns the distribution across domains and
eliminates domain discrepancy by using high-order statistical
properties centering around MMD. A different line of approach
couples adversarial loss with a domain classifier to induce confusion
and modify sample data in a domain-agnostic fashion. Adversarial
learning is utilized by the authors of Ganin et al. (2016), Li et al.
(2019), and Tzeng et al. (2017) to create a mini-max game for
extracting domain-invariant features. Compared to the MMD-based
approaches, it is thus often difficult to establish reliable solutions.
Unfortunately, they only work in a limited closed-set domain
adaptation context (source label set identical to the target label set)
and do not scale well in a partial domain adaptation setting.

In the real world, it is more plausible to drop the identical label set
constraint of a closed-set scenario and acquire a large-scale source
dataset that subsumes the smaller target dataset. The adaptation
process can thus be improved by necessitating the transfer of some
significant information from the source to the target. Selective
Adversarial Network (SAN) (Cao et al., 2018b) addresses such a
partial domain adaptation scenario by down-weighing private source
category samples, using multiple adversarial networks, to ensure
effective knowledge transfer. By extending this concept, the authors
of Cao et al. (2018a) develop a class importance weight estimation
framework by aggregating target sample prediction scores. A similar
line of concept is proposed by Zhang et al. (2018) in their work on
Importance Weighted Adversarial Nets (IWAN), which utilizes an
auxiliary domain discriminator to determine the degree of closeness a
source sample shares with the target domain. The Example Transfer
Network (ETN) (Cao et al., 2019) uses discriminative information to
quantify the transferability of source domain samples, thereby
yielding a soft metric for separating the common categories from the
private source classes. Despite outperforming the closed-set domain
adaption techniques, poor classification performance during the first
training phases in these models may result in significant inaccuracies
when determining private source categories. In this work, we have
attempted to address the shortcomings highlighted above.

3. Methodology

Reweighing the degree of source sample contribution in the training
process has been adopted by a majority of the current partial domain
adaptation approaches that aim to alleviate the negative transfer

induced by classes private to the source domain. However, assigning
sample/class importance weights to source samples at the initial stages
of classifier training could potentially derail the learing process from
the intended objective. Instead, we focus on training a classifier on
the entire source data while ensuring the optimization of intra- and
inter-category distances. Alongside this, we utilize a complement
entropy objective to counteract the negative effects of the uncertain
source samples residing near the decision boundaries of classes. The
following sections give a mathematical formulation of the problem
statement and describe the proposed domain adaptation framework.

3.1. Problem settings

In this work, we consider a typical domain adaptation setup with
two datasets, representing the source (s) and the target (#) domains. The

source dataset D, = {(xi, ')}/, consisting of |, labeled points, is

sampled from a distribution ;. The target dataset D, = {x{}E‘l‘
contains |D;| unlabeled samples, drawn from distribution IP;, where
Xgt € R4 and P, # IP,. Since target class information (Y,) is absent
during adaptation, the closed-set variation assumes that samples in
D and D, are classified into categories from the known source label
set Y (Y; = Y,). Obtaining such a source dataset that exhibits complete
alignment with the target label set is challenging. Citing this, we relax
the equality constraint by addressing a more realistic partial domain
adaptation (pda) scenario where the label set of s subsumes that of
t (ie, Y, CY,). To summarize, we aim to design a classifier
H:X — Y (H € H,where H denotes the hypothesis space) that oper-
ates under a pda setting, by leveraging source domain supervision
under an adaptation setup, to reduce the target classification risk.

This relaxation, however, introduces the negative transfer
problem where samples x, private to the source domain
(x5, y5) €D, y, € Y,—Y,) promotes superfluous knowledge
transfer, thereby misleading the classification process. Mitigating
this requires strategic estimation of categories common to both
domains for enhancing the target classification accuracy.

3.2. Proposed approach

Unlike recent approaches, which center around class/sample
reweighting schemes to localize outlier categories (Y, — Y;), we
propose to take a different route through strategic selection of confident
target samples for domain and category-level alignment. The proposed
network (Figure 3) achieves both by maximizing intra-class compact-
ness and inter-class separation between samples from the source and
target domains. To counteract the adverse effects of uncertainty
propagation brought on by the prediction probabilities of inaccurate
classes, we apply a complement entropy objective in conjunction with
the regular cross-entropy loss. A detailed description of the proposed
modules is presented in the following sections.

3.2.1. Sample classification

As highlighted in Section 3.1, the objective is to design a
hypothesis classifier H : X — Y that represents the label space as a
function of the input feature space. In our approach, h consists of
two components, E and C, with H = C o E. Here, E : X — Z denotes
the feature encoder that maps samples in the input feature space X to
the latent space Z, and C: Z — Y denotes a classifier network that
maps points in Z to the label space Y. Source supervision is obtained
by training E and C with the categorical cross-entropy 10ss I, o, (-, -)
between the ground-truth labels of source samples and their predicted
classification scores. Alongside, the classifier is trained on a
subset D, € ID; that consists of target samples with confidently pre-
dicted pseudo-labels j, (label generation strategy described in
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Figure 3
Architectural diagram of the proposed domain adaptation model (model training phase)

Section 3.2.3.3). The overall classification objective L., is
represented as (| - | represents set-cardinality):

lcr ent(C(E(xi)) y;)—’_

1

UD)S\ Z
Lclass = D] ); lcr em(C(E(xj))7j)4.)7 lsz 7& 0 (1)
UDI):‘ Z lCr_ent(C( ()CS))’}/;)7 O[hefWiSe
(xyhe

3.2.2. Reducing uncertainty with complement entropy objective
Prior domain adaptation approaches (Cao et al., 2018a; Ganin
et al, 2016; Zhang et al, 2018) mostly disregard the feature
discriminability and merely apply the standard cross-entropy loss in
the labeled source domain to learn transferable features across
domains, besides ensuring domain alignment. This does not pose a
sufficient condition for improving the target classification
performance as there is no explicit addressing of the inter-class
separation and suppression of incorrect class probabilities. For
instance, in a three-class classification problem, an output probability
of [0.6, 0.25, 0.15] is more uncertain than [0.6, 0.2, 0.2] despite
having the same cross-entropy loss. Some source and target samples,
from D and D, respectively, might reside at the decision boundaries
of classes in close proximity. These hard-to-classify samples eventually
lead to a propagation of confusion (uncertainty) when classifying target
data, thereby thwarting the classification process. In this approach, we
have addressed this issue by enforcing the classifier C(-) to yield more
certain predictions. Since the cross-entropy loss supervises the
ground-truth class solely and ignores the scores of the incorrect classes,
we follow an approach on similar lines as Chen et al. (2019) and Liang
et al. (2020) and utilize a complement entropy objective to ensure
uniformity and low-prediction probabilities for incorrect classes. The
proposed complement entropy objective is presented as follows:

\[DIJX\ ) Z le(C(E(x0)), yi)+
L(C(E(x)),7.),
lce(C(E(x;)%yg%

(1 7}A/g) Z 1yk lgl_y

D, # 0
)

otherwise

where 1,(,y) =

Here, y is a hyperparameter, k represents the indices of all classes
except the ground-truth class, and g is the index of the ground-truth
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classin y. The process of constructing the subset D, of high-confidence
target samples is illustrated in the subsequent section.

3.2.3. Pseudo-label generation and consensus-based target
supervision

Domain alignment and elimination of the adverse effects of x;
with classes private to s ({x,y,) € D, y, € Y, —Y,) is achieved
through the utilization of a nonparametric classifier that maps the
target samples to the nearest source cluster centers and assigns
confidence scores accordingly. Inspired by Jing et al. (2020), we
build the classifier by coupling the cosine similarity metric
cos(+||-) with softmax. The dataset D, thus created, consists of
those target samples with confidently predicted probability
labels and is allowed to participate in the cross-domain alignment
updating process. The adaptive pseudo-labeling strategy is as
follows:

e Step 1: The latent representation E(x) € Z is obtained
Vx € D, UD;, by encoding them using E(-).

» Step 2: The representative cluster center (mean embedding) p¢ of
a source class ¢ € Y, is computed on samples x, € D, using the
term given below:

x,€D (3)

ne = ‘]]j);\ E E(x;)
where D¢ = {{x{,y) | Vi, (i, yi) € Dy, yi = ¢}

* Step 3: The encoded representation E(x; ) of a target sample x, € D),
is processed by a nonparametric similarity function sim(-) to gener-
ate a vector of | Y, | similarity values that quantify x, s closeness to the
representative cluster centers of the source classes. An entry in vector

sim(E(x})) corresponding to the source class c is represented as:

sim(E(x}))" = cos(E(x})||) (4)

In the equation above, sim(E(x))¢ ranges between [0, 1] with a
higher value signifying greater similarity.

* Step 4: Pseudo-label y’t for a target sample x’t is generated by
computing the probability scores using softmax(-) function
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over sim(E(x})), followed by the selection of class that yields the
highest probability:

= softmax(sim(E(x]))) (5)

The vector p’t of softmax probabilities might be susceptible to noise
due to the absence of target labels. To mitigate this effect, a sub-
sequent label refinement procedure is carried out. In particular, to
obtain robust and cleaner pseudo-labels, we employ the moving
average on the current, and N — 1 prior output predictions
aggregated over the latest N epochs. This is represented below
([ -] indicates value at k" epoch):

[j/i]T<—arglcnax [th]T
Pl=1 > [pll

k=T-N-1

(6)

where

A target sample’s likelihood of being mapped with the closest
cluster center can be tracked using the confidence probability
value max([P)]7), in an epoch T. A low confidence score implies
significant confusion exists in the model when assigning the
sample to a category. The training process would impede by
deflecting focus away from the intended objective of accurately
categorizing target data when using such potentially inaccurate
pseudo-labels. To circumvent this issue, we regulate target
supervision by allowing a portion of the target samples in D
(ones with above-average confidence scores) to partake in the
training process. The dataset D, thus constructed using a adaptive
threshold 7, is mathematically expressed as follows:

[DT]T = {<x17)_'{> ‘ Vvalt € Dtv)—'{‘ M]Wmax([ } )[T]T} (7)
The threshold parameter [7]; (in equation (8)) is computed over the
values obtained in the latest N epochs and indicates the average prob-
ability of source samples belonging to the ground-truth class
and is computed across the predicted outputs of the nonparametric
classifier softmax(sim(-)), at epoch T:

T
[t]; = N 71‘D5| ) Z max(softmax(sim([E(x))],)))  (8)

=T—-N-1xieD,

3.2.4. Maximizing inter-class separation

An essential requirement for improving classification
accuracy 1is strategically creating a sufficiently “well-
organized” arrangement of samples in the encoded latent space
with regard to the class distributions in a domain-agnostic
fashion. In other words, data with various class labels must be
assigned to different class distributions, whereas samples with
the same class label must be clustered to their respective
distribution, alongside eliminating discrepancy between the two
domains. Citing this, we emphasize separating two distinct
classes by maximizing their mean embeddings. It is worth
mentioning that the approach is deployed from a domain-
invariant standpoint, as distances between distinct classes of the
same domain are simultaneously maximized (captured in the
first and second terms of equation (9)). The between-class
loss Ly, that aids in maximizing the inter-class distance is
represented as:

Ly _ciass = — [l — ||
class |Y‘ |Y‘ CEZ;C’GZY s s 112
d#c
—ZZHMT K1)
|Y | ‘Y | ceY Jey,
d#c
CEY dey,
d#c
We utilize L,-norm (represented by ||-||,) for computing the

distance between two mean embeddings in the equation above.
The label set of D, (refer to equation (7)) is represented by Y,, where
Y, C Y,. For computing the mean embeddings /o OVer samples

from a class ¢, we follow a similar strategy as highlighted in
equation (3). The contribution of the cross-domain and within-
domain terms is regulated through the hyperparameters « and g.

3.2.5. Minimizing within-class separation

Asmentioned above, a “well-organized” arrangement of samples in
the latent space is essential for refining the classification process. The
previous section addresses maximizing the separation of distinct
classes to avoid classifier confusion. In this section, we propose an
objective that groups samples of the same class together to generate
more compact category distributions. This is realized by minimizing
the distance between the encoded representations of any two samples
belonging to the same category in a domain-neutral arrangement. The
within-class loss L,, 44, hence formulated, is represented as follows:

Z D lEG) — EG)|P

x e ¥ e’
XK

Ly _class = ‘Y | Z

ceY;

DA (D] - 1) IDC -

(10)

Where dataset D¢ = {(x*, y¥)| Vk, (xk, *) € D, UD;, y* = ¢} con-
tains all samples from ID; and D, with class label ¢, for ¢ € Y. Indices
i,j are used in equation (10) to represent distinct samples in D*.

3.2.6. Entropy minimization of target samples

Two significant negative effects are observed in the early phases
of a classification process in a domain adaptation setup: (a) difficulty in
transferring sample information due to significant domain shifts and (b)
unfavorable reduction of certainty in the classifier. As an effort to
counter such impacts, we incorporate the entropy minimization
principle on the target samples in D;, which is represented as:

Lent,min = |]D) | Z Z t C

x’e]D) ceY;

log([C(E())F) (1)

[C(E(x]))]¢, in equation (11), represents the classifier prediction
probability of the target sample x, belonging to class c.

3.2.7. Overall objective
To summarize, the overall objective function is formulated as
follows:

L= Lclass + nLce + Lb_class + SLw_class + Lent_min (12)

n and § are user-defined hyperparameters regulating the
contribution of each objective in the learning process.
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4. Experiments

To conduct a thorough evaluation, we compare the proposed
model with the state-of-the-art techniques on two benchmark
datasets (Office-Home (Venkateswara et al., 2017) and Office-31
(Saenko et al, 2010)) under a variety of pda settings with
multiple adaptation tasks. We adhere to the accepted evaluation
standard as highlighted in Cao et al. (2018a, 2018b) and Tzeng
et al. (2017) and utilize all labeled source data and unlabeled
target data for partial domain adaptation. A target classification
accuracy percentage is computed as follows:

Z<xt‘y,>€Dt1j}t =W
o (13)

|D,| x 100%
Here, , = C(E(x,)) represents the trainable classifier output for the
target sample x;. The indicator function 1 is set to 1 when the
predicted output is equal to the ground-truth label (§; = y;), and
to 0 otherwise. It is to be noted that the ground-truth labels y,
for the target samples x, € D, are only utilized during evaluation
and not during model training. We further provide a comprehensive
analysis of the model performance with the addition of complement
entropy objective, consensus-based target supervision, and the
intra-/inter-class distribution optimization module. Ablation
analysis of the mentioned modules, in addition to the experimental
results, are presented in the following sections.

4.1. Datasets

For the assessment of domain information transferability and
target classification accuracy, we utilize two standard image
datasets for domain adaptation, namely Office-Home and Office-31.

Office-31: The Office-31 (Saenko et al., 2010) dataset consists
of RGB images sampled from three different domains: Amazon (4),
DSLR (D), and Webcam (W). The images are categorized into 31
distinct classes. For establishing a pda setup, we follow the
standard protocol adopted by Cao et al. (2018) in which the target
dataset contains samples from 10 different categories. For a
thorough assessment, we conducted an evaluation of the proposed
model for multiple adaptation tasks on the following source—target
combinations: A—D, A—W, D—A, D—W, W—A, and W—D.

Office-Home: The larger Office-Home dataset (Venkateswara
et al., 2017) consists of RGB images from four distinct domains,
namely Artistic (Ar), Clip Art (Cl), Product (Pr), and Real world
(Rw). Along similar lines to the aforementioned pda setup, we follow
the arrangement proposed by Cao et al. (2018) and build the source
and target datasets with 65 and 25 distinct categories, respectively.
For an in-depth evaluation, we design 12 different source — target adap-
tation tasks, namely: Ar—Cl, Ar—Pr, Ar—Rw, Cl—Ar, Cl—Pr,
Cl—Rw, Pr—Ar, Pr—Cl, Pr—Rw, Rw—Ar, Rw—Cl, and Rw—Pr.

4.2. Implementation details

All models in the experiment are implemented with PyTorch
using a Nvidia 3090-Ti GPU (24 GB memory). For adaptation
tasks involving each source—target pair, we utilize Resnet-50 (He
et al., 2016), pretrained on the Imagenet dataset (Deng et al.,
2009) and fine-tuned on the source samples, as the backbone. The
feature encoder E(-) is built on the backbone network by dropping
the last dense layer and augmenting it with two fully connected
layers, with a layer output size of 1,024, followed by a ReLU acti-
vation and a 0.1 dropout probability. The feature encoder generates
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latent representations of size 512, which are processed by the sample
classifier C(-) and the nonparametric classifier softmax(sim(-)). C(-)
is a multilayer perceptron model and is built using two fully con-
nected layers with hidden layer output dimensions of 512. The output
dimension is set according to the number of source categories, i.e., 31
and 65 when training on Office-31 and Office-Home, respectively.
The model is trained for 4500 epochs using ADAM (Kingma &
Ba, 2014) optimizer, with a learning rate set to 1e-4. For a robust
estimation of the output predictions of the nonparametric classifier
and the threshold parameter , we compute their moving average
over N = 10 epochs. During parameter sensitivity analysis, it is
observed that N is nonsensitive and yields satisfactory results for val-
ues > 7. The empty set D, receives its first update after the comple-
tion of the initial N epochs. Parameters A and n, which regulate the
learning from adaptive complement entropy objective, are setto 1, 8,
and 0.3, 1 for Office-31 and Office-Home, respectively. Similarly,
parameters «, B,and$ control the intra-class compactness and
inter-class separation objectives and are set to 0.2, 0.9, 0.6,
and 0.1, 0.9, 1.5 for Office-31, and Office-Home, respectively (check
Table 1). For target classification during model evaluation, we report
the outputs from the trainable classifier network C(-).

Table 1
Model parameter settings for evaluation
Dataset A n o B 8
Office-31 1 8 0.2 0.9 0.6
Office-Home 0.3 1 0.1 0.9 1.5

4.3. Comparison methods

We utilize all the samples present in ID; and D, and the target
classification accuracy metric to evaluate the proposed approach
against the state-of-the-art models for closed-set and partial domain
adaptation tasks: Domain Adversarial Neural Network (DANN)
(Ganin et al., 2016), Adversarial Discriminative Domain Adaptation
(ADDA) network (Tzeng et al., 2017), Partial Adversarial Domain
Adaptation (PADA) (Cao et al., 2018a) and ETN (Cao et al.,
2019), IWAN (Zhang et al., 2018), Deep Residual Correction
Network (DRCN) (Li et al., 2020), and SAN (Cao et al., 2018b).
Besides this, we report the classification accuracy on Resnet-50
(He et al., 2016), trained directly on the target data in a supervised
fashion, to highlight the existence of negative transfer in the DANN
model that is limited to solving a closed-set adaptation task.

4.4. Classification results

The target classification accuracies for the two benchmark
datasets are summarized in Tables 2 and 3 (highest values
highlighted in bold). The existence of the negative transfer
problem is evident from the accuracy values of Resnet-50 (He
et al., 2016) and DANN (Ganin et al., 2016), reported for tasks
A— W,A— D,D— A in Table 2 and for Ar — CI,Cl — Pr,
Pr — Ar,Pr — Cl,and Rw — Cl in Table 3. Since the standard
DANN model is limited to addressing a closed-set domain adaptation
problem, it does not exhibit a filtration mechanism to diminish the
effect of samples from classes private to the source domain
(Y, — Y;). In fact, this unwanted transfer of superfluous information
poisons the model to the extent that it performs worse than the regular
Resnet-50 model trained in a supervised fashion on the relatively
small target data. This bolsters the necessity for a domain adaptation
model that is specifically tailored for the pda task.
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Table 2
Classification accuracy (%) for partial domain adaptation tasks on Office-31 dataset (backbone: Resnet-50)
Method A—D A—W D— A D—-W W — A W —D Avg.
Resnet-50 (He et al., 2016) 83.44 75.59 83.92 96.27 84.97 98.09 87.05
DANN (Ganin et al., 2016) 81.53 73.56 82.78 96.27 86.12 98.73 86.50
ADDA (Tzeng et al., 2017) 83.41 75.67 83.62 95.38 84.25 99.85 87.03
PADA (Cao et al., 2018a) 82.17 86.54 92.69 99.32 95.41 100.00 92.69
IWAN (Zhang et al., 2018) 90.45 89.15 95.62 99.32 94.26 99.36 94.69
SAN (Cao et al., 2018b) 94.27 93.90 94.15 99.32 88.73 99.36 94.96
ETN (Cao et al., 2019) 95.03 94.52 96.21 100.00 94.64 100.00 96.73
Proposed model 96.47 94.91 96.02 100.00 96.09 100.00 97.25
W/o L, 93.26 91.33 91.96 95.32 90.13 96.83 93.14
W/0 Ly ctass & Loy ctase 86.19 77.03 86.81 97.02 87.06 98.36 88.74
W/o adaptive consensus 88.97 86.72 88.91 97.61 90.53 98.87 91.94
Table 3
Classification accuracy (%) for partial domain adaptation tasks on Office-Home dataset (backbone: Resnet-50)

Method Ar — CI Ar — Pr Ar — Rw Cl — Ar Cl — Pr Cl — Rw Pr — Ar
Resnet-50 (He et al., 2016) 46.33 67.51 75.87 59.14 59.94 62.73 58.22
DANN (Ganin et al., 2016) 43.76 67.90 77.47 63.73 58.99 67.59 56.84
ADDA (Tzeng et al., 2017) 45.23 68.79 79.21 64.56 60.01 68.29 57.56
PADA (Cao et al., 2018a) 51.95 67.00 78.74 52.16 53.78 59.03 52.61
DRCN (Li et al., 2020) 54.00 76.40 83.00 62.10 64.50 71.00 70.80
IWAN (Zhang et al., 2018) 53.94 54.45 78.12 61.31 47.95 63.32 54.17
SAN (Cao et al., 2018b) 44.42 68.68 74.60 67.49 64.99 77.80 59.78
ETN (Cao et al., 2019) 59.24 77.03 79.54 62.92 65.73 75.01 68.29
Proposed model 61.97 82.91 86.84 63.97 73.89 74.86 67.04
W/o L, 57.83 78.36 83.10 62.09 70.63 70.98 65.02
W/0 Ly, stass & Luy ciass 46.72 66.91 74.21 54.92 59.18 62.31 54.71
W/o adaptive consensus 53.96 74.73 77.89 58.17 64.92 67.27 61.17
Method Pr— Cl Pr — Rw Rw — Ar Rw — CI Rw — Pr Avg.

Resnet-50 (He et al., 2016) 41.79 74.88 67.40 48.18 74.17 61.35

DANN (Ganin et al., 2016) 37.07 76.37 69.15 44.30 77.48 61.72

ADDA (Tzeng et al., 2017) 38.89 77.45 70.28 45.23 78.32 62.82

PADA (Cao et al., 2018a) 43.22 78.79 73.73 56.60 77.09 62.06

DRCN (Li et al., 2020) 49.80 80.50 77.50 59.10 79.90 69.00

IWAN (Zhang et al., 2018) 52.02 81.28 76.46 56.75 82.90 63.56

SAN (Cao et al., 2018b) 44.72 80.07 72.18 50.21 78.66 65.30

ETN (Cao et al., 2019) 55.37 84.37 75.72 57.66 84.54 70.45

Proposed model 55.73 83.59 74.02 61.07 82.96 72.40

W/o L, 51.86 80.47 70.95 58.72 79.41 68.45

W/0 Ly _ctass & Lyy_class 41.18 73.02 65.92 45.81 71.69 59.71

W/o adaptive consensus 49.72 77.29 70.22 56.59 75.36 65.61

Unlike other methods (Cao et al., 2018a, 2018b, 2019;
Tzeng et al, 2017), which operate through class importance
weight/sample weight estimation from the training initiation, we
addressed the negative transfer problem by aiming to construct a
well-organized “latent space” that separates the private class
information from that of the overlapping classes. Our hypothesis
is empirically justified in Tables 2 and 3, where we have bagged
the highest classification accuracies in 5 out of 6 tasks and 6 out
of 12 tasks, respectively. The proposed model has also yielded the
highest average accuracies on the two datasets.

4.5. Parameter analysis

In this section, we analyze the trade-off parameters A and 1 that
control the complement entropy objective (presented in equations (2)
and (12)). n regulates the contribution of L., that evenly distributes

the complement classes’ expected probability and reduces the like-
lihood of an incorrect category to having an adequately high-predic-
tion probability. In contrast, A regulates the level of emphasis on
samples based on classification confidence; it pays more attention
to uncertain samples that yield smaller cross-entropy loss. Setting
A to 0 places equal emphasis on both the highly confident and the
less confident samples. Table 4 and 5 report the mean accuracy
for different values of parameters A and n on Office-31 and
Office-Home datasets. As observed, the accuracy values vary within
an acceptable range for different nonzero values of these parameters,
indicating that the suggested approach is less sensitive to them.

4.6. Ablation analysis

To test the significance of the proposed components in the
network, we conducted an ablation study by suppressing them one
at a time. The analysis thus conducted is described below:
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Table 4
Average accuracy (%) for n values
n— 0.0 0.5 1.0 2 4 6 8 10
Office-31 93.14 96.51 96.83 97.04 97.13 97.19 97.25 97.17
Office-home 68.45 71.82 72.40 72.16 71.98 71.69 71.53 71.48
Table 5
Average accuracy (%) for A values
P 0.0 0.1 0.3 0.5 0.7 0.9 1
Office-31 96.31 96.63 96.71 96.98 97.07 97.19 97.25
Office-home 71.48 72.29 72.40 72.33 72.27 72.16 71.98

* W/o L,: The complement entropy objective captured by L,
removes uncertainty from the classification process by enforcing
the incorrect classes to have low-prediction probabilities that are
distributed uniformly. To evaluate its contribution, we prohibit L.,
from contributing to the overall loss objective (by setting 1 to 0).

*W/o L, 4, and L,,_,;: We aim for a category-level arrange-
ment in the latent space that is “well-organized”. Instead of regulat-
ing the training process by assigning importance weights to various
classes, our objective is to optimize the intra-/inter-class distributions
such that samples of the same class are bundled close to each other
while that from distinct classes are well separated in the latent space,
regardless of the sample domains. To realize this, we adopted L, 45
and L,, ., into the overall objective. To validate their contribution,
we suppressed them by setting «, 8, and § to 0.

* W/o adaptive consensus: In the proposed method, we
leverage the pseudo-labeling technique for target supervision.
Since the majority of the pseudo-labels generated at the initial
stages of model training are unreliable and can divert the learning
process from its intended course, we mitigate this by utilizing a
subset of the target samples that yield prediction probabilities
higher than an estimated adaptive threshold parameter, aggregated
over a steady number of latest iterations. To assess its
effectiveness, we suppress this adaptive consensus-based pseudo-
label generation technique, i.e., instead of an elitist approach, we
apply supervision on all the target samples using pseudo-labels
generated by the nonparametric classifier. The moving average
estimate is, however, continued to obtain a robust estimate of the
classification probabilities. As a result, the dataset D, is replaced
with D, in equations (1) and (2) in L, and L, respectively.

The classification accuracies (as presented in Tables 2 and 3)
obtained from different training strategies, as mentioned above,
demonstrate the effectiveness of these modules and our motivation
to incorporate them in the proposed framework. From the reported
values, it is observed that the objectives centering around class
distribution optimization (maximizing intra-class compactness and
inter-class separation) exhibit the highest influence, followed by
the component for adaptive consensus-based pseudo-label
generation and refinement. The complement entropy objective
contributes significantly, as its suppression has adversely affected
model performance on all the tasks designed with the two datasets.

5. Conclusion
In this work, we propose a novel classification framework for a
partial domain adaptation setup that operates by aligning domain and

class distributions through (a) domain-agnostic intra- and inter-class
distance optimization, (b) suppression of uncertainty in classifier
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predictions, and (c) adaptive consensus-based target supervision.
Unlike recent approaches that utilize class/sample reweighting
schemes to emphasize the learning on sample categories common to
both domains, we aim to restructure the sample arrangement in the
latent space where data points from identical classes are enforced to
reside in close proximity while that from distinct classes are well
separated, in a domain-neutral fashion. The proposed model addresses
a challenging problem of uncertainty propagation into the classifier by
utilizing a complement entropy objective that enforces the incorrect
classes to have uniformly distributed low-prediction probabilities. For
target supervision, we engineered a robust technique for pseudo-label
generation by utilizing a nonparametric classifier over the target
samples and adaptively selecting a portion of the target data that yield
prediction probabilities greater than an estimated adaptive threshold
parameter, aggregated over a steady number of iterations. For a
thorough assessment, we conducted experiments on two benchmark
datasets to evaluate the proposed model under a variety of pda tasks
against the state-of-the-art models addressing closed-set and partial
domain adaptation problems. To confirm the significance of the
highlighted modules and validate their contribution to the proposed
framework, we conducted an ablation analysis. The experimental
results demonstrate the proposed model’s efficacy, where it has
outperformed the state-of-the-art average performances in all the
challenging tasks designed with the two benchmarks.
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