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Abstract: Rice and corn hold significant importance due to their daily consumption worldwide. Naked-eye observations are not accurate. Therefore, 
we need an autonomous system that can accurately detect and classify diseases in both plants. We trained and validated publicly available datasets 
in three deep convolutional neural network (DCNN)-based deep learning models using different learning rates and found that the lowest learning 
rate was the most effective in achieving the highest accuracy. We added a new dense layer to the known DCNN-based deep learning models and 
achieved improved accuracy. The best results were observed when our invariants of the InceptionV3, ResNet152, and MobileNetV2 deep learning 
models were used on corn plant leaves (98.09%, 98.51%, and 89.73%, respectively). These models also performed well on rice plant leaves 
(98.51%, 93.59%, and 98.57%, respectively). Because InceptionV3 performed well for both plants, we implemented it in NVIDIA Jetson Nano as 
an end device for the detection and classification of diseases from both plant leaves. 
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1. Introduction
Rice and corn are important crops worldwide, serving as primary 

food sources for large populations. Monitoring the leaves for disease 
symptoms is an important part of maintaining the health of these crops. 
Leaf infections may have a substantial influence on plant development 
and productivity [1]. Therefore, it is important to recognize and address 
these concerns as soon as they arise. The position of the infection on 
the leaf and its specific features are key indicators of the crop’s general 
health. Farmers and agricultural specialists may determine the severity 
and possible spread of a disease by studying its signs on the leaves, 
allowing them to take quick actions to limit any harmful impacts [2]. 
However, the incidence and severity of corn diseases [3] have increased 
over time. This increase is primarily due to changes in agricultural 
techniques [4], such as crop rotation [5] and monoculture [6], which can 
affect environmental conditions and microbial populations, influencing 
disease development. Furthermore, the introduction of novel pathogen 
strains and the deterioration of efficient plant protection techniques 
have aggravated the problem, resulting in increasingly frequent and 
serious outbreaks.

Eight common maize leaf diseases, namely, Curvularia leaf spot 
[7], predominate mosaic [8], dim leaf spot [9], northern leaf curse [10], 
earthy-colored spot [11], round spot [12], rust [13], and southern leaf 
scourge [14], pose serious threats to corn production. The symptoms of 
various diseases can vary greatly, making diagnosis difficult, especially 
for farmers without professional knowledge of plant pathology. Although 

skilled plant pathologists can frequently identify these diseases based 
on visual examination of the symptoms, uneducated farmers may fail 
to precisely diagnose the exact kind of infection, resulting in delayed or 
inefficient treatment.

Rice production is crucial for feeding a large portion of the global 
population, especially in areas where rice is a staple diet. However, 
infections caused by bacterial, viral, or fungal pathogens have a 
major impact on rice output. These diseases [15] have the potential to 
significantly reduce rice output, jeopardizing food security and farmer 
livelihoods. As a result, early and precise detection of rice leaf diseases 
is crucial for sustaining high rice output and satisfying worldwide 
demand. Factors such as image backdrop and capture settings can affect 
various visual symptoms, making the detection of rice leaf diseases 
difficult [16]. These variances [17] make it challenging to create robust 
models capable of reliably identifying diseases in a variety of habitats 
and imaging situations. Traditional disease recognition methods 
frequently rely on manual examination, which is time-consuming, 
error-prone, and dependent on the observer’s experience. Infected and 
healthy leaves of rice and corn are shown in Figure 1.

Advances in technology, particularly deep learning [18], have 
created new opportunities for properly recognizing and diagnosing plant 
diseases. These approaches enable the analysis of plant leaf images 
to detect particular diseases. In agriculture, the ability to differentiate 
between different types of diseases using indicators found in leaf images 
is becoming a more significant tool. We developed deep learning models 
using modern image recognition techniques to accurately and quickly 
identify and classify maize and rice leaf diseases. Several datasets are 
used to train these algorithms to identify specific visual characteristics 
associated with each type of disease.
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Convolutional neural networks (CNNs) [19], a deep learning 
model famous for its performance in image identification tasks, have 
emerged as an important area of research in rice and corn leaf disease 
identification because of their capacity to automatically learn and extract 
essential information from images. We can use these characteristics 
to identify and diagnose various forms of leaf diseases. However, 
despite their effectiveness, CNN-based models frequently encounter 
constraints when applied to independent datasets. One of the most 
significant concerns is that these models perform poorly when applied 
to data that differ from the training set in terms of image backgrounds 
and capture settings. This decrease in identification rates is a significant 
challenge because it restricts the models’ generalizability and practical 
applicability in real-world circumstances.

Furthermore, standard deep CNN (DCNN) models [20] 
necessitate large-scale networks with multiple parameters, making 
them computationally expensive and challenging to implement on 
devices with limited resources. To address this issue, we developed a 
novel CNN-based model for rice and corn leaf disease classification 

that reduces parameter complexity while maintaining accuracy. 
Importantly, we used our model in NVIDIA Jetson Nano, a compact 
and cost-effective edge device widely adopted for AI applications in 
field environments, to demonstrate its practical usability. By optimizing 
our model for Jetson Nano, we ensure real-time, offline inference 
capabilities, which makes the solution suitable for rural and low-
resource agricultural settings where access to cloud computing is 
limited. This hardware-oriented deployment underscores the real-world 
relevance and scalability of our work, which extends the benefits of AI 
to on-field plant disease monitoring systems.

The remainder of this paper is organized as follows: Section 2 
discusses related work, Section 3 presents the details of our methodology, 
Section 4 showcases the results and their brief discussion, and Section 5 
provides the conclusion and possible future recommendations.

2. Literature Review
Advancements in deep learning techniques have significantly 

improved the field of plant disease classification because several 
studies have demonstrated the effectiveness of various neural network 
architectures. This section presents a concise summary of the research, 
focusing on the primary methods, datasets, and challenges faced 
using deep learning to detect plant diseases. Tables 1 and 2 provide a 
concise overview of the deep-learning approaches used to classify plant 
diseases.

2.1. Related work
Several studies have demonstrated the potential of deep 

learning models, particularly DCNNs, in automating the detection 
of crop diseases. For example, Singh et al. [21] proposed a custom 
CNN architecture to classify four common rice plant diseases while 
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 Figure 1
(a) Corn leaves of infected and healthy samples and (b) rice leaves 

of blight, healthy, brown spots, and leaf smut samples

Table 1
Deep learning approaches used for the classification of rice plant disease

Author and Publication 
year Dataset Source of Data Deep Learning Classifier Accuracy
Singh et al.
[21]

Rice Plant Diseases From Rice Fields in Western 
Orissa, India

Customize CNN 99.66%

Healthy Rice Leaf 
Dataset

From the Imphal East District, 
Manipur, India

99.83%

Agrawal et al.
[24]

Rice Plant Diseases Kaggle dataset VGG19 97.25
SqueezeNet 96%

CNN 95%
ResNet50 97.5%

XceptionNet 96.5%
Kaur et al.
[31]

Pooled Dataset Mendeley and Kaggle datasets SqueezeNet 93.3%
VGG16 91.4%

InceptionV3 93.1%
Bathe et al.
[32]

Integrated and Custom 
dataset

Mendeley, UCI, and Kaggle 
dataset

CNN 90.29%
DS-CNN 89.28%

InceptionV3 99.46%
MobileNetV2 80.25%

Xception 99.2%
TransEnsembleNet 98.73%

ConvDepthTransEnsembleNet 99.33%
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minimizing network parameters. Their experiments, conducted using 
stochastic gradient descent with momentum (SGDM) and Adam 
optimizers, achieved classification accuracies as high as 99.83%. 
However, despite these strong results, the model’s applicability was 
limited to controlled datasets, with no mention of deployment constraints 
or generalizability to real-world, handheld platforms. Expanding on this 
direction, Pratama et al. [22] focused on maize disease classification 
using a Kaggle dataset. They compared several standard architectures, 
such as AlexNet, LeNet, and MobileNet, and found that MobileNet 
provided superior results with an accuracy of 83.37%. Although their 
work offered insights into model benchmarking, it did not explain how 
model size and inference speed would affect practical deployment, 
particularly on edge devices.

In line with the need for model optimization, Abas et al. [23] 
conducted a systematic literature review (SLR) on CNN-based corn 
disease detection, emphasizing the importance of hyperparameter tuning. 
Their findings highlight that parameter selection in each convolution 
layer substantially affects classification performance. However, they 
note a clear research gap: most studies do not experimentally validate 
the effect of such hyperparameter optimization, leaving performance 
gains mostly theoretical. To address limitations in training strategies, 
Agrawal et al. [24] employed both baseline and transfer learning 
methods with various architectures, including VGG19, ResNet50, and 
DenseNet. Their results confirmed ResNet50’s superiority with a 97.5% 

accuracy. However, their model evaluation focused on accuracy alone, 
without considering inference latency or model size, which are two 
crucial aspects for real-time, on-device classification, which our work 
directly addresses.

Continuing the exploration of backbone architectures, Mizan 
et al. [25] used EfficientNet-B3 to identify diseases in staple crops 
such as rice and maize, reaching high accuracies across all categories. 
However, the study does not examine model efficiency in confined 
computing environments such as edge platforms, which limits its 
practical applicability. Saleh et al. [26] demonstrated the importance of 
model interpretability and dataset augmentation when they compared 
CNN to support vector machines (SVMs) and discovered CNN to 
be superior in maize disease diagnosis. The study emphasized data 
augmentation and consistent training parameters. Still, it left gaps 
concerning real-world implementation and user interpretability, which 
we expressly address in our suggested approach using lightweight 
architectures and hardware testing.

To increase real-world durability, Salihu et al. [27] used data 
augmentation techniques and found that CNNs attained a classification 
accuracy of 95.53% when trained on altered images. Although this 
study emphasizes the importance of better training data, the model 
has yet to be validated in real-world settings. Our technique expands 
on this by using the model in Jetson Nano and testing its performance 
in uncontrolled situations. Rajeena PP et al. [28] investigated 
the application of sophisticated feature extractors, implementing 
EfficientNet and DenseNet designs with high precision and recall. Their 
technique optimized various hyperparameters for better classification 
but did not consider deployment practicality, such as the models’ energy 
efficiency or memory limits on mobile platforms.

To improve generalizability, Barman et al. [29] developed a 
hybrid model that combines EfficientNetB0 and SVMs. Although the 
model produced competitive results across many crops and diseases, 
its dependence on computationally costly structures limits real-time 
field deployment—a barrier that our study addresses by employing 
optimized, lightweight CNN variations. Elmasry et al. [30] improved 
hybrid designs by proposing DenseNetDNN, a combination of 
DenseNet121 and deep neural networks that performs well on corn 
disease detection. However, although correct, their method was not 
tested on any edge platform or in a real-world deployment situation. In 
contrast, we specifically construct and assess models in Jetson Nano to 
ensure real-time responsiveness.

3

Table 2
Deep learning approaches used for the classification of corn plant disease

Author and Publication 
year Dataset Source of Data Deep Learning Classifier Accuracy
Pratama et al. [22] Corn Plant Diseases Kaggle dataset AlexNet 75.87%

LeNet 80.87%
MobileNet 83.37%

Abas et al. [23] Corn Plant Diseases Kaggle dataset CNN 99%
AlexNet 93.5%
VGG16 95.63%

Saleh et al. [26] Corn Plant Diseases Kaggle dataset CNN 99.8%
SVM 99.11%

Salihu et al. [27] Corn Plant Diseases Mendeley.com CNN (With Data Augmentation) 95.53%
Rajeena PP et al. [28] Corn Leaf Diseases PlantVillage and PlantDoc EfficientNetB0 98.85%
Elmasry et al. [30] Corn Leaf Diseases PlantVillage and PlantDoc DenseNetDNN 96.1%

 Figure 2
Block  diagram of the proposed methodology
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Kaur et al. [31] used an ensemble-based technique to identify 
rice leaf disease by merging feature extractors VGG16, InceptionV3, 
and SqueezeNet. Their model achieved 93.3% accuracy, but model 
complexity and a lack of deployment considerations remain significant 
limits. To overcome this, we immediately integrate the best-performing 
model variation into an embedded system context. Bathe et al. 
[32] expanded on this idea by creating a weighted ensemble model, 
ConvDepthTransEnsembleNet, which obtained 96.88% accuracy on a 
small, unbalanced dataset. Although impressive, the model’s incredible 
complexity and processing expense make it unsuitable for portable 
or field-based use, which is precisely the scenario addressed in our 
suggested implementation.

Recent advances in infrared object detection have been 
propelled by innovations in feature extraction and adaptation across 
modalities. Deep-IRTarget introduced a dual-domain feature extraction 
mechanism, combining spatial and frequency domain information to 
significantly enhance target detection accuracy in infrared imagery 
[33]. Building on this, the Differential Feature Awareness Network 
incorporated antagonistic learning [34] to further improve detection in 
cross-domain (infrared–visible) scenarios by emphasizing differential 
feature extraction and allocation. To address the challenge of limited 
annotated data, a benchmark and frequency compression method for 
infrared few-shot object detection established the IFSOD benchmark 
and proposed frequency compression techniques, facilitating robust 
few-shot learning in complex infrared environments [35]. Collectively, 
these works establish a strong foundation for future research in robust 
and data-efficient infrared object detection, especially in applications 
where annotated data are scarce and cross-domain generalization is 
crucial.

2.2. Gap analysis
The literature study reveals notable progress in using CNNs for 

identifying and categorizing plant diseases, specifically in major crops 
such as rice, maize, and corn. Despite the progress, specific gaps remain 
unaddressed. These gaps provide prospects for additional research to 
implement the CNN in an edge platform as a handheld solution. Dataset 
diversity is a topic that requires further consideration. Moreover, the 
CNN models have limited interpretability, which challenges end-users, 
such as farmers, to have confidence in and comprehend the predictions. 
There is a deficiency in the practical implementation of these models 
because several studies concentrate on controlled settings. Our 
proposed methodology addresses all mentioned issues and provides 
the best solution. The proposed research paper delves deeper into our 
contributions, and here is the summary:

1) We added a dense layer to deep learning models InceptionV3, 
ResNet152, and MobileNetV2 and improved their accuracy on 
publicly available datasets of rice and corn.

2) We compared the performance of deep learning models using different 
learning rates, demonstrating the importance of hyperparameters for 
models’ performance.

3) We compared results with the invariant of InceptionV3, ResNet152, 
and MobileNetV2 and found promising results compared with the 
latest research.

4) We have implemented the invariant of InceptionV3 in Jetson Nano 
as a handheld solution for disease detection and classification in rice 
and corn plants.

In the following sections of the proposed paper, we will delve into 
the methodology of our proposed technique, discuss the experimental 
setup, discuss the achieved results in both software and hardware, and 
conclude with potential future directions.

3. Proposed Methodology
3.1. Dataset acquisition and distribution

The dataset used in this study was obtained from Kaggle, 
comprising images of corn and rice. For the rice dataset, a total of 16,000 
images were obtained, with an equal distribution of 4,000 images across 
four classes: bacterial leaf blight, brown spot, healthy, and leaf smut. 
These images were divided into training and testing datasets, with 70% 
allocated for training and 30% for testing. Similarly, the corn dataset, 
consisting of 4,546 images, was also divided into 70% for training and 
30% for testing. The corn dataset included two classes: 2,567 healthy 
images and 1,979 infected images. Table 3 below illustrates the dataset 
distribution.

3.2. Preprocessing 
Preprocessing is a crucial step in image processing as it enables 

the normalization of pixel values and the resizing of images. In this 
work, preprocessing was conducted to resize and normalize the images. 
The original image dimensions were 512 × 512 × 3, which were resized 
to 256 × 256 × 3. Equation (1) was used for resizing the images.

For each pixel in the resized image, the corresponding pixel in 
the original image is calculated as in Equation (2):

where (xnew, ynew) are the coordinates in the resized image and (xorig, 
yorig) are the corresponding coordinates in the original image.

Depending on the interpolation method, ↓ pixel value at (xnew, 
ynew) is computed using the pixel values around (xorig, yorig) in the original 
image. These resize frames are used for normalization of frames. 
Normalization is used to scale the image in a specific range, such as 
[0,1]. In this study, we applied image normalization to scale the pixel 
values to a specific range. The equation used for this normalization is 
provided in Equation (3).

where N represents the normalized values obtained after applying 
normalization. The term pixel value refers to the original pixel value, 
which ranges from 0 to 255 in an 8-bit image. Min denotes the minimum 

(1)

(2)

(3)
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Table 3
Dataset distribution among different classes of rice and corn plant 

leaves

Serial 
No.

Rice Corn

Class Type
No of 

Images
Class 
Type

No of 
Images

1 Bacterial leaf blight 4000 Healthy 2567

2 Brown spot 4000 Infected 1979
3 Healthy 4000 - -
4 Leaf Smut 4000 - -

Total 16000 Total 4546
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possible value, typically 0, whereas Max refers to the maximum 
possible value, typically 255. Preprocessing is also demonstrated in 
Figure 2, along with a broader overview of the proposed methodology.

3.3. Invariants of deep learning models 
3.3.1. Deep learning feature extraction 

In the rice and corn image classification task, invariants of deep 
learning models were used because of their superior performance 
compared to traditional classification techniques. The architecture of 
a simple CNN model used for classification is detailed below. Figure 3 
shows the generic architecture of the CNN model.

Convolution Layer: Local features are extracted through the 
convolutional layers as the data passes from the input layer. Equation (4) 
is used for the mathematical expression.

Here, Ix×x represents the input data, and Wx×x denotes the weight 
vector. The variable x signifies the kernel and filter size, and S represents 
the bias factor. These are then passed to an activation layer to address 
the nonlinearity among the features.

Max-Pooling Layer: The max-pooling layer segments the 
feature map into smaller, nonoverlapping pooling kernels. It selects the 
maximum value from each kernel and passes it to the subsequent layer. 
This layer involves two primary functions: (1) downsampling the data 
from the previous layer to reduce its dimensionality and (2) enhancing 
model parameters and decreasing computational time.

Fine-Tuned ResNet152: The residual network (ResNet) is a deep 
learning model characterized by its use of skip connections between 
layers, which helps in preserving knowledge, reducing loss, and 
improving performance during the training phase. ResNet was originally 
trained on the ImageNet dataset, which consists of 1,000 classes. For 
our work, we fine-tuned a ResNet152 model for a classification task. 
Specifically, we replaced the original fully connected layer with a new 
layer and then applied transfer learning to train the model. During 
training, several hyperparameters were used: a mini-batch size of 8, 
a learning rate of 0.0001, 100 epochs, and the mean squared error loss 
function. The optimizer used was gradient descent, and average pooling 
followed by activation was employed for feature extraction.

Fine-Tuned InceptionV3: The fine-tuned InceptionV3 model is 
a deep learning classification model used in our work for the task of 
rice and corn classification. Similar to ResNet152, InceptionV3 was 
initially trained on the large-scale ImageNet dataset, which comprises 
1,000 classes. For our specific task, we fine-tuned the InceptionV3 
model. This involved first removing the original fully connected layer, 
adding an additional dense layer to the model, and then incorporating 
a fine-tuned fully connected layer. Finally, pooling and activation 
functions were applied to the features to complete the model’s 
architecture.

Fine-Tuned MobileNetV2: MobileNetV2 is a deep learning 
model that employs residual connections and separable convolutions 
to enhance performance. In our work, we used a fine-tuned 
MobileNetV2 architecture for the classification of rice and corn 
diseases. The MobileNetV2 model begins with an initial fully 
connected layer with a filter size of 32, followed by 19 residual layers. 
ReLU is used for nonlinearity, with a standard 3 × 3 kernel, along with 
dropout and normalization during the training phase. Except for the 
fully connected layer, the original architecture remains unchanged. 
The original fully connected layer was replaced with a fine-tuned 
layer tailored for the classification task of rice and corn diseases, 
followed by ReLU and pooling layers. Several hyperparameters were 
adjusted to achieve the desired accuracy and performance, including 
a learning rate of 0.0001, a batch size of 8, cross-entropy as the loss 
function, and gradient descent as the optimizer. The network consists 
of 3.4 million parameters. To improve the robustness and performance 
of the model, an additional dense layer was incorporated.

3.4. Classification
Fully Connected Layer: Logical inference is performed by the 

fully connected layer, which transforms a 3D matrix into a 1D vector 
through fully connected operations, as shown in Equation (5).

where the input and output vector sizes are represented by yo and Zj and 
Z is the output of the FC layer.

Dense Layer: A dense layer is a fully connected layer. Instead of 
adding two dense layers, we add an additional dense layer before the 
softmax layer. This extra layer enables the model to learn more abstract 
features, refining the representations before reaching the softmax layer.

Softmax Layer: In the architecture of the CNN, this layer functions 
as the classification layer, responsible for determining the probabilities 
of the output and normalizing the class predictions. b(x(j)=m′ ∣ y(j); X), 
as expressed in Equation (6).

where z is the number of samples = 1, m represents the weights that are 
replaced by X, and the input of the classifier is  .

3.5. Hardware platform Jetson Nano implementation
We used the invariant of InceptionV3 because of its superior 

performance, which was selected for hardware deployment. Prior 
to deployment, the model was optimized using TensorRT. Figure 4 
illustrates the deployment of the models using PyTorch on a PC, and 
Figure 5 demonstrates the deployment of InceptionV3 on the Jetson 
Nano platform.

PyTorch to TRT: Torch-TensorRT converts PyTorch models 
into TensorRT engines optimized for deployment on NVIDIA GPU 

(4)

(5)

(6)
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 Figure 3
Convolutional neutral network (CNN) with a new dense layer

 Figure 4
Model training using PyTorch on GPU



Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

platforms. This high-performance deep learning optimizer uses 
mathematical operations to transform PyTorch models into TensorRT 
format, enhancing performance while maintaining accuracy. TensorRT 
uses the ONNX graph to convert models into TensorRT format, as 
shown in Equation (7), optimizing each operation during the conversion 
process. 

Layer Fusion and Optimization: TensorRT employs optimizations 
such as layer fusion, where sequences of convolutional layers are 
combined into a single unit to reduce memory usage and computation 
time.

Convolution layers with operation y=θ*x+c and a ReLU 
activation z=max(0,y) are required. TensorRT may fuse these into a 
single optimized operation, as shown in Equation (8):

θ

Precision Calibration and Quantization: TensorRT employs 
precision operations to convert 32-bit floating-point values to 8-bit 
floating-point values, thereby enhancing performance. It also uses 
quantization techniques to minimize any loss of accuracy during this 
process. 

Quantization can be applied to map a high-precision value x to a 
lower-precision value xm using a scale factor s and an offset L expressed 
in Equation (9).

Kernel Section and Optimization: TensorRT optimizes 
performance by selecting the most efficient implementation for the 
target hardware, choosing kernels that minimize memory usage, 
bandwidth, and computation time. For convolution y=θ*x+c, TensorRT 
may employ different methods, such as direct convolution or FFT, 
depending on which is best suited to the input size and hardware.

Pruning and Tensor Memory Management: TensorRT prunes 
unnecessary neurons and manages memory to enhance runtime 
throughput using pruning, as shown in Equation (10). Memory 
optimization is achieved by efficiently allocating and deallocating 
resources as needed.

After this step, the model is serialized into a format that can be 
directly loaded onto the target hardware. This format is designed to be 
lightweight and fast loading.

The process of converting PyTorch models to TensorRT involves 
exporting the model to ONNX, parsing it, applying techniques such as 
layer fusion and quantization, and finally serializing it for deployment. 
This process uses practical optimizations to minimize inference time on 
hardware as expressed in Equation (11).

4. Results and Discussions
4.1. Experimental setup

This study was conducted using NVIDIA Quadro P5000. It has 
a dedicated GPU of 16 GB with a process speed of up to 4.0 GHz, 
which ensures optimal functionality of the computer hardware and 
software components. We created a separate virtual environment for the 
proposed approach and a comparison of different DL models. PyTorch 
framework was used for InceptionV3, ResNet152, and MobileNetV2 
and their invariants.

Similarly, Jetson Nano has 4 GB of LPDDR4 RAM, which 
allows us to handle multiple DL models. It also includes 16 GB of 
eMMC storage, an expandable via microSD, providing flexibility 
for storage needs. The device offers various I/O options, including 
USB 3.0, HDMI, MIPI CSI-2 camera interfaces, and a Gigabit 
Ethernet port, enabling seamless integration with sensors, cameras, 
and other peripherals. We used it for the optimization and deployment 
of the invariant of the InceptionV3 DL model for real-time edge 
implementation.

4.2. Results and discussions
Table 4 shows the impact of different learning rates on the 

accuracy of these models. It is evident that as the learning rate decreases, 
the accuracy tends to improve, particularly at a learning rate of 0.001, 
where the InceptionV3 model reaches a peak accuracy of 99.13% for 
corn leaves and 97.39% for rice leaves. This trend is similarly observed 
in ResNet152, which achieves 92.60% accuracy for corn and 91.39% 
for rice at the same learning rate. MobileNetV2, though less accurate 
overall, still shows improvement with reduced learning rates, although 
its performance plateaus at approximately 88% for both corn and rice 
leaves. These data highlight the significance of fine-tuning learning 
rates to optimize model performance in agricultural classification 
tasks.

Figure 6 and Table 5 provide insights into the accuracy of 
different deep learning models, i.e., InceptionV3, ResNet152, and 
MobileNetV2, when applied to the classification of rice and corn 

(7)

(8)

(9)

(10)

(11)
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Table 4
Accuracy of DL models through different learning rates

Model InceptionV3 Accuracy (%) ResNet152 Accuracy (%) MobileNetV2 Accuracy (%)
Learning rate 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001

Corn accuracy 72.72 89.70 99.13 98.71 65.33 87.98 92.60 96.89 69.71 83.31 88.05 88.09

Rice accuracy 74.41 85.41 97.39 97.40 61.11 88.23 91.39 91.29 73.31 86.19 87.44 87.46

 Figure 5
Model deployment on edge platform using PyTorch-TRT
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leaves. The figure shows the performance of these models using 
invariant features, where the InceptionV3 model achieves the highest 
accuracy for both corn and rice leaves, with 99.01% and 93.59%, 
respectively. ResNet152 also demonstrates strong performance, 
particularly for corn leaves with an accuracy of 98.09%, slightly lower 
than that of InceptionV3. However, the accuracy decreases to 89.73% 
for rice leaves when using MobileNetV2, indicating a relatively lower 
performance compared to the other models.

Table 5 highlights the impact of different learning rates on the 
performance of the invariant models. The invariant of InceptionV3 

demonstrates the highest accuracy, reaching 99.01% for corn and 
98.51% for rice at an optimal learning rate of 0.0001. Similarly, the 
invariant of ResNet152 also shows significant accuracy improvements 
at lower learning rates, particularly achieving 98.09% for corn and 
93.59% for rice. MobileNetV2, though generally less accurate than the 
other models, still benefits from lower learning rates, with its accuracy 
peaking at 90.65% for corn and 89.73% for rice.

The results in Table 6 clearly demonstrate that incorporating 
invariant layers or mechanisms into deep learning architectures 
substantially boosts the accuracy and reliability of crop disease 
detection models. The overall accuracy graph for rice and corn is shown 
in Figure 7 to analyze the performance of the deep learning model 
used in the study. The invariant of InceptionV3 stands out as the top 
performer, achieving near-perfect classification for both corn and rice 
disease images. ResNet152 and its invariant also show strong potential, 
especially for corn. Although MobileNetV2 offers a lightweight 
solution, its lower performance suggests that it may be less suitable 
for scenarios where high accuracy is crucial. Overall, the findings 
highlight the importance of both model architecture and the use of 
invariant techniques in achieving robust, generalizable results for real-
world agricultural disease detection tasks. For practical deployment 
in precision agriculture, the invariant of InceptionV3 is recommended 
because of its superior performance across all evaluation metrics, 
ensuring both high accuracy and reliability in diverse field conditions.

Figure 8 shows the training and validation accuracy graphs for 
three models applied to rice and corn leaf classification. In subfigure 
A, the invariant of InceptionV3 for rice shows a steady increase in both 
training and validation accuracies, with the validation accuracy closely 
following the training accuracy, indicating a well-generalized model 
with minimal overfitting. Subfigure B, which represents the invariant of 
InceptionV3 for corn, shows a similar pattern showcasing the model’s 
robustness and effectiveness in classifying corn leaves. Subfigure C, 
which shows the training and validation accuracies for the invariant of 
MobileNetV2 on corn leaves, shows a slightly different trend. Although 
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Table 5
Accuracy of invariants of deep learning models through different learning rates

Model Invariant of InceptionV3 Invariant of ResNet152 Invariant of MobileNetV2
Learning Rate 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001

Corn accuracy 86.74 91.75 98.93 99.01 66.51 89.88 94.65 98.09 70.51 83.81 90.65 90.51
Rice accuracy 76.42 87.21 98.30 98.51 63.91 89.78 93.55 93.59 73.71 83.81 89.73 89.73

 Figure 6
Accuracy bar graph using invariants of deep learning models for 

rice and corn leaves

Table 6
Comparison of deep learning models without VS with a dense layer having the best learning rates

Model

Corn Rice
 Accuracy 

(%)
Precision 

(%) Recall (%)
F1 Score 

(%)
Accuracy 

(%)
Precision 

(%) Recall (%)
F1 Score 

(%)
InceptionV3 98.71 98.61 98.42 98.51 97.40 97.42 97.39 97.38
Invariant of 
InceptionV3

99.01 98.94 99.00 98.99 98.51 98.39 98.34 98.49

ResNet152 96.89 96.83 96.56 96.93 91.39 91.41 91.99 91.29
Invariant of 
ResNet152

98.09 98.01 98.18 98.08 93.59 93.62 93.51 93.58

MobileNetV2 88.09 88.00 88.10 88.13 87.46 87.42 87.39 87.45
Invariant of 
MobileNetV2

90.65 90.64 90.59 90.63 89.73 89.69 89.63 89.74
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both training and validation accuracies increase rapidly at the beginning, 
the validation accuracy plateaus, slightly below the training accuracy. 
This suggests that although the model is performing well, there is a 
small gap between the training and validation accuracies, indicating 
potential overfitting or a need for further fine-tuning. Overall, these 
graphs underscore the effectiveness of the invariants of InceptionV3 
in both rice and corn classification tasks, with MobileNetV2 also 
performing competitively but with a need for slight adjustments.

A shown in Figure 9, the system predicts the health status of 
rice and corn leaves using different deep learning models, specifically 
invariants of InceptionV3, ResNet152, and MobileNetV2. The 
predictions cover various conditions such as healthy, leaf smut, leaf 
blight, and infected leaves. The models demonstrate high confidence 
levels, mostly above 0.90, indicating a strong ability to distinguish 
between healthy and diseased leaves. Each model variant shows 
consistent performance, particularly in correctly identifying the disease 

states in rice and corn leaves, which suggests that the models are well 
suited for agricultural disease diagnosis.

Figure 10 shows the predictions of the NVIDIA model using an 
invariant of the InceptionV3 architecture for both rice and corn leaves. 
The figure includes predictions for healthy and infected leaves of both 
crops. The model again shows high confidence in its predictions, similar 
to the results in Figure 9. This consistency across different models and 
architectures highlights the robustness of deep learning approaches in 
plant disease detection, particularly when using sophisticated models 
such as InceptionV3. The model’s ability to accurately classify healthy 
and diseased leaves from different crops underscores its potential 
application in precision agriculture.

Table 7 presents a comprehensive comparison between recent 
state-of-the-art methodologies and our proposed deep-learning-
based invariant models for rice and corn disease classification. The 
table highlights the accuracy achieved by various methods, including 
traditional machine learning algorithms (such as SVM and Random 
Forest), classical CNNs, and more advanced architectures such as 
ResNet50, EfficientNet, and MobileNetV2.

For rice disease classification, previous studies have reported 
accuracies ranging from 92.8% (SVM by Seelwal et al. [36]) to 97.5% 
(EfficientNet by Li et al. [16]). Similarly, for corn disease classification, 
the highest reported accuracy among prior works is 96.3% (CNN by Kim 
et al. [37]), with other methods such as SVM, Random Forest, Multi-
Layer Perceptron, and Decision Tree achieving slightly lower results. 
In contrast, our proposed methodologies, particularly the invariant of 
InceptionV3 and invariant of ResNet152, demonstrate a significant leap 
in performance. For rice, our models achieve accuracies of 98.51% and 
93.59%, respectively, and for corn, the accuracies reach 99.01% and 
98.09%. This marked improvement underscores the effectiveness of 
our deep learning architectures, especially the incorporation of invariant 
features, in capturing the complex patterns associated with crop diseases 
under real-world conditions.

The superior performance of our models can be attributed 
to several factors. First, the use of deep learning enables automatic 
extraction of hierarchical features, which are more robust to variations 
in lighting, background, and disease manifestation compared to 
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 Figure 7
Accuracy bar graph of deep learning models and their invariants 

for rice and corn leaves

 Figure 8
Training and validation accuracy graph of the (a) invariant of 

InceptionV3 for rice, (b) invariant of InceptionV3 for corn, and 
(c) invariant of MobileNetV2 for corn

 Figure 9
Random prediction of the system: (a) invariant of InceptionV3 for 
rice leaf, (b) invariant of ResNet152 for rice leaf, (c) invariant of 
MobileNetV2 for rice leaf, (d) invariant of InceptionV3 for corn 

leaf, (e) invariant of ResNet152 for Corn Leaf, and (f) invariant of 
MobileNetV2 for corn leaf
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handcrafted features used in traditional methods. Second, the invariant 
mechanisms integrated into our models enhance their ability to 
generalize across diverse image conditions, making them particularly 
suitable for field deployment where environmental variability is high. 
Moreover, the consistent outperformance of our models over recent 
literature not only establishes a new benchmark for accuracy in rice 
and corn disease classification but also demonstrates the practical 
potential of our approach for precision agriculture. By achieving near-
perfect classification rates, our methodology can facilitate timely and 
accurate disease diagnosis, ultimately contributing to improved crop 
management and yield.

Figure 11 shows examples of false positive (FP) and false 
negative (FN) cases when using invariants of deep learning models 
(InceptionV3, MobileNetV2, and ResNet152) for rice and corn leaf 
disease detection. The FP samples show healthy leaves mistakenly 
identified as infected, whereas the FN samples display infected leaves 
incorrectly classified as healthy.

For rice leaves, the false positive and false negative cases are 
displayed for both the InceptionV3 and MobileNetV2 models. The false 
positives, particularly from the invariant of InceptionV3, show that even 
advanced models can mistakenly classify a healthy leaf as diseased, 
indicating the difficulty in distinguishing subtle features. Similarly, the 
false negatives highlight that some disease features are not always easily 
detected, leading to an incorrect healthy classification. For corn leaves, 

the invariant of ResNet152 demonstrates similar challenges, with 
misclassifications evident in both FP and FN categories, emphasizing 
the ongoing need to improve the precision and robustness of these 
models to reduce such errors.
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 Figure 10
Random prediction of NVIDIA using the invariant of InceptionV3: (a) healthy rice leaf, (b) rice leaf blight, (c) healthy corn leaf, and (d) 

corn infected leaf

Contribution
Methodology Accuracy (%)

Contribution
Methodology Accuracy (%)

Rice Corn
Lu et al. [38] CNN 94.2 Patel et al. [43] SVM 95.8

Rani & Singh [39] ResNet50 96.7 Mishra et al. [44] CNN 96.3
Duong et al. [40] EfficientNet 97.5 Chauhan et al. [45] Random Forest 93.6
Zaw et al. [41] SVM 92.8 Li & Tanone [46] Multi-Layer 

Perceptron
94.1

Liu et al. [42] MobileNetV2 96.1 Verma & Dubey [47] Decision Tree 92.7

Our (Invariant of 
InceptionV3)

Deep Learning 98.51 Our (Invariant of 
InceptionV3)

Deep Learning 99.01

Our (Invariant of 
ResNet152)

Deep Learning 93.59 Our (Invariant of 
ResNet152)

Deep Learning 98.09

Table 7
Accuracy comparison of state-of-the-art methodologies versus our proposed methodology

 Figure 11
Samples having false positive (FP) and false negative (FN) using 

invariants of deep learning models for rice and corn leaves
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5. Conclusion
Deep learning methods are being used in many challenging 

tasks for autonomous classification, detection, and segmentation. In 
our study, we trained and validated publicly available datasets using 
three DCNN-based deep learning models with varying learning rates, 
discovering that the lowest learning rate yielded the highest accuracy. 
By incorporating a newly designed dense layer into the existing CNN 
architectures, we achieved significant improvements in classification 
accuracy. The most notable results were obtained using our invariants of 
the InceptionV3, ResNet152, and MobileNetV2 models on corn leaves. 
Similarly, these models performed exceptionally well on rice leaves as 
well. Given its consistently high performance across both crops, the 
InceptionV3 model was used in NVIDIA Jetson Nano as an end device 
for real-time disease detection and classification.

Although the results are promising, further research is 
recommended to enhance the robustness of these models under varying 
environmental conditions and across different plant varieties. In 
addition, expanding the dataset to include more disease types and stages 
could improve model generalization. Implementing these models in a 
broader range of hardware platforms and integrating them into a user-
friendly interface can facilitate adoption among farmers and agricultural 
professionals, particularly in resource-limited settings [48].
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