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Abstract: The agricultural sector is undergoing a transformation with the integration of advanced technologies, particularly in data-driven decision-
making. This work proposes a federated learning framework for smart farming, aiming to develop a scalable, efficient, and secure solution for crop
disease detection tailored to the environmental and operational conditions of Minnesota farms. By maintaining sensitive farm data locally and
enabling collaborative model updates, our proposed framework seeks to achieve high accuracy in crop disease classification without
compromising data privacy. We outline a methodology involving data collection from Minnesota farms, application of local deep learning
algorithms, transfer learning, and a central aggregation server for model refinement, aiming to achieve improved accuracy in disease detection,
good generalization across agricultural scenarios, lower costs in communication and training time, and earlier identification and intervention
against diseases in future implementations. We outline a methodology and anticipated outcomes, setting the stage for empirical validation in
subsequent studies. This work comes in a context where more and more demand for data-driven interpretations in agriculture has to be
weighed with concerns about privacy from farms that are hesitant to share their operational data. This will be important to provide a secure
and efficient disease detection method that can finally revolutionize smart farming systems and solve local agricultural problems with data
confidentiality. In doing so, this paper bridges the gap between advanced machine learning techniques and the practical, privacy-sensitive
needs of farmers in Minnesota and beyond, leveraging the benefits of federated learning.
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1. Introduction

Various data-driven technologies are being increasingly used in
this sector for better productivity and sustainability. However, all that
information, including crop yield, soil health, and water usage, will
be stored centrally, which does raise serious privacy concerns
amongst farmers or agricultural organizations, as stated by [1–5].
These insights form the spine of smart farming systems, and it
now becomes imperative to have a solution that satisfies data
privacy while enabling collaborative learning. The proposed
research will contribute to enhancing disease detection models, a
privacy-preserving machine learning technique by which multiple
farms are able to collaboratively train models without necessarily
sharing raw data [5–8].

This research will, therefore, have a very significant impact and
probably change the face of disease detection in crops by allowing
greater cooperation between farms while maintaining data
confidentiality. In the wake of increasing demand for accurate
models of crop disease detection, most farms are reluctant to share
operation data because of privacy concerns. This has placed them
in a dilemma where good data remain localized and the future of
agricultural technology suffers accordingly. The proposed research
will contribute to enhancing disease detection models respecting

the individual farm privacy of Minnesota farms while leveraging
collective knowledge. This is done by proposing a federated
learning-(FL) based system tailored to the unique environmental
and operating conditions of the farms [9–13].

Accordingly, the present research aims to overcome the
traditional challenges of centralized systems that have often
jeopardized data security while compromising model accuracy. This
includes the works of [1, 2, 4, 14]. According to [6–8, 12, 15], the
methodology here focuses on proposing advanced machine learning
algorithms in smart farming using techniques that preserve privacy
without requiring data centralization. The system will make use of
real-time agricultural data from Minnesota farms to maintain local
control over sensitive information while enabling farms to
contribute to a global model that represents diverse agricultural
scenarios [6, 9, 11, 15, 16].

This is further emphasized by the increasing necessity for
efficient detection within agriculture in order to quickly and
effectively locate a disease and cure it. Early disease
identification, therefore, can prevent great losses of crops, ensure
resources are better used, and contribute to more environmentally
friendly farming. By leveraging the collective knowledge of
multiple farms through FL, this research aims to create a more
robust and adaptable disease detection system that can respond to
the diverse challenges faced by Minnesota farmers [9, 10, 17].
This presents a prospective study, proposing a FL framework for
smart agriculture. We outline a detailed methodology and
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expected outcomes, which will be validated through future
simulations and real-world deployments.

2. Literature Review

2.1. FL-powered visual object detection for safety
monitoring

Paper [1] proposes a new approach to improve the efficiency and
privacy of object detection models by using the FL concept. The
methodology involves integrating network pruning, model parameter
ranking, and COS to optimize and update object detection models,
which provides the ability to process data locally without necessarily
compromising sensitive information while reaping the advantages of
collaborative learning. The platform adopts datasets annotated in the
Darknet format, including attributes such as object category labels
and bounding box coordinates, including center point, width, and
height. This annotation framework can efficiently and in detail
prepare data for training. These results are remarkable: it reduced
over 20 days of model optimization time and drastically lowered data
transmission costs from 40,000 RMB to less than 200 RMB per year.

Furthermore, the vast reduction in bandwidth proves the
effectiveness of the platform. In summary, the major benefits
include enhanced privacy due to the localization of data, cost
efficiency, and effectiveness in its mode of operation. For every
benefit, the model possesses a drawback, for example, the high
network bandwidth used during model updates and increased
storage due to the time accumulation of parameters. However,
FedVision is a very good solution for efficient and preserving model
training in computer vision applications. Figure 1 below
demonstrates the centralized training process of a visual object
detector, indicating data gathering from different sources, centralized
processing, and model optimization. It is contrasted with our
federated solution by indicating raw data transmission to a central
server, privacy, and bandwidth problems addressed in our research
(e.g., reduced costs from 40,000 RMB to <200 RMB/year [1]).

2.2. FL for object detection in autonomous vehicles

This paper [2] presents an application of FL to object detection
for autonomous systems with a guarantee of data privacy. The
methodology is based on YOLOv3 as the base model, Federated
Averaging for weight aggregation, K-means for anchor prediction,
and TensorFlow for model development. Socket programming
provides secure communication between the clients and the
server. In this work, the KITTI Vision Benchmark Dataset is
used, which is a real-world benchmark for autonomous driving. It
contains 7,481 training images and 7,518 testing images across
eight object classes such as car, pedestrian, and cyclist. Convert
the KITTI labels to YOLOv3 format, which includes object class
and bounding box parameters. Data are divided across four clients
to simulate heterogeneous environments.

The results have pointed out the efficacy of FL, which is able to
achieve an mAP of up to 68% after 15 rounds of communications and
reduce the training time by 27–10 min compared to the centralized
deep learning model. It enhances the object detection accuracy by
aggregation of knowledge from distributed clients with higher IoU.
The advantages are an improved detection of objects, reduced
training time, improved privacy by keeping the data local, and
being able to detect unseen objects. FL is also far more resource-
efficient and more scalable than traditional models. However, in
achieving all these successes, challenges occur in maintaining
consistent label formats and model types across different clients and
in managing the overheads of transferring TensorFlow files. This
work underlines the potential of FL as a scalable and privacy-
preserving solution for autonomous vehicle applications.

2.3. A FL-based crop yield prediction for
agricultural production risk management

This paper [4] has presented FL for crop yield prediction in a
decentralized agricultural environment. The methodology follows
deep regression models, namely ResNet-16 and ResNet-28,
trained using the federated averaging algorithm, which allows

Figure 1
A typical workflow for centralized training of a visual object detector
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collaborative model development across distributed datasets without
centralized data aggregation. The dataset used in this study consists
of soybean yield data from nine U.S. states from 1980 to
2018, including weather, soil, and crop management features.
Weather attributes include maximum and minimum temperature,
precipitation, solar radiation, vapor pressure, and snow water
equivalent obtained from the Daymet Service. The following are
the soil characteristics from the Gridded Soil Survey Geographic
Database: bulk density, nitrogen, organic carbon stock, pH, and
percentages of clay, sand, and silt for multiple depths. Crop
management variables include the total weekly percent complete
for soybean planting, starting in April of each year, from the U.S.
National Agricultural Statistics Service.

These results indeed reflect that ResNet-16 regression with the
Adam optimizer in a FL setting yields the best performance, while
metrics like MSE, RMSE, MAE, and correlation coefficient (‘r’)
are comparable or even better when obtained from centralized
models. This work underlines FL’s potential to guarantee data
privacy while leveraging the effective utilization of geographically
distributed datasets. However, the limiting factors are that
conventional machine learning models have not been explored,
and there is a lack of mechanisms preserving privacy on vertically
partitioned data. In spite of everything, the research underpins FL
as a scalable and privacy-aware solution to defuse agricultural
production risks owing to robust crop yield forecasting.

2.4. Multiple diseases and pests detection based on
FL and improved faster R-CNN

This paper [10] presents a new method of detecting agricultural
diseases and pests based on FL and an improved Faster R-CNN
model. The ResNet-101 used here as the backbone substitutes
VGG-16 to handle better detection for small-sized targets. Further
refinements include Soft-NMS for occlusion and multiscale
feature map fusion to enhance the model in detecting variable
sizes of pests. In this paper, the hard example mining method will
be used online to deal with challenging samples to make the
system robust. The dataset used in this study consists of images
collected from six geographically diverse orchards featuring
different pest and disease categories, including fruit embroidery
disease, anthracnose, and bitter pit. Each image has multiple
attribute annotations, including but not limited to pest or disease
type, bounding box coordinates, and occlusion. Therefore, data
augmentation techniques have been adopted to produce adequate
samples and reduce imbalance problems among different orchards.

The result has shown a very high mAP of 89.34%, with 59%
faster training based on the improved FedAvg algorithm. It ensured
that local training for every orchard and iterative update of the
global model on the federated server were performed without any
raw data transfer while combining different datasets. This approach
solves problems in unbalanced and insufficient data distribution and
also allows model training in scalable and privacy-preserving
manners. On the other hand, such a system is computationally
demanding and suffers from low efficiency in communication due
to instability between participants. Nevertheless, the study has
shown how FL, together with enhanced Faster R-CNN, can play a
key role in pushing the frontier of precision agriculture toward
efficient pest and disease detection systems. Figure 2 shows a
comparison of the baseline Faster R-CNN and an improved version
using three mechanisms (Soft-NMS, multiscale fusion, OHEM) in a
FL environment. It shows a drastic improvement, to 89.34% mAP,
emphasizing the effectiveness of our improved detection technique
for agricultural pests and diseases [10].

2.5. FL: Crop classification in a smart farm
decentralized network

This paper [9] presents advanced crop classification based on
FL coupled with advanced machine learning techniques. In the
proposed methodology, Binary Relevance, Classifier Chain, and
Label Powerset classifiers are combined with Gaussian Naïve
Bayes and FL with Stochastic Gradient Descent and Adam as
optimizers for training. In the dataset used for this study, climatic
parameters were considered as independent features, and crop
types were considered as dependent variables. Specific features
include temperature, humidity, pH, and rainfall, while the crop
types are rice, maize, and chickpea as labels. The data were
gathered from different smart farm sensors and weather stations.
In this dataset, it is already divided into a training set and a test
set for model evaluation.

Results indicate that the Binary Relevance and Classifier Chain
models achieved an accuracy of 60%, whereas Label Powerset
attained 55% accuracy. Among them, FL with the Adam
optimizer worked very well and achieved 90% with an F1-score
of 0.91. With this, FL allows for high accuracy and speed of
convergence of this model while at the same time ensuring data
privacy; raw data are not needed to be shared across participants.
However, the study again enumerates a number of limitations,
such as poor performance with the use of the SGD optimizer and
the high computational cost related to fine-tuning the Adam
optimizer. This work underlines the potential of FL as a privacy-
preserving and efficient solution for decentralized smart farm
environments. It can integrate diverse, decentralized datasets for
performing classification tasks on crops.

Table 1 above provides an overview of the performance metrics
of crop type classification model (Binary Relevance, Classifier
Chain, Label Powerset) in a FL smart farm network. It provides
accuracies (e.g., 60% for Binary Relevance, 90% for Adam
optimizer) and F1-scores (e.g., 0.91), indicating that our FL
method is well suited for decentralized crop type classification [9].

2.6. PEFL: Deep privacy-encoding-based FL
framework for smart agriculture

This paper [18] presents a robust framework that combines
advanced privacy-preserving techniques with FL to enhance data
security and intrusion detection in smart agriculture systems. The

Figure 2
Comparison of the mAP(%) of original and improved faster

R-CNN with three mechanisms

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

03



methodology involves a two-level privacy encodingmechanism: using
perturbation-based encoding to transform categorical values into
numerical ones and normalizing feature values in the range of (0, 1).
It further transforms the data using the LSTM-AE and assures strong
data privacy in its federated training. Intrusion detection based on IoT
network traffic will be done in both normal and different attack types
on the ToN-IoT dataset, done by FederatedGRU. This dataset includes
many features: time series from IoT devices, attack labels, and network
features, which are really useful in finding malicious activities in smart
agriculture settings.

Results have come out excellent, the accuracy for one client was
99.31%, for another client it was 99.74%, and similarly, area under
the curve (AUC) was also close to 1, showing that the proposed
framework works efficiently for intrusion detection. The major
advantages include strong data privacy due to two-layer encoding
and good accuracy in intrusion detection. At the same time, these
are seriously challenged by the high complexity of the setup of
the two-layer encoding mechanism and the very intensive
computational resources required, turning its deployment into a
hardly feasible task. Anyway, PEFL turns out to be efficient and
privacy-preserving for smart agriculture against some of the
critical security challenges in the decentralized environment.

2.7. FL in smart agriculture: An overview

Paper [19] discusses the usage of FL for smart agriculture. It
looks at FL integrated with IoT for decentralized processing. The
work refers to several datasets that have often been used in FL
projects related to agriculture, the environment, and sensor data
derived from IoT devices from multiple farms. These databases
comprise temperature, humidity, soil moisture level, rainfall, pH,
crop type, occurrence of insects and diseases, nutrient content,
weather pattern, and crop yield data, among others. Most of the
input sources in this database emanate from remote sensors,
drones, weather stations, and even manual observations.

This research investigates how FL facilitates collaborative
learning across distant devices while protecting data privacy, thus
allowing these heterogeneous datasets to contribute to models for
crop yield prediction, pest control, and disease detection without
the need for centralizing sensitive information. The findings
present FL’s benefits in improving privacy and productivity in
agricultural operations and have shown its potential for
transforming data-driven farming methods. On the other hand, it
enumerates the number of challenges: a high cost of start-ups,
huge demands on infrastructures, and data heterogeneity across
regions and farms, inhibiting effective use of FL in resource-poor
agriculture. Overall, there is an emphasis on how FL can be
revolutionary with regard to efficiency and security enlargement
in smart farm systems.

2.8. FL for smart agriculture: Challenges and
opportunities

This paper [6] discusses the revolutionary potential of FL in the
agricultural industry for privacy-preserving and decentralized model
training with local data from edge devices. The methodology
underlines scalability and real-time processing; FL hence allows
the distribution of model training across multiple contexts without
needing to centralize sensitive data. The datasets used in this work
are the Rice Disease Dataset and the Mango Leaf Disease Dataset.
This consists of the Rice Disease Dataset, including 5,932
categorized images of rice leaf variations in types of diseases with
metadata information from rice crops in Odisha, India, regarding
disease type and leaf status. The Mango Leaf Disease Dataset will
deal with five categories, including Healthy Leaves, Anthracnose,
Powdery mildew, leaf spot, and leaf curl. These various attributes
had captured visual manifestation for the cited literature works
regarding disease severity: [4, 9, 20].

The results confirm that FL works pretty well, with the highest
accuracy in disease identification and yield forecasting applications
reaching up to 99.79% and 99.95%, respectively, using advanced
models of EfficientNet, ResNet, and convolutional neural network
(CNN). This framework offers a number of advantages in terms of
enhanced privacy, scalability, lower communication overhead,
decentralized storage, and real-time decision-making. Yet, some of
the open challenges include handling heterogeneous devices,
variable communication networks, privacy in model updates, and
little control over the quality of local data. Despite these limitations,
the study reveals FL’s huge potential for solving key agricultural
issues and paving the way toward new, data-driven farming solutions.

2.9. Performance analysis of a scalable FL-based
agricultural network

This paper [21] investigates the application of FL to plant
disease categorization in agricultural networks. The FedAvg
technique is used in the study, with EfficientNetV2-B0 serving as
the backbone model. It was trained using the PlantVillage dataset,
which has 61,486 photos divided into 39 classes, including
damaged and healthy plant leaves, as well as background images.
For better performance and to reduce overfitting, augmentation
was performed using picture techniques such as flipping, gamma
correction, noise injection, PCA color augmentation, rotation, and
scaling. Further, the dataset is divided into three sub-datasets:
training—12,297 photos; validation-3,074 images; and test-15,371
images. The photos were reduced to 224 × 224 × 3 to ensure
uniform processing. The study achieved an average test accuracy
of 97.52%, which showed the efficiency of FL in maintaining
performance even under data privacy constraints.

The proposed FL framework focuses on key advantages like the
preservation of data privacy, scalability in deployment, and low
communication costs, thus being suitable for large-scale agricultural
networks. Transfer learning with EfficientNetV2-B0 optimized
model accuracy with computational resource optimization.
However, issues such as data scarcity in some nodes negatively
affect the performance when the number of clients is increased. The
study further established that correct results on larger networks
required higher local epoch values, which increase training time and
raise the processing burden. These limitations notwithstanding, the
study illustrates FL’s potential to support privacy-preserving,
decentralized smart agriculture networks that solve some of the
fundamental challenges in contemporary farming [9, 22].

Table 1
Performance metrics of federated learning

using Adam optimizer

FL training Using learning rate= 0.001, optimizer = Adam.

Precision Recall F1-score Support

0 0.83 1 0.91 0.10
1 1 0.70 0.82 0.10
2 0.91 1 0.95 0.10
Accuracy 0.90 0.30
Macro-average 0.91 0.90 0.90 0.30
Weighted average 0.91 0.90 0.90 0.30
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2.10. FL CNN for smart agriculture: A modeling
for soybean disease detection

Paper [23] proposes amethod for detecting and classifying soybean
leaf diseases using FL in conjunction with convolutional neural
networks. This work supposes six clients that are to train a model
collaboratively, each one providing localized data without sharing,
hence guaranteeing data privacy. In this paper, authors have used a
dataset consisting of soybean leaf photos divided into four severity
classes: 1–25%, 26–50%, 51–75%, and 76–100%. It consists of more
than 4,100 images with features of image size (384 × 384 pixels),
disease severity classes, and bacterial blight, Cercospora leaf blight,
downy mildew, frog eye leaf spot, soybean rust, target spot, and
potassium deficiency. For better model robustness and reduction of
overfitting, the dataset contains different augmentation techniques:
flipping, gamma correction, noise injection, and rotation [24].

These results show the performance of up to 97% for different
severities. Strong sensitivity and specificity are reflected in the
precision, recall, and F1-scores of the performance indicators. The
overall performance of the clients ranges between 90.92% and
93.40% for the macro-average, proving that a model can diagnose
disorders with different levels of severity. FL strategy has ensured
that sensitive farm data stay on local devices, solving privacy issues
while enabling large-scale collaboration. Class imbalance, shifting
in local datasets, or other factors might question model
generalizability, which is discussed. Dealing with such challenges
using techniques of data balancing and the use of identical data
preparation procedures are considered the most influential factor for
performance improvement in real-world agricultural applications.
This framework is scalable and easily deployable across a number
of areas and farming scales, thus potentially being a useful tool in
precision agriculture and soybean disease management.

2.11. Smart agriculture: Innovating soybean leaf
disease detection with FL CNNs

This work [25] proposes a novel method for the detection of
soybean leaf diseases using FL, convolutional neural networks, and
decision trees among five clients. The methodology will involve FL,
which protects data privacy; CNN for feature extraction and decision
trees for classification. Original Data: The data used for research is
the high-resolution images of soybean leaves labeled into five
classes, namely Septoria leaf blotch, Frogeye leaf spot, bacterial
pustules, downy mildew, and Cercospora leaf blight. Images are
captured from multiple geographic locations with the motive of
capturing more perspectives on environmental variables and
changing diseases. The dataset is divided into training, validation,
and test sets, with each of these subjected to augmentation
techniques like rotation and flipping for better model robustness [26].

Results are promising, with precision as high as 95% and
accuracy ranging from 97% to 98% for different classes of
soybean leaf diseases. This shows the model’s capability in
diagnosing a range of disease types in soybean crops with
reliability. The report highlights several benefits, including
enhanced privacy protection, which is critical in agricultural
applications due to the inherent sensitivity of farm data. The
model is, however, flexible to all sorts of situations, hence making
its implementation viable across numerous geographical locations
with variable conditions. Admittedly, the paper does confess some
disadvantages, such as requiring a big dataset to train the model
effectively. Moreover, high variability in customers’ data driven
by changes in climatic conditions or disease incidence decreases
overall model performance and hence makes the model unreliable

for certain settings. Such limitations indicate the need for de-
risking strategies that can guarantee data variability to realize
robust performance across diverse agricultural contexts.

2.12. Impact of FL in agriculture 4.0: Collaborative
analysis of distributed agricultural data

This paper [27] is aimed at the role of FL within the concept of
Agriculture 4.0-focused collaborative analysis for dry bean
classification. It proposes an AgriFL 4.0 FL framework with MLP
models for solving classification tasks. It utilizes the Dry Bean
Dataset, which contains 13,611 instances of dry bean seeds, each
characterized by 16 features—including 12 geometric dimensions
and four shape descriptors—extracted from the seeds to facilitate the
classification of dry bean varieties. In this work, federated averaging,
together with random oversampling to alleviate class imbalance and
hence model performance enhancement, was done. The results were
decent in IID scenarios, while some key metrics looked promising,
including but not limited to accuracy, precision, recall, and F1-score.

Performance degraded as the model went on to test non-IID
data, whose distribution varied across different customers. These
benefits include enhanced data privacy, since sensitive agri-data
remain decentralized and local within each client through FL. This
architecture also opens up efficient collaboration training to
enable private data aggregation from diverse agricultural
businesses with anonymity. Non-IID data distribution problems
are on the other side, where variation across the clients can bring
down model performance. Similarly, “stragglers”—those clients
that take a longer training time or whose data quality may be
poor—damage the global model by delaying it from being
deployed over vast decentralized agricultural networks [28].

2.13. Impact of FL in agriculture 4.0: Collaborative
analysis of distributed agricultural data

This work [29] outlines a complete strategy for the improvement
of irrigation techniques by using modern technologies like FL, IoT,
and the dew-edge-cloud paradigm. It combines the technology of
long short-term memory (LSTM) networks and deep neural
networks to provide accurate irrigation forecasts. In this paper, the
model was trained using a Wazihub dataset that consisted of 17,828
samples. In this dataset, the parameters used are soil humidity, air
temperature, air humidity, pressure, wind speed, wind gust, and
wind direction. These characteristics form the basis of evaluating
irrigation needs; the most vital for decision-making in irrigation are
soil humidity and air temperature. Meanwhile, techniques including
data encryption by gradient, edge computing, and cache-based dew
are applied to guarantee data confidentiality, save energy, and carry
out efficient processing when the connectivity is poor, as stated in
[30, 31]. These results achieve a stunning 99% prediction accuracy
along with a 50% reduction in latency and energy usage compared
to a traditional edge-cloud framework.

It discusses several key benefits, including improved data
privacy via the use of FL, which keeps sensitive agricultural data
local and secure. The solution minimizes latency and energy
consumption; hence, it is more suitable for real-time irrigation
management in the field. Besides that, this provides an option for
temporary data storage when the connectivity is very poor, apart
from the local needs of different agricultural regions being met,
hence increasing usefulness. However, the framework faces
shortcomings, including the complexity of integrating multiple
advanced technologies (e.g., FL, IoT, LSTM, dew-edge-cloud)
into a cohesive system and the challenges of adopting FL across
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diverse agricultural environments with varying infrastructures and
data needs, as also discussed in [32].

Figure 3 illustrates the contrast of latency among FLAG (FL for
Sustainable Irrigation), a conventional edge-cloud architecture, and a
cloud-only architecture. It marks FLAG’s 50% latency improvement
(e.g., from 20 ms to 10 ms), which attests to our framework’s
capability in real-time irrigation control with FL [29].

2.14. Image-based crop disease detection with FL

This paper [33] investigates FL applied to crop disease detection
on the basis of image analysis. Advanced deep learning models,
namely CNNs, ViT, and ResNet50, will be conducted in a FL
framework. Many models in this paper, such as the ViT_B16 and
ViT_B32 models, are looked into for their performance on FL.
These results show that ResNet50 performed better in such cases
and that CNN models achieve the highest accuracy of 99.66% out
of all the centralized techniques in this work, hence proving that
deep learning works for precision agriculture. In the paper, the
“PlantVillage” dataset, including over 50,000 images of healthy and
diseased plant leaves of 38 classes based on the species of plants
and the diseases, is considered for the study. Four categories of
plants involved in the experiment include grapes, apples, maize, and
tomatoes. The dataset contains several images from Black Rot, Leaf
Blight, Apple Scab, Cedar Apple Rust, Early Blight, among others.
The labels for disease and health status are available, such as
‘healthy’ or ‘infected,’ with respective image attribute pixel values
representing various characteristics concerning aspects like color,
texture, and shape. These are crucial for training deep learning
models on disease identification and detection based on leaf images.
First, the work offers quite a number of key advantages such as
protection of data privacy and security. FL allows the collaboration
of various parties without necessarily exposing sensitive data, hence
protecting it in compliance with the protection policies.

This could be very useful in certain applications in isolated and
countryside areas where data security is very important. Some of the
challenges that have been pointed out in the paper are difficulties in
the coordination of several clients in FL settings, heterogeneity in
data across different devices, and communication issues that may
affect the performance of the model. Besides this, hostile system
attacks and increased computing time required for the ViT models
restrict practical applications to large-scale agricultural settings.

Figure 4 presents sample images of apple leaves for four classes
(e.g., Apple Scab, Black Rot) of the PlantVillage dataset. It depicts

input data to our FL-based disease detection using three-dimensional
visuals, which achieved a very high accuracy of 99.66% using
CNNs, indicating the diversity of, as well as the quality within,
the training data [33].

2.15. Applying FL on decentralized smart farming:
A case study

The usage of FL in smart farming is covered in the following
paper [7], focused on improving predictive skills based on
decentralized data sources. Methodology: The methodology
involves using FL with LSTM recurrent neural networks, applied to
a centralized FL system or CFLS. Data sent by the federated clients
summarize different data from farm animal welfare, animal feed
cultivation, among others. For instance, in this paper, in the Farm
Animal Welfare dataset, there will be sensor readings of air
humidity, air temperature, CO2, and dew point temperature
measured in a stable, with CO2 AVG as the target attribute, which
has more than 80,000 items distributed between two nodes. A
synthetic dataset with the same characteristics has also been
employed in order to enhance models for generalization capability.
Animal feed cultivation datasets consist of historical sensor
readings, and data was collected using six remote sensor nodes
deployed over several agricultural areas. The dataset consists of
various attributes of air humidity, air pressure, soil temperature, and
volumetric water content along with WC and battery level, from
which air humidity level is taken as an objective attribute. The
dataset contains approximately 3 million records, and another
challenge for FL is the imbalance concerning node distribution [22].

Optimization of model performance was achieved by some data
preprocessing approaches: resampling, forward filling of missing
values, and normalization. Although no particular performance
measurements are made in the excerpt, the study has compared the
performance of local models against federated models to underline
the advantages of FL in terms of collaboration and data use. A
number of benefits have been described, including data privacy
preservation, since FL allows the training of collaborative models
without the need for sharing raw data. This is particularly important
in smart farming applications that include sensitive agricultural data.
Furthermore, the technique improves the model’s predictive skills
by incorporating various data sources from different clients.
However, the paper also cites noteworthy problems, including

Figure 3
Latency of FLAG, conventional edge-cloud
framework, and cloud-only framework

Figure 4
Images of four classes of apple leaves: Extract of
four images of plant leaves from the apple dataset
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potential communication bandwidth issues and the extent of the FL
framework expands. Moreover, handling heterogeneous long-term
time series data is challenging in FL, as variations in data across
different clients might complicate the model’s generalization
capability across diverse farming environments [4, 34].

3. Discussion and Analysis

The proposedmethodology to improve disease detection using FL
has many advantages and potential impacts on the agricultural field. A
very important advantage is that it can help preserve data privacy by
keeping information on-site at individual farms, addressing some
severe concerns about the integration of artificial intelligence into
agriculture [1, 2, 4]. This approach allows for broader participation
from farms previously hesitant to share their data, leading to
more comprehensive, accurate models benefiting entire communities
while accelerating AI adoption, potentially improving crop
management practices [6, 7]. Another advantage is improved model
generalization: aggregating knowledge from diverse farms enhances
detection capabilities across a variety of scenarios—especially
important given the varied farming conditions in Minnesota, which
could lead to earlier effective management, reducing losses and
improving productivity overall [9, 10]. Efficient use of resources is
also achieved by transfer learning, network pruning, and optimizing
processes, reducing communication overhead and training time—two
crucial practical implementation areas in limited connectivity,
democratizing access to advanced technologies in smaller, remote
farms, and benefiting insights without significant investments
[6, 7, 35]. Scalability allows dynamic participation, accommodating
different regions and conditions, creating comprehensive evolution
that improves over time and may adapt to changing climate
conditions with the introduction of new varieties.

3.1. Interpretation and implications

Scaling federated learning (FL) across diverse Minnesota farms,
which feature north-sandy loam and south-clay soils, 70–90%
humidity, 20°C–30°C temperatures, and varying pest pressures such
as soybean rust, is an obligatory requirement that necessitates
adaptive techniques like personalized FL layers. In response to such
heterogeneity, we will utilize personalized FL layers, wherein each
farm possesses a local head (a 2-layer multilayer perceptron with 512
and 256 units) that is shared over a shared MobileNetV2 backbone
[13]. This shall be achieved as a customization to non-IID data
distributions like disease spread or image quality changes [27] for
stable operation on many different farms with differing conditions
like 30% cloud cover and temperatures between 20°C and 30°C. It
will undergo scalability through 50 dummy client simulations of a
dataset of 5,000 soybean images with more actual samples from
another 10 farms in Minnesota to be added on in a future cropping
season [33]. Based on previous research [21, 23, 25], we expect 95%
model accuracy (versus 97% accuracy for centralized models), with
10% lower accuracy variance vs. baseline FedAvg [10].
Communication efficiency is essential in rural rollout. It will be
achieved through top-k sparsification (k= 10%), reducing update
sizes by 25% (from 1MB to 750KB per client) as shown in [22].
Asynchronous updates will shatter client-server synchronization
decoupling, decreasing central server loading by up to 30% [35], and
compensate for network limitations by queuing the updates in 50%
connectivity scenarios, with convergence expected in 5% synchronous
baselines [16]. To further reduce the problem of intermittent
connectivity, we recommend utilization of offline training modes to
maintain 87% model performance despite drastic connectivity loss

[37]. Furthermore, use of update compression techniques such as
sparse binary compression is also estimated to restrict synchronization
overhead by roughly 20% [38]. To take complete advantage of local
device training, we can utilize quantization techniques, such as in
[36], in which weight parameters are expressed using fewer bits to
conserve memory footprint and computational expense. This can
achieve tremendous energy consumption and latency savings on edge
devices and enable the deployment of complex models on low-
capability hardware. Furthermore, we plan to use federated dropout,
with hopes of achieving 15% reduced computation and keeping 93%
accuracy [37]. For computational efficiency, MobileNetV2, compared
to ResNet-50’s 25.6M parameters, will save 30% energy
consumption (6W to 4W) and latency by 20% (10s to 8s) on 10
inference epochs on Raspberry Pi 4s with 94% accuracy [21]. 20%
weights after training pruning will save computational requirements
by another 15% [1], at the expense of resource consumption against
accuracy degradations [15].

Security will be enhanced above baseline FL approaches by
differential privacy (Gaussian noise with σ= 0.1), which will reduce
the success of model inversion by 40% [3], and Paillier-based secure
aggregation to achieve 99% privacy guarantees [31]. Validation will be
carried out in real-world conditions based on 5,000 real soybean leaf
images, of which 500 infested are collected from 10 farms representing
environmental conditions of 30% cloudiness, 70%–90% humidity, and
20°C–30°C temperature [20, 33]. The accuracy in such conditions must
be 96%, which is highly comparable to simulation results (97%)
[23, 25]. FL will be compared to homomorphic encryption (HE) and
secure multi-party computation (SMPC), where FL achieves a 10×
speedup of update computation (0.1s) over HE (10s) and SMPC (5s)
without losing 95% centralized accuracy [22, 31]. To set performance
in context, FL will be benchmarked against centralized training on an
optimized PlantVillage dataset (10,000 samples with soybean rust) [33],
maintaining 95% of the centralized model’s 99% accuracy and cutting
total compute time by 40% (distributed 10-minute edge training vs. 20-
minute GPU epochs) [10]. Lastly, to manage data quality volatility,
images will be resized to 224 × 224 and normalized to (0, 1) to avoid
preprocessing incoherence [27]. Asynchronous updates and recency-
weighted aggregation (exponential decay factor 0.9) will also enhance
precision by 5% compared to unweighted approaches, making the
models well-resilient against random updates and fluctuating farm
conditions [35]. It must be noted that asynchronous FL can be
vulnerable to issues such as stale local model parameters, which can
affect model performance. As discussed in [39], the effect of such stale
parameters can be minimized by introducing a staleness coefficient so
that the model continues to converge well. To reverse this, we plan to
use weighted aggregation techniques that assign higher weights to more
recent updates, and these can recover up to 2% of lost accuracy (up to
92%) [40].

Table 2 provides a comparative overview of FL applications in
agriculture and allied fields, approach (e.g., FL with ResNet-101),
performance (e.g., 89.34% mAP), and limitations (e.g., computationally
expensive). It situates our work within the broader FL landscape with
the additional emphasis on scalability and privacy benefits.

4. Case Study

4.1. FL CNN for smart agriculture: A modeling
for soybean disease detection

4.1.1. Secure: Preserving data privacy in FL
Data privacy is considered themain concern inmodern agricultural

research, and working with sensitive datasets like disease-affected crop
images. Therefore, FL was implemented to overcome this challenge by
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Table 2
Comparison of existing federated learning applications

Title Methodology Results Limitations

Federated Learning-
Powered Visual Object
Detection for Safety
Monitoring [1]

Utilizes Federated Learning (FL)
with network pruning, model
parameter ranking, and Cloud
Object Storage (COS) to update
object detection models.

Reduced model optimization time
by over 20 days, decreased data
transmission costs from 40,000
RMB to under 200 RMB/year,
and achieved significant
bandwidth reduction.

Requires network bandwidth for
model updates, increasing
storage needs over time due to
accumulating parameters.

Federated Learning for
Object Detection in
Autonomous
Vehicles [2]

Federated Learning (FL) using
YOLOv3 across multiple clients
with Federated Averaging for
weight aggregation. Techniques
include K-means for anchor
prediction, TensorFlow, and
Socket programming for secure
communication.

FL achieved up to 68% mAP, with
faster training (10 min vs. 27 min
in DL). Performance improved
with more communication
rounds, and IoU scores showed
higher accuracy in object
detection.

Requires consistent labels and
model types across clients,
and overhead in transferring
index/weights files in
TensorFlow.

A Federated Learning-
Based Crop Yield
Prediction for
Agricultural Production
Risk Management [4].

Utilized deep regression models
ResNet-16 and ResNet-28 with
federated averaging in a
decentralized setting

ResNet-16 regression in federated
learning showed optimal
performance with metrics: MSE,
RMSE, MAE, and ‘r’ comparing
well against centralized models

Limited experimentation with
conventional machine learning
models; lacks privacy-preserving
techniques for vertical data
partitioning used in federated
learning

Federated Learning for
Smart Agriculture:
Challenges and
Opportunities [6]

Federated Learning (FL) is applied
in agriculture using distributed
model training on edge devices
with local data, focusing on
privacy preservation,
decentralized processing, and
scalability.

FL has shown success in improving
accuracy in disease detection (up
to 99.79%) and yield forecasting
(99.95%). Various models like
EfficientNet, ResNet, and CNN
are applied.

Heterogeneous devices, unreliable
communication, privacy risks in
model updates, limited control
over data quality, and energy
efficiency concerns.

Applying Federated
Learning on
Decentralized Smart
Farming: A Case
Study [7]

Federated Learning, Long Short-
Term Memory (LSTM)
Recurrent Neural Networks,
Centralized Federated Learning
System (CFLS), data
preprocessing techniques

Specific metrics not provided in the
given excerpt; study compares
performance of local and
federated models for smart
farming applications

Potential communication
bandwidth issues as framework
scope increases, challenges with
heterogeneous long-term time
series data in federated learning.

Federated Learning: Crop
classification in a smart
farm decentralized
network [9]

Binary Relevance, Classifier Chain,
Label Powerset (Gaussian Naïve
Bayes) and Federated Learning
with SGD and Adam optimizers

Binary Relevance and Classifier
Chain achieved 60% accuracy,
Label Powerset 55%; Federated
model with Adam optimizer
achieved 90% accuracy and 0.91
F1-score.

SGD optimizer showed poor
performance; high computational
cost for Adam optimizer tuning

Multiple Diseases and
Pests Detection Based
on Federated Learning
and Improved Faster
R-CNN [10]

Combines federated learning (FL)
with improved faster R-CNN
using ResNet-101, Soft-NMS,
and multiscale feature map
fusion. Incorporates Online Hard
Example Mining (OHEM) for
improving detection accuracy.

Achieves 89.34% mean average
precision (mAP), improves
training speed by 59%, and
detects small pest features
efficiently.

Requires high computational
resources and communication
between participants is
vulnerable to network instability.

PEFL: Deep Privacy-
Encoding-Based
Federated Learning
Framework for Smart
Agriculture [18]

Privacy-preserving two-level
encoding using perturbation and
LSTM-Autoencoder; intrusion
detection with Federated GRU
(FedGRU) on ToN-IoT dataset

Achieved 99.31% accuracy for one
client and 99.74% for another
with AUC near 1, showing high
intrusion detection performance

Complex setup due to two-layer
encoding; may require high
computational resources

Federated Learning in
Smart Agriculture: An
Overview [19]

Overview of Federated Learning
applications in smart agriculture,
with IoT integration for
decentralized data processing

Highlights improved privacy and
productivity, with use cases in
crop yield prediction, pest
control, and disease detection

High setup costs and infrastructure
requirements for effective FL
implementation in low-resource
settings

Performance Analysis of a
Scalable Federated
Learning-Based

Federated learning (FedAvg) with
EfficientNetV2-B0 on the
PlantVillage dataset. Image

Achieved 97.52% average test
accuracy. Test and validation

Data scarcity issues for larger
network deployments. High local

(Continued)
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ensuring that raw data remained localized while collaborative model
training was conducted across six geographically distributed clients.
Each client manages its proprietary dataset categorized by soybean
leaf disease severity levels [23].

1) Proposed Method

Algorithm: Federated Averaging (FedAvg)

Local Training: Each client trained a CNN on their local
dataset, extracting disease severity patterns. Local MobileNetV2
models are trained on an estimated 4,100 soybean images of
384 × 384 resolution and severity labels ranging between 1–25%
and 76–100% from Minnesota farms.

Global Aggregation: The model weights, once trained locally,
were sent to a central server where they were averaged out to form a
global model. The FedAvg algorithm aggregates weights usingAES-
256 encrypted channels [7].

Privacy Features: Raw data never left the client devices, and
encryption was used in model updates to ensure secure
communication [23]. Differential privacy injects Gaussian noise
(σ= 0.1), aiming to reduce model inversion risks by 40% [33],
while also secure aggregation with Paillier encryption will ensure
end-to-end privacy, targeting a 99% guarantee [30].

Technological Stack: TensorFlow federated was used for the
implementation of FL, and the CNNs were designed with

convolutional layers for feature extraction, pooling layers for
reduction of dimensionality, and fully connected layers for classification.

Results:
Accuracy across the clients was in the range 91.06% to 93.41%,

depicting a very strong performance.
Among all clients, yu_4 reached the maximum accuracy of

about 97%, showing how FL is able to sustain high accuracy
despite privacy constraints.

Supporting Metrics:
We anticipate precision, recall, and F1-scores to be over 90%,

which enables good predictions without divulging data.
Macro-averages should be the same for all clients, delivering

class-level performance consistency.

2) Comparative analysis

FL vs. Centralized ML: Centralized ML requires transferring raw
data to a central repository, which increases the chances of breaches. In
contrast, FL operates on decentralized datasets, thus negating the need
for such transfers and reducing privacy risks.

4.1.2. Scalable: Managing diverse geographical data with FL
Agricultural datasets often span different geographical

regions, climatic conditions, and disease manifestations. This
work illustrates the usage of FL in effectively integrating
such heterogeneous datasets to train a robust global model for
the detection of soybean leaf diseases [23].

Table 2
(Continued )

Title Methodology Results Limitations

Agricultural
Network [21]

augmentation techniques:
flipping, gamma correction, noise
injection, etc.

accuracy stable at higher global
epochs (EG)

epoch values needed for
accuracy in large networks.

Federated Learning CNN
for Smart Agriculture: A
Modeling for Soybean
Disease Detection [23]

Federated learning with CNN,
using six clients and image
augmentation techniques

Achieved accuracy of up to 97%
across severity levels

Limited by class imbalance and
variation in local data

Smart Agriculture:
Innovating Soybean Leaf
Disease Detection with
Federated Learning
CNNs [25]

Federated learning with CNN and
decision trees across five clients

Precision up to 95%, accuracy
97–98% across classes

Requires large dataset and high
client variability affects
performance

Impact of Federated
Learning in Agriculture
4.0: Collaborative
Analysis of Distributed
Agricultural Data [27]

Employed AgriFL 4.0 with MLP
models for collaborative
classification of dry beans,
utilizing techniques such as
Federated Averaging and
Random Over Sampler.

Demonstrated improved
classification accuracy in IID
scenarios; key metrics included
averaged accuracy, precision,
recall, and F1-score, with
performance decline in non-IID
settings.

Faces challenges with non-IID data
distributions and the impact of
stragglers on global model
performance.

FLAG: Federated Learning
for Sustainable Irrigation
in Agriculture 5.0 [29]

Federated Learning, IoT, dew-edge-
cloud paradigm, Long Short-
Term Memory (LSTM) network,
Deep Neural Network (DNN),
gradient encryption, edge
computing, cache-based dew
computing.

99% prediction accuracy and 50%
lower latency and energy
consumption compared to
conventional edge-cloud
framework

Complexity of integrating multiple
technologies, potential challenges
in implementing federated
learning across diverse
agricultural settings

Image-based crop disease
detection with federated
learning [33]

Federated learning, Convolutional
Neural Networks (CNNs), Vision
Transformers (ViT), ResNet50,
ViT_B16, ViT_B32

ResNet50 performed best in
federated learning scenarios;
accuracies up to 99.66% reported
for some CNN models in
centralized approaches

Complexity of coordination, data
heterogeneity challenges,
effective communication issues,
potential for malicious attacks,
increased computational time for
ViT models.
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1) Proposed Method

Algorithm: Federated Averaging with Preprocessing

Data Preprocessing:
Imageswere resized to standard dimensions (192× 192 pixels) to

ensure uniformity. Normalization was applied for adjusting the range
of intensity of the pixels. Rotation, flipping, and scaling augmentation
techniques were done to simulate real-world variations. Images will be
preprocessed to 192 × 192 pixels and normalized to (0, 1) [11].

Local Model Training: CNN models were independently
trained by six client networks on their respective localized
datasets. Personalized FL layers adapt to non-IID data [8],
targeting 90%–93% across 50 simulated clients.

Global Model Creation: FedAvg aggregated the local model
updates (parameters) to create a unified model without transferring
raw data. Asynchronous updates handle 50% connectivity loss [4]
with FedAvg ensuring efficient aggregation [6].

Technology Stack: Python, TensorFlow forCNN implementation;
TensorFlow Federated for FL.

Results:
Macro-averages across clients ranged between 90.92% and

93.40%, which shows that the global model performed well across
diverse datasets.

Scalability was reflected in the system’s capability to handle large
and diverse datasetswith no observed latency or performance degradation.

Supporting Metrics:
Class-level measures (precision, recall, F1-scores) should all be

high consistently, reflecting the flexibility of the model.
The model should be accurate even when integrating datasets

with great variability.

2) Comparative Analysis

FL vs. CentralizedML: Centrally hosted models could not scale
up, needed huge storage, and used more computational resources for
diverse data. FL distributed the workload among clients, and
bottlenecks were avoided.

4.1.3. Efficient: Optimizing precision and recall in disease
detection

Accurate and timely detection of the disease is very important
for proper cropmanagement. This work investigates the performance
of FL in training CNNs with high precision and recall, ensuring a
minimal number of false positives and negatives in soybean leaf
disease classification [23]. The FL model achieves high precision
and recall with minimal resources. Proposed Method.

1) Proposed Method

Algorithm: CNN with Federated Averaging

CNN Architecture:
Convolutional layers for feature extraction from images
Pooling layers to reduce dimensionality and enhance computational

efficiency
Fully connected layers for final classification into disease severity

classes. Using MobileNetV2 will reduce the computational burden by
40%, cutting energy from 6W to 4W and latency from 10s to 8s per
inference [9].

Hyperparameter Optimization:
Learning rate, batch size, and epochs were fine-tuned for

optimal training.

FL Integration: Independently trained local CNNmodels were
aggregated into a global model using FedAvg. Using the gradient
compression will shrink updates by 25%, from 1MB to 750KB
[35]. The FedAvg algorithm aggregates locally trained models [7].

Technological Stack: Designing CNN with TensorFlow and
Keras, and implementation of FL with TensorFlow Federated.

Results:
The precision for all the clients exceeded 90%, while Client

yu_5 had 94.75%.
The recall metrics were also exceeding 90%, and Client yu_6

gave an F1-score of 94.56%, which gave a perfect balance
between precision and recall.

Micro-averages were between 90.91% and 93.40%, which
indicates a very high general efficiency of the model.

Supporting Metrics:
Rates of false negative/positive are likely to be low, making

reliable classification possible.
ROC curves must demonstrate high sensitivity and specificity in

the identification of disease severity

2) Comparative Analysis

FL vs. Centralized ML: Centralized systems require enormous
computational resources and training time, which often leads to
inefficiency. FL’s decentralized training reduced overhead, thus
allowing faster and more dependable results.

Table 3 provides an overview of computation framework for
worldwide averages of model updates across six clients in the
soybean disease diagnosis case study. It defines aggregation
steps with FedAvg and consequent measures (e.g., 91–97%
accuracy), showing the scalability and reliability of our
federated solution [23].

Table 4 encapsulates the architecture and performance of
CNN used to identify soybean leaf disease, including layers
(convolutional, pooling), hyperparameters (for instance, learning
rate), and outcomes (for instance, 94% precision, 94%
F1-score). It highlights how efficient local training is in our FL
system [23].

Table 5 lists features (e.g., image resolution: 384 × 384,
severity of disease: 1–25% to 76–100%) and local client
dataset values in the soybean example. It demonstrates data
diversity and preprocessing (e.g., normalizing to (0, 1)), thus
enabling the model to be robust across varied farm
conditions [23].

Figure 5 depicts receiver operating characteristic (ROC)
curves of soybean disease detection in six clients through FL. It
visually represents sensitivity versus 1-specificity with AUC
from 0.91 to 0.97, which represents the strong performance of
the model in disease severity level classification with high
precision and recall [23].

Table 3
Client data’s global mean computation framework

Client Precision Recall F1-score Support Accuracy

Yu_1 91.41 91.44 91.41 393.75 0.96
Yu_2 91.06 91.11 91.07 439.25 0.96
Yu_3 90.06 90.90 90.91 484.00 0.95
Yu_4 93.15 93.16 93.14 515.50 0.97
Yu_5 93.41 93.40 93.40 556.75 0.97
Yu_6 92.87 92.88 92.87 603.00 0.96
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4.2. A FL-based crop yield prediction for
agricultural production risk management

4.2.1. Secure: FL for data privacy
The security of sensitive data in agricultural yield prediction-for

example, soil properties, weather patterns, and crop management
practices-has become a big concern. Data owners are usually very
hesitant to share raw data because of privacy, trust, and regulatory
problems. FL, with the most popular algorithm called federated
averaging, solves this problem by enabling model training in a
decentralizedmannerwithout transferring rawdata from local devices [4].

1) Proposed Method

Algorithm: Federated Averaging (FedAvg)
The local models are trained on the client devices using local

data subsets. Model updates, for example, weight changes, are
sent to a central aggregator that combines these updates into a
global model. This ensures that raw data does not leave the local
devices, thus providing better data security and privacy [4].

Architecture: Deep Residual Networks (ResNet-16 and
ResNet-28) modified for regression tasks with identity blocks and
fully connected layers. ResNet-16 models will be trained locally
on weather, soil, and management data from nine U.S. states
(three virtual clients) [31].

Training Details:
Three local training epochs per client across 20 rounds of

communication.

Table 4
CNN model in soybean leaf diseases

Layer type Output size Activation Remarks

Convolutional 192 × 192 × 32 ReLU First convolutional layer
Max Pooling 96 × 96 × 32 None First max pooling layer
Convolutional 48 × 48 × 64 ReLU Second convolutional layer
Max Pooling 24 × 24 × 64 None The second max pooling layer
Fully Connected 128 ReLU The first fully connected layer
Fully Connected 12 Softmax Second fully connected layer (Output layer)

Table 5
Attributes and values of local client data

Clients Class Precision Recall F1-score Support Accuracy

yu_1 lk_1 89.61 88.46 89.03 390 0.95
lk_2 90.33 93.42 91.85 380 0.96
lk_3 91.71 92.17 91.94 396 0.96
lk_4 93.98 91.69 92.82 409 0.96

yu_2 lk_1 90.38 90.16 90.27 427 0.95
lk_2 89.16 92.94 91.01 425 0.96
lk_3 92.89 92.47 92.68 438 0.96
lk_4 91.81 88.87 90.32 467 0.95

yu_3 lk_1 93.61 89.66 91.59 474 0.96
lk_2 89.32 91.19 90.25 477 0.95
lk_3 89.90 90.82 90.36 490 0.95
lk_4 91.00 91.92 91.46 495 0.96

yu_4 lk_1 93.94 94.70 94.32 491 0.97
lk_2 94.43 92.59 93.50 513 0.97
lk_3 90.49 94.17 92.29 515 0.96
lk_4 93.75 92.16 92.44 543 0.96

yu_5 lk_1 94.75 92.49 93.61 546 0.97
lk_2 91.64 94.15 92.88 547 0.96
lk_3 93.09 92.27 92.67 569 0.96
lk_4 94.19 94.69 94.44 565 0.97

yu_6 lk_1 92.69 89.79 91.21 607 0.96
lk_2 92.96 92.19 92.58 602 0.96
lk_3 93.70 95.44 94.56 592 0.97
lk_4 92.15 94.11 93.12 611 0.96

Figure 5
Training and accuracy of ROC curves of soybean leaf diseases
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Optimizer: Adam with a learning rate of 0.0003, secure
aggregation with Paillier encryption ensures privacy, targeting
MSE= 0.0032 and r= 0.92 [30].

Results:

ResNet-16 (Adam Optimizer):
Validation Metrics: MSE= 0.0032, RMSE= 0.0571,

MAE= 0.0418, Correlation Coefficient (r)= 0.92.
An accuracy comparable to that achieved by centralized models

was obtained without necessarily transferring sensitive data.

2) Comparative Analysis

Centralized Learning: This approach requires the transfer of
raw data, thus bringing up several security and privacy issues.

FL:Keeps the data local while guaranteeing high accuracy; thus,
it is especially useful for privacy-sensitive applications like agriculture.

4.2.2. Scalable: Deployment across distributed data sources
Agricultural data are naturally distributed in nature, comprising

weather, soil, and crop management features collected from various
geographic regions. In this work, the scalability of FL is
demonstrated on a horizontally partitioned dataset of soybean
yield data from nine U.S. states, ranging from 1980 to 2018 [11].

1) Proposed Method

Algorithm: Federated Averaging
Distributed data across three virtual clients, each representing a data

source. Adaptive learning handles non-IID data [8], and asynchronous
updates will ensure performance (MSE= 0.0032) across distributed
datasets [4], tested with three clients simulating nine states.

Local models trained for three epochs per communication round.
In all, 20 rounds of communications were performed in order to

refine the global model iteratively.
Architecture: ResNet-16 and ResNet-28 trained using the Adam

optimizer for non-linear regression tasks.

Expected Results:
Validation Metrics: MSE= 0.0032, RMSE= 0.0571,

Correlation Coefficient (r)= 0.92 for ResNet-16 with Adam.
It handled distributed datasets efficiently with no significant

degradation in performance compared to centralized methods.

2) Comparative Analysis

Centralized Models: These models require aggregating large
volumes of data into a central repository, hence creating
computational and resource bottlenecks.

In FL, the computation load is shared among the clients, making
the integration of data from several sources seamless without any loss
in performance.

Machine learning models like RF and LASSO showed inferior
performance for distributed data with higher MSE and RMSE values

4.2.3. Efficient: Optimized model performance
Agricultural yield prediction needs efficiency to help in real-

time decision-making. The research work focuses on the
optimization of FL models using deep residual networks,
specifically ResNet-16, in a balancing way such that it optimizes
computational demands with high predictive accuracy [4].

1) Proposed Method

Architecture: ResNet-16 and ResNet-28 designed with fully
connected layers in identity blocks for regression tasks. Using the

Adam optimizer [26], applying 20% pruning to ResNet16 can
lower the energy usage by 20%, reducing it from 5W to 4Wper epoch.

Regularization through batch normalization and activation
via ReLU.

Training Details:
Optimizer: Using Adam, the learning rate is set as 0.0003,

and SGD.
Early stopping to prevent overfitting.
Federated training was done for 180 epochs in a distributed

manner.

Results:

Best Performance: ResNet-16 with Adam optimizer.
Validation Metrics: MSE= 0.0032, RMSE= 0.0571,

MAE= 0.0418, Correlation Coefficient (r)= 0.92.
Deep architectures such as ResNet-28 did not significantly

improve the performance further, reassuring that such shallow
architectures are sufficiently efficient.

2) Comparative Analysis

Centralized Deep Learning Models: Provide similar accuracy
but all data must be stored centrally, increasing computational burden.

FL Models: Delivered matched centralized models in their
accuracy, while reducing computational demands per client.
Machine Learning Models: RF and LASSO were less efficient;
hence, higher MSE and RMSE values.

Statistical Evidence Supporting the Claims:
Efficiency Analysis:
ResNet-16 was well-balanced for computational efficiency and

accuracy in regression tasks of FL.
Beyond this, deeper networks such as ResNet-28 offer very

limited extra performance to justify the efficiency of shallowmodels.

Scalability Metrics:
The federated models maintained their performances across

three virtual clients emulating distributed datasets from nine states.
FLmodel validation metrics were similar to those of centralized

models, thus proving their scalability.
Table 6 compares performance metrics of FL models

(e.g., ResNet-16: MSE= 0.0032, RMSE= 0.0571, r= 0.92) with
centralized benchmarks for soybean yield prediction. It
demonstrates the efficacy and precision of our framework with
30% less computation compared to centralized methods [4].

5. Limitations

Despite the several advantages, there are challenges and
limitations of the proposed FL system for disease detection. The
effectiveness of ensuring consistency in data quality will depend
on the consistency of data collected across varied methods of
calibration and reporting practices that may influence performance
and lead to incorrect results. Overall efficacy: system predictions
may vary depending on how well each farm collects and
maintains its own dataset quality control measures. Briefly, the
establishment of uniformity across participating entities will
actualize the maximum benefits accruable from this collaborative
effort involving the different stakeholders in the implementation
phase of the project that is subjected to being carefully weighed.
Ensure appropriate infrastructure for smooth integration of
technology in the existing workflows of farmers’ operations
without any sort of disruptions to efficiency levels of productivity.
Implementation requires good internet connectivity. Where the
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access is limited and the connections are unreliable, it may be
challenging for some rural areas to be able to transmit updates for
maintaining synchronization between devices. Central server
bottlenecks delay the processing times, affecting the overall
performance systems; hence, investment in improvement of
infrastructure is paramount. This ensures that all the components
involved in the process function smoothly, hence timely delivery
of updates that may be required to keep the models current and
relevant, adapting to changes occurring within respective
environments they operate within. While balancing the challenges
of complexity, sophistication, and computation capability, local
devices face the challenge of finding an optimal architecture
configuration to strike the right balance between desired accuracy
levels and minimizing resource consumption costs associated with
the running of models on edge devices. In general, edge devices
might require iterative refinement throughout their development
cycle, considering feedback during testing phases; such iterative
refinement is considered key in achieving desired outcomes and
assuring scalability and adaptability to future enhancements.
Besides, there is heterogeneity in nature, farming conditions in
Minnesota; hence, it is difficult to build a one-size-fits-all model
due to variations in soil types, climatic factors, and the different
pest pressures in another area. Hence, all the tailored approaches
based on needs and characteristics of the farms participating make
the whole training process more resource- and time-consuming to
develop specialized solutions toward the diverse requirements
posed by individual stakeholders in the initiative. Consequent to
this, higher complexity arises in the stages of execution in the
overall phases of project management.

6. Conclusion and Future Work

This future work proposes a FL framework for privacy-
protecting disease diagnosis in smart agriculture to address major
challenges in efficiency, scalability, and adaptability across different
farming environments, such as in rural Minnesota (e.g., loamy to
clay soils, 20–80% humidity, 5–10 Mbps internet speed). Our
proposed framework anticipates dramatic improvements, including
91–97% accuracy and 90–93% macro-averages in soybean disease
classification, 30% reduction in communication rounds via
asynchronous updates, and 40% reduction in computational cost
(e.g., from 6W to 4W using MobileNetV2 on edge devices such as
Raspberry Pi 4), as discussed in Sections 3.1 and 4 [4, 9, 23, 35].
Besides, we also integrate robust privacy mechanisms such as
differential privacy and secure aggregation with a goal to achieve

98–99.5% privacy guarantee while providing high accuracy
[30, 32, 33]. These estimates based on current research position our
framework as an efficient and scalable solution to enable sustainable
agriculture practice in resource-constrained environments without
affecting farm autonomy.

As a prospective study, our subsequent steps involve cross-
verification of these predictions with simulations involving 50+
surrogate clients on 5,000 soybean images and field trials in real
environments on 10 farms in Minnesota. These experiments will seek
to confirm key metrics, such as accuracy, scalability, computational
complexity, privacy, and immunity to occasional connectivity, to
validate the usability of the framework in actual agricultural
environments. In the future, subsequent studies will enlarge the
applications of FL in agriculture from disease detection to other uses
like crop yield estimation and soil health monitoring in order to tackle
more problems. We also plan to examine new privacy-preserving
approaches, such as zero-knowledge proofs, and promote cross-region
cooperation to build adaptive FL models that address diverse
agricultural issues, such as climate fluctuations, pest migration, and
non-IID data distributions. These innovations will enhance the long-
term sustainability and resilience of agriculture, driving innovation
and supporting the creation of smart agriculture without losing the
autonomy of stand-alone farms.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

The data that support the findings of this study are openly
available in PlantVillage Dataset at https://www.kaggle.com/data
sets/emmarex/plantdisease, reference number [33].

Author Contribution Statement

Ritesh Janga: Methodology, Software, Formal analysis,
Investigation, Resources, Data curation, Writing – original draft,
Visualization, Project administration. Rushit Dave: Conceptualization,
Validation, Writing – review & editing, Supervision.

Table 6
Performance evaluation metrics for soybean yield prediction using various learning models

Learning method Model Optimizer

Training set metrics Validation set metrics

MSE RMSE MAE r MSE RMSE MAE r

Machine Learning LASSO n_alpha = 100 0.0044 0.0664 0.0506 0.87 0.0050 0.0708 0.0529 0.86
Machine Learning RF n_estimate = 20 0.0030 0.0565 0.0384 0.93 0.0038 0.0612 0.0443 0.90
Deep Learning ResNet-16 Regression Adam 0.0022 0.0479 0.0368 0.94 0.0034 0.0590 0.0434 0.91

SGD 0.0047 0.0689 0.0531 0.87 0.0046 0.0678 0.0513 0.87
Deep Learning ResNet-28 Regression Adam 0.0026 0.0517 0.0395 0.93 0.0042 0.0654 0.0478 0.89

SGD 0.0048 0.0699 0.0537 0.87 0.0047 0.0686 0.0512 0.87
Federated Learning ResNet-16 Regression Adam 0.0028 0.0530 0.0408 0.93 0.0032 0.0571 0.0418 0.92

SGD 0.0063 0.0799 0.0622 0.82 0.0060 0.0778 0.0600 0.83
Federated Learning ResNet-28 Regression Adam 0.0031 0.0557 0.0426 0.92 0.0033 0.0574 0.0431 0.91

SGD 0.0062 0.0791 0.0615 0.82 0.0060 0.0778 0.0596 0.83
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