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Abstract: Network security and intrusion detection have become significant challenges with the emergent inclusion of Internet of Things (IoT)
devices across several domains. In this article, we proposed an enhanced long-short term memory (E-LSTM) method for detecting intrusions in loT-
based datasets for the designing of more resilient and competent intrusion detection systems (IDSs) in the dynamic domain of IoT environments,
as well as for the thoughtful selection of models appropriate for various dataset characteristics. Four distinct datasets were used in this study:
KDD-Cup’99, NSL-KDD, UNSW-NBI15, and CICI0oT2023. The aim was to estimate and compare the performance across datasets. We provide
subtle insights into model behaviors and their capacity to adjust to the particulars of each dataset through rigorous analysis. The proposed enhanced
LSTM approach revealed significant differences in precision, recall, accuracy, and F1-score compared to other approaches like AdaBoost, DNN,

RNN, and Logistic Regression. It was discovered that, for every dataset, the accuracy rate exceeded 95%.
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1. Introduction

Information is being produced exponentially in almost
every technological and commercial domain because of the speedy
expansion of distributed and Internet-based techniques such as cloud
computing and the Internet of Things (IoT) [1-3]. As part of the IoT,
various objects, sensors, and intelligent nodes that offer self-sufficient
communication capabilities are being integrated [4]. Smart sensors that
monitor and gather social media and other device data are examples of
hardware resources that are part of the loT [5, 6]. A network of physical
entities that can be seen and tamed online is called the IoT [7, §]. In
addition, loads of items are accessible through wireless sensor networks
(WSN) using various Internet-connected actuators and sensors [9, 10].
There is a need to calculate, save, retrieve, and evaluate IoT data, since
IoT sensors often have little memory, low power, battery constraints,
and network limits. So, they must be calculated, saved, retrieved, and
evaluated [11, 12].

Additionally, a platform is required to handle the expanding
volume of heterogeneous data and objects [13, 14]. Our lives are
beginning to change because of the quick evolution of the IoT.
Furthermore, with a linked and collaborative system, security has
emerged as one of the most thought-provoking problems owing to the
explosive expansion of IoT [15]. Numerous risky behaviors can arise
from data vulnerability, which can directly lower the security of [oT [16].
Thus, eavesdropping is possible in many wireless transmissions without
restrictions. The unauthorized use of computer systems targets intrusion
detection systems (IDS) [17]. Among these access control methods and
networks are ad hoc networks, WLANs, WPANs, and LANs. Within
the WPAN family, WSN, mobile phones, and RFID are the most widely
used networks [18]. Consequently, security has turn out to be a major
problem in IoT [19]. Current security techniques include cryptographic
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security bases and systemic security systems [20]. Additionally, modern
cyber threats have grown more intricate, sophisticated, unconventional,
and insistent due to the fast growth of adversarial tactics. In light of
these considerations, identifying and thoroughly mapping cyber threats
is a crucial but sometimes disregarded step before implementing
effective and robust cybersecurity remedies [21].

Intrusion detection systems (IDS) come in three primary
varieties: specification-based, anomaly-based, and misuse-based. Loads
of research has been done on anomaly-based and misuse-based IDSs by
both industry and academics [22]. Due to the growth of IoT and the
increase in cyberattacks, several IDS approaches have been developed
in the IoT area [23]. Furthermore, an IDS is essential for identifying
and stopping intrusions into the network and giving a strong security
framework [24]. The complete number of sensors in a system has
limitations related to storage, interoperability, and scalability, while the
requirement for a significant volume of labeled data for performance,
intrusion detection, and attack detection hampers security methods
such as IDSs. IDSs are a basic and necessary security technique that
protects IoT settings against various security threats. IDSs often have
four primary types. The first type of IDS outlines the traits for every
type of assault that can be identified and is signature-based. An alert
sounds when the anomalous behavior aligns with the pattern [25], a
straightforward technique for identifying known attacks. The anomaly-
based IDS’s initial phase gathers data on the predicted actions of the
discovered system. Subsequently, the IDS set a threshold that the
suspicious activity must surpass for the warning to trigger. Even though
this system can detect attack attempts, processing data needs lots of
memory and computing [26]. An IDS combined with a signature-based
IDS can potentially balance the computing burden and false-positive
signal issue of an anomaly-based IDS with the storage cost of a
signature-based detection system [27]. An IDS uses a specification-
driven methodology to compare current operations with its identified
common system activities [28].
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Intrusion is any illegal or unwelcome entry, exit, or activity in a
computer system, network, or digital environment. Usually, it entails
people or organizations trying to overcome security barriers to access,
alter, or steal private information; interfere with system performance;
or harm themselves. Various incursions, including hacking, malware
infection, breaches of data, or any other act, can violate security,
privacy, or access to digital resources. Therefore, intrusion detection
is crucial to protect against cyber threats. Given the growing adoption
of 10T devices and evolving threat landscapes, it is vital to assess the
efficacy of intrusion detection techniques for safeguarding loT systems.
However, various datasets exist for evaluating intrusion detection
algorithms, each capturing different aspects of the network behavior
and attacks. The research problem is to systematically analyze diverse
datasets, specifically KDD-Cup’99, NSL-KDD, UNSW-NBI15, and
CICIoT2023, to evaluate the performance of different intrusion
detection methods in an IoT network. Deep learning (DL) methods
have been demonstrated to improve prediction and classification. There
is sufficient interest in deep learning across several fields to address
various issues. The machine learning methods go beyond some of the
limitations of traditional approaches, like support vector machines. The
fact that the effectiveness of IDS relies mostly on the dataset used for
testing presents another issue that must be resolved. Several benchmark
datasets had varying attributes and insufficient results. These issues
have led to the growth of automated and reliable IDSs that shed light
on the adaptability and generalizability of intrusion detection solutions
in JoT scenarios by revealing the benefits and shortcomings of various
procedures when applied to these datasets. The following contributions
aided the completion of this research.

1) We suggested an enhanced LSTM based method for detecting
intrusions in loT-based datasets to design more resilient and
competent IDSs.

2) Diversity of Datasets: This research involves studying four distinct
datasets, each with its own characteristics, attack patterns, and
network behaviors. This diversity reflects the heterogeneous nature
of real-world IoT environments.

3) Performance Evaluation: This study evaluated performance of
intrusion-detection methods across different datasets using various
metrics.

4) 10T Context: The research problem is framed explicitly in the
reference of IoT, acknowledging the unique challenges and
features of IoT networks, for instance resource constraints, device
heterogeneity, and evolving attack vectors.

5) Consider the KDD-Cup’99, NSL-KDD, UNSW-NBI1S5,
CICloT2023 datasets for IoT-based IDS.

6) Their performance was evaluated on various datasets to determine
the merits and demerits of intrusion-detection methods in diverse
situations.

and

The rest of the proposed study is structured as follows.
Section 2 covers the history of IoT-IDS and common terminology.
Section 3 discusses the IoT Intrusion Detection framework and
techniques. The experimental setup and findings are explained in
Section 4. Various topics were covered, including the properties of the
utilized dataset, the preprocessing techniques used, and details of the
alternative models included in the research. Section 5 presents the final
components of our study.

2. Related Work

Some scholars have developed IDSs. To bridge the gap among
the current state-of-art and its prospective future direction, we began by
examining survey research articles on IDS. The idea behind the IoT uses

sensors, software, and connections to connect physical equipment, cars,
apps, and other items. They can gather and share data online. These
gadgets can communicate with one another and their surroundings to
facilitate intelligent decision making, long-range monitoring, and data-
centric automation. An IDS is a standalone component in the security
domain that is crucial for information security. The necessity of security
and maintaining the system’s awareness of dangerous activities is
growing, along with the ease with which people over a broad region may
use the internet. The conventional IDS has limits like poor detection
accuracy and high false alarms [29].

The rising usage of IoT devices has revolutionized the efficiency
and ease of daily living. Nevertheless, new security issues have arisen
owing to this expansion. The number of cyberattacks has surged owing
to the growing usage of the internet and network technologies, which has
boosted interest in IDS among academics. Network intrusion detection
(NID) has become a critical component of contemporary security
architectures for securing loT networks. Machine-learning techniques
have recently demonstrated potential as IDS solutions. However, the
functional and physical variety of IoT-IDS systems poses obstacles,
making the total feature usage unfeasible. Therefore, effective feature
selection is crucial. An novel feature selection scheme for anomaly-
based NIDS was proposed in this study [30, 31].

Machine learning (ML) approaches have been adopted in IDS to
identify and categorize security vulnerabilities in various applications,
such as artificial intelligence, 10T, smart city infrastructure, and fifth-
generation networks [32]. In this article, we used the KDD-CUP dataset
to classify the intrusions. It compares its performance with state-of-
the-art results for many ML algorithms, for example Random Forest
(RF) and Classification and Regression Trees (CART). Researchers
have created IDSs [33] that use ML techniques to overcome these
problems. These techniques can recognize unusual assaults and
accurately distinguish between normal and abnormal data. One subset
of ML termed as deep learning has become a hot topic for study.
This review offers classification based on data objects for classifying
and reviewing IDS- and ML-based deep learning publications. SVM
with normalization performs better than SVM without normalization
when identifying interruption data from KDD99 and Min-Max, as
demonstrated in refs. [34, 35]. Normalization does well than the other
techniques in terms of speed, number of support vectors, and cross-
validation accuracy.

The increase in the accuracy of intrusion classification with
less input data for the input subsets of the NSL-KDD-Cup’99 dataset
was examined using the SVM classifier [36]. The suggested method
produced a 91% accuracy rate with only three features, and a 99%
accuracy rate with 36 features. Notably, an accuracy rate of 99% was
achieved using all 41 training characteristics. Anomalous occurrences in
network traffic flow were identified, and machine learning was applied.
SVM, Naive Bayes, RF, and Decision Tree classification, which process
data using Apache Spark, were examined in this study. The Random
Forest outperformed others in network intrusion detection by utilizing
all 42 features, as per the experimental results achieved on the new
publicly available dataset UNSW-NB15 [37].

The authors in refs. [38, 39] suggested a framework designed to
raise the efficacy of IDS by using data derived from Internet of Things
(IoT) settings. This context employs DL methods and meta-heuristic
optimization procedures to facilitate feature mining and selection. A
straightforward convolutional neural network (CNN) is the primary
feature extractor. A feature selection strategy, fixed in the Reptile Search
Algorithm, is proposed to focus only on the most essential features
derived from the CNN’s extracted features. The proposed framework
performed well across classification metrics in assessments of diverse
datasets.
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In ref. [40], the authors focused on software-defined networking
(SDN), a paradigm change which improves network openness and
flexibility. However, this change has created a vulnerable environment
with significant hazards such as network complexities and online fraud.
In recent years, research has been an essential advancement owing
to the combination of SDN and clever ML techniques in IDS. In this
context, the authors suggest an HFS-LGBM IDS tailored for SDN that
uses LightGBM and Hybrid Feature Selection algorithms to recognize
and categorize threats. Evaluations exhibited that the suggested system
outpaces existing approaches. In ref. [41], the authors provided a
novel method for identifying network intrusions, specifically illegal
actions in computer networks. This section describes the operation
and effectiveness of the suggested approach. We tested it on a standard
dataset called KDD-Cup’99. Our approach focuses on deep learning
carried out using specific software applications. A high accuracy of
99.65% was achieved. This approach can be helpful for DL-based
detection, classification, and network security research.

Detecting intrusions and irregular activities in computer networks
suggests a machine learning technique termed AE-LSTM. Unexpected
behavior is well identified by a method that integrates an LSTM and
an autoencoder (AE) model. It uses a standard scalar preprocessing
technique to ensure the model functions effectively if the input is
imbalanced. This outcome aids in the removal of inappropriate data.
The main objective of AE-LSTM is to find out whether network activity
is regular. They tested it with the NSL-KDD dataset and found it to be
more accurate to a greater extent than the earlier methods. It achieved
98.69% and 98.70% accuracy for different intrusions, and 98.78% for
differentiating malicious from regular network traffic [42].

They utilized a feature selection technique (CFS-DE) to determine
the essential data properties and the Weighted Stacking method to
precisely differentiate between regular and suspected network activities
to build a system to identify network intrusions. By streamlining and
enhancing the categorization process, this strategy can increase the
accuracy. They evaluated the precision of identifying intrusion into
computer networks by applying the NSL-KDD and CSE-CIC-IDS2018

datasets [43]. They classified several DL methods for detecting intrusion
in their work and reviewed the pertinent literature. They then evaluated
and tested four crucial DL models to identify intrusions, comprising
feed-forward algorithms, autoencoders, deep belief networks, and
LSTM networks, using both more current datasets (CIC-IDS2017, CIC-
IDS2018) and older datasets (KDD-Cup’99, NSL-KDD). The findings
showed that deep feed-forward neural network models perform better
than shallow neural networks on all four datasets, offering high accuracy
and F1 score while being efficient for neural network training and
decision-making. Interestingly, autoencoders and deep belief networks,
two popular semi-supervised models, underperform supervised feed-
forward neural networks [44, 45]. In ref. [46], the authors developed a
unique ID using a novel tree-CNN hierarchical algorithm and soft-root-
sign (SRS) activation approach. This technology rapidly recognizes
attacks such as DDoS, infiltration, brute force, and online attacks.
The new hierarchical method substantially speeds up the detection
procedure by approximately 36%, while maintaining a mean detection
rate of 98% across all tested cyberattacks.

A comparative assessment of current works is shown in Table 1.
Based on previous studies, several comparative analyses of IDS models
have been conducted. Though, there is a gap for further development in
terms of accuracy. It provides a comprehensive overview of different
studies efforts and methods for intrusion detection systems based on
datasets — KDD-Cup’99, NSL-KDD, UNSW-NBI15, and CICIoT2023.
Each entry includes information about the authors, publication year,
dataset used, techniques for extracting essential features or reducing
data, type of classifier used, and the reported accuracy. Various
approaches have been employed, such as the SVM, DNN, and other
ML and DL models. The DNN model shows significant potential
in complex IoT environments, such as CICloT2023, achieving
noteworthy accuracy. It is essential to remember that the choice of
the dataset and the specific characteristics of the intrusion detection
problem significantly influence which method works best. The DNN
shows promising results; the optimal choice determines by the
elements such as dataset size, complexity, and patterns of intrusions.

Table 1
Comparative review of existing works

Feature extraction

Authors Years Dataset used Method Accuracy

S. Mukherjee, et al. [47] 2012 NSL-KDD Feature vitality-based Naive Bayes 97.78

R. M. Elbasiony, et al. [48] 2013 KDD-Cup’99 - Random Forests + 98.3
Weighted K-means

E. D. L. Hoz, et al. [49] 2015 KDD-Cup’99 PCA-FDR PSOM 88 %

Farnaaz, N., et al. [50] 2016 NSL-KDD Symmetrical Random Forest 99.67

uncertainty

Belavagi et al. [51] 2016 NSL-KDD - Multiple (RF, LR, SVM, 99% with RF
and Naive Bayes)

Thaseen, 1. S., et al. [52] 2017 NSL-KDD Chi-square SVM 98

Meena, G., and Choudhary [44] 2017 KDD-Cup'99, - Naive Bayes 92.71

NSL-KDD

S. Ahmad, F. Arif, Z. Zabee-hullah [54] 2020 KDD-Cup’99 relu, SoftMax DNN 99.91

A. R. Gupta, et al. [55] 2020 NSL-KDD - CNN Not reported

R. Abou Khamis, et al. [56] 2020 UNSW-NBI15 PCA DNN 92% without PCA

93% with PCA
H. Hindy, et al. [57] 2020 NSL-KDD - Autoencode 92.96
Euclides Carlos Pinto Neto, et al. [58] 2023 CICIoT 2023 Features extracted from Random Forest 99.16

Pcap files
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Figure 1
Proposed framework for intrusion detection based on enhanced LSTM approach
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The diversity of the methods used highlights the intricate nature
of intrusion detection and emphasizes the need to tailor techniques to
suit the unique features of each dataset. While random forests and DNN
have emerged as strong options, their performance depends on the
dataset’s specific attributes and the types of intrusions being detected.
Ultimately, selecting the most suitable method requires a thorough
understanding of the dataset’s characteristics, ensuring that the chosen
approach aligns effectively with the complexities of the intrusion
detection task.

The research gap in this study reveals the lack of comprehensive
comparisons of various intrusion detection techniques across
multiple datasets. There is a dearth of research that compares various
methodologies using a variety of datasets, although individual studies
have independently evaluated certain datasets and methods. Such an
approach would result in greater knowledge of techniques that work
well in various situations.

Furthermore, studies addressing the difficulties associated with
spotting breaches in IoT networks are lacking. Given their increasing
use, it is necessary to address the particular security risks of IoT
devices. However, current research has not examined the function of
the intrusion detection technique regarding the IoT structure and the
types of assaults that target these devices. The research gap requires
a thorough study that contrasts various intrusion detection techniques
using numerous datasets and explores the difficulties in protecting IoT
networks against intrusions.

3. Proposed Framework

We used the following workflow for our proposed enhanced
LSTM-based model and other ML-based models, which are used here
for the comparative study. The workflow steps include data gathering,
preprocessing, feature extraction, model calibration, and emotion
identification. Figure 1 shows the complete process.

Built on the specific analytic objectives or research goals, the
number of methodologies used within the “KDD-Cup’99,” “NSL-
KDD,” “UNSW-NBI15,” and “CICloT2023” datasets might vary.
Researchers have used each dataset for various purposes, including
intrusion detection, classification, and evaluation of security approaches.
Our study employed the proposed enhanced LSTM approach for all
datasets and compared it with other ML approaches for instance logistic
regression and AdaBoost. By identifying intricate patterns in the data
and attaining high accuracy, intrusion detection models that categorize
network traffic as malicious or normal have been developed using
enhanced LSTM.

3.1. Dataset description

The research gap reveals the lack of thorough comparisons
of various intrusion detection techniques, specifically the deep

Evaluation Metrics Predictions

learning approach, across multiple datasets. To fill that gap, we
have used the “KDD-Cup’99,” “NSL-KDD,” “UNSW-NB15,” and
“CICIoT2023” datasets, which consist of a variety of data that
leads to the design of more effective and robust methods for IDS-
IoT. Moreover, we have proposed using an enhanced LSTM based
on the Deep Learning approach, which has not been used earlier,
as deep learning approaches have their benefits in classification
problems.

3.1.1. KDD-Cup’99 dataset

The KDD-Cup’99 dataset! was collected in 1999 for the Third
International KDD Tools Competition (KDD-Cup) to assess IDSs.
It comprises around 4.9 million records, making it one of the largest
datasets available for intrusion detection. It includes 41 attributes such
as connection type, duration, destination IP addresses, and various flags
and counts related to network packets. The dataset comprises multiple
attack types: DoS, R2L, and U2R. The dataset has been criticized for
its imbalance, redundancy, and outdated nature, leading to improved
datasets such as NSL-KDD.

3.1.2. NSL-KDD dataset

The NSL-KDD dataset’> was developed to resolve the limits
and challenges of the original KDD-Cup’99 dataset. It contains
1.8 million records, covering wide-ranging network activities. The
NSL-KDD dataset shares attributes identical to those of the KDD-
Cup’99 with more features to enhance realism and mitigate issues
in the original dataset. NSL-KDD is similar to KDD-Cup’99 and
includes different type of attacks, categorized into DoS, Probe,
R2L, and U2R classes. NSL-KDD aims to provide a more balanced
distribution of classes and reduce redundancy compared to the KDD-
Cup’99 dataset.

3.1.3. UNSW-NBI15 dataset

The UNSW-NBI15 dataset® solves the constraints of preceding
datasets, providing a more current and accurate picture of network
traffic. The collection includes around 2.5 million records, providing
ample data for research. The UNSW-NBI15 dataset’s 49 features cover
an extensive range of data about source and destination IP addresses,
service categories, and flags. The dataset contains ordinary traffic and
several attack methods, like DoS, Probe, Remote-to-Local, and user-
to-root. UNSW-NB15 improved network traffic realism and balanced
normal and attack scenarios better.

3.1.4. CICIoT2023 dataset
The CICIoT2023 dataset’s* main goal is to offer a thorough
and accurate dataset for researching intrusion detections in IoT

" http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2 http://www.unb.ca/cic/datasets/nsl.html

3 http://doi.org/ 10.1109/MilCI1S.2015.7348942

4 https://doi.org/10.3390/s23135941
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Table 2
Performance comparison summary of all four datasets

Dataset Year of release Volume Total no. of features No. of features used
KDD-Cup’99 1999 4,900,000 41 41
NSL-KDD 2009 4,898,431 41 41
UNSW-NBI15 2021 2,57,673 49 49
CICIoT2023 2023 2,540,044 47 47

environments, which is meant to help practitioners and researchers
create and assess security solutions for Internet of Things systems. At
the University of New Brunswick in Canada, the Faculty of Computer
Science has produced a dataset. A significant amount of data from an
actual IoT network was collected for CICIoT2023, guaranteeing its
validity and applicability to actual situations. A thorough examination
of intrusion detection techniques in [oT is made possible by the dataset’s
inclusion of characteristics of IoT devices, network traffic, and attack
patterns. The dataset includes attributes related to IoT devices, network
traffic, and attack patterns, enabling a detailed analysis of intrusion
detection techniques in IoT. A comparative summary table illustrating
the key parameters, characteristics, and the year of release of all four
datasets is given in Table 2.

3.2. Enhanced long short-term memory for IDS-IoT

The RNN subset LSTM aims to use the dependencies in
sequential data precisely. Time-series data, such as network traffic,
is effective. LSTM cells include mechanisms for memorizing and

forgetting information over extended sequences to manage the context
and temporal patterns. When used to detect intrusions, LSTM can
evaluate the sequences of network activities and learn to identify
unusual behaviors that may span numerous time steps, leading to the
development of more resilient and competent IDSs. LSTMs introduce
a sophisticated structure comprising many gates that regulate
information flow. LSTMs use three types of gates to regulate the
information flow:

1) Forget Gate: decides which cell state data should be removed.
o(Welhe_1,x¢] + bg) (1)

2) Input Gate: choose which input values to use to update the state of
the cell.

o(Wilhi1,x¢] 4 by) 2)

Table 3 3) Output Gate: Determines the subsequent concealed state, considering
Confusion matrix the input and cell states.
Actual
- — - o(Wolhi1,%¢] + bo) 3)
Predicted Positive Negative
Positive True Positive False Positive
_ ) ) Where:

Negative False Negative True Negative c is the sigmoid function, W_x Weight for respective gate(x)
neurons, h_(t-1) Output of the preceding LSTM block, x_t Input at the
current timestamp, and b_x biases for the respective gates.

Table 4 _ An LSTM cell’s main parts are as follows:
Performance assessment matrices Cell State (c_t): The network’s memory can store data across

Matric Formula various time steps.

Accuracy %

¢ =fi-cp1+ie- & )
Precision _TIP
TP+FP
Recall _TP _ Hidden state (h_t): The LSTM cell’s output at a particular time
TP+FN . L
step serves as the input for the following time step.
F-Measure 2*Precision*Recall
Precision+Recall
FP hy = o - tan h(c
AUC (Recall — FPiTN + 1) /2 t t n ( t) (5)
Table 5
Model evaluation metrics - KDD-Cup’99 dataset
ML models DL models

Metric Logistic Regression Adaboost DNN RNN E-LSTM

Accuracy 0.9983 0.7858 0.9991 0.9991 0.9994

Precision 0.9982 0.6783 0.9988 0.9989 0.9992

Recall 0.9983 0.7858 0.9989 0.9990 0.9993

Fl-score 0.9982 0.7143 0.9988 0.9989 0.9992
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¢y =fi-cpo1 41y - G

(6)

Where, ¢, is the cell (memory) state at timestamp (t); ¢, is the
condition for the cell state, and others are the same as above.

In the proposed E-LSTM model for IoT-based IDS, we used
two LSTM layers to extract insights from the datasets. The mined
features were fed into a flatten layer, and a dense layer with a SoftMax
activation function is used to classify intrusions. The proposed model
employs Adam optimizer with a batch size 64 and was trained up to
20 epochs. The results and analysis section elaborates on the proposed
enhanced LSTM model for different datasets. The proposed E-LSTM
model is improved and modified by tuning the number of units,

learning rate, dropout rate, and batch size to improve performance for
an loT-based IDS.

4. Experiments

4.1. Data pre-processing and cleaning

The pre-processing steps were designed to clean, transform, and
enrich the raw data. Addressing missing values, handling outliers, and
applying the necessary transformations. Tools such as Pandas, NumPy,
and regular expressions for data manipulation. Data pre-processing
and cleaning are necessary steps in the data “KDD-Cup’99, NSL-
KDD, UNSW-NBI15, and CICIoT2023” that ensure the collected

Figure 2
E-LSTM loss & accuracy graph on KDD-Cup’99
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Figure 3
DNN loss & accuracy graph on KDD-Cup’99
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Figure 4
RNN loss & accuracy graph on KDD-Cup’99
0.09 -
0.08 - 0-9981
0.07
0.996
0.06
o
2 0.05 g
= S 0994
<<
0.04
0.03
0.992
0.02
0.014 0.9904
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
epochs epochs
—— Test loss —— Test accuracy
~— Training loss ~— Training accuracy
data are accurate, consistent, and ready for analysis or modeling.
Figure 5 These steps involve identifying and handling missing values, outliers,
Summary of E-LSTM architecture inconsistencies, and other quality issues. Here is a detailed breakdown
of data preprocessing and cleaning.
Model: "sequential™
4.1.1. Missing values handling
Layer (type) Output Shape Param # L. . .

Missing values may result from incomplete data collection or data
1stm (LSTM) (None, 38, 100) 40800 entry errors. Common strategies for handling missing values include:
Istm_1 (LSTM) (None, 38, 100) 80400 1) Deletion: Rows or columns with significant missing values were
flatten (Flatten) (None, 3800) 0 removeq if they did 1.10t. contain crmceq 1nformat10n. .

2) Imputation: Fill missing values with estimated values using
dense (Dense) (None, 2) 7602 techniques such as the mean, median, mode, or interpolation.
3) Advanced Imputation: To fill in missing variables, use more
Total params: 128,802 sophisticated techniques like regression imputation, k-nearest
Trainable params: 128,802 neighbors, or predictive modeling.
Non-trainable params: ©
4.1.2. Outlier detection and handling
Data points that considerably deviate from the rest of the dataset
are referred to as outliers, which may distort results from modeling and
Figure 6 analysis. The following are some strategies for handling outliers.
Confusion matrix for the KDD-Cup’99 . . . . . . .
P 1) Identification: Identify outliers utilizing statistical techniques such
as z-scores, Interquartile Range (IQR), or domain knowledge.
5506 2) Transformation: Logarithmic or Box-Cox transformations are
applied to reduce the impact of outliers.
6060 3) Capping: Set a threshold and cap the extreme values at that threshold
to mitigate their effects.
50000 4) Removal: Sometimes, outliers can be removed if deemed erroneous
T or irrelevant.
Q
’7: 40000
2 4.1.3. Data type conversion
30000 Ensure that data types are consistent and appropriate for analysis
or modeling:
20000
1) Categorical to Numerical: Use methods like label encoding to
10000 transform categorical information into a numerical representation.

Predicted label

4.1.4. Normalization

Our study uses the StandardScaler technique to normalize the
data.
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Table 6
Model evaluation metrics - NSL-KDD dataset
ML models DL models
Metric Logistic Regression Adaboost DNN RNN E-LSTM
Accuracy 0.9515 0.8126 0.9803 0.9773 0.9816
Precision 0.9456 0.6796 0.9775 0.9748 0.9756
Recall 0.9515 0.8127 0.9795 0.9764 0.9793
F1-score 0.9472 0.7397 0.9778 0.9748 0.9767
Figure 7
E-LSTM loss & accuracy graph of NSL-KDD
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Figure 8
DNN loss & accuracy vs epochs graph of NSL-KDD
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Figure 9
RNN loss & accuracy graph of NSL-KDD
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4.2. Performance evaluation

The efficacy of many classifiers was assessed with the major key
performance metrics. The confusion matrix measures parameter values
are presented in Table 3. The performance evaluation was conducted by
considering these estimates. Metrics such as F-measure, area under the
curve (AUC), precision, recall, and accuracy are provided in Table 4.

4.3. Experimental setup

Python (version 3.10.7) on Windows 11 was used in this study.
The backends for the deep learning models were TensorFlow and the
Keras framework (version 2.10.0). The high-performance computing
environment included an Intel(R) Xenon(R) W-2255 CPU running at
3.70 GHz, 64 GB of RAM, an NVIDIA GEFORCE RTX A4000 GPU
with 16 GB of RAM, and DirectX-12 (version 12.1).

Initially, to develop the model, an LSTM layer, a flatten layer, and
a dense layer were taken with Adam optimizer and SoftMax activation
function at the classification phase. The model was initially trained up
to 10 epochs. Finally, looking at the performance of various candidate
models, the model with two LSTM layer, one flatten layer, and one

Figure 10
Confusion matrix for the NSL-KDD dataset
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dense layer, with Adam optimizer and SoftMax activation function at
the classification phase, was selected as the best model. It was trained
up to 20 epochs. Consequently, the proposed LSTM-based model
results are studied and assessed compared to the other models.

4.4. Results and discussion

Four different datasets were used to test a few ML and DL
models: CIC IoT 2023, UNSW-NB15, KDD-Cup’99, and NSL-KDD.
Tables give a summary of the Model Evaluation Metrics applied to
these datasets.

4.4.1. Experiments on intrusion detection with KDD-CUP 99 dataset
Using a confusion matrix for assessment, the performance of
several ML and DL algorithms was fully examined with the KDD-

Figure 11
Summary of proposed enhanced LSTM architecture

Istm_input | input: | [(None, 38, 1)]
InputLayer | output: | [(None, 38, 1)]
y
Istm input: (None, 38, 1)
LSTM | output: | (None, 38, 100)

4
Istm_1 | input: | (None, 38, 100)
LSTM | output: | (None, 38, 100)
flatten_2 | input: | (None, 38, 100)
Flatten | output: | (None, 3800)
dense_16 | input: | (None, 3800)
Dense output: (None, 2)
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Cup’99 dataset. The results, such as Fl-score, Precision, and Recall, precision, and F1-score values demonstrate that the Logistic Regression
provide information on how well the models identify and categorize and deep learning algorithms accurately recognize genuine positives
intrusions. and true negatives. With F1 scores over 0.999, the enhanced LSTM

The model’s performance in Table 5 shows noteworthy patterns  (E-LSTM) modelregularly outperforms the other models, demonstrating
brought to light through confusion matrix analysis. The high recall, their resilience in identifying intrusion cases, highlighting the

Table 7
Model evaluation metrics - UNSW-NB15 dataset
ML models DL models
Metric Logistic Regression Adaboost DNN RNN E-LSTM
Accuracy 0.8936 0.9613 0.9758 0.9694 0.9777
Precision 0.8951 0.96136 0.9746 0.9689 0.9771
Recall 0.8936 0.96138 0.9744 0.9686 0.9770
Fl-score 0.8916 0.96137 0.9745 0.9687 0.9771
Figure 12
E-LSTM loss & accuracy graph of UNSW-NB15
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Figure 13
DNN loss & accuracy graph of UNSW-NB15
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Figure 14
RNN loss & accuracy graph of UNSW-NB15
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possibility of adjusting the model parameters to improve performance
further. Figures 2, 3, and 4 display the loss and accuracy of the LSTM,
DNN, and RNN deep-learning models, respectively. The parameter
configuration specification presented in Figure 5 includes the layers
and their corresponding positions in the LSTM structural design, output
format, parameters or weights for each layer, and the all parameters
in the model. In addition, the specifications include the output format.
Figure 6 visually represents the predictive outcomes in the confusion
matrix.

4.4.2. Experiments on intrusion detection using NSL-KDD dataset

The NSL-KDD dataset was utilized for assessing the
performance of several deep and ML models. A performance matrix
and various metrics were utilized to assess their efficiency in detecting
intrusions.

Logistic regression and DL algorithms consistently exhibited
remarkable accuracy, recall, and F1-score values, as presented by the
performance matrix in Table 6. With F1 scores over 0.97, the enhanced
LSTM model regularly outperforms the other models, demonstrating
their resilience in identifying intrusion cases and highlighting their
competence in correctly recognizing them. Figures 7, 8, and 10 display
the loss and accuracy of the E-LSTM, DNN, and RNN DL models,
respectively. Figure 10 visually represents the predictive outcomes in
the confusion matrix.

Both loss and accuracy graphs present a detailed outline of
the learning processes of the models and their performances on the
datasets. These visualizations support earlier findings and conclusions
drawn from quantitative metrics, reinforcing the efficacy of the
selected models in intrusion detection tasks across different datasets.
The parameter configuration specification presented in Figure 11
includes the layers and their corresponding positions in the LSTM
architecture, output format, parameters or weights for every layer, and
all the parameters in the model. In addition, the specifications include
the output format.

4.4.3. Experiments on intrusion detection using UNSW-NB15

The efficiency of many ML and DL models in intrusion
detection was evaluated with UNSW-NBI15 dataset. The study
included various metric as shown in Table 7, to fully assess model’s
performance.

11
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Figure 15

Summary of enhanced LSTM architecture

Model: "sequential 1"

Layer (type) output Shape Param #
lstm (LSTM) (None, 40, 100) 40800
1stm_1 (LSTM) (None, 40, 100) 80400
flatten_1 (Flatten) (None, 4000) (2]
dense_53 (Dense) (None, 2) 8002
Total params: 129,202
Trainable params: 129,202
Non-trainable params: ©
Figure 16
Confusion matrix of UNSW-NB15
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The performance matrix analysis highlighted significant patterns
in the performance of the various models. Across the board, the
Logistic Regression and DL models exhibited consistent precision,
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Table 8
Model evaluation metrics — CICIoT 2023 dataset
ML models DL models
Metric Logistic Regression Adaboost DNN RNN E-LSTM
Accuracy 0.8013 0.6679 0.9826 0.9825 0.9858
Precision 0.8073 0.6609 0.9798 0.9807 0.9845
Recall 0.8085 0.6679 0.9828 0.9817 0.9854
Fl-score 0.7664 0.6070 0.9808 0.9808 0.9845
Figure 17
E-LSTM loss & accuracy graph — CICIoT 2023
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Figure 18
DNN loss & accuracy graph — CICIoT 2023
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Figure 19
RNN loss & accuracy graph — CICIoT 2023
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recall, and F1-score values, suggesting their robustness in accurately Figure 20

identifying intrusion instances. With F1 scores over 0.97, the enhanced
LSTM model regularly outperforms the other models, demonstrating
their resilience in identifying intrusion cases, highlighting their
competence in correctly recognizing them, which indicates their
proficiency in differentiating among normal and intrusive network
traffic, reinforcing their suitability for real-world intrusion detection
scenarios. Figures 12, 13, and 14 present the loss and accuracy of the
E-LSTM, DNN, and RNN deep learning models, respectively. The
parameter configuration specification presented in Figure 15 includes
the layers and their corresponding positions in the E-LSTM structural
design, output format, parameters or weights for every layer, and
the overall parameters in the model. In addition, the specifications
include the output format. Figure 16 visually represents the predictive
outcomes in the confusion matrix.

The loss and accuracy graph visualizations provided a
comprehensive view of the learning trajectories of the models and
their success on the datasets. These graphical depictions support
the preceding findings and judgments drawn from the quantitative
measurements, thereby supporting the efficacy of the selected models
in detecting the intrusion across various datasets.

4.4.4. Experiments on intrusion detection using CICloT 2023dataset

Table 8 displays various assessment criteria for DL and ML
methods functional to diverse datasets. Precision, Recall, and F1-
score are among the examined measures, providing a complete
understanding of model efficacy across 34 classes. With F1 scores
over 0.98, the enhanced LSTM model regularly outperforms the other
models, demonstrating their resilience in identifying intrusion cases
highlighting their competence in correctly recognizing intrusion
cases This indicates their proficiency in differentiating among
normal and intrusive network traffic, reinforcing their suitability
for real-world intrusion detection scenarios Figures 17, 18, and 19
show the loss and accuracy of deep learning models E-LSTM, DNN
and RNN.

The loss and accuracy graphs clearly show the learning
procedures and the models’ performance on various datasets. These
graphics support the efficacy of the chosen models in intrusion detection
tasks. The output format, parameters, weights for each layer, the layers

13

Summary of enhanced LSTM architecture

Model: "sequential_1"

Layer (type) Output Shape Param #
1stm_2 (LSTM) - (None, 46, 100) 40800 -
1stm_3 (LSTM) (None, 46, 100) 80400
flatten_1 (Flatten) (None, 4600) ]

dense_1 (Dense) (None, 34) 156434

Total params: 277,634
Trainable params: 277,634
Non-trainable params: @

and their respective locations in the LSTM structural design, and the
model’s overall parameters are specified in Fig. 20. Figure 21 visually
represents the predictive outcomes in the confusion matrix.

4.4.5. Performance comparison

The results highlight notable variations in the model performance
across the datasets, as shown in Table 9. Logistic regression consistently
yields competitive accuracy across all datasets, whereas our proposed
enhanced LSTM model demonstrates remarkable accuracy and
robustness. Deep-learning models, particularly the proposed E-LSTM,
exhibit impressive accuracy on the CICIoT 2023 dataset, emphasizing
their capability to capture intricate patterns in IoT network traffic.
The findings underscore the significance of choosing models aligned
with the dataset features. Dataset intricacies influence the model
performance, and certain models are better suited for specific datasets.
Figure 22 displays a bar graph to compare the performance of the
numerous specified models with their datasets.

Table 8 illustrates how the suggested enhanced LSTM methods
fared better on the KDD-Cup’99, NSL-KDD, USNW-NBIS5, and
CICIoT 2023 datasets. Table 10 demonstrates the performance
assessment of the proposed model with prevailing work [47-58].
It displays how remarkable the “Proposed Method” is, specifically
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Figure 21
Confusion matrix of UNSW-NB15
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Table 9
Accuracy table of all datasets utilized
ML models accuracy DL accuracy
Datasets Logistic Regression Adaboost DNN RNN E-LSTM
CIC IoT 2023 0.8013 0.6679 0.9826 0.9827 0.9856
UNSW-NB15 0.8936 0.9613 0.9758 0.9694 0.9777
NSL-KDD 0.9515 0.8127 0.9803 0.9773 0.9816
KDD_CUP’99 0.9983 0.7858 0.9991 0.9991 0.9994

advantageous when dealing with limited or imbalanced data, common
challenges in intrusion detection, and 99.94% accuracy with Enhanced
LSTM. 1t is specifically designed to capture patterns and dependencies
in sequences, making it well-suited for analyzing the temporal behavior
of network traffic data. Unlike CNNs and DNNs, which may overlook
temporal relationships, the proposed E-LSTM can effectively model the
context of previous network events, which is essential for identifying
complex intrusion patterns. In addition, its recurrent architecture
enables real-time analysis of streaming data, making it suitable for
network intrusion detection systems that must make rapid decisions as
new data arrives, a challenge for methods such as the PSOM or Naive
Bayes.

14

Similarly, the suggested approach obtained an accuracy of
99.16% with E-LSTM on the NSL-KDD dataset. With E-LSTM, the
performance for the UNSW-NB15 dataset remained comparatively high
at 98.33%. Using enhanced LSTM, the suggested approach obtained
98.56% accuracy even in the large and complex CICIoT 2023 dataset.

5. Conclusion and Future Work

To complete this study, we examined various datasets related to
IoT intrusion detection. This group contains several renowned datasets
for detecting intrusion, including UNSW-NB15, KDD-Cup’99, NSL-
KDD, and CICIoT2023. Our research gathered data to better understand
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Figure 22

Accuracy graph of KDD-Cup’99, NSL-KDD, UNSW_NB15 and CICIoT 2023
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W UNSW-NB15 mKDD CUP'99
Table 10
Comparison of the proposed model with existing work
Feature ex-traction
Proposed by Years Dataset used Method Accuracy
S. Mukherjee, et al. [47] 2012 NSL-KDD Vitality-based Naive Bayes 97.78
R. M. Elbasiony, et al. [48] 2013 KDD-Cup'99 - Random Forests + Weighted ~ 98.3
K-means
E.D. L. Hoz, et al. [49] 2015 KDD-Cup'99 PCA-FDR PSOM 88.0%
Farnaaz, N., et al. [50] 2016 NSL-KDD Symmetrical uncertainty =~ Random Forest 99.67
Belavagi et al. [51] 2016 NSL-KDD - RF, LR, SVM, and Naive 99% with RF
Bayes
Thaseen, I. S., et al. [52] 2017 NSL-KDD Chi-square SVM 98
Meena, G., and Choudhary 2017 KDD-Cup'99, - Naive Bayes 92.71
[44] NSL-KDD
S. Ahmad, F. Arif, Z. 2020 KDD-Cup'99 relus, SoftMax DNN 99.91
Zabee-hullah [54]
A. R. Gupta, et al. [55] 2020 NSL-KDD - CNN Not reported
R. Abou Khamis, et al. [56] 2020 UNSW-NBI15 PCA DNN 92% without
PCA
93% with
PCA
H. Hindy, et al. [57] 2020 NSL-KDD - Autoencoder 92.96
Euclides Carlos Pinto Neto, 2023 CIClot 2023 Features ex-tracted from  Random Forest 99.16
et al. [58] the original Pcap files
Proposed Method 2024 KDD-Cup’99 relu, SoftMax Enhanced LSTM 99.94
Proposed Method 2024 NSL-KDD - Enhanced LSTM 99.16
Proposed Method 2024 UNSW-NB15 - Enhanced LSTM 98.33
Proposed Method 2024 CICIoT 2023 Using Pyspark Enhanced LSTM 99.38

how well different machine learning models can detect and mitigate
security risks in IoT environments. The models’ performances, including
Logistic Regression, AdaBoost, DNNs, E-LSTM, and RNNs—all
different forms of neural networks—were evaluated systematically.
Comparative analysis of these datasets highlights the need for tailored
approaches to address the unique characteristics of each dataset,
which highlights the challenges and opportunities associated with loT
intrusion detection.

These results demonstrate how consistent our suggested approach
is. Across many datasets, accurate findings were obtained, which
indicates that the suggested approach is a viable option for intrusion-

15

detection jobs as it is robust and dependable for precisely identifying
incursions in various scenarios.

6. Limitations

In our study, we focused on evaluating the performance of a range
of intrusion detection techniques across all four datasets to understand
their adaptability and limitations in the context of IoT security. It may
be further improved using Ensemble Methods, Feature Engineering,
and Explainability Feature to enhance the proposed model’s efficacy,
effectiveness, and adaptability.
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7. Future Directions

Although this study presents valuable insights for IoT based
intrusion detection using diverse datasets, several avenues for future
research can enhance our understanding and contribute to real-world
applications.

1) Ensemble methods: The potential of ensemble approaches to
combine the strengths of various techniques and models to enhance
the overall intrusion detection performance. Methods, such as
stacking and boosting, can lead to enhanced accuracy and robustness.

2) Feature engineering: Explore advanced feature engineering
techniques that capture the domain-specific characteristics of [oT
network traffic. Leveraging domain knowledge can lead to more
informative features, boosting model performance.

3) Explainability: Focus on creating a system that can be understood
and models that can be explained to give decision-makers insights
and improve the credibility of intrusion detection systems.
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