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Abstract: Network security and intrusion detection have become significant challenges with the emergent inclusion of Internet of Things (IoT) 
devices across several domains. In this article, we proposed an enhanced long-short term memory (E-LSTM) method for detecting intrusions in IoT-
based datasets for the designing of more resilient and competent intrusion detection systems (IDSs) in the dynamic domain of IoT environments, 
as well as for the thoughtful selection of models appropriate for various dataset characteristics. Four distinct datasets were used in this study: 
KDD-Cup’99, NSL-KDD, UNSW-NB15, and CICIoT2023. The aim was to estimate and compare the performance across datasets. We provide 
subtle insights into model behaviors and their capacity to adjust to the particulars of each dataset through rigorous analysis. The proposed enhanced 
LSTM approach revealed significant differences in precision, recall, accuracy, and F1-score compared to other approaches like AdaBoost, DNN, 
RNN, and Logistic Regression. It was discovered that, for every dataset, the accuracy rate exceeded 95%.
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1. Introduction
Information is being produced exponentially in almost 

every technological and commercial domain because of the speedy 
expansion of distributed and Internet-based techniques such as cloud 
computing and the Internet of Things (IoT) [1–3]. As part of the IoT, 
various objects, sensors, and intelligent nodes that offer self-sufficient 
communication capabilities are being integrated [4]. Smart sensors that 
monitor and gather social media and other device data are examples of 
hardware resources that are part of the IoT [5, 6]. A network of physical 
entities that can be seen and tamed online is called the IoT [7, 8]. In 
addition, loads of items are accessible through wireless sensor networks 
(WSN) using various Internet-connected actuators and sensors [9, 10]. 
There is a need to calculate, save, retrieve, and evaluate IoT data, since 
IoT sensors often have little memory, low power, battery constraints, 
and network limits. So, they must be calculated, saved, retrieved, and 
evaluated [11, 12].

Additionally, a platform is required to handle the expanding 
volume of heterogeneous data and objects [13, 14]. Our lives are 
beginning to change because of the quick evolution of the IoT. 
Furthermore, with a linked and collaborative system, security has 
emerged as one of the most thought-provoking problems owing to the 
explosive expansion of IoT [15]. Numerous risky behaviors can arise 
from data vulnerability, which can directly lower the security of IoT [16]. 
Thus, eavesdropping is possible in many wireless transmissions without 
restrictions. The unauthorized use of computer systems targets intrusion 
detection systems (IDS) [17]. Among these access control methods and 
networks are ad hoc networks, WLANs, WPANs, and LANs. Within 
the WPAN family, WSN, mobile phones, and RFID are the most widely 
used networks [18]. Consequently, security has turn out to be a major 
problem in IoT [19]. Current security techniques include cryptographic 

security bases and systemic security systems [20]. Additionally, modern 
cyber threats have grown more intricate, sophisticated, unconventional, 
and insistent due to the fast growth of adversarial tactics. In light of 
these considerations, identifying and thoroughly mapping cyber threats 
is a crucial but sometimes disregarded step before implementing 
effective and robust cybersecurity remedies [21].

Intrusion detection systems (IDS) come in three primary 
varieties: specification-based, anomaly-based, and misuse-based. Loads 
of research has been done on anomaly-based and misuse-based IDSs by 
both industry and academics [22]. Due to the growth of IoT and the 
increase in cyberattacks, several IDS approaches have been developed 
in the IoT area [23]. Furthermore, an IDS is essential for identifying 
and stopping intrusions into the network and giving a strong security 
framework [24]. The complete number of sensors in a system has 
limitations related to storage, interoperability, and scalability, while the 
requirement for a significant volume of labeled data for performance, 
intrusion detection, and attack detection hampers security methods 
such as IDSs. IDSs are a basic and necessary security technique that 
protects IoT settings against various security threats. IDSs often have 
four primary types. The first type of IDS outlines the traits for every 
type of assault that can be identified and is signature-based. An alert 
sounds when the anomalous behavior aligns with the pattern [25], a 
straightforward technique for identifying known attacks. The anomaly-
based IDS’s initial phase gathers data on the predicted actions of the 
discovered system. Subsequently, the IDS set a threshold that the 
suspicious activity must surpass for the warning to trigger. Even though 
this system can detect attack attempts, processing data needs lots of 
memory and computing [26]. An IDS combined with a signature-based 
IDS can potentially balance the computing burden and false-positive 
signal issue of an anomaly-based IDS with the storage cost of a 
signature-based detection system [27]. An IDS uses a specification-
driven methodology to compare current operations with its identified 
common system activities [28].
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Intrusion is any illegal or unwelcome entry, exit, or activity in a 
computer system, network, or digital environment. Usually, it entails 
people or organizations trying to overcome security barriers to access, 
alter, or steal private information; interfere with system performance; 
or harm themselves. Various incursions, including hacking, malware 
infection, breaches of data, or any other act, can violate security, 
privacy, or access to digital resources. Therefore, intrusion detection 
is crucial to protect against cyber threats. Given the growing adoption 
of IoT devices and evolving threat landscapes, it is vital to assess the 
efficacy of intrusion detection techniques for safeguarding IoT systems. 
However, various datasets exist for evaluating intrusion detection 
algorithms, each capturing different aspects of the network behavior 
and attacks. The research problem is to systematically analyze diverse 
datasets, specifically KDD-Cup’99, NSL-KDD, UNSW-NB15, and 
CICIoT2023, to evaluate the performance of different intrusion 
detection methods in an IoT network. Deep learning (DL) methods 
have been demonstrated to improve prediction and classification. There 
is sufficient interest in deep learning across several fields to address 
various issues. The machine learning methods go beyond some of the 
limitations of traditional approaches, like support vector machines. The 
fact that the effectiveness of IDS relies mostly on the dataset used for 
testing presents another issue that must be resolved. Several benchmark 
datasets had varying attributes and insufficient results. These issues 
have led to the growth of automated and reliable IDSs that shed light 
on the adaptability and generalizability of intrusion detection solutions 
in IoT scenarios by revealing the benefits and shortcomings of various 
procedures when applied to these datasets. The following contributions 
aided the completion of this research.

1)  We suggested an enhanced LSTM based method for detecting 
intrusions in IoT-based datasets to design more resilient and 
competent IDSs.

2)  Diversity of Datasets: This research involves studying four distinct 
datasets, each with its own characteristics, attack patterns, and 
network behaviors. This diversity reflects the heterogeneous nature 
of real-world IoT environments. 

3)  Performance Evaluation: This study evaluated performance of 
intrusion-detection methods across different datasets using various 
metrics. 

4)  IoT Context: The research problem is framed explicitly in the 
reference of IoT, acknowledging the unique challenges and 
features of IoT networks, for instance resource constraints, device 
heterogeneity, and evolving attack vectors.

5)  Consider the KDD-Cup’99, NSL-KDD, UNSW-NB15, and 
CICIoT2023 datasets for IoT-based IDS.

6)  Their performance was evaluated on various datasets to determine 
the merits and demerits of intrusion-detection methods in diverse 
situations.

The rest of the proposed study is structured as follows. 
Section 2 covers the history of IoT-IDS and common terminology. 
Section 3 discusses the IoT Intrusion Detection framework and 
techniques. The experimental setup and findings are explained in 
Section 4. Various topics were covered, including the properties of the 
utilized dataset, the preprocessing techniques used, and details of the 
alternative models included in the research. Section 5 presents the final 
components of our study. 

2. Related Work
Some scholars have developed IDSs. To bridge the gap among 

the current state-of-art and its prospective future direction, we began by 
examining survey research articles on IDS. The idea behind the IoT uses 

sensors, software, and connections to connect physical equipment, cars, 
apps, and other items. They can gather and share data online. These 
gadgets can communicate with one another and their surroundings to 
facilitate intelligent decision making, long-range monitoring, and data-
centric automation. An IDS is a standalone component in the security 
domain that is crucial for information security. The necessity of security 
and maintaining the system’s awareness of dangerous activities is 
growing, along with the ease with which people over a broad region may 
use the internet. The conventional IDS has limits like poor detection 
accuracy and high false alarms [29].

The rising usage of IoT devices has revolutionized the efficiency 
and ease of daily living. Nevertheless, new security issues have arisen 
owing to this expansion. The number of cyberattacks has surged owing 
to the growing usage of the internet and network technologies, which has 
boosted interest in IDS among academics. Network intrusion detection 
(NID) has become a critical component of contemporary security 
architectures for securing IoT networks. Machine-learning techniques 
have recently demonstrated potential as IDS solutions. However, the 
functional and physical variety of IoT-IDS systems poses obstacles, 
making the total feature usage unfeasible. Therefore, effective feature 
selection is crucial. An novel feature selection scheme for anomaly-
based NIDS was proposed in this study [30, 31].

Machine learning (ML) approaches have been adopted in IDS to 
identify and categorize security vulnerabilities in various applications, 
such as artificial intelligence, IoT, smart city infrastructure, and fifth-
generation networks [32]. In this article, we used the KDD-CUP dataset 
to classify the intrusions. It compares its performance with state-of-
the-art results for many ML algorithms, for example Random Forest 
(RF) and Classification and Regression Trees (CART). Researchers 
have created IDSs [33] that use ML techniques to overcome these 
problems. These techniques can recognize unusual assaults and 
accurately distinguish between normal and abnormal data. One subset 
of ML termed as deep learning has become a hot topic for study. 
This review offers classification based on data objects for classifying 
and reviewing IDS- and ML-based deep learning publications. SVM 
with normalization performs better than SVM without normalization 
when identifying interruption data from KDD99 and Min–Max, as 
demonstrated in refs. [34, 35]. Normalization does well than the other 
techniques in terms of speed, number of support vectors, and cross-
validation accuracy. 

The increase in the accuracy of intrusion classification with 
less input data for the input subsets of the NSL-KDD-Cup’99 dataset 
was examined using the SVM classifier [36]. The suggested method 
produced a 91% accuracy rate with only three features, and a 99% 
accuracy rate with 36 features. Notably, an accuracy rate of 99% was 
achieved using all 41 training characteristics. Anomalous occurrences in 
network traffic flow were identified, and machine learning was applied. 
SVM, Naive Bayes, RF, and Decision Tree classification, which process 
data using Apache Spark, were examined in this study. The Random 
Forest outperformed others in network intrusion detection by utilizing 
all 42 features, as per the experimental results achieved on the new 
publicly available dataset UNSW-NB15 [37].

The authors in refs. [38, 39] suggested a framework designed to 
raise the efficacy of IDS by using data derived from Internet of Things 
(IoT) settings. This context employs DL methods and meta-heuristic 
optimization procedures to facilitate feature mining and selection. A 
straightforward convolutional neural network (CNN) is the primary 
feature extractor. A feature selection strategy, fixed in the Reptile Search 
Algorithm, is proposed to focus only on the most essential features 
derived from the CNN’s extracted features. The proposed framework 
performed well across classification metrics in assessments of diverse 
datasets.
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In ref. [40], the authors focused on software-defined networking 
(SDN), a paradigm change which improves network openness and 
flexibility. However, this change has created a vulnerable environment 
with significant hazards such as network complexities and online fraud. 
In recent years, research has been an essential advancement owing 
to the combination of SDN and clever ML techniques in IDS. In this 
context, the authors suggest an HFS-LGBM IDS tailored for SDN that 
uses LightGBM and Hybrid Feature Selection algorithms to recognize 
and categorize threats. Evaluations exhibited that the suggested system 
outpaces existing approaches. In ref. [41], the authors provided a 
novel method for identifying network intrusions, specifically illegal 
actions in computer networks. This section describes the operation 
and effectiveness of the suggested approach. We tested it on a standard 
dataset called KDD-Cup’99. Our approach focuses on deep learning 
carried out using specific software applications. A high accuracy of 
99.65% was achieved. This approach can be helpful for DL-based 
detection, classification, and network security research.

Detecting intrusions and irregular activities in computer networks 
suggests a machine learning technique termed AE-LSTM. Unexpected 
behavior is well identified by a method that integrates an LSTM and 
an autoencoder (AE) model. It uses a standard scalar preprocessing 
technique to ensure the model functions effectively if the input is 
imbalanced. This outcome aids in the removal of inappropriate data. 
The main objective of AE-LSTM is to find out whether network activity 
is regular. They tested it with the NSL-KDD dataset and found it to be 
more accurate to a greater extent than the earlier methods. It achieved 
98.69% and 98.70% accuracy for different intrusions, and 98.78% for 
differentiating malicious from regular network traffic [42].

They utilized a feature selection technique (CFS-DE) to determine 
the essential data properties and the Weighted Stacking method to 
precisely differentiate between regular and suspected network activities 
to build a system to identify network intrusions. By streamlining and 
enhancing the categorization process, this strategy can increase the 
accuracy. They evaluated the precision of identifying intrusion into 
computer networks by applying the NSL-KDD and CSE-CIC-IDS2018 

datasets [43]. They classified several DL methods for detecting intrusion 
in their work and reviewed the pertinent literature. They then evaluated 
and tested four crucial DL models to identify intrusions, comprising 
feed-forward algorithms, autoencoders, deep belief networks, and 
LSTM networks, using both more current datasets (CIC-IDS2017, CIC-
IDS2018) and older datasets (KDD-Cup’99, NSL-KDD). The findings 
showed that deep feed-forward neural network models perform better 
than shallow neural networks on all four datasets, offering high accuracy 
and F1 score while being efficient for neural network training and 
decision-making. Interestingly, autoencoders and deep belief networks, 
two popular semi-supervised models, underperform supervised feed-
forward neural networks [44, 45]. In ref. [46], the authors developed a 
unique ID using a novel tree-CNN hierarchical algorithm and soft-root-
sign (SRS) activation approach. This technology rapidly recognizes 
attacks such as DDoS, infiltration, brute force, and online attacks. 
The new hierarchical method substantially speeds up the detection 
procedure by approximately 36%, while maintaining a mean detection 
rate of 98% across all tested cyberattacks. 

A comparative assessment of current works is shown in Table 1. 
Based on previous studies, several comparative analyses of IDS models 
have been conducted. Though, there is a gap for further development in 
terms of accuracy. It provides a comprehensive overview of different 
studies efforts and methods for intrusion detection systems based on 
datasets — KDD-Cup’99, NSL-KDD, UNSW-NB15, and CICIoT2023. 
Each entry includes information about the authors, publication year, 
dataset used, techniques for extracting essential features or reducing 
data, type of classifier used, and the reported accuracy. Various 
approaches have been employed, such as the SVM, DNN, and other 
ML and DL models. The DNN model shows significant potential 
in complex IoT environments, such as CICIoT2023, achieving 
noteworthy accuracy. It is essential to remember that the choice of 
the dataset and the specific characteristics of the intrusion detection 
problem significantly influence which method works best. The DNN 
shows promising results; the optimal choice determines by the 
elements such as dataset size, complexity, and patterns of intrusions. 

3

Authors Years Dataset
Feature extraction 

used Method Accuracy
S. Mukherjee, et al. [47] 2012 NSL-KDD Feature vitality-based Naive Bayes 97.78
R. M. Elbasiony, et al. [48] 2013 KDD-Cup’99 - Random Forests + 

Weighted K-means
98.3

E. D. L. Hoz, et al. [49] 2015 KDD-Cup’99 PCA-FDR PSOM 88 %
Farnaaz, N., et al. [50] 2016 NSL-KDD Symmetrical 

uncertainty
Random Forest 99.67

Belavagi et al. [51] 2016 NSL-KDD - Multiple (RF, LR, SVM, 
and Naive Bayes)

99% with RF

Thaseen, I. S., et al. [52] 2017 NSL-KDD Chi-square SVM 98
Meena, G., and Choudhary [44] 2017 KDD-Cup'99, 

NSL-KDD
- Naive Bayes 92.71

S. Ahmad, F. Arif, Z. Zabee-hullah [54] 2020 KDD-Cup’99 relu, SoftMax DNN 99.91
A. R. Gupta, et al. [55] 2020 NSL-KDD - CNN Not reported
R. Abou Khamis, et al. [56] 2020 UNSW-NB15 PCA DNN 92% without PCA

93% with PCA
H. Hindy, et al. [57] 2020 NSL-KDD - Autoencode 92.96
Euclides Carlos Pinto Neto, et al. [58] 2023 CICIoT 2023 Features extracted from 

Pcap files
Random Forest 99.16

Table 1
Comparative review of existing works
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The diversity of the methods used highlights the intricate nature 
of intrusion detection and emphasizes the need to tailor techniques to 
suit the unique features of each dataset. While random forests and DNN 
have emerged as strong options, their performance depends on the 
dataset’s specific attributes and the types of intrusions being detected. 
Ultimately, selecting the most suitable method requires a thorough 
understanding of the dataset’s characteristics, ensuring that the chosen 
approach aligns effectively with the complexities of the intrusion 
detection task.   

The research gap in this study reveals the lack of comprehensive 
comparisons of various intrusion detection techniques across 
multiple datasets. There is a dearth of research that compares various 
methodologies using a variety of datasets, although individual studies 
have independently evaluated certain datasets and methods. Such an 
approach would result in greater knowledge of techniques that work 
well in various situations.

Furthermore, studies addressing the difficulties associated with 
spotting breaches in IoT networks are lacking. Given their increasing 
use, it is necessary to address the particular security risks of IoT 
devices. However, current research has not examined the function of 
the intrusion detection technique regarding the IoT structure and the 
types of assaults that target these devices. The research gap requires 
a thorough study that contrasts various intrusion detection techniques 
using numerous datasets and explores the difficulties in protecting IoT 
networks against intrusions. 

3. Proposed Framework
We used the following workflow for our proposed enhanced 

LSTM-based model and other ML-based models, which are used here 
for the comparative study. The workflow steps include data gathering, 
preprocessing, feature extraction, model calibration, and emotion 
identification. Figure 1 shows the complete process.

Built on the specific analytic objectives or research goals, the 
number of methodologies used within the “KDD-Cup’99,” “NSL-
KDD,” “UNSW-NB15,” and “CICIoT2023” datasets might vary. 
Researchers have used each dataset for various purposes, including 
intrusion detection, classification, and evaluation of security approaches. 
Our study employed the proposed enhanced LSTM approach for all 
datasets and compared it with other ML approaches for instance logistic 
regression and AdaBoost. By identifying intricate patterns in the data 
and attaining high accuracy, intrusion detection models that categorize 
network traffic as malicious or normal have been developed using 
enhanced LSTM.

3.1. Dataset description
The research gap reveals the lack of thorough comparisons 

of various intrusion detection techniques, specifically the deep 

learning approach, across multiple datasets. To fill that gap, we 
have used the “KDD-Cup’99,” “NSL-KDD,” “UNSW-NB15,” and 
“CICIoT2023” datasets, which consist of a variety of data that 
leads to the design of more effective and robust methods for IDS-
IoT. Moreover, we have proposed using an enhanced LSTM based 
on the Deep Learning approach, which has not been used earlier, 
as deep learning approaches have their benefits in classification 
problems.

3.1.1. KDD-Cup’99 dataset
The KDD-Cup’99 dataset1 was collected in 1999 for the Third 

International KDD Tools Competition (KDD-Cup) to assess IDSs. 
It comprises around 4.9 million records, making it one of the largest 
datasets available for intrusion detection. It includes 41 attributes such 
as connection type, duration, destination IP addresses, and various flags 
and counts related to network packets. The dataset comprises multiple 
attack types: DoS, R2L, and U2R. The dataset has been criticized for 
its imbalance, redundancy, and outdated nature, leading to improved 
datasets such as NSL-KDD. 

3.1.2. NSL-KDD dataset
The NSL-KDD dataset2 was developed to resolve the limits 

and challenges of the original KDD-Cup’99 dataset. It contains 
1.8 million records, covering wide-ranging network activities. The 
NSL-KDD dataset shares attributes identical to those of the KDD-
Cup’99 with more features to enhance realism and mitigate issues 
in the original dataset. NSL-KDD is similar to KDD-Cup’99 and 
includes different type of attacks, categorized into DoS, Probe, 
R2L, and U2R classes. NSL-KDD aims to provide a more balanced 
distribution of classes and reduce redundancy compared to the KDD-
Cup’99 dataset. 

3.1.3. UNSW-NB15 dataset
The UNSW-NB15 dataset3 solves the constraints of preceding 

datasets, providing a more current and accurate picture of network 
traffic. The collection includes around 2.5 million records, providing 
ample data for research. The UNSW-NB15 dataset’s 49 features cover 
an extensive range of data about source and destination IP addresses, 
service categories, and flags. The dataset contains ordinary traffic and 
several attack methods, like DoS, Probe, Remote-to-Local, and user-
to-root. UNSW-NB15 improved network traffic realism and balanced 
normal and attack scenarios better. 

3.1.4. CICIoT2023 dataset 
The CICIoT2023 dataset’s4 main goal is to offer a thorough 

and accurate dataset for researching intrusion detections in IoT 

1  http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2  http://www.unb.ca/cic/datasets/nsl.html
3  http://doi.org/ 10.1109/MilCIS.2015.7348942
4  https://doi.org/10.3390/s23135941
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Figure 1
Proposed framework for intrusion detection based on enhanced LSTM approach

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.unb.ca/cic/datasets/nsl.html
http://doi.org/ 10.1109/MilCIS.2015.7348942
https://doi.org/10.3390/s23135941
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environments, which is meant to help practitioners and researchers 
create and assess security solutions for Internet of Things systems. At 
the University of New Brunswick in Canada, the Faculty of Computer 
Science has produced a dataset. A significant amount of data from an 
actual IoT network was collected for CICIoT2023, guaranteeing its 
validity and applicability to actual situations. A thorough examination 
of intrusion detection techniques in IoT is made possible by the dataset’s 
inclusion of characteristics of IoT devices, network traffic, and attack 
patterns. The dataset includes attributes related to IoT devices, network 
traffic, and attack patterns, enabling a detailed analysis of intrusion 
detection techniques in IoT. A comparative summary table illustrating 
the key parameters, characteristics, and the year of release of all four 
datasets is given in Table 2.

3.2. Enhanced long short-term memory for IDS-IoT
The RNN subset LSTM aims to use the dependencies in 

sequential data precisely. Time-series data, such as network traffic, 
is effective. LSTM cells include mechanisms for memorizing and 

forgetting information over extended sequences to manage the context 
and temporal patterns. When used to detect intrusions, LSTM can 
evaluate the sequences of network activities and learn to identify 
unusual behaviors that may span numerous time steps, leading to the 
development of more resilient and competent IDSs. LSTMs introduce 
a sophisticated structure comprising many gates that regulate 
information flow. LSTMs use three types of gates to regulate the 
information flow:

1)  Forget Gate: decides which cell state data should be removed.

σ

2)  Input Gate: choose which input values to use to update the state of 
the cell.

σ

3)  Output Gate: Determines the subsequent concealed state, considering 
the input and cell states.

σ

Where:
σ is the sigmoid function, W_x Weight for respective gate(x) 

neurons, h_(t-1) Output of the preceding LSTM block, x_t Input at the 
current timestamp, and b_x biases for the respective gates.

An LSTM cell’s main parts are as follows:
Cell State (c_t): The network’s memory can store data across 

various time steps.

Hidden state (h_t): The LSTM cell’s output at a particular time 
step serves as the input for the following time step.

(1)

(2)

(3)

(4)

(5)

5

Dataset Year of release Volume Total no. of features No. of features used
KDD-Cup’99 1999 4,900,000 41 41
NSL-KDD 2009 4,898,431 41 41
UNSW-NB15 2021 2,57,673 49 49
CICIoT2023 2023 2,540,044 47 47

Table 2
Performance comparison summary of all four datasets

Actual
Predicted Positive Negative
Positive True Positive False Positive
Negative False Negative True Negative

Table 3
Confusion matrix

Matric Formula
Accuracy

Precision

Recall

F-Measure

AUC

Table 4
Performance assessment matrices

Metric
ML models DL models

Logistic Regression Adaboost DNN RNN E-LSTM
Accuracy 0.9983 0.7858 0.9991 0.9991 0.9994
Precision 0.9982 0.6783 0.9988 0.9989 0.9992
Recall 0.9983 0.7858 0.9989 0.9990 0.9993
F1-score 0.9982 0.7143 0.9988 0.9989 0.9992

Table 5
Model evaluation metrics - KDD-Cup’99 dataset
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Where, ct is the cell (memory) state at timestamp (t); ĉt is the 
condition for the cell state, and others are the same as above.

In the proposed E-LSTM model for IoT-based IDS, we used 
two LSTM layers to extract insights from the datasets. The mined 
features were fed into a flatten layer, and a dense layer with a SoftMax 
activation function is used to classify intrusions. The proposed model 
employs Adam optimizer with a batch size 64 and was trained up to 
20 epochs. The results and analysis section elaborates on the proposed 
enhanced LSTM model for different datasets. The proposed E-LSTM 
model is improved and modified by tuning the number of units, 

learning rate, dropout rate, and batch size to improve performance for 
an IoT-based IDS.

4. Experiments

4.1. Data pre-processing and cleaning
The pre-processing steps were designed to clean, transform, and 

enrich the raw data. Addressing missing values, handling outliers, and 
applying the necessary transformations. Tools such as Pandas, NumPy, 
and regular expressions for data manipulation. Data pre-processing 
and cleaning are necessary steps in the data “KDD-Cup’99, NSL-
KDD, UNSW-NB15, and CICIoT2023” that ensure the collected 

(6)

6

Figure 2
E-LSTM loss & accuracy graph on KDD-Cup’99

 Figure 3
DNN loss & accuracy graph on KDD-Cup’99
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data are accurate, consistent, and ready for analysis or modeling. 
These steps involve identifying and handling missing values, outliers, 
inconsistencies, and other quality issues. Here is a detailed breakdown 
of data preprocessing and cleaning.

4.1.1. Missing values handling
Missing values may result from incomplete data collection or data 

entry errors. Common strategies for handling missing values include:

1)  Deletion: Rows or columns with significant missing values were 
removed if they did not contain critical information.

2)  Imputation: Fill missing values with estimated values using 
techniques such as the mean, median, mode, or interpolation.

3)  Advanced Imputation: To fill in missing variables, use more 
sophisticated techniques like regression imputation, k-nearest 
neighbors, or predictive modeling.

4.1.2. Outlier detection and handling
Data points that considerably deviate from the rest of the dataset 

are referred to as outliers, which may distort results from modeling and 
analysis. The following are some strategies for handling outliers.

1)  Identification: Identify outliers utilizing statistical techniques such 
as z-scores, Interquartile Range (IQR), or domain knowledge.

2)  Transformation: Logarithmic or Box-Cox transformations are 
applied to reduce the impact of outliers.

3)  Capping: Set a threshold and cap the extreme values at that threshold 
to mitigate their effects.

4)  Removal: Sometimes, outliers can be removed if deemed erroneous 
or irrelevant.

4.1.3. Data type conversion
Ensure that data types are consistent and appropriate for analysis 

or modeling:

1)  Categorical to Numerical: Use methods like label encoding to 
transform categorical information into a numerical representation.

4.1.4. Normalization
Our study uses the StandardScaler technique to normalize the 

data.

7

 Figure 4
RNN loss & accuracy graph on KDD-Cup’99

 Figure 5
Summary of E-LSTM architecture

 Figure 6
Confusion matrix for the KDD-Cup’99
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Metric
ML models DL models 

Logistic Regression Adaboost DNN RNN E-LSTM
Accuracy 0.9515 0.8126 0.9803 0.9773 0.9816
Precision 0.9456 0.6796 0.9775 0.9748 0.9756
Recall 0.9515 0.8127 0.9795 0.9764 0.9793
F1-score 0.9472 0.7397 0.9778 0.9748 0.9767

Table 6
Model evaluation metrics - NSL-KDD dataset

 Figure 7
E-LSTM loss & accuracy graph of NSL-KDD

 Figure 8
DNN loss & accuracy vs epochs graph of NSL-KDD
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4.2. Performance evaluation
The efficacy of many classifiers was assessed with the major key 

performance metrics. The confusion matrix measures parameter values 
are presented in Table 3. The performance evaluation was conducted by 
considering these estimates. Metrics such as F-measure, area under the 
curve (AUC), precision, recall, and accuracy are provided in Table 4. 

4.3. Experimental setup
Python (version 3.10.7) on Windows 11 was used in this study. 

The backends for the deep learning models were TensorFlow and the 
Keras framework (version 2.10.0). The high-performance computing 
environment included an Intel(R) Xenon(R) W-2255 CPU running at 
3.70 GHz, 64 GB of RAM, an NVIDIA GEFORCE RTX A4000 GPU 
with 16 GB of RAM, and DirectX-12 (version 12.1).

Initially, to develop the model, an LSTM layer, a flatten layer, and 
a dense layer were taken with Adam optimizer and SoftMax activation 
function at the classification phase. The model was initially trained up 
to 10 epochs. Finally, looking at the performance of various candidate 
models, the model with two LSTM layer, one flatten layer, and one 

dense layer, with Adam optimizer and SoftMax activation function at 
the classification phase, was selected as the best model. It was trained 
up to 20 epochs. Consequently, the proposed LSTM-based model 
results are studied and assessed compared to the other models.

4.4. Results and discussion
Four different datasets were used to test a few ML and DL 

models: CIC IoT 2023, UNSW-NB15, KDD-Cup’99, and NSL-KDD. 
Tables give a summary of the Model Evaluation Metrics applied to 
these datasets.

4.4.1. Experiments on intrusion detection with KDD-CUP’99 dataset
Using a confusion matrix for assessment, the performance of 

several ML and DL algorithms was fully examined with the KDD-
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 Figure 9
RNN loss & accuracy graph of NSL-KDD

 Figure 10
Confusion matrix for the NSL-KDD dataset

 Figure 11
Summary of proposed enhanced LSTM architecture
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Cup’99 dataset. The results, such as F1-score, Precision, and Recall, 
provide information on how well the models identify and categorize 
intrusions.

The model’s performance in Table 5 shows noteworthy patterns 
brought to light through confusion matrix analysis. The high recall, 

precision, and F1-score values demonstrate that the Logistic Regression 
and deep learning algorithms accurately recognize genuine positives 
and true negatives. With F1 scores over 0.999, the enhanced LSTM 
(E-LSTM) model regularly outperforms the other models, demonstrating 
their resilience in identifying intrusion cases, highlighting the 

10

Metric
ML models DL models 

Logistic Regression Adaboost DNN RNN E-LSTM
Accuracy 0.8936 0.9613 0.9758 0.9694 0.9777
Precision 0.8951 0.96136 0.9746 0.9689 0.9771
Recall 0.8936 0.96138 0.9744 0.9686 0.9770
F1-score 0.8916 0.96137 0.9745 0.9687 0.9771

Table 7
Model evaluation metrics - UNSW-NB15 dataset

 Figure 12
E-LSTM loss & accuracy graph of UNSW-NB15

 Figure 13
DNN loss & accuracy graph of UNSW-NB15
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possibility of adjusting the model parameters to improve performance 
further. Figures 2, 3, and 4 display the loss and accuracy of the LSTM, 
DNN, and RNN deep-learning models, respectively. The parameter 
configuration specification presented in Figure 5 includes the layers 
and their corresponding positions in the LSTM structural design, output 
format, parameters or weights for each layer, and the all parameters 
in the model. In addition, the specifications include the output format. 
Figure 6 visually represents the predictive outcomes in the confusion 
matrix.

4.4.2. Experiments on intrusion detection using NSL-KDD dataset
The NSL-KDD dataset was utilized for assessing the 

performance of several deep and ML models. A performance matrix 
and various metrics were utilized to assess their efficiency in detecting 
intrusions.

Logistic regression and DL algorithms consistently exhibited 
remarkable accuracy, recall, and F1-score values, as presented by the 
performance matrix in Table 6. With F1 scores over 0.97, the enhanced 
LSTM model regularly outperforms the other models, demonstrating 
their resilience in identifying intrusion cases and highlighting their 
competence in correctly recognizing them. Figures 7, 8, and 10 display 
the loss and accuracy of the E-LSTM, DNN, and RNN DL models, 
respectively. Figure 10 visually represents the predictive outcomes in 
the confusion matrix.

Both loss and accuracy graphs present a detailed outline of 
the learning processes of the models and their performances on the 
datasets. These visualizations support earlier findings and conclusions 
drawn from quantitative metrics, reinforcing the efficacy of the 
selected models in intrusion detection tasks across different datasets. 
The parameter configuration specification presented in Figure 11 
includes the layers and their corresponding positions in the LSTM 
architecture, output format, parameters or weights for every layer, and 
all the parameters in the model. In addition, the specifications include 
the output format.

4.4.3. Experiments on intrusion detection using UNSW-NB15
The efficiency of many ML and DL models in intrusion 

detection was evaluated with UNSW-NB15 dataset. The study 
included various metric as shown in Table 7, to fully assess model’s 
performance.

The performance matrix analysis highlighted significant patterns 
in the performance of the various models. Across the board, the 
Logistic Regression and DL models exhibited consistent precision, 
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 Figure 14
RNN loss & accuracy graph of UNSW-NB15

 Figure 15
Summary of enhanced LSTM architecture

 Figure 16
Confusion matrix of UNSW-NB15
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 Figure 17
E-LSTM loss & accuracy graph – CICIoT 2023

Metric
ML models DL models 

Logistic Regression Adaboost DNN RNN E-LSTM
Accuracy 0.8013 0.6679 0.9826 0.9825 0.9858
Precision 0.8073 0.6609 0.9798 0.9807 0.9845
Recall 0.8085 0.6679 0.9828 0.9817 0.9854
F1-score 0.7664 0.6070 0.9808 0.9808 0.9845

Table 8
Model evaluation metrics – CICIoT 2023 dataset

 Figure 18
DNN loss & accuracy graph – CICIoT 2023
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recall, and F1-score values, suggesting their robustness in accurately 
identifying intrusion instances. With F1 scores over 0.97, the enhanced 
LSTM model regularly outperforms the other models, demonstrating 
their resilience in identifying intrusion cases, highlighting their 
competence in correctly recognizing them, which indicates their 
proficiency in differentiating among normal and intrusive network 
traffic, reinforcing their suitability for real-world intrusion detection 
scenarios. Figures 12, 13, and 14 present the loss and accuracy of the 
E-LSTM, DNN, and RNN deep learning models, respectively. The 
parameter configuration specification presented in Figure 15 includes 
the layers and their corresponding positions in the E-LSTM structural 
design, output format, parameters or weights for every layer, and 
the overall parameters in the model. In addition, the specifications 
include the output format. Figure 16 visually represents the predictive 
outcomes in the confusion matrix.

The loss and accuracy graph visualizations provided a 
comprehensive view of the learning trajectories of the models and 
their success on the datasets. These graphical depictions support 
the preceding findings and judgments drawn from the quantitative 
measurements, thereby supporting the efficacy of the selected models 
in detecting the intrusion across various datasets.

4.4.4. Experiments on intrusion detection using CICIoT 2023dataset
Table 8 displays various assessment criteria for DL and ML 

methods functional to diverse datasets. Precision, Recall, and F1-
score are among the examined measures, providing a complete 
understanding of model efficacy across 34 classes. With F1 scores 
over 0.98, the enhanced LSTM model regularly outperforms the other 
models, demonstrating their resilience in identifying intrusion cases 
highlighting their competence in correctly recognizing intrusion 
cases This indicates their proficiency in differentiating among 
normal and intrusive network traffic, reinforcing their suitability 
for real-world intrusion detection scenarios Figures 17, 18, and 19 
show the loss and accuracy of deep learning models E-LSTM, DNN 
and RNN.

The loss and accuracy graphs clearly show the learning 
procedures and the models’ performance on various datasets. These 
graphics support the efficacy of the chosen models in intrusion detection 
tasks. The output format, parameters, weights for each layer, the layers 

and their respective locations in the LSTM structural design, and the 
model’s overall parameters are specified in Fig. 20. Figure 21 visually 
represents the predictive outcomes in the confusion matrix.

4.4.5. Performance comparison
The results highlight notable variations in the model performance 

across the datasets, as shown in Table 9. Logistic regression consistently 
yields competitive accuracy across all datasets, whereas our proposed 
enhanced LSTM model demonstrates remarkable accuracy and 
robustness. Deep-learning models, particularly the proposed E-LSTM, 
exhibit impressive accuracy on the CICIoT 2023 dataset, emphasizing 
their capability to capture intricate patterns in IoT network traffic. 
The findings underscore the significance of choosing models aligned 
with the dataset features. Dataset intricacies influence the model 
performance, and certain models are better suited for specific datasets. 
Figure 22 displays a bar graph to compare the performance of the 
numerous specified models with their datasets.

Table 8 illustrates how the suggested enhanced LSTM methods 
fared better on the KDD-Cup’99, NSL-KDD, USNW-NB15, and 
CICIoT 2023 datasets. Table 10 demonstrates the performance 
assessment of the proposed model with prevailing work [47–58]. 
It displays how remarkable the “Proposed Method” is, specifically 
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 Figure 19
RNN loss & accuracy graph – CICIoT 2023

 Figure 20
Summary of enhanced LSTM architecture
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advantageous when dealing with limited or imbalanced data, common 
challenges in intrusion detection, and 99.94% accuracy with Enhanced 
LSTM. It is specifically designed to capture patterns and dependencies 
in sequences, making it well-suited for analyzing the temporal behavior 
of network traffic data. Unlike CNNs and DNNs, which may overlook 
temporal relationships, the proposed E-LSTM can effectively model the 
context of previous network events, which is essential for identifying 
complex intrusion patterns. In addition, its recurrent architecture 
enables real-time analysis of streaming data, making it suitable for 
network intrusion detection systems that must make rapid decisions as 
new data arrives, a challenge for methods such as the PSOM or Naive 
Bayes.

Similarly, the suggested approach obtained an accuracy of 
99.16% with E-LSTM on the NSL-KDD dataset. With E-LSTM, the 
performance for the UNSW-NB15 dataset remained comparatively high 
at 98.33%. Using enhanced LSTM, the suggested approach obtained 
98.56% accuracy even in the large and complex CICIoT 2023 dataset. 

5. Conclusion and Future Work
To complete this study, we examined various datasets related to 

IoT intrusion detection. This group contains several renowned datasets 
for detecting intrusion, including UNSW-NB15, KDD-Cup’99, NSL-
KDD, and CICIoT2023. Our research gathered data to better understand 
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 Figure 21
Confusion matrix of UNSW-NB15

Datasets
ML models accuracy DL accuracy

Logistic Regression Adaboost DNN RNN E-LSTM
CIC IoT 2023 0.8013 0.6679 0.9826 0.9827 0.9856
UNSW-NB15 0.8936 0.9613 0.9758 0.9694 0.9777
NSL-KDD 0.9515 0.8127 0.9803 0.9773 0.9816
KDD_CUP’99 0.9983 0.7858 0.9991 0.9991 0.9994

Table 9
Accuracy table of all datasets utilized
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how well different machine learning models can detect and mitigate 
security risks in IoT environments. The models’ performances, including 
Logistic Regression, AdaBoost, DNNs, E-LSTM, and RNNs—all 
different forms of neural networks—were evaluated systematically. 
Comparative analysis of these datasets highlights the need for tailored 
approaches to address the unique characteristics of each dataset, 
which highlights the challenges and opportunities associated with IoT 
intrusion detection.

These results demonstrate how consistent our suggested approach 
is. Across many datasets, accurate findings were obtained, which 
indicates that the suggested approach is a viable option for intrusion-

detection jobs as it is robust and dependable for precisely identifying 
incursions in various scenarios.

6. Limitations
In our study, we focused on evaluating the performance of a range 

of intrusion detection techniques across all four datasets to understand 
their adaptability and limitations in the context of IoT security. It may 
be further improved using Ensemble Methods, Feature Engineering, 
and Explainability Feature to enhance the proposed model’s efficacy, 
effectiveness, and adaptability.

15

 Figure 22
Accuracy graph of KDD-Cup’99, NSL-KDD, UNSW_NB15 and CICIoT 2023

Proposed by Years Dataset
Feature ex-traction 

used Method Accuracy
S. Mukherjee, et al. [47] 2012 NSL-KDD Vitality-based Naive Bayes 97.78
R. M. Elbasiony, et al. [48] 2013 KDD-Cup'99 – Random Forests + Weighted 

K-means
98.3

E. D. L. Hoz, et al. [49] 2015 KDD-Cup'99 PCA-FDR PSOM 88.0%
Farnaaz, N., et al. [50] 2016 NSL-KDD Symmetrical uncertainty Random Forest 99.67
Belavagi et al. [51] 2016 NSL-KDD – RF, LR, SVM, and Naive 

Bayes
99% with RF

Thaseen, I. S., et al. [52] 2017 NSL-KDD Chi-square SVM 98
Meena, G., and Choudhary 
[44]

2017 KDD-Cup'99, 
NSL-KDD

– Naive Bayes 92.71

S. Ahmad, F. Arif, Z. 
Zabee-hullah [54]

2020 KDD-Cup'99 relus, SoftMax DNN 99.91

A. R. Gupta, et al. [55] 2020 NSL-KDD – CNN Not reported
R. Abou Khamis, et al. [56] 2020 UNSW-NB15 PCA DNN 92% without 

PCA
93% with 
PCA

H. Hindy, et al. [57] 2020 NSL-KDD – Autoencoder 92.96
Euclides Carlos Pinto Neto, 
et al. [58]

2023 CICIot 2023 Features ex-tracted from 
the original Pcap files

Random Forest 99.16

Proposed Method 2024 KDD-Cup’99 relu, SoftMax Enhanced LSTM 99.94
Proposed Method 2024 NSL-KDD – Enhanced LSTM 99.16
Proposed Method 2024 UNSW-NB15 – Enhanced LSTM 98.33
Proposed Method 2024 CICIoT 2023 Using Pyspark Enhanced LSTM 99.38

Table 10
Comparison of the proposed model with existing work
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7. Future Directions
Although this study presents valuable insights for IoT based 

intrusion detection using diverse datasets, several avenues for future 
research can enhance our understanding and contribute to real-world 
applications. 

1)  Ensemble methods: The potential of ensemble approaches to 
combine the strengths of various techniques and models to enhance 
the overall intrusion detection performance. Methods, such as 
stacking and boosting, can lead to enhanced accuracy and robustness. 

2)  Feature engineering: Explore advanced feature engineering 
techniques that capture the domain-specific characteristics of IoT 
network traffic. Leveraging domain knowledge can lead to more 
informative features, boosting model performance. 

3)  Explainability: Focus on creating a system that can be understood 
and models that can be explained to give decision-makers insights 
and improve the credibility of intrusion detection systems.
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