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Abstract: The COVID-19 pandemic has placed an extraordinary burden on healthcare systems worldwide and underscored the urgent need 
for faster, more reliable diagnostic methods for respiratory diseases. In this study, we explored how artificial intelligence, particularly deep 
convolutional neural networks (CNNs), can assist in diagnosing COVID-19 using chest X-ray images. Although new CNN architectures continue 
to emerge, residual neural network (ResNet) models (ResNet50, ResNet101, and ResNet152) remain popular because of their balance of accuracy 
and robustness. We compared their performance with other established models such as VGG (VGG11 and VGG16) and AlexNet to examine the 
trade-offs between architectural complexity and practical effectiveness. Among these, ResNet101 achieved the best results, with an accuracy 
of 93%, a precision of 91.27%, and an AUC–ROC of 97.41%, making it the leading model in our study. Despite promising outcomes, we also 
highlighted current limitations in deep learning for medical imaging, such as small sample sizes and limited clinical validation. Our findings aim 
to support the future development of reliable AI-assisted tools in medical diagnostics and highlight the need for more comprehensive validation 
and ethical considerations.
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1. Introduction
Acute respiratory diseases pose significant challenges to the 

global healthcare community, demanding accurate and effective 
diagnostic techniques to mitigate their impact on public health. The 
COVID-19 epidemic and its highly contagious nature have presented 
an unprecedented challenge to the worldwide healthcare community. 
Accurate and effective diagnosis techniques are rather important in 
stopping the virus’s spread and lessening its effects on public health 
as it is highly contiguous. Polymerase chain reaction (PCR) tests and 
other common laboratory-based diagnostic methods have problems 
with cost, time, and availability, particularly in resource-constrained 
settings [1]. AI-based methodologies are designed to enhance, speed 
up, and support diagnoses, thereby assisting healthcare practitioners in 
identifying health issues at an earlier stage and providing individuals 
with superior, more prompt care [2, 3]. X-ray and CT scans of the thorax 
have become indispensable instruments for formulating classification 
models. Radiologists can detect and evaluate COVID-19 levels in the 
lungs using these imaging techniques by looking for ground-glass 
opacity and their characteristics [4].

This paper compares a number of deep learning models for the 
detection of COVID-19, such as ResNet50, ResNet101, ResNet152, 
VGG11, VGG16, and AlexNet, as referenced by Wang et al. [5]. These 
deep learning models were found to be exceptional in real-world 
computer vision tasks, and they are extensively used in medical image 

analysis.  Even with the introduction of new architectures, the residual 
neural network (ResNet) models (such as ResNet50, ResNet101, and 
ResNet152) are highly relevant and extensively used because of their 
proven performance and resilience. Comparing the models with older 
architectures such as VGG and AlexNet sheds important insights into 
the trade-off between simplicity and complexity in deep learning. This 
study finds direct relevance in practical use in medical image analysis, 
where dependable and effective models are indispensable. 

To enhance their robustness and precision, researchers consider 
various techniques in different studies such as transfer learning, 
pretrained network fine-tuning, hybrid approaches, ensemble methods, 
and data augmentation [6]. Depth and model structure make deep 
learning models distinguishable from their counterparts. ResNet 
models show higher complexity and detail, enabling the capture and 
representation of complex details [7]. VGG models employ small  filter 
sizes and increased numbers of convolutional layers for distinct feature 
extraction. Despite its relatively simple structure , AlexNet manifests 
good performance in tasks involving image classification. Model choice 
relies on factors such as job complexity, processing resources, and the 
trade-off between model complexity and precision [4, 6].

This paper consists of several parts. Part one of this paper involves 
a literature review on the use of deep learning models for the analysis 
of COVID-19, specifically for the analysis of chest radiographs. The 
second part discusses the methodology, the preparation of the dataset, 
and the deep learning models employed. Model performance study and 
the findings of the assessment metrics are given in this paper afterward. 
Deep learning models have great potential in COVID-19 diagnosis, but 
certain challenges and constraints need to be noted. Potential directions 
for further study are discussed in the conclusion of this paper.

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/	
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2. Literature Review
Since its emergence in late 2019 and subsequent declaration 

as a pandemic by the WHO in March 2020, COVID-19 has driven 
intensive research activities in search of effective diagnostic tools. The 
AI research community has been in the frontline in the development 
of models that could boost speed and accuracy in the detection of the 
disease to effectively control the spread of the virus [8–12].

Conventional detection methods include PCR, which continues 
to be the benchmark for COVID-19 identification. However, notable 
drawbacks of testing using PCR exist: very long turnaround times 
in sample collection, processing, and result delivery. In addition, the 
resource limitation and high testing cost in developing countries have 
significantly restricted its widespread use so far [13]. In the context of 
these challenges, several variants of AI-driven models were considered 
as viable alternatives that could offer faster and inexpensive detection of 
COVID-19. Imaging in radiology, namely, CT scans and chest X-rays, 
has been widely used in COVID-19 diagnosis. CT scans, which generate 
high-resolution 3D images of lung abnormalities—such as ground-
glass opacity—are exceptionally effective at identifying and depicting 
the extent of an infection. However, CT scanners are expensive and 
less accessible and expose patients to higher radiation levels, with 
possible long-term health risks associated [14]. In comparison, chest 
X-rays are safer, cheaper, and more available, especially in resource-
constrained settings. Despite these advantages, some challenges exist in 
maintaining high-quality X-ray datasets and ensuring that deep learning 
models effectively generalize across different clinical settings [9].

Deep learning algorithms are becoming increasingly popular in 
today’s world for the detection and identification of COVID-19 from 
chest X-ray images. Extensive research conducted by Zheng et al. 
[15] and Krizhevsky et al. [6] provided substantial evidence that these 
algorithms can successfully complete the COVID-19 classification tests 
with high levels of sensitivity and accuracy. A well-known example of 
a deep learning model is ResNet, which is used for image classification. 
During their research, He and his colleagues [1] developed ResNet50, 
ResNet101, and ResNet152, which outperformed earlier models. This 
was accomplished while they were competing in the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC). These architectures 
make use of residual connections to train deeper networks to effectively 
capture intricate information that is present in medical images. The 
VGG model is a notable deep learning architecture proposed by 
Simonyan and Zisserman [16] for image classification. VGGNet is 
a network that is highly accurate but requires a significant number 
of computational resources because it is constructed using many 
convolutional layers with relatively small filter sizes. AlexNet, which 
was presented by Krizhevsky and colleagues [6], was a significant 
step forward in the field of deep learning because of its success in the 
ILSVRC competition. High-level features are extracted by AlexNet 
using a convolutional neural network (CNN) that has many layers. It 
has demonstrated excellent performance in image classification tests, 
although it is straightforward in comparison to later architectures [17]. 
Since the onset of the pandemic, significant interest exists in using deep 
learning models to detect COVID-19 in CT and chest X-ray images. 
Researchers have employed various architectures and techniques to 
enhance classification accuracy, robustness, and interpretability, as 
outlined below.

Using deep learning architectures, viz., VGG16 and InceptionV3, 
Apostolopoulos and Mpesiana [8] explored COVID-19 detection 
in chest X-ray images in 2019. Methods for transfer learning were 
proposed in their study, allowing fine-tuning of pretrained models for 
better performance on their dataset. Wang et al. [7] used the ResNet50 
model in 2020 for COVID-19 categorization, proving its efficiency for 
the detection of cases using CXR images. Khan et al. [18] also used the 

VGG16 model in 2020, which has a transfer learning approach similar 
to that used by Wang et al. [7]. Making the pretrained model more 
efficient on their dataset was the primary focus. Li et al. [19] further 
added value by combining the ResNet50 and VGG16 architectures in a 
hybrid model, leveraging their strengths for better overall performance. 
In 2022, the model DeepCOVIDExplainer was proposed by Elaziz et al. 
[20], which was a ResNet50 model with an explanation mechanism for 
visualizing and understanding its decision-making, thus increasing 
transparency and trust. With the progression of the field, in 2023, 
Aslani and Jacob [21] performed a critical review of 30 experiments 
using deep learning approaches for the diagnosis of COVID-19. With 
the review spanning transfer learning, ensemble learning, and GAN-
based augmentation methods, the maximum obtained classification 
accuracies were up to 99.05%. Even with such achievements, the 
authors noted challenges of limited accessibility of information, 
lack of interpretability, and overfitting [21]. Recent developments in 
2024 depicted continued optimization and deployment as a focus 
area. Abdulahi et al. [22] proposed PulmoNet, a new 26-layer CNN 
model optimized for multiclass and binary classifications. PulmoNet 
obtained stellar rates of accuracy, including 99.4% for COVID-19 
vs. healthy [22]. Chauhan et al. [23] developed a lightweight model 
of CNN for edge deployment with high accuracy, low complexity, 
and a low risk of overfitting. Kaur et al. [24] developed a short-form 
CNN model optimized for low-end devices using image enhancement, 
data augmentation, and hyperparameter optimization, allowing it to 
outperform top transfer learning models. New techniques continued to 
surface, including the use of automated machine learning (AutoML) 
by Yin et al. [25] in the identification of asymptomatic COVID-19 
patients. Among the six models developed, the deep neural network 
(DNN) performed the most optimally with an AUC of 0.898 and an 
accuracy of 83.7%. Okada et al. [26] developed an AI diagnosis system 
for COVID-19 based on CT imagery using binary-classification deep 
learning architectures. Their system was found to perform steadily with 
fast inference rates for clinical deployment.

These works outline the development of deep learning methods 
for COVID-19 identification, with progressive developments in model 
structure, transfer learning techniques, and deployment optimizations. 
Although promising results were obtained, issues with interpretability 
and availability of data remain as a subject for further study.

3. Proposed Methodology
In this paper, the authors have chosen and assessed few popular 

and practical deep learning models for the detection of COVID-19, one 
of the most severe respiratory diseases, from chest X-ray images. The 
primary objective was to assess how the original ResNet models, in 
comparison with other popular deep learning architectures, performed 
on the COVID-19 X-ray datasets. That is, we were interested in 
determining whether any of the original ResNet models can be 
suggested as a valid model for the detection of COVID-19 after our 
comparative analysis.

This study suggested the ResNet101 model as the core methodology 
for the detection of COVID-19. ResNet101 is a deep CNN with 101 
layers. It was designed with the sole purpose of avoiding the vanishing 
gradient issue while adding residual connections. This allowed the 
training of a network with increased efficiency, although with a larger 
depth [17]. The architecture diagram of the proposed methodology of 
this study is presented in Figure 1.

ResNet models, introduced by He et al. [1], represent a seminal 
advancement in deep learning, most notably in training DNNs. ResNet’s 
structure is defined by the presence of residual connections, an innovative 
feature allowing the network to learn residual mappings as opposed to 
the direct modeling of the original function. This approach overcomes 
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the vanishing gradient problem, allowing the training of extremely 
deep networks and making ResNet a popular choice in medical image 
analysis [17]. ResNet’s structure consists of many residual blocks, each 
with convolutional layers, a batch norm, and ReLU activations. Residual 
connections in the blocks provide a direct shortcut between the block’s 
output and input by bypassing one or more convolutional layers. This 
structure supports the effective preservation of residual information, 
maximizing gradient flow under backpropagation and leading to better 
model performance. ResNet models come in various configurations, 
such as ResNet50, ResNet101, and ResNet152, distinguished by their 
respective layer numbers. For instance, ResNet50 consists of 50 layers, 

ResNet101 consists of 101 layers (Figure 2), and ResNet152 consists 
of 152 layers, allowing it to learn more complex features. Each model 
follows a hierarchical structure, with the starting block as the first 
convolutional layer, followed by a sequence of residual blocks grouped 
into stages. Each stage increases the depth and number of filters, 
allowing the network to learn more and more complex hierarchical 
features [17]. ResNet’s fault tolerance and hierarchical structure have 
established it as a building block for medical image analysis, with 
accurate feature extraction and categorization a necessity. Its scalability 
and performance in generalizing over many tasks further support its use 
in deep learning tasks [7].

The first part of this network is a convolutional layer, conv1, using 
a 7 × 7 kernel and a stride of 2. Then, batch normalization is applied, 
followed by a ReLU activation function to introduce nonlinearity 
into the model. The max-pooling layer, configured with a stride of 2, 
effectively reduces the spatial dimensions of the feature maps, thereby 
reducing computational costs. The architecture of this network consists 
of four distinctive stages (layer1, layer2, layer3, and layer4), each 
comprising many residual blocks. Each of these blocks consists of a 
convolutional layer that is integrated with batch normalization and an 
activation function (ReLU). Furthermore, skip connections enable the 
network to bypass some layers, thereby enhancing residual learning 
and easing the problem of flow in gradients. The spatial features are 
combined into one vector through the global average pooling layer. The 
final output layer is a fully connected one that makes use of a softmax 
function to classify the images into two distinct classes, either COVID 
or normal. ResNet101 was trained using the Adam optimizer with an 
initial learning rate of 0.001 to facilitate efficient updates of the weights. 
This model uses the cross-entropy loss function as an objective function 
to minimize classification errors. To prevent overfitting, dropout 
regularization was used in the fully connected layers of the proposed 
model. This model was trained up to a total of 30 epochs, and early 
stopping, considering the validation loss, prevents overfitting.

VGG models, developed by Simonyan and Zisserman [16], 
are noted for their simple architecture and effectiveness in image 
classification tasks [27]. The VGG models follow a consistent 
architectural structure, comprising multiple convolutional layers 
along with max pooling layers. The dimensions of convolution layers 
are defined as 3 × 3, whereas the filter dimensions of max-pooling 
layers are established at 2 × 2. The VGG architecture comprises two 
well-known variants: VGG11 and VGG16. As the name suggests, 
VGG11 comprises 11 layers (Figure 3), from which 8 are identified as 
convolutional layers and 3 are categorized as fully connected layers. 
VGG16 consists of 16 layers in total, in which 13 are convolutional 
layers and 3 are fully connected layers [27]. The extra layers of VGG16 
enable the acquisition of more intricate information. Nonetheless, this 
improvement leads to heightened computational complexity [14].
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Architecture diagram of the proposed methodology

Figure 2
Architecture diagram of ResNet101
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In the context of the ILSVRC in 2012, AlexNet (Figure 4), which 
Krizhevsky and his colleagues developed, emerged as a groundbreaking 
model [28]. The work that they did represents a significant milestone 
in the development of deep learning, particularly in the area of 
image classification. The model that was developed demonstrated the 
capability of deep CNNs to outperform conventional methods, thereby 
establishing CNNs as a foundational approach for computer vision 
tasks [28].

The architecture of AlexNet uses both convolutional and pooling 
layers to obtain detailed, hierarchical features from the images that are 
fed into it. Although it is significantly less complicated than ResNet 
and VGG or other contemporary architectures, AlexNet continues to 
be very effective in image classification tasks and has contributed to 
the development of deeper models that display a greater degree of 
complexity. It is a significant step toward deep learning methods, and 
it is important for popularizing CNNs in the process of solving large-
scale visual recognition problems according to Tartaglione et al. [14] 
and Michalska-Ciekańska and Boyko [17].

The shifts in architecture and the model’s depth are the primary 
discriminating features of the chosen models. ResNet50, ResNet101, 
and ResNet152 are more complex in comparison with VGG11, VGG16, 
and AlexNet. For intricate tasks such as the identification of COVID-19, 
the addition of layers in the ResNet models improves the potential of the 
model in grasping complicated features and representations. VGG11, 

VGG16, and AlexNet have a consistent architecture characterized by 
a low number of layers. Although they lack the complexity of ResNet, 
their performance in image classification tasks remains commendable 
[17]. VGG models are designed for extracting complicated features in 
the images using small-sized filters and higher numbers of convolutional 
layers. One characteristic feature of ResNet is the utilization of residual 
links. These links boost the flow of information and the gradient, 
resulting in the ease of deep network training [4]. ResNet models are 
thus suitable for deep learning tasks. Overall, the ResNet50, ResNet101, 
ResNet152, VGG11, VGG16, and AlexNet models are effective in the 
identification of COVID-19 based on chest X-ray examination images. 
Some features such as the level of task complexity, the processing 
potential, and the trade-off between model complexity and the level of 
accuracy are considered in the selection of the most suitable model [15].

4. Experimental Results and Analysis
The chest X-ray dataset provided on Kaggle was used in this 

study. This dataset was specially prepared for COVID-19 detection, 
with various X-ray images categorized as either “normal” or “COVID” 
(Figures 5 and 6). “Normal” images were taken from people who were 
free of COVID-19 infection, whereas “COVID” images were images 
from infected patients. Each class consists of 3,616 images, thus being 
balanced and ready for analysis. Splitting the dataset into subsets such 
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 Figure 3
Architecture diagram of VGG

 Figure 4
Architecture diagram of AlexNet



as training, testing, validation, and train–validation makes it easier to 
train and test models. Deep learning models for COVID-19 detection 
can be developed, evaluated, and generalized using this structured split.

4.1. Dataset and evaluation metrics
Preprocessing is a sequential process that obtains the data ready 

for training and testing, ensuring that the input images are appropriately 
formatted to deep learning models.

Data Loading: The dataset will be loaded using the “torchvision.
datasets” library, specifically the “ImageFolder” class. This automatically 
organizes images into their respective folders based on class labels. 
In this step, necessary image transformations are applied to ensure 
uniformity and compatibility with the model input requirements.

Data Splitting: After loading the data, images are split into train, 
validation, and test subsets. This is accomplished by utilizing the “torch.
utils.data” library, which systematically partitions the dataset into 
subsets such as train, test, train–valid, and valid. Then, these subsets are 
managed using the “DataLoader” class, which will enable easy batch 
loading, shuffling, and processing. A batch size of 32 is used to minimize 
computation during the training phase.

Data Normalization: Normalization of the images’ pixel values 
is performed through “torchvision.transforms.” This step normalizes 
the input data to have a mean value of zero, which allows the model 
to converge faster during training. The mean and standard deviation 
values for normalization—precomputed on the training dataset—are 
[0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], respectively. These 
represent the three RGB channels for the images.

Data Augmentation: Various augmentation techniques have been 
used to increase the quantity and diversity of the training data. Data 

augmentation is used to enhance the generalization capability of the model 
on unseen data [17]. All images were resized to a uniform dimension of 
32 × 32 pixels, converted to tensor format, and normalized using values 
consistent with those in the training set. Augmentation techniques ensure 
that the model learns from slightly varied versions of the original data, 
thereby reducing overfitting and improving performance.

By implementing these preprocessing steps, the dataset is 
systematically organized, standardized, and enhanced, ensuring that it 
is well suited for the effective training and evaluation of deep learning 
models.

We have analyzed performance using various performance metrics. 
The confusion matrix provides several performance metrics to evaluate 
the model. Accuracy (eq. 1) measures model prediction accuracy. It gives 
a simple correct prediction-to-total prediction ratio. Precision (eq. 2) is 
the ratio of correctly predicted positive cases to model-labeled positive 
cases. Recall or sensitivity (eq. 3) measures how well the model identifies 
positive cases; it is especially useful when missing positives is costly. On 
the contrary, specificity is concerned with the proportion of true negative 
cases that are accurately identified, indicating the efficiency of the model 
in steering clear of false positives. Finally, F1-score (eq. 4) is a balanced 
metric that combines precision and recall through their harmonic mean. 
It becomes particularly useful when a model’s performance must be 
evaluated in situations where positive and negative cases are highly 
imbalance. These metrics together would give a full understanding of 
the strengths and weaknesses of the classifier [9, 17].

Confusion Matrix: The confusion matrix is a fundamental tool for 
assessing the performance of classification models, offering a detailed 
breakdown of how well predictions align with actual outcomes. It 
categorizes results into four key groups: true positives (TP), which 
reflect correctly identified positive cases; false positives (FP), where 
negative cases are incorrectly labeled as positive; false negatives (FN), 
which occur when positive cases are missed; and true negatives (TN), 
representing accurate identification of negative cases. This framework 
is particularly useful in evaluating models analyzing chest X-ray and 
CT scan images [9, 29].

AUC–ROC Curve: The area under the receiver operating 
characteristic curve (AUC–ROC) serves as a visual representation of 
a model’s effectiveness in distinguishing the positive class, such as 
COVID. It maps the relationship between recall and the false positive 
rate (FPR), offering insight into the trade-offs at various threshold 
settings. As noted by Jin et al., the area under this curve, which ranges 
from 0 to 1, reflects the classifier’s overall quality—with higher values 
indicating stronger performance [9, 29, 30].

Precision–Recall Curve: The precision–recall (PR) curve 
illustrates the interaction between precision and recall across different 
thresholds set by the classifier. The ideal model is represented by 
the point (1,1), and strong-performing models generate curves that 
approach this optimal intersection. This metric becomes especially 
useful in scenarios involving class imbalance, such as differentiating 
between COVID and normal cases. The PR curve’s focus on the 
minority class makes it particularly effective for evaluating imbalanced 
binary classifiers [9, 29].

(1)

(2)

(3)

(4)
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 Figure 6
Chest X-ray images from normal patients

 Figure 5
Chest X-ray images from COVID-19 patients
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All selected models were trained using the Adam optimizer with 
a learning rate of 0.001 for 30 epochs. To improve generalization and 
mitigate overfitting, the training incorporated both data augmentation 
and dropout regularization techniques. A brief overview of the models 
is provided below:
1)	 AlexNet: A relatively shallow CNN with core convolutional and 

pooling layers, followed by fully connected layers. Although com-
putationally lightweight, its accuracy tends to lag behind deeper 
models [29].

2)	 ResNet Variants (ResNet50, ResNet101, and ResNet152): These ar-
chitectures utilize residual connections to overcome vanishing gra-
dient issues, enabling effective training of very deep networks. Their 
primary distinction lies in their depth, with 50, 101, and 152 layers, 
respectively [29].

3)	 VGG11 and VGG16: Known for their uniform design, these models 
stack convolutional layers with small filters, followed by pooling 
and batch normalization. Although computationally intensive, they 
are effective in hierarchical feature extraction and are widely used in 
image classification tasks [29].

4.2. Experiments on disease detection
The training progress across the six models is illustrated in 

Figures 7–12. The training and validation performances of the models, 
as observed through loss and accuracy trends, provide insights into their 

learning behavior. ResNet50 showed a steady decrease in loss, with 
validation accuracy improving consistently over epochs, achieving a 
final accuracy of 91%. The minimal gap between training and validation 
losses indicates effective generalization. ResNet101 displayed a similar 
behavior, with training and validation losses decreasing smoothly, 
leading to the highest accuracy (93%) and strong convergence without 
overfitting. ResNet152 achieved stable learning but exhibited a slightly 
larger training-validation loss gap, reflecting some tendency toward 
overfitting. Nonetheless, it achieved a recall of 94.77%, excelling at 
identifying COVID-positive cases. VGG11 and VGG16 demonstrated 
fluctuations in training loss, particularly during early epochs. VGG16 
achieved 84% accuracy, outperforming VGG11’s 82%, although both 
struggled with higher false positives. AlexNet showed slower learning, 
with its validation accuracy plateauing at 74%, indicating limitations in 
capturing complex features in medical images.

AUC–ROC (Figures 13–18) and precision–recall (PR) curves 
(Figures 19–24) further illustrate the models’ performance. ResNet101 
and ResNet50 achieved the highest AUC scores of 97.41% and 97.59%, 
respectively. These values demonstrate their exceptional ability to 
discriminate between COVID and normal cases, even in imbalanced 
datasets. ResNet152 followed with an AUC of 96.17%, excelling in 
sensitivity (high recall). VGG16 recorded a moderate AUC of 92.45%, 
reflecting its reasonable balance between false positives and false 
negatives. AlexNet, with an AUC of 86.6%, displayed the weakest 
discrimination ability, consistent with its overall lower performance. 
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 Figure 7
Performance of VGG11 during training

 Figure 8
Performance of VGG16 during training
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 Figure 9
Performance of ResNet50 during training

 Figure 10
Performance of ResNet101 during training

 Figure 11
Performance of ResNet152 during training
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 Figure 12
Performance of AlexNet during training

 Figure 13
ResNet50

 Figure 14
ResNet101

 Figure 15
ResNet152

 Figure 16
AlexNet
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 Figure 17
VGG11

 Figure 18
VGG16

 Figure 19
PR curve—ResNet50

 Figure 20
PR curve—ResNet101

 Figure 22
PR curve—AlexNet

 Figure 21
PR curve—ResNet152
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The PR curves reveal similar trends, where ResNet101 and ResNet50 
maintained high precision and recall across all thresholds, confirming 
their robustness.

The confusion matrices for all six models (Figures 25–30) offer 
a comprehensive view of how each model performs in classifying 
COVID-positive versus normal cases, shedding light on their respective 

strengths and shortcomings. Among them, ResNet101 stood out, 
correctly identifying 664 COVID cases (true positives) and 596 normal 
cases (true negatives). It kept misclassifications relatively low, with 57 
false positives, normal cases incorrectly labeled as COVID, and just 
35 false negatives. This balanced accuracy helped the model achieve 
high precision (91.27%) and an impressive recall (94.45%), suggesting 
it handles both types of errors well.

ResNet50 followed closely, albeit with slightly reduced 
performance. It correctly classified 651 COVID cases and 584 normal 
ones, although it made 70 false positive and 47 false negative errors. 
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 Figure 24
PR curve—VGG16

 Figure 25
ResNet50

 Figure 26
ResNet101

 Figure 27
ResNet152

 Figure 28
AlexNet

 Figure 23
PR curve—VGG11
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Although this reduced its precision a bit, it still maintained solid recall. 
Conversely, ResNet152 excelled in sensitivity, reaching the highest 
recall (94.77%) with 584 true positives and 598 true negatives. However, 
its 137 false positives pulled its precision down to 81.36%, which could 
be a drawback in clinical settings where false alarms are costly.

Turning to the VGG models, VGG16 achieved 603 true positives 
and 538 true negatives. Still, it faced challenges, particularly with 
118 false positives and 93 false negatives, leading to only moderate 
precision and recall. VGG11 showed a slightly different error pattern. 
Despite having 540 true positives and 582 true negatives, it struggled 
with a high count of 181 false positives, compared to 49 false negatives. 
This indicates that it had a harder time correctly identifying normal 
cases.

AlexNet, unfortunately, delivered the weakest performance. With 
just 442 true positives and 559 true negatives, it produced a substantial 
number of errors, 279 false positives and 72 false negatives. The result 
was a lower precision (66.7%) and an accuracy of 74%, pointing to 
clear limitations in distinguishing between the two classes, especially 
in minimizing false alarms.

In summary, this confusion matrix analysis clearly highlights 
ResNet101 as the most dependable model. Its strong balance between 
precision and recall makes it particularly well suited for medical use, 
where both false positives and false negatives carry serious implications. 
By contrast, models such as AlexNet and VGG11 showed notable 
weaknesses, especially in misclassifying normal cases as COVID, 
which could pose risks in real clinical environments. On the basis of 
these findings, ResNet101 emerges as the recommended choice.

The comprehensive evaluation of the models is summarized in 
Table 1. ResNet101 emerged as the best-performing model, achieving 
the highest accuracy (93%), precision (91.27%), and F1-score (92.83%) 
while maintaining a strong AUC of 97.41%. Therefore, the proposed 
model based on this study is ResNet101.

The key observations are the following:
1) Precision: Critical in healthcare applications to minimize false pos-

itives. ResNet101 demonstrated the highest precision, reducing the 
likelihood of misclassifying normal cases as COVID-positive cases.

2) Recall: ResNet152 achieved the highest recall (94.77%), making it 
ideal in scenarios where sensitivity to COVID-positive detection is 
prioritized.

3) F1-Score: ResNet101 and VGG16 balanced precision and recall 
effectively, with F1-scores of 92.83% and 84.35%, respectively.

Despite achieving a moderate AUC, AlexNet’s overall accuracy 
and precision were significantly lower, highlighting its limitations. 
The results clearly indicate that ResNet101 is the most effective model 
for COVID-19 detection from chest radiographs, offering a strong 
balance of precision, recall, and accuracy. Its ability to minimize false 
positives and false negatives makes it a reliable choice for real-world 
clinical applications. ResNet50 also performed exceptionally well, 
whereas ResNet152 excelled in recall, making it suitable for cases 
where sensitivity is prioritized. Conversely, VGG models showed 
moderate performance with some issues in false positives, whereas 
AlexNet exhibited the weakest results, indicating the need for further 
optimization.

4.3. Research limitations
This study employed a single publicly available dataset for model 

comparison. Although the dataset in this study consists of a big set 
of COVID-19 positive and negative chest radiographs, but with real-
time medical information, which contains several errors and missed 
information, it can be a good option while comparing the performance 
of various models to eliminate bias and generalizability issues.

Although the models show good accuracy and performance metrics, 
they have not yet undergone clinical validation. Without testing in real-
world healthcare or with the involvement of medical professionals, the 
clinical usefulness of the models cannot be assured.

During the use of medical-related data, one should consider 
ethical issues. Although this study relies on publically available data, 
in the event of an expansion of the work for clinical data, ethical issues 
relating to AI, including the issues of data privacy, patient permission, 
and bias in algorithms, need to be considered.

Although this study concentrated on concrete architectures such as 
ResNet, VGG, and AlexNet, a general assessment of other state-of-the-
art architectures may yield more in-depth insights and indicate the most 
effective methods for COVID-19 detection.

 Figure 29
VGG11

 Figure 30
VGG16

Model
Overall 

Accuracy Precision Recall F1-Score AUC
ResNet101 93% 91.27 94.45 92.83 97.41
ResNet50 91% 89.29 92.55 90.89 97.59
ResNet152 87% 81.36 94.77 87.55 96.17
VGG16 84% 84.32 84.44 84.35 92.45
VGG11 82% 83.97 83.56 82.97 82.97
AlexNet 74% 66.70 88.58 76.10 86.60

Table 1
Models’ performance summary
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This study highlights the need for the inclusion of AI technologies 
in healthcare systems but suggests no concrete solutions. Pragmatic 
guidelines and frameworks for the inclusion of AI and ML models in 
healthcare systems should be developed in follow-up studies. Technical 
issues have to be addressed with a view to infrastructure compatibility, 
and healthcare professionals need to be trained and equipped.

5. Conclusion and Future Work
This paper discusses the use of AI and ML methods, specifically 

deep learning models, in COVID-19 identification based on X-ray 
chest images. This paper discusses existing literature on the subject and 
evaluates the performance of deep learning models, such as ResNet, 
VGG, and AlexNet, in achieving better accuracy and efficiency in 
comparison with traditional diagnostic techniques for COVID-19 
specifically. The experimental outcomes depict the performance of 
the models in terms of various metrics. ResNet101 showed improved 
effectiveness in the correct identification of COVID and normal cases 
in comparison with the alternative models, achieving the highest overall 
accuracy rate of 93% and maximum precision of 91.27%, evidencing a 
lowered rate of false positives. ResNet101 presents a capable detection 
rate for positive COVID patients, with a 94.45% rate of recall. F1-score 
of 92.83%, measuring precision and recall, reflects a positive balance 
in lowering false positives and negatives. ResNet101 showed effective 
discrimination, with 97.41% as the obtained AUC. ResNet101’s ability 
in classifying COVID-19 and normal classes precisely places it as the 
top model for the assessment of the chosen X-ray images relevant for 
COVID-19. Deep learning models with advanced architectures can be 
designed based on hybrid architectures, transformers with attention, 
and graph neural networks. These methods can further improve 
diagnostic accuracy in encoding complex medical image patterns. The 
use of ensemble methods may lower prediction error by exploiting 
model architectures. For the enhancement of healthcare application 
specificity, the transfer learning can be pretrained in domain-specific 
medical imaging sets, such as MRIs or CT scans, during fine-tuning 
based on full databases. Multimodal integrated data may boost 
model generalizability. Chest X-rays and CT scans can be combined 
with electronic health records, lab test results, and patient histories 
to improve diagnosis. This multimodel will enable the AI models to 
discover deeper correlations and make more accurate predictions. 
Clinical validation in a real-world environment also constitutes a 
crucial aspect. AI model testing in clinics must be emphasized with 
healthcare professionals in subsequent studies. Clinical trials at a high 
scale will ensure that such models are accurate, reliable, and usable for 
everyday medical practice. Ethics are also in high demand for instilling 
confidence and fairness into AI-based healthcare solutions. Future 
studies must prioritize patient data privacy, informed consent, and 
reduction of algorithmic bias for such models to produce equal outputs 
for varied sets of populations and imaging devices. Explainable AI or 
XAI enhances model transparency in such a manner that clinicians can 
comprehend their decision-making and have confidence in it. Future 
studies should utilize advanced data augmentation using generative 
adversarial networks to eliminate the scarcity issue of the datasets and 
enhance the model’s robustness. Improved precision, ethics, scalability, 
and integration of the AI diagnostic solutions into the global healthcare 
infrastructure will be a result of further studies.
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