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Abstract: Consecutive clustering is one type of learning method that is built on neural network. It is frequently used in different domains
including biomedical research. It is very useful for consecutive clustering (adjacent clustering). Adjacent clustering is highly used where there
are various specific locations or addresses denoting each individual features in the data that need to be grouped consecutively. One of the useful
consecutive clusterings in the field of biomedical research is differentially methylated region (DMR) finding analysis on various CpG sites
(features). So far, many researches have been carried out on deep learning and consecutive clustering in biomedical domain. But for
epigenetics study, very limited survey papers have been published till now where consecutive clustering has been demonstrated together.
Hence, in this study, we contributed a comprehensive survey on several fundamental categories of consecutive clustering, for example,
convolutional neural network, autoencoder, restricted Boltzmann machines and deep belief network, recurrent neural network, deep
stacking networks, long short-term memory/gated recurrent unit network, etc., along with their applications, advantages, and
disadvantages. Different forms of consecutive clustering algorithms that are covered in the second section (viz., supervised and
unsupervised DMR finding methods) and used for DNA methylation data have been described here along with their advantages,
shortcomings, and overall performance estimation (power, time). Our survey paper provides a latest research work that has been done
for consecutive clustering algorithms for healthcare purposes. All the usages, benefits, and shortcomings along with their performance
evaluation of each algorithm have been elaborated in this paper by which new biomedical researchers can understand and use those tools
and algorithms for their research prospective.
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1. Introduction

Nowadays, deep learning (DL) is considered to be one of the
most prominent and emerging sub-fields of machine learning. It
makes sense of data like sounds, texts, and photos by employing
multilayered deep neural networks (DNNs) to construct
abstraction from big-size data. The main features of DL are:
(1) components for nonlinear processing with several layers and
(2) each layer presents features of supervised or unsupervised
learning [1]. The initial framework for DL was developed in the
1980s using artificial neural networks (ANNs) [2], but the
credibility of DL’s actual effects only emerged in 2006 [3].

*Corresponding author: Saurav Mallik, Department of Environmental Health,
Harvard T H Chan School of Public Health, USA. Email: smallik@hsph.
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Following that, a vast number of domains have adopted DL like
image recognition, drug discovery, natural language processing
(NLP), automatic speech recognition, and bioinformatics [4, 5].
Epigenetic procedure transforms expression of gene without
altering the DNA gene’s sequence. In the earlier time era of 1950s,
the idea of epigenetic systems like intermediaries of cellular identity
as well as cellular memory arose. Afterward, in the earlier era of
1970s, DNA methylation (DNAm) was suggested to be a
transcriptional regulatory procedure that would be managed by cell
division. Through associating an epigenetic event from DNAm, the
designation of epigenetics turns into a molecular one. DNAm takes
place while a methyl group is joined to the 5th carbon of cytosine
residual which is combined through a phosphate to a guanine
nucleotide (a CpG dinucleotide) through DNA methyl transfers
(DNMT1, DNMT3A, and DNMT3B) [6]. DNAm varies with the
position of the CpG site. CpG sites does not hold by many of the
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genome. Anyway, collection of the CpG sites, defined “CpG islands,”
exist as well as generally spread the house-keeping genes promoters [7].

DNAm is auseful cellular procedure which is related to procedure
such as X-chromosome deactivate as well as genomic marking. This
has been associated with various diseases like cancer, schizophrenia,
and diabetes [8, 9]. In the last few years, the purpose of methylation
in several diseases has acquired from the research community to
significant interest. One of the special consecutive clusterings or
adjacent clusterings used for biomedical research is differentially
methylated region (DMR) finding [10]. DMR finding has been
pursued by two-step process: first, differentially methylated CpGs
(DMCs) are identified by analogy of alignment results between
samples; then, DMCs at neighbor positions are arranged as
neighboring DMRs by specific distance criteria.

Furthermore, as compared to another overview works on the
consecutive clustering [10, 11], our effort takes an extensive view
of all sector and applications to which consecutive clustering has
been applied. Specially, other works concentrate on the

advancements as well as importance of a unique learning technique
or modality, or to enhancements in a unique application [12].
Instead, in this paper, we basically observed a comprehensive
interpretation of consecutive clustering applications and techniques
toward highlight region, in which consecutive clustering still
creates remarkable performance.

The remainder of this paper is as follows. We provide a quick
overview of DL in Section 2. We describe the fundamentals of
DNAm and DMR in Section 3 of this paper. In Section 4, we
categorize various methods for identifying DMRs including
different supervised and unsupervised DMR finding tools. In
Section 5, we present comparative study of supervised and
unsupervised consecutive clustering methods depending upon
literature search and evidence. Finally, we offer our final
thoughts and the potential future direction of this research in
Section 6.

The flowchart of the survey paper is depicted in Figure 1.

Figure 1
The flowchart of Deep Learning Algorithms and Consecutive Clusterings
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2. Overview of DL

DL is a large field of research that applies to both machine
learning and artificial intelligence. Due to the following traits, DL
mechanisms have reached their pinnacle of success in a wide
range of application fields. New areas including imbalance
problems, human activity recognition, transfer learning, and
decision fusion class have achieved advancement in the accuracy
and the performance. DL has impressive tools in different areas
that strongly built on the neural networks with the inclusion of
greater than two layers that could make use of big datasets
efficiently and effectively. It supports pure learning ability and
learns feature extraction techniques from the optimized outcomes,
data, to fix highly computational tasks from top human ability.
DL networks are built on the nature of the network structure, data
representation, and activation methods, illustrate very different
features in a less parameters, predictions performance could be
greatly improved, and support secure and strong generalization
efficiency with less of a requirement of training dataset. It is also
stable than machine learning model in feature representation. DL
networks do not depend on earlier data as well as knowledge with
highest-level abstraction; these networks could derive complex
features and better detection capacity techniques in the larger data
era. We will now discuss the six fundamental types of DL
architectures as well as associated research in many fields. A brief
information of different DL methods are given on Table 1.

2.1. Convolutional neural network

Convolutional neural network (CNN) is a multilayered neural
network based on the visual brain of animals. LeCun et al. [3]
suggested the first CNN. Document analysis, picture recognition,
and face recognition are the three main application areas of CNN.

As the architecture [1], early layers are used to analyze features
like edges, while subsequent layers are used to combine features to
create high level properties of the input that the classification is
attempting to categorize. Pooling will then be done to lessen the
extension of the acquired features. The following stage involves
using convolution and then pooling, which are fed into a
multilayer perceptron with only linked layers. The final layer,
known as an output layer, is in charge of identifying the features
of the image using backpropagation methods. CNN’s deep
processing layers, convolutional layer, pooling, and fully
connected classification layer recognize a variety of applications,
including face recognition, video identification, and distinct NLP
tasks. Because of CNN’s special features, including shared
weights and local connectivity, the system operates more
effectively and efficiently. Compared to other DL algorithms, it
works substantially better. In comparison to other architectures, it
is the one that is used the most.

2.1.1. CNN used for document analysis

Oleveira et al. [13] proposed document image layout analysis
which uses a process that starts with the segmentation of
document pictures into content blocks and ends with
categorization. Each step is explained as follows.

Segmenting each document image page into its content blocks
was the first stage completed. To locate locations with a high
likelihood of having information, single pages are converted into
grayscale images and subsequently improved using the running
length technique described in Wong et al. [14]. Both horizontally
and vertically, the method is applied, and the resulting binary

pictures are joined with the AND operator. The generated binary
picture is then subjected to two applications of a 3 X 3 dilation
procedure to create content blobs. Finally, the largest connected
component in the binary image is identified as a block of content
by iteratively locating it. Up until no more related components are
found in the image, the discovery process is repeated. A CNN
model is utilized to categorize the document image’s blocks of
content into three different classes: text, tables, and images.

An architecture is constructed for the bidimensional baseline
that takes a bidimensional image tile as input and creates it using
a series of three 2D convolutional layers with 50 filters and ReLu
[15] activation. Each bidimensional convolutional layer in this
model is followed by a MaxPooling layer [16] with a 2 pixel
kernel and a 0.1 dropout [17] for regularization. For improved
model generalization, a 0.3 dropout is also recommended between
the two fully connected layers.

In Oleveira et al. [13], a one-dimensional (1D) CNN
architecture is suggested that uses picture tiles’ vertical and
horizontal projections to distinguish between various content
blocks. For such projections, text, table, and image tiles have very
distinctive and highly discriminative signatures. Due to text lines,
text tiles typically have a roughly constant-signal-like form in
the horizontal projection and a squared-signal-like shape in the
vertical projection. Due to the structure of the columns, table tiles
also have a roughly squared-signal form in the horizontal
projection and a squared-signal shape in the vertical projection.
In both horizontal and vertical projections, figures do not display
any distinctive patterns. Two 1D arrays corresponding to the
horizontal and vertical projections of a certain image tile are
provided as input to the 1D CNN architecture. Each projection is
created using a separate convolutional track that uses three 1D
convolutional layers with 50 filters each and ReLu activation. The
outputs from each track are combined and sent to a fully
connected layer with 50 nodes connected to a fully connected
layer with three nodes using softmax activation for categorical
categorization of three classes. Each 1D convolutional layer in
this model is followed by a MaxPooling layer for regularization,
with a kernel size of 2 pixels and a 0.1 dropout. For greater
generalization, there is a 0.3 dropout between the two fully
connected layers, just like in the bidimensional model. The 3 X 1
pixel convolutional kernels were employed throughout all trials.

2.1.2. CNN used for image recognition

The automatic extraction, analysis, and comprehension of
significant information from images are the subject of computer
vision, a multidisciplinary topic of machine learning and artificial
intelligence. With recent technological advancements, digital
information, particularly in the form of photographs and movies,
is rapidly expanding. Recognizing and analyzing images are a key
challenge for computers in the field of computer vision when
compared to humans. So, with human assistance, the classification
of photographs will be carried out. The real-time picture datasets
(MNIST digit images) are used by humans for training and testing
purposes. The MNIST dataset provided as input is produced by
the grayscale images. In the beginning, a classifier will be trained
by a human to look for the necessary pattern in the images. Using
the pattern that had been discovered in earlier stages, the images
were then categorized. Regarding the patterns found, the
outcomes will vary, and they entirely depend on the classification
expert’s knowledge. Krizhevsky et al. [18] employ different layers
in a CNN to extract new features from picture datasets and have
presented a DL architecture for image categorization.
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In Ramprasath et al. [19], grayscale images of 28 X 28 pixels were
used as input images. Thirty-two filters were applied to the input
images in CCN’s first layer, which resulted in 32 feature maps
with a combined size of 26 X 26. The second layer uses 64 filters,
each measuring 3 X 3, to create 64 feature maps, each measuring
24 x 24. By utilizing a sub-sampling window of size 2 X 2, the
third layer, MaxPooling layer, is utilized to down sample the
pictures to 12 x 12. Layer 4 is a fully connected layer with 128
neurons that classifies images using the sigmoid activation
function to create the final image. In typical neural networks, each
hidden layer is made up of a group of neurons that are
individually connected to the corresponding hidden layer. The
final layer of the network is completely connected and used to
categorize images. Basically, the first hidden layer would have
28 x 28 x 1 =784 weights if the input image was 28 X 28 X 1
(28 wide, 28 high, and 1 color channel). This number of weights
appears still attainable. Longer images, 400 X 400 X 3, necessitate
400 x 400 x 3 =4,80,000 weights; nevertheless, this completely
connected layer does not scale very well. CNNs differ from
conventional neural networks in that they accept input in the form
of images of various sizes. Neurons are arranged in three
dimensions—width, height, and depth—in the layers of a CNN.
The word “depth” refers to the third dimension of an activation
volume rather than the depth of a complete neural network, which
can refer to the network’s entire number of layers.

2.2. Autoencoder

One of the most popular unsupervised machine learning
algorithms on the ANN is the autoencoder (AE) [20]. A trained
AE will redesign the output close to the original input. The input
layer, output layer, and hidden layer—which typically has a
dimension less than the input layer—make up an AE. An AE’s
ability to find data structures by reducing data using nonlinear
transformations is one of its advantages over principle component
analysis [21]. Backpropagation is used in the approach, which is
based on the encoder decoder paradigm, and the goal value is set
to equal the input. To reproduce the original data, the input is first
encoded into a lower-dimensional layer (decoder). After the layer
has been trained, the output is passed on to the following layer to
create a highly nonlinear dependence model on the input. The
goal of this process is to reduce the size of the input data. The
AE’s middle-layer encoded layer is considered as an extracted
feature for classification.

2.2.1. AE used for feature extraction

In Kunang et al. [22], preprocessing feature selection from a
pool of 42 accessible features is the first step in this feature
extraction procedure. One hot encoding is employed in this
investigation. Another study used ordinal coding as a technique
for variable encoding [23]. This method was selected because it
produces better results than ordinal coding [24]. Here, all features
even non-numerical ones are taken care of. Non-numerical
features data in the dataset are transformed to numerical data. The
variable on the map generates a binary dummy variable for each
particular level. Scaling all the features is necessary so that some
features do not outweigh the others. Feature scaling is the name of
this process. Standardization, scaling, and normalization are three
other extensively used alternatives to feature scaling. Z score
normalization is used here. The majority of machine learning
algorithms employ this method (such as SVM, logistic regression,
and neural network) [25]. By calculating each feature’s mean and
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standard deviation, normalized values are calculated. Dimension
reduction using the AE model comes next. The AE model
employed here uses a straightforward AE with 3 layers and 1
hidden layer. There are 120 input neurons used in the AE
approach. The X transformation is carried out in the hidden layer.
The features that were extracted based on the number of neurons
are what output in the hidden layer is. The smaller dimensions of
the features would be the data that have been extracted. Training
and testing can be used to prepare the output.

2.3. Restricted Boltzmann machines and deep
belief network

The restricted Boltzmann machine (RBM) [26] is an undirected
graphical structure that consists of a visible layer, a hidden layer, and
a balanced link between the levels. The hidden layer in RBM is not
connected to an input in any way. The deep belief network (DBN)
shows a multilayer network architecture that creates a special
training technique with numerous hidden levels. Every connected
layer pair is a RBM, often known as a stack of RBMs. Basic
sensory information is provided by the input layer, and an abstract
description of this information is provided by the hidden layer.
The output layer’s sole purpose is to carry out network
classification. Unsupervised pretraining and supervised fine-tuning
are the two steps in the training process. RBM can regenerate its
input in unsupervised pretraining starting from the first hidden
layer. Similar to the first RBM, the second one can be performed
by using the outputs from the first hidden layer as the input and
visible layer for the RBM. Every layer has prior training or
experience. After the pretraining is finished, the supervised fine-
tuning process starts. In this stage, the nodes that represent the
output are identified with values or labels to aid in the learning
process, and full network training is then carried out using the
backpropagation algorithm or gradient descent learning.

2.3.1. RBM used for classification

In Koziol et al. [27], based on serum samples from newly
diagnosed hepatocellular carcinoma (HCC) patients and healthy
controls, the significance of an enlarged panel of 12 antibody
profiles for cancer diagnosis of HCC is explored. Here, it is also
applied the approach of RBMs [28, 29] to the classification problem.

2.3.2. DBN used for image compression

DBNSs [30] can be thought of as a series of layers, each of which
is made up of RBMs. The network is trained in this case layer by
layer, with each layer attempting to determine how the input is
distributed via unsupervised learning. Each layer functions as a
hidden layer for the one that comes before it and as a visible layer
for the layer that follows it, acting as an input for the subsequent
layer. Each layer’s nodes are linked to those in the one below
them, resulting in a fully bipartite graph. For image recognition
and image creation, DBNs are used. They can reduce the number
of dimensions if the highest layer’s count is low. DBNs do not
perform well with neural networks that include stochastic or
randomly initialized variables, but they are well suited for
unsupervised learning. In order for the DBNs to adapt to the
characteristics of the images/data that they are supposed to
extract, they must go through a pre-learning phase.
A method known as greedy learning was used to speed up this
pre-learning stage. The DNN used in this application was trained
using the MNIST database, an open-source dataset comprising
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60,000 images. The fundamental idea behind greedy learning is to
train each layer separately so that it can develop its input through
a number of backpropagations. As a result, each layer’s variables
are changed in a certain way. Then, throughout the duration of the
set, these variables are maintained frozen. The DBNs can be used
to compress any image included in the dataset after they have
been trained, offering flexibility in terms of compression ratio,
compression time, and compression loss. In a DNN, each layer is
made up of nodes, which are often computing units similar to
brain neurons and which light up when a certain input flows
through them. These nodes combine input data with weights or
coefficients that, when multiplied with the input data, can amplify
or corrupt the input. The sums of these products are then
transferred through a node activation mechanism. The output of
each layer then functions as the subsequent layer’s input. Here,
the weights of the edges create a weight matrix that is used to
build the original raw data after the first DBN has compressed it.
A deep autoencoder combines two DBNs—symmetrical DBNs
with aggressive shallow layers for the decoding half and
progressive shallow layers for the encoding half—into one. The
frames of DBNs are layers made up of closed Boltzmann
machines. They have a pair of encoders and decoders. Encoders
in this instance take raw data as input and extract features from it.
The decoder uses these extracted characteristics as input and
reconstructs the data back to the original form as output. The
encoder and decoder are built using numerous layers of RBMs.
The training procedure happens in a layer by layer manner. Until
the final criteria are satisfied, this training and feeding method
is used.

2.4. Recurrent neural network

The fundamental network architecture is recurrent neural
network (RNN) [31] which includes a wide range of architecture.
Recurrent networks are advantageous because they have
connections that, in contrast to complete feed-forward
connections, can be used as feedback into earlier levels. It
organizes the issues chronologically and captures the past memory
of input. With conventional backpropagation, also known as
backpropagation through time (BPTT) [32], these networks can be
improved, trained, and expanded.

2.4.1. RNN used for speech recognition

Speech recognition aims to decipher the linguistic message in
the form of text from the speech signal by analyzing the speech
signal’s sequence of sound units. In Venkateswarlu et al. [33], at
input acquisition stage, following the capturing of the speech
using a microphone .wav files are used to store data. With the use
of the Praat object software program, the speech data are
converted to an analog signal. The signal is then converted to a
mono voice signal using a 11 kHz frequency.

The acoustic speech signal is still there as air pressure changes
during the front-end processing stage. The microphone converts
these pressure changes into a pressure-related electric current.
These pressure changes are converted by the ear into a series of
nerve impulses that are sent to the brain. The choice of features is
very helpful in the work of voice recognition. To perform well for
recognition, good features are required. The fundamental issue
with voice recognition is identifying the right features for the
purpose and devising a strategy to extract these features from the
speech signal.

A database with 18 characters drawn from 4 primary sets and
said 10 times by 6 speakers, including 3 men and 3 women of

varying ages, serves as the source of data for the speech utterance
(data collecting) step. The speaker-dependent data will be used
during the training and testing phases. In speaker-dependent form,
the network is trained using the first four utterances of each of the
18 characters spoken by each speaker, and it is tested using the
remaining utterances. Therefore, the speech database contains
1080 utterances that may be used for testing as well as 1080
utterances that can be used for training the network.

In the preprocessing stage, the speech signals are captured using
high-quality recording equipment in a low-noise setting and 11 kHz
samples are used for the signals. When the input data are surrounded
by quiet, isolated word recognition can get reasonable results.

In sampling stage, 150 samples are chosen at a sampling rate of
11 kHz, which is sufficient to represent all speech sounds.

In the windowing stage, we window each frame to improve the
correlation of the Mel-frequency cepstral coefficients (MFCCs) in
order to reduce the discontinuity of a signal at the start and end of
each frame. MFCCs are frequently employed as features in speech
recognition systems, such as those that can automatically identify
telephone digits as they are spoken. Measures are taken by the
MFCC between successive frames [34]. The signal should be
reduced to zero or close to zero to minimize discontinuities at the
ends of speech segments and so lessen the mismatch. The Praat
object software tool selects a window length of 0.015 for the 12
Mel-frequency coefficients that are provided and for time 0.005
seconds.

The feature extraction stage entails assessing representations of
the voice signal that are sensitive to linguistic content yet broad to
acoustic change. When using a bank of filters in the frequency
domain, the Mel-filter is used to detect band filtering. On a
curvilinear frequency scale, the filter functions employed have a
triangle form. The lower frequency, the center frequency, and the
higher frequency are the three factors that influence the filter

function. The separations between the lower and center
frequencies and the higher and center frequencies on a Mel scale
are equal.

RNN architecture has actually been utilized for visual pattern
recognition; however in this case, BPTT is being used as the
learning method to use RNN architecture for speech recognition,
specifically for English speech recognition. By applying the
backpropagation method, it has also been shown that this
architecture performs more accurately in phoneme recognition
than multilayer perceptron [35]. The BPTT algorithm relies on
folding the network over time to convert it from a feedback
system to a completely feed-forward system. Since the feedback
connections must be adjusted so that they are feed-forward
connections from one network to the following network if the
network is to provide a signal that is time steps long. If the
network is a single, substantial feed-forward network, the updated
weights can then be treated as shared weights during training.

2.5. Deep stacking networks

Deep convex networks is another name for deep stacking
networks (DSNs) [36, 37]. Compared to other traditional DL
frameworks, DSN is unique. It is referred to as deep because it
contains numerous deep separate networks, each of which has its
own hidden layers. The DSN believes that training involves a
variety of distinct unique training challenges rather than being a
single, isolated issue. The DSN is made up of a fusion of modules
that are situated in the architecture and are a component of the
network. The DSN has three components that each performs a
specific task. A single hidden zone, an output zone, and an input
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zone are present in every module of the model. The input to each
module is taken from the outputs of the preceding layer and the
real input vector, with the subroutines stacked one on top of the
other. Every module in DSN is trained separately to ensure its
effectiveness and efficiency as well as its capacity for cooperative
work. Each module, rather than the entire network, uses the
supervised method of training for backpropagation. DSNs are a
relevant and desirable network design since they perform better
than normal DBNs.

2.5.1. DSN used for information retrieval

In Deng et al. [38], compared to voice and image classification
tasks, regularization in DSN learning is found to be considerably
more beneficial for information retrieval. The low dimensionality
of the output vectors associated with each module in the DSN
causes problems in information retrieval. Stacking information
from a lower module of the DSN to its upper module is reduced
by the low dimensionality, as opposed to speech tasks where there
are typically many more classes that need to be detected. Here,
significant DSN studies are carried out on a sponsored web
information retrieval job. Commercial search engines provide
additional sponsored results in addition to the organic web search
results for the user’s query. Advertisers who place bids to have
their advertising appear on the search result pages build a
database from which the sponsored results are picked. The process
of finding relevant adverts for a query is the same as regular
online search. Here, a DSN model of advertisement relevancy is
displayed to help improve the sponsored search system. Given a
search query, this model is trained to distinguish between relevant
and irrelevant adverts and to provide an ad’s relevance score.

The baseline for this DSN-based IR system is LambdaRank
[39]. These algorithms produce their targets using annotated data
that have been judged by experts to be relevant or irrelevant for
each query-ad pair. Text features and user click features make up
the two main categories of the ranking features utilized in network
models. Here, a set of text features have been suggested in Hillard
et al. [40] and Hillard et al. [41]. They also include features for
query length (the amount of characters and words) and three sets
of features for text matching, which compare the query text to
each of the three text streams of an advertisement. These two
categories of user click attributes were both extracted from click
through logs. Click through features are the first category. In Gao
et al. [42], a click stream is generated for each advertisement,
consisting of a list of searches with clicks on the advertisement. A
set of 30 features are then extracted by comparing the click stream
to the input query. A set of translation probabilities between query
and ad based on translation models read on the query-ad pairings
obtained from click through logs is the second type of click
feature employed here [43].

2.6. Long short-term memory/gated recurrent unit
network

Hochreiter and Schimdhuber worked to describe the long short-
term memory (LSTM) [44], which is used in a variety of contexts.
IBM chose LSTMs that are primarily employed in voice
recognition. A memory component known as a cell that can retain
its value for a sufficient amount of time and considers it as a
function of its input is benefited by the LSTM. This helps the unit
remember the most recent calculation’s result. Three ports,
referred to as gates, make up a memory unit or cell. These ports
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control the movement of information into and out of the cell. The
gate or input port regulates how new data enter the memory. The
second gate, known as the forgets port, is used when an existing
piece of information is forgotten and aids the cell in gathering the
fresh information. The output gate’s job is to once more control
the information that is contained in the cell and used as the cell’s
output. The cell’s weight can be used for controlling purposes.
There is a need for the training technique, known as BPTT, which
increases weight. The optimization process of the method requires
network output error. The update gate and reset gate are two gates
that are combined to form the gated recurrent unit (GRU) [45].
An update gate’s purpose is to alert the user when the previous
cell’s contents are needed for maintenance. The shifting of
previous cell contents with fresh input is defined by the reset gate.
By initializing the reset gate to 1 and the update gate to 0, the
GRU simulates a typical RNN. Compared to the LSTM, the GRU
model’s operational functionality is simple. It is thought to be
more effective in terms of execution and can become skilled quickly.

2.6.1. LSTM used for handwriting recognition

In Carbune et al. [46], the architecture is comparable to that
which is frequently used for acoustic designing in voice
recognition [47], thus, it is referred to as a CLDNN (convolutions,
LSTMs, and DNNs). The model takes a time series of length T as
input and runs it through several bidirectional LSTM layers [48]
which interpreted the character structure. After passing the results
of the final LSTM layer through a softmax layer, a series of
probability distributions over characters are produced at each time
step. The softmax outputs are combined with character-based
language models, word-based language models, and knowledge of
language-specific ~ characters  for  connectionist temporal
classification decoding using beam search [49].

LSTMs have grown to be one of the most popular RNN cells
due to their simplicity in training and improved performance [50].
The input sequence is processed both forward and backward in
this experiment, and the output states of each layer are
combined before being fed to the next layer using bidirectional
LSTMs. For each script, the precise number of layers and
nodes is determined empirically. A softmax layer receives the
output of the LSTM layers at each time step to determine a
probability distribution across the script’s potential characters.
The prior information relevant to a language is combined with
the softmax layer logits. A weight (referred to as a “decoder
weight” in the following) is captured for each of these extra
information sources, and they are linearly combined. The
combination that was learned is used as described in Graves
et al. [51, 52] to model the beam search during decoding. It is
possible to train one recognition model per script using a
combination of different knowledge sources and then use that
model to deliver numerous languages.

2.6.2. GRU used for speech recognition

The model proposed in Ravanelli et al. [53] is a revised version
of the GRUs. The main modifications concern reset gate and ReLU
activations. When there are several discontinuities in the sequence,
the reset gate can be crucial. When switching from one text to another
that is not semantically relevant, this may happen in language design.
In these circumstances, it is wise to clear the stored memory to avoid
making a choice that is influenced by an unrelated past. Yet, for some
tasks such functionality might not be important. For instance, in
Zhou et al. [45] discarding reset gate vector from the GRU model
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has led to a single-gate architecture called minimal gated recurrent
unit (M-GRU), which accomplishes a performance comparable to
that achieved by standard GRUs in handwritten digit recognition
along with in a sentiment classification job. A voice signal is, in
fact, a sequence that develops quite slowly (the features are
essentially calculated every 10 ms), in which the prior history can
almost never be unnecessary. It can be dangerous to completely
erase the past even when there are stable discontinuities, such as
those that can be seen at the border between a vowel and a
fricative. The first modification to standard GRUs proposed in this
work thus relates the elimination of the reset gate, which benefits
in reducing the redundancy in the gating mechanism. The main
benefits of this intervention are in the improved computational
efficiency, which is accomplished with the help of the few
parameters required to complete the function of a typical GRU.

In the state update equations, the second modification involves restoring
the conventional hyperbolic tangent with ReLU activations. Tanh
activations are critical since their saturation minimizes the training
process and causes gradient issues. Due to numerical instabilities
caused by the unbounded ReLU functions utilized over large time
series, RNNs did not previously embrace ReLU-based neurons, which
have proven helpful in resolving such restrictions.

Batch normalization [54] has just been put forth in the machine
learning field and proposes a solution to the so-called internal
covariate shift problem by normalizing the mean and variance of
each layer’s pre-activations for each training set. Such a procedure
has proven to be crucial for improving the training process as well
as system performance. To RNNs, batch normalization can be
applied in a variety of ways. The normalization procedure is
improved to include recurrent connections in Cooijmans et al.
[55], while authors in Laurent et al. [56] proposed to use it just
for feed-forward connections. It is also observed that coupling the
proposed model with batch-normalization encourages in bypassing
the numerical issues that often appear when dealing with ReLU
RNNs wused for long-time sequences. Batch normalization
essentially bounds the values of the ReLU neurons by rescaling
the neuron pre-activations. This makes it easier for the network to
profit from the notable advantages of such activations.

3. DL in the Biomedical Applications

An extremely diverse study area with several applications,
medical specializations, and related disorders is nourished by the

biomedical domain. Physicians are quite knowledgeable about and
skilled in some of these illnesses, but not all of them. The
biomedical data used by medical profession al nowadays are
highly varied due to scientific and technical advancements and
include a variety of biological factors, clinical evaluations and
metrics, and imaging modalities. Biomedical data are typically
unbalanced [57, 58] and nonstationary [59], being defined by a
high complexity [57]. This is due to the abundance of these data
as well as the completeness of some uncommon conditions.
Machine learning offers a huge opportunity in this situation to
help doctors, biologists, and medical authorities in utilizing and
significantly improving big medical data analysis; lower the risk
of medical errors; and produce a better harmonization of the
diagnosis and prognosis protocols. DL is one of the emerging
machine learning tools in various domains such as image analysis
and defect diagnosis. All medical levels are covered by the DL
applications in the biomedical sectors, starting with genomic
applications like gene expression and ending with public medical
health management like forecasting demography data or infectious
disease epidemics.

The first phase of biomedical research encompasses all studies,
ranging from protein structure prediction and interactions with other
proteins and medications to genome sequencing and gene
expression. The application of DNNSs in this area of research is
expanding quickly. The term “Omics” is frequently used in the
literature to refer to this field of study, while others have included
bioinformatics [60] and biomedicine [61]. Aiming to explore and
comprehend biological processes at a molecular level to forecast
and prevent diseases by involving patients in the development of
more effective and individualized treatment, the Omics covers
data from genetics and Omics [62]. Protein—protein interactions
[63], the prediction of human drug targets and their interactions
[64], and the prediction of protein function [65] all play a
significant role in the field of genomics.

The examination of the cell (cytopathology) and the tissue
comes next following the DNA and protein levels
(histopathology). Histopathology and cytopathology are frequently
utilized in the diagnosis of inflammatory disorders, cancer, and
several infectious diseases. Under a microscope, the histological
and cytopathological slides, which are often obtained via fine-
needle aspiration biopsies, are inspected. The primary study area
for DL in biomedical applications is bioimaging, as it is known in
the literature. Medical imaging studies human organs by

Table 1
Different deep learning methods with brief information

Type of deep

Name of work learning method

Advantage Disadvantage

CNN-based document analysis CNN
by Oleveira et al. [13]
Image classification by Ramprasath et al. [19] CNN

Automatic feature extraction by Kunang et al. [22] AE

Classification of hepatocellular carcinoma RBM
by Koziol et al. [27]

Image compression by Lokare et al. [30] DBN

Speech recognition by Venkateswarlu et al. [33] RNN

Information retrieval by Deng et al. [38] DSN

Handwriting recognition by Carbune et al. [46] LSTM

Speech recognition by Ravanelli et al. [53] GRU

Applicable for image

Applicable for image
Applicable for text data
Applicable for text data

Applicable for image
Used for audio data
Applicable for text data
Applicable for image
Used for audio data

Not used for other data rather than image

Not used for other data rather than image
Not used for other data rather than text
Not used for other data rather than text

Not used for other data rather than image
Not applicable for other data rather than audio
Not used for other data rather than text

Not used for other data rather than image
Not used for other data rather than audio
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examining many types of imaging [62]. Today, there are major
medical high-resolution image acquisition systems available,
including parallel MRI, multi-slice computed tomography (CT),
ultrasound (US) transducer technology, digital positron emission
tomography (PET), and 2D/3D X-ray. The majority of DL
applications in bio and medical imaging deal with the
interpretation and  analysis of computer-aided images
[66, 67]. A digital pathology and image analysis with a focus on
research and biomarker identification [68] and evaluating
histopathology images for the detection of breast cancer [69, 70]
are two examples.

The brain and body machine interfaces (BBMIs), which include
electrical impulses produced by the brain and muscles and obtained
using the proper sensors, are the next level of biomedical applications
[62]. Four components make up a BBMI system: a control system, an
amplifier, a filter, and a sensing device [71]. To provide a digital
interface between the brain and the computer, the system for the
brain interface decodes and analyzes signals from a complicated
brain mechanism [72]. The brain signals represent the conscious
or unconscious neuronal actions brought about by a person’s
current activity. Recently, a variety of signal acquisition methods
have been developed [73]: invasive methods requiring the
implantation of electrodes beneath the scalp (such as
electrocorticography (ECoG)) and non-invasive methods that do
not need placing foreign objects within the brains of subjects.
There are numerous assessment methods available, including
functional magnetic resonance imaging, functional near-infrared
spectroscopy, electroencephalography (EEG), and magnetoencepha
lography. The second stage of DL applied to BMIs follows the
brain—machine interface and focuses on anomaly detection and
illness diagnosis, such as the recognition of coronary artery
disease by ECG readings [74], automatic myocardial infarction
diagnosis using ECG signals [75], data from EEG to
identify seizures [76], and EEG diagnosis of Alzheimer’s
disease [77].

Analysis of extensive medical data is the goal of public and
medical health management (Pm-HM), which aims to improve
healthcare choices for the benefit of humanity. One of Pm-HM’s
challenges in the coming years will be analyzing the spread of
disease in cases of epidemics and pandemics in relation to social
behavior and environmental factors [78]. Electronic health
records, one of the most important and comprehensive sources of
patient data, contain information on a patient’s medical history,
including information on medications and treatment plans as well
as information on allergies, radiology images, and sensors
multivariate time series (such as EEG). In-depth learning in
healthcare decision-making [79], knowledge-distillation approach
development [80], temporal pattern discovery over Rochester
epidemiology project data [81], or diagnosing given multivariate
pediatric intensive care unit time series [82] are all made possible
by the analysis of such clinical data against temporal dimensions.
Modeling lifestyle disorders like obesity in relation to geographic
locations is another aspect of PM-HM. It is now possible to
monitor public health issues like contagious intestinal infections
[83] or regional obesity via social media, where users’ lives and
social interactions are publicly disclosed online [84]. In Garimella
et al. [85], geo-tagged images from Instagram are used to study
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the lifestyle diseases, such as obesity, drinking, or smoking. Zhao
et al. [86] created the social media nested epidemic simulation
(SimNest) using online semi-supervised DL. Das & Das [87, 88],
proposed how Parkinson’s disease is detected from hand-drawn
images using DL. Das & Das [89] also proposed how breast
cancer is detected from mammogram images using DL.

4. Rising Architectures: The Generative
Adversarial Networks

Generative adversarial networks (GANs) are one of the newest
topologies used in biomedical applications. Without heavily
annotated training data, GANs offer a method of data
augmentation to expand the deep representations. A GAN, first
proposed in 2014 by Goodfellow et al. [90], consists of two deep
networks: a discriminator and a generator. Finding the parameters
of a discriminator and a generator is necessary for training a
GAN, with the discriminator’s goal being to optimize
classification accuracy and the generator’s goal being to
completely puzzle the discriminator [91]. Only one of the two
networks is affected by the parameters update during the training
phase. The second one maintains a freeze on its own parameters.

Recently, GANs have been used in all biomedical fields. For
example, Li et al. [92] used Omics to model a protein, and they
viewed the loop modeling problem as an image in painting
problem where the generative network had to accurately
estimate the missing area and capture the context of the loop
region.

In the BBMI applications, such as cardiac ECG applications,
Dhamala et al. [93] employed a unique idea to estimate tissue
excitability in a cardiac electrophysiological model by embedding
a generative variational autoencoder within the objective function
of Bayesian optimization.

The majority of GANs research focuses on applications in
medical imaging. Enhancing image quality, reconstructing images,
creating created images, registering images, and segmenting
images are the key goals. Enhancing image quality is the GANs’
primary goal in medical imaging. To reduce the metal artifacts in
CT ear pictures of cochlear implant receivers (Cls) in Wang et al.
[94], a conditional GAN is utilized to distinguish between the
low-dose PET images in Wang et al. [95] and the full-dose PET
images of good quality.

Medical image segmentation also employs GANs. For 3D left
ventricle segmentation using 3D echocardiography, a unique real-
time voxel-to-voxel conditional generative adversarial net is
applied in Fichtinger et al. [96]. Zhao et al. [97] employed a
cascaded GAN with deep-supervision discriminators to
automatically segment bony structures. For reliable segmentation
of several HEp-2 datasets, a novel transfer-learning architecture
utilizing GANSs is proposed in Li & Shen [98].

Giger et al. [99] created a conditional GAN that was trained to
recognize the relationship between temporally related ultrasound and
4D MRI navigator images in order to predict the respiratory motion
for tracking movable malignancies in the thorax and abdomen during
radiotherapy.

Table 2 illustrates the recent published papers of DL in the
biomedical applications.
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Table 2
Recent papers of deep learning in biomedical applications

Name of work Description

Advantage Disadvantage

Deep learning networks in
medical imaging by Wang
etal. [100]

Deep neural networks for the
early detection of COVID-19
by Islam et al. [101]

DL algorithm for the detection of
heart diseases. by Roy et al.
[102]

Serial electrocardiography to
detect cardiac pathology by
Sbrollini et al. [103]

Deep learning-based medical
image analysis by Liu et al.
[104]

Deep learning method for
ultrasonic microbubble
imaging by Dai et al. [105]

A deep learning X-ray-based
COVID-19 diagnosis by
Hertel & Benlamri [106]

Neural network model for
detection of abnormal
heartbeat by Malik et al. [107]

GANSs and its applications in
biomedical informatics by Lan
etal. [108]

An improved COVID-19
detection using GAN by
Asghar et al. [109]

Through bibliometric and hot spot
analysis

Create an algorithm for automatic
diagnosis of COVID-19

To determine the best classifiers
for valvular heart disorders

To identify newly developing
cardiac disease in serial ECGs

CNN-based DL algorithms for
clinical applications

To suggest and validate a brand-
new post-processing technique

An ensemble classifier to help
diagnose probable COVID-19
patients

To categorize auditory signals of
irregular heartbeats

How GAN is utilized in different
fields

Suggests a neural network to
enhance the identification of
COVID-19

Assesses the DL network
application in medical image
analysis

Speedy detection of COVID-19
because of its high accuracy

Only applied in PubMed
Cannot use other respiratory
diseases

Finds the most efficient,
straightforward classifier tool

Requires more time during the
learning phase

Identifies acute ischemia and Not mentioned

detects newly arising heart

failure
Highly accurate, efficient, and ~ Reduces the quality of high-
scalable quality large-scale datasets

Shows excellent imaging Not mentioned
performance and great
consistency

Most publicly available COVID-
19 images in the two-class and
three-class datasets

Diagnoses a heart condition

using sound signals

To increase the pipeline’s
capacity, it needs to expand
categorical and numerical data

Not mentioned

High-resolution image creation
from low resolution images

Limited sample size will result in
a relatively low level accuracy

Good outcomes for COVID-19
detection using X-ray
imaging

Does not specify the ideal
automated method for finding
COVID-19

5. Basics of DNAm and DMR

DNAm [110] is commonly used epigenetic mechanisms and
balanced genetic attributes which cannot be illustrated by DNA
sequences. DNAm is a procedure where a methyl group is
appended to DNA nucleotides. DNAm is an epigenetic approach
[111] that modifies gene expression and changes the function of
genes by adding a methyl (CH3) group to DNA. The methyl
group is added to the cytosine ring’s fifth carbon, resulting in 5-
methylcytosine, which is a common DNA modification process
(5-mC) [112]. DNAm essentially behaves to decrease gene
transcription [113, 114] while found in a gene promoter. Whole-
genome bisulfite sequencing is a crucial benchmark for
determining methylation status (WGBS). However, the high price
of WGBS restricts its use in significant epidemiological applications.

The majority of epigenome-wide association studies (EWASs)
conducted today use array-based technologies, which provide a full,
affordable, and efficient replacement. The MethylationEPIC
BeadChip (Infinium) microarray (850K) was created at this time
[115]. In addition to the additional 333 265 probes targeting sites
in regulatory areas already discovered by the ENCODE [116,
117] and FANTOMS [118] programs, this enhanced array
includes more than 90% of the 450K array probes.

Currently, it has been observed that adjacent epigenetic regions
with variable levels of methylation (DMRs) are associated with
various disorders [119-121]. Additionally, hypermethylation of
candidate gene promoter region aids in the development of
neoplasms and contributes to the carcinogenesis of colon cancer
[122]. In postmortem brain cells from patients with autism
spectrum disorder, Ladd-Acosta et al. [12] identified and cloned
three genomic sites with significant DNA reversal in neuro-
developmental disorders. The vast histocompatibility complex
region has two clusters whose differential methylation likely
resolves the hereditary hazard for rheumatoid arthritis, according
to Liu et al. [123].

The different tolls have been created for the study of DMRs.
There are two types of DMR finding techniques: supervised and
unsupervised approaches. The unsupervised techniques discover
each genomic region for organization with phenotypic information
after organizing the CpG probes into genomic regions. On the
other hand, supervised algorithms calculate a p-value or related
t-statistic at each CpG first, after which user-specified parameters
are used to identify the sections of the genome with a string of
tiny p-values or t-statistics. The portions of the genome with a
string of modest p-values or t-statistics are identified using
user-specified parameters after supervised algorithms generate a
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p-value or associated t-statistic at each CpG. Two earlier researches
[124, 125] analyzed unsupervised DMR search techniques that check
for prefixed genomic regions. Yet, there is presently a shortage of
supervised DMR finding techniques calculation.

In this survey, we prepare a thorough evaluation of the key
software tools for supervised DMR study, including bump hunting
[126], comb-p [127], DMRcate [10], and Probe Lasso [128]. We
elect these mechanisms using a variety of different principles: (i)
it is possible to use them to assess Illumine methylation arrays.
(ii) To find DMRs, they employ the supervised search technique.
(iii) The open source code software can be expanded to identify
an EWAS with a balanced sample size in a reasonable amount of
time. R or Python programming languages are the most popular
programming languages for epigenetic research.

In essence, we identify that the algorithms associated with these
methylation analysis tools frequently require a variety of criteria to
be presented. We intend to conduct a thorough evaluation of the tools
with various parameter settings in order to help users relate to and
find the optimal parameter settings for DNAm analysis tools. By
using these multiple methods, we may compare additional
characteristics of the analysis results, such as the size of the
DMRs and overlap between the techniques. In the Methods
section, we go into detail about the simulation technique, and in
the Results section, we go into detail about the results of the
simulation research and a real-world dataset. In the final section,
we provide a succinct summary of our key findings and highlight
potential future study avenues in this broad field.

6. Methods for Identifying DMRs

6.1. DMRcate

The DMRcate [10] technique is used in the Bioconductor
package DMRcate. The empirical Bayesian methodology from the
limma R package was used to fit a linear model at each CpG
before employing the DMRcate procedure. In our study, this
model incorporated group status as an independent variable and
methylation M value as an outcome variable. In the study of
methylation data, M values, which are logit transformed beta
values with the formula M = log(beta/1 — beta), have been shown
to have improved statistical features such as homoscedasticity
[129]. After that, for each position, the statistic ¥ = 2 is
calculated, where t is the t-statistic from the linear model
associated with the group effect. In the following phase, DMRcate
applies kernel smoothing using a bandwidth-scaled Gaussian
smoother. The p-values at each position are then calculated by
moment-matching using Satterthwaite’s approach [130]. Then, the
Benjamini & Hochberg [131] technique is used to select the CpG
sites with multiple comparison-corrected p-values as significant
CpGs. By splitting adjacent important CpGs that are within
nucleotides of one another, regions for DMRs are discovered.
Stouffer’s technique [132] is used to calculate the p-value for DMR.

6.2. Bumphunter

Bumphunter [126] is applied in the Bioconductor packages
bumphunter and minfi. In this bumphunter method, differential
methylation between case and control groups at each CpG site is
first modeled using a linear regression model degenerating the M
value on group. Then candidate regions (bumps), which are
groups of subsequent probes for which all t statistics exceeded a
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user-defined threshold, are examined. The statistical significance
of the candidate regions separated by at least maxgap base pairs is
then estimated using permutation tests, which permute sample
labels to produce the null distribution of candidate regions. Spatial
correlation structures are used in the description of regions to
visualize correlations of methylation levels between nearby CpGs.
We looked at how bumphunter behaved in the simulation research
in relation to the parameters maxGap, pickCutoffQ, and B (the
number of resamples) used to estimate DMR P-values.

6.3. Probe Lasso

Probe Lasso [128] is utilized in the Bioconductor package
ChAMP. In the Probe Lasso method, the differential methylation
between case and control groups at each CpG site is first
determined using a linear model regressing beta value on group.
Based on the sort of genomic characteristics the probe is situated in
(such as TSS200, 3 UTR), the Probe Lasso describes adjustable
borders around each probe. The Probe Lasso algorithm “throws” a
lasso around each probe with dynamic bounds that is focused on
the target probe, much like a real lasso would. If there are more
significant probes stored within the Probe Lasso boundary than the
user-specified threshold, a region surrounding the target probe is
selected. Using the Stouffer’s method, Probe Lasso calculates a
p-value for each region by weighting individual probes by the
inverse sum of their squared correlation coefficient in the
correlation matrix. This is done for each region by first calculating
a correlation matrix of normalized beta values within that region.
In order to achieve Probe Lasso, we looked at the effects of the
parameters adjPvalProbe (significance threshold for probes to be
included in DMRs), meanLassoRadius (radius around each useful
probe to discover a DMR), and minDmrSep (the minimal
separation in base pairs between nearby DMRs).

6.4. Comb-p

Comb-p [127] is a command-line utility and a Python module.
However, none of the three methods described above allow for the
determination of p-values for individual CpGs. Nevertheless, comb-
p requires a .BED file as input, which contains the p-values and
chromosome locations of the CpG sites. The Stouffer—Liptak—
Kechris correction [133] is used to determine adjusted p-values at
each CpG site after the comb-p tool generates correlations at
various distance lags. If the neighboring CpG sites also have
relatively low p-values, the corrected p-value at a CpG site will be
lower than the initial p-value. However, if nearby p-values are
similarly high, the adjusted p-value at a CpG site will continue to
be high. The false discovery rate (FDR) is then calculated at each
CpG site, after which a peak-finding technique is used to identify
regions enhanced with low p-values. Following the discovery of
the regions, the Stouffer—Liptak adjustment is used to determine
the final p-value for each region. We examined how the
parameters distance (which increased a region if there was another
p-value narrower than seed within this distance) and seed
(the p-value implication threshold to start an area) affected the
performance of comb-p.

6.5. IMA: Different index metrics

IMA [134] is used in R and executed on any platform that
already has R and Bioconductor installation. The user has the
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option to specify alternative tracks in the parameter file or run the
pipeline with default settings. Below is an analysis of the IMA
pipeline:

The methylation values of specific sites expressed by Illumina
BeadStudio or GenomeStudio software are used as input by IMA
during the preprocessing stage. For the purposes of particulate
quality control, it allows the user to choose different filtering steps
or modify the filtering criteria. Users can choose to filter out the
loci whose DNAm levels are determined by probes holding
SNP(s) at/near the specified CpG site because they may not be
sufficient to calculate DNAm value. Additionally provided is the
option for sample-level quality control. Although Illumina will
recommend using the raw values for evaluation, the user has the
option to structure the methylation level as the response in a linear
model using the arcsine square root transformation [135, 136].
The option of logit transformation is also available [137]. The
default setting for IMA is that no normalization will be used,
while quantile normalization is an alternative preprocessing option
that is available. Quantile normalization has been shown to be
insufficient for eliminating all of the additional technical variation
across samples [138]. The development of a normalization
approach for DNAm research is a fruitful field of expanding
inquiry [139].

Three different index metrics are now used in IMA: mean,
median [134], and Tukey’s biweight robust average [140-142].
Typically, the region’s methylation index will be determined by
taking the median value. For each particular region, the Wilcoxon
rank-sum test (the default), the Student’s t-test, and empirical
Bayes statistics can be used in the differential methylation
analysis step. The implication criterion can be mentioned by users
in the parameter file. To find site-level differential methylation
inference, the same statistical supposition and multiple test
correction approaches described above can be used to each
individual site. For each of the three aforementioned sections,
specific output files are provided during the output stage. The
result for the preprocessing stage includes a matrix of methylation
values for approved loci across approved samples. There is a
matrix of methylation index across the samples for each region
class of relevance for the part on methylation index calculation.
The differential methylation values as well as the raw and
modified p-values of each region of interest are given for the
differential methylation analysis section.

6.6. Aclust

There are two stages to the epigenome-wide investigation.
Using the Adjacent sites algorithm (“A-clustering,” or shortly
“Aclust”) [143], clusters of associated methylation sites are
identified in the first stage. In the next stage, generalized
estimating equations (GEEs) are used to examine these clusters
for finding results [144].

The grouping of nearby linked CpG sites is the initial step. This
clustering algorithm, Aclust, is identical to the agglomerative nesting
clustering algorithm [145]. However, it is constrained in such a way
that only probes that are adjacent to one another can be grouped
together, or more broadly, only adjacent clusters can be merged to
form a larger one-cluster arrangement. If the distance between two
clusters is less than a set threshold, neighboring clusters are
combined. In this case, the clustering is used by cycling over the
sites, A-clustering ordered by location. The distance metric in this
case is identical and is based on the actual methylation levels
found in the sample. The distance metric between two clusters
depends on how far apart the cluster’s probes are from one another.

The algorithm next examines the impact of exposure on the
identified clusters of methylation sites, where one can choose the
minimum cluster sizes, after determining clusters of probes,
whether with or without an initial dbp-combine step. This
technique involves first fitting a GEE model that dominates
individual location effects for each site as well as common
exposure and covariate effects on all sites within a cluster. If the
batch effect was previously removed, say via ComBat [146],
further fitting for batch serves no purpose. The p-value for the
exposure variable from the GEE model is then the raw p-value.
Using established techniques, such as control of the
FDR, it is corrected for multiple testing after providing raw
p-values for each of the clusters.

6.7. Seqlm

The Seqlm [147] technique is achieved by using the following
three phase procedures: 1. The distances between adjacent CpG
probes are used to divide the genome into beginning segments. 2.
Based on the varied methylation patterns, these segments are
divided into regions. 3. The statistical significance of differential
methylation is examined for each location. The implementation of
Stages 1 through 3 is rather simple.

The CpG sites on the genome are first clustered into smaller
groups close to the promoters and other functional components in
the initial segmentation process, and the arrays also concentrate
on these regions. The distance between two successive probes
must be at least 1000 bp apart in order for them to belong to the
same area in this case. The precise cut-off value is assessed by
examining the relationship between the genomic distance and the
methylation correlation of consecutive sites in a sizable dataset
[148]. As is typical, there is high correlation between relatively
adjacent pairs of probes (less than 100 bp), although the favored
correlation effect appears to be diminished when the distance is
already over 1000 bp. This initial segmentation creates a large
number of sparsely populated segments in locations where the
array has adequate coverage as well as several solitary sites and
brief periods. These will be sorted into regions in the following
stage based on their methylation patterns.

The degree of differential methylation is fixed within each
segment in the refined methylation-based segmentation stage,
which divides an extended distance of CpG probes into sections
with uniform methylation patterns. As long as the segment-wise
linear models serve a strong match, the ideal segmentation should
favor longer regions over shorter ones. The minimum description
length (MDL) concept can be used to identify this aim as a model
selection problem [149].

6.8. coMethDMR

The coMethDMR [150] has two vital phases: (i) find the
subregion of a genomic area that has nearby and
co-methylated CpGs first and (ii) analyze the relationship between
the subregion’s CpG methylation and phenotypic while
accounting for CpG variation collectively. The genome will be
divided into areas in the first stage using methylation array
annotations as a guide. The regions can be chosen based on their
relationships to genes or CGIs because the Illumina chips target
methylation sites primarily at genomic regions and CpG islands.
Alternatively, CpG probes can be arranged into islands, coasts, or
shelves depending on how they relate to CGlIs. First, the CpG
probe clusters are extracted that are almost within these genomic
areas. The genetic areas would have equal CpG concentrations,
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Table 3
Different methods of DMRs

Name of the method Source of the method

Brief definition of

model/statistics Type of method Reference

DMRcate rdrr.io/bioc/DMRcate/ Empirical Bayesian Supervised Peters et al. [10]
methodology

Bumphunter github.com/rafalab/bumphunter Linear regression Supervised Jaffe et al. [126]

Probe Lasso ChAMP/versions/1.8.2/topics/champ.lasso  Linear regression Supervised Butcher & Beck [128]

Comb-p github.com/brentp/combined-pvalues Stouffer—Liptak— Supervised Pedersen et al. [127]
Kechris correction

IMA:mean (rforge.net/IMA/) Regression Unsupervised Wang et al. [134]

IMA:median (rforge.net/IMA/) Regression Unsupervised Wang et al. [134]

IMA:Tukey’s https://rdrr.io/cran/DescTools/f/ Regression Unsupervised Kohl et al. [140]

Biweight robust average

Aclust (github.com/tamartsi/Aclust/) Regression Unsupervised Sofer et al. [143]

Seqlm (github.com/raivokolde/seqlm) Regression Unsupervised Kolde et al. [147]

coMethDMR (github.com/lissettegomez/coMethDMR) Regression Unsupervised Gomez et al. [150]

thanks to this procedure. In the second phase, a random coefficient Table 5

combination model is suggested for evaluating groups of CpGs
against phenotype in order to simultaneously design modifications
among the co-methylated CpGs and relationship with phenotype.
This design offers (i) values of normalized methylation as the
outcome variable, (ii) a structured element that calculates the
average for each group of CpGs, and (iii) the random coefficients,
which determine how each CpG’s slope per stage differs from the
group mean, are a random component. This model is a combined
effects model since it includes both fixed and random effects.

7. Comparative Study of Supervised and
Unsupervised Consecutive Clustering Methods

According to the article [11], an experiment has been carried out
in terms of simulation study using a real methylation dataset (see
Table 3). According to that result mentioned there, the
performance of different supervised consecutive clustering
algorithms is described in terms of small effect size (low y value)
(in Table 4), large effect size (higher u value) (in Table 5), and
elapsed time (in Table 6).

Table 4
Comparative outcomes of different supervised consecutive
clustering tools for small effect size

Method Precision Power
DMRcate ++ -
Bumphunter - -
Probe Lasso + -
Comb-p ++ -

@ %

and “-” signify very poor and poor outcome for the said standard,
respectively. “+” and “++” refer to fair and excellent outcomes for the
said standard, respectively.

12

Comparative outcomes of different supervised consecutive
clustering tools for large effect size

Method Precision Power
DMRcate ++ +
Bumphunter + -
Probe Lasso ++ +
Comb-p ++ ++

[Tz}

indicates poor outcomes for the said standard. “+” and “++” signify
fair and excellent outcomes for the said standard, respectively.

A comparative study of different unsupervised techniques (i.c.,
IMA: Different Index Metrics, Aclust, Seqlm and coMethDMR) is
illustrated in the following:

IMA: Different Index Metrics: The IMA package’s primary
goal is to generate a variety of frequently used DNAm microarray
analysis choices for users to choose from for their previous
analysis and characterization in an automated manner. It was
developed in an open-source R environment, giving users the
freedom to maintain and enhance the functionality to suit their
own requirements. It can be used as a pipeline of differential
analysis and methylation level index for later functional analysis
and hypothesis formation. To locate clustered coastlines
associated with the desired trait, for instance, model-based
clustering [151] can be used with the matrix of methylation index
for shore regions established by IMA.

The development of analytical methods for DNAm microarray
research is still accelerating [152, 153]. The IMA package’s
capabilities will be expanded in the future by incorporating fresh
preprocessing and differential analysis methods.

Aclust: A clustering technique that groups nearby methylation
sites in respect to their distance typically inferred from their
correlation and provides a pipeline for methylation data testing as
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outcomes. By creating a smaller number of analytic units, the
clustering is used to both locate coregulated regions of sites and
reduce dimension. This technique can also be used with sparser
sequencing data. Powerful grouping and analysis tools can
determine p-values without the use of resampling methods.

Seqlm: The seqlm MDL framework is a flexible method for
identifying genomic areas. The target regions’ attributes can be
defined using a variety of statistical models. For instance, more
complex linear models can be added to examine more complex
hypotheses, and clustering techniques can be specified to
accomplish unsupervised region discovery. Future directions for
the advancement of this methodology are numerous. Along with
the two sets of data, the existing model may evaluate continuous
variables as well. As a result, seqlm can be used to identify loci
for methylation quantitative traits.

Table 6
Comparative outcomes of different supervised consecutive
clustering tools in terms of elapsed time

Method Speed
DMRcate ++
Bumphunter +
Probe Lasso ++
Comb-p +

“+” and “++” indicate higher elapsed time and low elapsed time for the
given criterion, respectively.

coMethDMR: When DMR analysis is performed on array-based
DNAmethylation data, coMethDMR produces an expandable, reliable,
and accurate result. The entire analytical process has been resolved as an
open-source R package that the scientific community can use for free.
Gomez et al. [150] demonstrated that coMethDMR outperforms
directly testing a genomic region with a continuous phenotype in
terms of power and well-contained false positive rate. With the use
of coMethDMR, epigenetic researchers can extract pertinent
biological observations from vast, intricate datasets on DNAm.

8. Conclusion

DL is an emerging topic used everywhere. Here, we provided an
extensive survey on DL and consecutive clustering in the field of
biomedical and health sciences. Until now, various DL algorithms
and consecutive clustering algorithms (viz., DMR finding algorithms)
have been developed, but for the bioinformatics and biomedical
research specially for the epigenetics/epigenomic study, only a few
review papers have been produced so far. Thus, in this paper, we
provided a comprehensive review article on various DL and
consecutive clustering algorithms (DMR finding algorithms) for
biomedical research (specially, for epigenetics study). To do so,
initially we demonstrated several DL architectures (viz., CNN, AE,
RBM and DBN, RNN, DSN, and LSTM/GRU) along with their
advantages and disadvantages. Thereafter, we described different
categories of consecutive clustering algorithms for epigenetics study
(termed as DMR finding tools), viz., supervised DMR finding
techniques (e.g., DMRcate, Bumphunter, Probe Lasso, and Comb-p)
and unsupervised DMR finding methods (viz., IMA: different index
metrics, Aclust, Seqlm and coMethDMR ) along with their pros and cons.

In the final part of the survey, we provided a summary of various
consecutive clustering algorithms applied to epigenetics study based on
several evaluation metrics such as precision, power, and speed as

collected from literature search. Clustering refers to a group of
unsupervised classification techniques which, generally, only rely on
the available data patterns to infer groups of similar patterns. Among
the many available clustering algorithms, the so-called consecutive
clustering algorithms have been characterized as fast and
straightforward methods which produce better result with high
accuracy as compared to other clustering algorithms. Moreover, our
survey paper is highly useful for the bioinformatics researchers
(specially, epigenetics researchers) to understand where and how to
utilize DL algorithms and consecutive clustering algorithms to fulfill
specific computational biomedical problems. As a future work, we
will develop a new algorithm integrating DL and consecutive
clustering strategies together applied on DNAm data to find DMRs
(consecutive clusters of CpG sites) for any kind of tissue-specific
cancer disease (e.g., breast cancer, kidney cancer, etc.) that will be
benevolent for the bioinformatics researchers to catch and grasp the
new domain of epigenetics.
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