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Abstract: Consecutive clustering is one type of learning method that is built on neural network. It is frequently used in different domains
including biomedical research. It is very useful for consecutive clustering (adjacent clustering). Adjacent clustering is highly used where there
are various specific locations or addresses denoting each individual features in the data that need to be grouped consecutively. One of the useful
consecutive clusterings in the field of biomedical research is differentially methylated region (DMR) finding analysis on various CpG sites
(features). So far, many researches have been carried out on deep learning and consecutive clustering in biomedical domain. But for
epigenetics study, very limited survey papers have been published till now where consecutive clustering has been demonstrated together.
Hence, in this study, we contributed a comprehensive survey on several fundamental categories of consecutive clustering, for example,
convolutional neural network, autoencoder, restricted Boltzmann machines and deep belief network, recurrent neural network, deep
stacking networks, long short-term memory/gated recurrent unit network, etc., along with their applications, advantages, and
disadvantages. Different forms of consecutive clustering algorithms that are covered in the second section (viz., supervised and
unsupervised DMR finding methods) and used for DNA methylation data have been described here along with their advantages,
shortcomings, and overall performance estimation (power, time). Our survey paper provides a latest research work that has been done
for consecutive clustering algorithms for healthcare purposes. All the usages, benefits, and shortcomings along with their performance
evaluation of each algorithm have been elaborated in this paper by which new biomedical researchers can understand and use those tools
and algorithms for their research prospective.

Keywords: deep learning, DNA methylation, consecutive clustering, differentially methylated region (DMR), supervised and unsupervised
DMR finding algorithm, power

1. Introduction

Nowadays, deep learning (DL) is considered to be one of the
most prominent and emerging sub-fields of machine learning. It
makes sense of data like sounds, texts, and photos by employing
multilayered deep neural networks (DNNs) to construct
abstraction from big-size data. The main features of DL are: (1)
components for nonlinear processing with several layers and (2)
each layer presents features of supervised or unsupervised
learning (Dargan et al., 2020). The initial framework for DL was
developed in the 1980s using artificial neural networks (ANNs)
(Picton et al., 2000), but the credibility of DL’s actual effects only

emerged in 2006 (LeCun et al., 2015). Following that, a vast
number of domains have adopted DL like image recognition, drug
discovery, natural language processing (NLP), automatic speech
recognition, and bioinformatics (Cios et al., 2005; Karim
et al., 2020).

Epigenetic procedure transforms expression of gene without
altering the DNA gene’s sequence. In the earlier time era of
1950s, the idea of epigenetic systems like intermediaries of
cellular identity as well as cellular memory arose. Afterward, in
the earlier era of 1970s, DNA methylation (DNAm) was
suggested to be a transcriptional regulatory procedure that would
be managed by cell division. Through associating an epigenetic
event from DNAm, the designation of epigenetics turns into a
molecular one. DNAm takes place while a methyl group is joined
to the 5th carbon of cytosine residual which is combined through
a phosphate to a guanine nucleotide (a CpG dinucleotide) through
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DNA methyl transfers (DNMT1, DNMT3A, and DNMT3B)
(Christensen et al., 2011). DNAm varies with the position of the
CpG site. CpG sites does not hold by many of the genome.
Anyway, collection of the CpG sites, defined “CpG islands,” exist
as well as generally spread the house-keeping genes promoters
(Bibikova et al., 2011).

DNAm is a useful cellular procedurewhich is related to procedure
such as X-chromosome deactivate as well as genomic marking. This
has been associated with various diseases like cancer, schizophrenia,
and diabetes (Portela & Esteller, 2010; Rakyan et al., 2011). In the
last few years, the purpose of methylation in several diseases has
acquired from the research community to significant interest. One of
the special consecutive clusterings or adjacent clusterings used for
biomedical research is differentially methylated region (DMR)
finding (Peters et al., 2015). DMR finding has been pursued by two-
step process: first, differentially methylated CpGs (DMCs) are
identified by analogy of alignment results between samples; then,
DMCs at neighbor positions are arranged as neighboring DMRs by
specific distance criteria.

Furthermore, as compared to another overview works on the
consecutive clustering (Mallik et al., 2019; Peters et al., 2015),

our effort takes an extensive view of all sector and applications to
which consecutive clustering has been applied. Specially, other
works concentrate on the advancements as well as importance of a
unique learning technique or modality, or to enhancements in a
unique application (Ladd-Acosta et al., 2014). Instead, in this
paper, we basically observed a comprehensive interpretation of
consecutive clustering applications and techniques toward
highlight region, in which consecutive clustering still creates
remarkable performance.

The remainder of this paper is as follows. We provide a quick
overview of DL in Section 2. We describe the fundamentals of
DNAm and DMR in Section 3 of this paper. In Section 4, we
categorize various methods for identifying DMRs including
different supervised and unsupervised DMR finding tools. In
Section 5, we present comparative study of supervised and
unsupervised consecutive clustering methods depending upon
literature search and evidence. Finally, we offer our final
thoughts and the potential future direction of this research in
Section 6.

The flowchart of the survey paper is depicted in Figure 1.

Figure 1
The flowchart of Deep Learning Algorithms and Consecutive Clusterings
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2. Overview of DL

DL is a large field of research that applies to both machine
learning and artificial intelligence. Due to the following traits, DL
mechanisms have reached their pinnacle of success in a wide
range of application fields. New areas including imbalance
problems, human activity recognition, transfer learning, and
decision fusion class have achieved advancement in the accuracy
and the performance. DL has impressive tools in different areas
that strongly built on the neural networks with the inclusion of
greater than two layers that could make use of big datasets
efficiently and effectively. It supports pure learning ability and
learns feature extraction techniques from the optimized outcomes,
data, to fix highly computational tasks from top human ability.
DL networks are built on the nature of the network structure, data
representation, and activation methods, illustrate very different
features in a less parameters, predictions performance could be
greatly improved, and support secure and strong generalization
efficiency with less of a requirement of training dataset. It is also
stable than machine learning model in feature representation. DL
networks do not depend on earlier data as well as knowledge with
highest-level abstraction; these networks could derive complex
features and better detection capacity techniques in the larger data
era. We will now discuss the six fundamental types of DL
architectures as well as associated research in many fields. A brief
information of different DL methods are given on Table 1.

2.1. Convolutional neural network

Convolutional neural network (CNN) is a multilayered neural
network based on the visual brain of animals. LeCun et al. (2015)
suggested the first CNN. Document analysis, picture recognition,
and face recognition are the three main application areas of CNN.

As the architecture (Dargan et al., 2020), early layers are used to
analyze features like edges, while subsequent layers are used to
combine features to create high level properties of the input that
the classification is attempting to categorize. Pooling will then be
done to lessen the extension of the acquired features. The
following stage involves using convolution and then pooling,
which are fed into a multilayer perceptron with only linked layers.
The final layer, known as an output layer, is in charge of
identifying the features of the image using backpropagation
methods. CNN’s deep processing layers, convolutional layer,
pooling, and fully connected classification layer recognize a
variety of applications, including face recognition, video
identification, and distinct NLP tasks. Because of CNN’s special
features, including shared weights and local connectivity, the
system operates more effectively and efficiently. Compared to
other DL algorithms, it works substantially better. In comparison
to other architectures, it is the one that is used the most.

2.1.1. CNN used for document analysis
Oleveira et al. (2017) proposed document image layout analysis

which uses a process that starts with the segmentation of document
pictures into content blocks and ends with categorization. Each step
is explained as follows.

Segmenting each document image page into its content blocks
was the first stage completed. To locate locations with a high
likelihood of having information, single pages are converted into
grayscale images and subsequently improved using the running
length technique described in Wong et al. (1982). Both
horizontally and vertically, the method is applied, and the
resulting binary pictures are joined with the AND operator. The

generated binary picture is then subjected to two applications of a
3 × 3 dilation procedure to create content blobs. Finally, the
largest connected component in the binary image is identified as a
block of content by iteratively locating it. Up until no more
related components are found in the image, the discovery process
is repeated. A CNN model is utilized to categorize the document
image’s blocks of content into three different classes: text, tables,
and images.

An architecture is constructed for the bidimensional baseline
that takes a bidimensional image tile as input and creates it using
a series of three 2D convolutional layers with 50 filters and ReLu
(Nair et al., 2010) activation. Each bidimensional convolutional
layer in this model is followed by a MaxPooling layer (Giusti
et al., 2013) with a 2 pixel kernel and a 0.1 dropout (Srivastava
et al., 2014) for regularization. For improved model
generalization, a 0.3 dropout is also recommended between the
two fully connected layers.

In Oleveira et al. (2017), a one-dimensional (1D) CNN
architecture is suggested that uses picture tiles’ vertical and
horizontal projections to distinguish between various content
blocks. For such projections, text, table, and image tiles have very
distinctive and highly discriminative signatures. Due to text lines,
text tiles typically have a roughly constant-signal-like form in
the horizontal projection and a squared-signal-like shape in the
vertical projection. Due to the structure of the columns, table tiles
also have a roughly squared-signal form in the horizontal
projection and a squared-signal shape in the vertical projection.
In both horizontal and vertical projections, figures do not display
any distinctive patterns. Two 1D arrays corresponding to the
horizontal and vertical projections of a certain image tile are
provided as input to the 1D CNN architecture. Each projection is
created using a separate convolutional track that uses three 1D
convolutional layers with 50 filters each and ReLu activation. The
outputs from each track are combined and sent to a fully
connected layer with 50 nodes connected to a fully connected
layer with three nodes using softmax activation for categorical
categorization of three classes. Each 1D convolutional layer in
this model is followed by a MaxPooling layer for regularization,
with a kernel size of 2 pixels and a 0.1 dropout. For greater
generalization, there is a 0.3 dropout between the two fully
connected layers, just like in the bidimensional model. The 3 × 1
pixel convolutional kernels were employed throughout all trials.

2.1.2. CNN used for image recognition
The automatic extraction, analysis, and comprehension of

significant information from images are the subject of computer
vision, a multidisciplinary topic of machine learning and artificial
intelligence. With recent technological advancements, digital
information, particularly in the form of photographs and movies,
is rapidly expanding. Recognizing and analyzing images are a key
challenge for computers in the field of computer vision when
compared to humans. So, with human assistance, the classification
of photographs will be carried out. The real-time picture datasets
(MNIST digit images) are used by humans for training and testing
purposes. The MNIST dataset provided as input is produced by
the grayscale images. In the beginning, a classifier will be trained
by a human to look for the necessary pattern in the images. Using
the pattern that had been discovered in earlier stages, the images
were then categorized. Regarding the patterns found, the
outcomes will vary, and they entirely depend on the classification
expert’s knowledge. Krizhevsky et al. (2012) employ different
layers in a CNN to extract new features from picture datasets and
have presented a DL architecture for image categorization.
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In Ramprasath et al. (2018), grayscale images of 28 × 28 pixels were
used as input images. Thirty-two filters were applied to the input
images in CCN’s first layer, which resulted in 32 feature maps
with a combined size of 26 × 26. The second layer uses 64 filters,
each measuring 3 × 3, to create 64 feature maps, each measuring
24 × 24. By utilizing a sub-sampling window of size 2 × 2, the
third layer, MaxPooling layer, is utilized to down sample the
pictures to 12 × 12. Layer 4 is a fully connected layer with 128
neurons that classifies images using the sigmoid activation
function to create the final image. In typical neural networks, each
hidden layer is made up of a group of neurons that are
individually connected to the corresponding hidden layer. The
final layer of the network is completely connected and used to
categorize images. Basically, the first hidden layer would have 28
× 28 × 1= 784 weights if the input image was 28 × 28 × 1
(28 wide, 28 high, and 1 color channel). This number of weights
appears still attainable. Longer images, 400 × 400 × 3, necessitate
400 × 400 × 3= 4,80,000 weights; nevertheless, this completely
connected layer does not scale very well. CNNs differ from
conventional neural networks in that they accept input in the form
of images of various sizes. Neurons are arranged in three
dimensions—width, height, and depth—in the layers of a CNN.
The word “depth” refers to the third dimension of an activation
volume rather than the depth of a complete neural network, which
can refer to the network’s entire number of layers.

2.2. Autoencoder

One of the most popular unsupervised machine learning
algorithms on the ANN is the autoencoder (AE) (Wang et al.,
2016). A trained AE will redesign the output close to the original
input. The input layer, output layer, and hidden layer—which
typically has a dimension less than the input layer—make up an
AE. An AE’s ability to find data structures by reducing data using
nonlinear transformations is one of its advantages over principle
component analysis (Manning et al., 2017). Backpropagation is
used in the approach, which is based on the encoder decoder
paradigm, and the goal value is set to equal the input.
To reproduce the original data, the input is first encoded into a
lower-dimensional layer (decoder). After the layer has been
trained, the output is passed on to the following layer to create a
highly nonlinear dependence model on the input. The goal of this
process is to reduce the size of the input data. The AE’s middle-
layer encoded layer is considered as an extracted feature for
classification.

2.2.1. AE used for feature extraction
In Kunang et al. (2018), preprocessing feature selection from a

pool of 42 accessible features is the first step in this feature extraction
procedure. One hot encoding is employed in this investigation.
Another study used ordinal coding as a technique for variable
encoding (Potdar et al., 2017). This method was selected because
it produces better results than ordinal coding (Potluri et al., 2016).
Here, all features even non-numerical ones are taken care of. Non-
numerical features data in the dataset are transformed to numerical
data. The variable on the map generates a binary dummy variable
for each particular level. Scaling all the features is necessary so
that some features do not outweigh the others. Feature scaling is
the name of this process. Standardization, scaling, and
normalization are three other extensively used alternatives to
feature scaling. Z score normalization is used here. The majority
of machine learning algorithms employ this method (such as
SVM, logistic regression, and neural network) (Harasimowicz,

2014). By calculating each feature’s mean and standard deviation,
normalized values are calculated. Dimension reduction using the
AE model comes next. The AE model employed here uses a
straightforward AE with 3 layers and 1 hidden layer. There are
120 input neurons used in the AE approach. The X transformation
is carried out in the hidden layer. The features that were extracted
based on the number of neurons are what output in the hidden
layer is. The smaller dimensions of the features would be the data
that have been extracted. Training and testing can be used to
prepare the output.

2.3. Restricted Boltzmann machines and deep
belief network

The restricted Boltzmann machine (RBM) (Fischer et al., 2012)
is an undirected graphical structure that consists of a visible layer, a
hidden layer, and a balanced link between the levels. The hidden
layer in RBM is not connected to an input in any way. The deep
belief network (DBN) shows a multilayer network architecture
that creates a special training technique with numerous hidden
levels. Every connected layer pair is a RBM, often known as a
stack of RBMs. Basic sensory information is provided by the
input layer, and an abstract description of this information is
provided by the hidden layer. The output layer’s sole purpose is
to carry out network classification. Unsupervised pretraining and
supervised fine-tuning are the two steps in the training process.
RBM can regenerate its input in unsupervised pretraining starting
from the first hidden layer. Similar to the first RBM, the second
one can be performed by using the outputs from the first hidden
layer as the input and visible layer for the RBM. Every layer has
prior training or experience. After the pretraining is finished, the
supervised fine-tuning process starts. In this stage, the nodes that
represent the output are identified with values or labels to aid in
the learning process, and full network training is then carried out
using the backpropagation algorithm or gradient descent learning.

2.3.1. RBM used for classification
In Koziol et al. (2014), based on serum samples from newly

diagnosed hepatocellular carcinoma (HCC) patients and healthy
controls, the significance of an enlarged panel of 12 antibody
profiles for cancer diagnosis of HCC is explored. Here, it is also
applied the approach of RBMs (Fischer et al., 2014; Hinton,
2002) to the classification problem.

2.3.2. DBN used for image compression
DBNs (Lokare et al., 2015) can be thought of as a series of

layers, each of which is made up of RBMs. The network is
trained in this case layer by layer, with each layer attempting to
determine how the input is distributed via unsupervised learning.
Each layer functions as a hidden layer for the one that comes
before it and as a visible layer for the layer that follows it, acting
as an input for the subsequent layer. Each layer’s nodes are linked
to those in the one below them, resulting in a fully bipartite graph.
For image recognition and image creation, DBNs are used. They
can reduce the number of dimensions if the highest layer’s count
is low. DBNs do not perform well with neural networks that
include stochastic or randomly initialized variables, but they are
well suited for unsupervised learning. In order for the DBNs to
adapt to the characteristics of the images/data that they are
supposed to extract, they must go through a pre-learning phase.
A method known as greedy learning was used to speed up this
pre-learning stage. The DNN used in this application was trained
using the MNIST database, an open-source dataset comprising
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60,000 images. The fundamental idea behind greedy learning is to
train each layer separately so that it can develop its input through
a number of backpropagations. As a result, each layer’s variables
are changed in a certain way. Then, throughout the duration of the
set, these variables are maintained frozen. The DBNs can be used
to compress any image included in the dataset after they have
been trained, offering flexibility in terms of compression ratio,
compression time, and compression loss. In a DNN, each layer is
made up of nodes, which are often computing units similar to
brain neurons and which light up when a certain input flows
through them. These nodes combine input data with weights or
coefficients that, when multiplied with the input data, can amplify
or corrupt the input. The sums of these products are then
transferred through a node activation mechanism. The output of
each layer then functions as the subsequent layer’s input. Here,
the weights of the edges create a weight matrix that is used to
build the original raw data after the first DBN has compressed it.
A deep autoencoder combines two DBNs—symmetrical DBNs
with aggressive shallow layers for the decoding half and
progressive shallow layers for the encoding half—into one. The
frames of DBNs are layers made up of closed Boltzmann
machines. They have a pair of encoders and decoders. Encoders
in this instance take raw data as input and extract features from it.
The decoder uses these extracted characteristics as input and
reconstructs the data back to the original form as output. The
encoder and decoder are built using numerous layers of RBMs.
The training procedure happens in a layer by layer manner. Until
the final criteria are satisfied, this training and feeding method
is used.

2.4. Recurrent neural network

The fundamental network architecture is recurrent neural
network (RNN) (Lamb et al., 2016) which includes a wide range
of architecture. Recurrent networks are advantageous because they
have connections that, in contrast to complete feed-forward
connections, can be used as feedback into earlier levels. It
organizes the issues chronologically and captures the past memory
of input. With conventional backpropagation, also known as
backpropagation through time (BPTT) (Werbos et al., 1990), these
networks can be improved, trained, and expanded.

2.4.1. RNN used for speech recognition
Speech recognition aims to decipher the linguistic message in

the form of text from the speech signal by analyzing the speech
signal’s sequence of sound units. In Venkateswarlu et al. (2011),
at input acquisition stage, following the capturing of the speech
using a microphone .wav files are used to store data. With the use
of the Praat object software program, the speech data are
converted to an analog signal. The signal is then converted to a
mono voice signal using a 11 kHz frequency.

The acoustic speech signal is still there as air pressure changes
during the front-end processing stage. The microphone converts
these pressure changes into a pressure-related electric current.
These pressure changes are converted by the ear into a series of
nerve impulses that are sent to the brain. The choice of features is
very helpful in the work of voice recognition. To perform well for
recognition, good features are required. The fundamental issue
with voice recognition is identifying the right features for the
purpose and devising a strategy to extract these features from the
speech signal.

A database with 18 characters drawn from 4 primary sets and
said 10 times by 6 speakers, including 3 men and 3 women of

varying ages, serves as the source of data for the speech utterance
(data collecting) step. The speaker-dependent data will be used
during the training and testing phases. In speaker-dependent form,
the network is trained using the first four utterances of each of the
18 characters spoken by each speaker, and it is tested using the
remaining utterances. Therefore, the speech database contains
1080 utterances that may be used for testing as well as 1080
utterances that can be used for training the network.

In the preprocessing stage, the speech signals are captured using
high-quality recording equipment in a low-noise setting and 11 kHz
samples are used for the signals. When the input data are surrounded
by quiet, isolated word recognition can get reasonable results.

In sampling stage, 150 samples are chosen at a sampling rate of
11 kHz, which is sufficient to represent all speech sounds.

In the windowing stage, we window each frame to improve the
correlation of the Mel-frequency cepstral coefficients (MFCCs) in
order to reduce the discontinuity of a signal at the start and end of
each frame. MFCCs are frequently employed as features in speech
recognition systems, such as those that can automatically identify
telephone digits as they are spoken. Measures are taken by the
MFCC between successive frames (Rabiner et al., 1993). The
signal should be reduced to zero or close to zero to minimize
discontinuities at the ends of speech segments and so lessen the
mismatch. The Praat object software tool selects a window length
of 0.015 for the 12 Mel-frequency coefficients that are provided
and for time 0.005 seconds.

The feature extraction stage entails assessing representations of
the voice signal that are sensitive to linguistic content yet broad to
acoustic change. When using a bank of filters in the frequency
domain, the Mel-filter is used to detect band filtering. On a
curvilinear frequency scale, the filter functions employed have a
triangle form. The lower frequency, the center frequency, and the
higher frequency are the three factors that influence the filter
function. The separations between the lower and center
frequencies and the higher and center frequencies on a Mel scale
are equal.

RNN architecture has actually been utilized for visual pattern
recognition; however in this case, BPTT is being used as the
learning method to use RNN architecture for speech recognition,
specifically for English speech recognition. By applying the
backpropagation method, it has also been shown that this
architecture performs more accurately in phoneme recognition
than multilayer perceptron (Koizumi et al., 1996). The BPTT
algorithm relies on folding the network over time to convert it
from a feedback system to a completely feed-forward system.
Since the feedback connections must be adjusted so that they are
feed-forward connections from one network to the following
network if the network is to provide a signal that is time steps
long. If the network is a single, substantial feed-forward network,
the updated weights can then be treated as shared weights during
training.

2.5. Deep stacking networks

Deep convex networks is another name for deep stacking
networks (DSNs) (Deng et al., 2012; Deng & Yu, 2011).
Compared to other traditional DL frameworks, DSN is unique. It
is referred to as deep because it contains numerous deep separate
networks, each of which has its own hidden layers. The DSN
believes that training involves a variety of distinct unique training
challenges rather than being a single, isolated issue. The DSN is
made up of a fusion of modules that are situated in the
architecture and are a component of the network. The DSN has
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three components that each performs a specific task. A single hidden
zone, an output zone, and an input zone are present in every module
of the model. The input to each module is taken from the outputs of
the preceding layer and the real input vector, with the subroutines
stacked one on top of the other. Every module in DSN is trained
separately to ensure its effectiveness and efficiency as well as its
capacity for cooperative work. Each module, rather than the entire
network, uses the supervised method of training for
backpropagation. DSNs are a relevant and desirable network
design since they perform better than normal DBNs.

2.5.1. DSN used for information retrieval
In Deng et al. (2013), compared to voice and image

classification tasks, regularization in DSN learning is found to be
considerably more beneficial for information retrieval. The low
dimensionality of the output vectors associated with each module
in the DSN causes problems in information retrieval. Stacking
information from a lower module of the DSN to its upper module
is reduced by the low dimensionality, as opposed to speech tasks
where there are typically many more classes that need to be
detected. Here, significant DSN studies are carried out on a
sponsored web information retrieval job. Commercial search
engines provide additional sponsored results in addition to the
organic web search results for the user’s query. Advertisers who
place bids to have their advertising appear on the search result
pages build a database from which the sponsored results are
picked. The process of finding relevant adverts for a query is the
same as regular online search. Here, a DSN model of
advertisement relevancy is displayed to help improve the
sponsored search system. Given a search query, this model is
trained to distinguish between relevant and irrelevant adverts and
to provide an ad’s relevance score.

The baseline for this DSN-based IR system is LambdaRank
(Burges et al., 2006). These algorithms produce their targets using
annotated data that have been judged by experts to be relevant or
irrelevant for each query-ad pair. Text features and user click
features make up the two main categories of the ranking features
utilized in network models. Here, a set of text features have been
suggested in Hillard et al. (2011) and Hillard et al. (2010). They
also include features for query length (the amount of characters
and words) and three sets of features for text matching, which
compare the query text to each of the three text streams of an
advertisement. These two categories of user click attributes were
both extracted from click through logs. Click through features are
the first category. In Gao et al. (2009), a click stream is generated
for each advertisement, consisting of a list of searches with clicks
on the advertisement. A set of 30 features are then extracted by
comparing the click stream to the input query. A set of translation
probabilities between query and ad based on translation models
read on the query-ad pairings obtained from click through logs is
the second type of click feature employed here (Gao, 2010).

2.6. Long short-term memory/gated recurrent unit
network

Hochreiter and Schimdhuber worked to describe the long short-
term memory (LSTM) (Hochreiter et al., 1997), which is used in a
variety of contexts. IBM chose LSTMs that are primarily
employed in voice recognition. A memory component known as a
cell that can retain its value for a sufficient amount of time and
considers it as a function of its input is benefited by the LSTM.
This helps the unit remember the most recent calculation’s result.
Three ports, referred to as gates, make up a memory unit or cell.

These ports control the movement of information into and out of
the cell. The gate or input port regulates how new data enter the
memory. The second gate, known as the forgets port, is used
when an existing piece of information is forgotten and aids the
cell in gathering the fresh information. The output gate’s job is to
once more control the information that is contained in the cell and
used as the cell’s output. The cell’s weight can be used for
controlling purposes. There is a need for the training technique,
known as BPTT, which increases weight. The optimization
process of the method requires network output error. The update
gate and reset gate are two gates that are combined to form the
gated recurrent unit (GRU) (Zhou et al., 2016). An update gate’s
purpose is to alert the user when the previous cell’s contents are
needed for maintenance. The shifting of previous cell contents
with fresh input is defined by the reset gate. By initializing the
reset gate to 1 and the update gate to 0, the GRU simulates a
typical RNN. Compared to the LSTM, the GRU model’s
operational functionality is simple. It is thought to be more
effective in terms of execution and can become skilled quickly.

2.6.1. LSTM used for handwriting recognition
In Carbune et al. (2018), the architecture is comparable to that

which is frequently used for acoustic designing in voice recognition
(Sainath et al., 2015), thus, it is referred to as a CLDNN
(convolutions, LSTMs, and DNNs). The model takes a time series
of length T as input and runs it through several bidirectional
LSTM layers (Schuster et al., 1997) which interpreted the
character structure. After passing the results of the final LSTM
layer through a softmax layer, a series of probability distributions
over characters are produced at each time step. The softmax
outputs are combined with character-based language models,
word-based language models, and knowledge of language-specific
characters for connectionist temporal classification decoding using
beam search (Keysers et al., 2017).

LSTMs have grown to be one of the most popular RNN cells
due to their simplicity in training and improved performance
(Jozefowicz et al., 2015). The input sequence is processed both
forward and backward in this experiment, and the output states of
each layer are combined before being fed to the next layer using
bidirectional LSTMs. For each script, the precise number of layers
and nodes is determined empirically. A softmax layer receives the
output of the LSTM layers at each time step to determine a
probability distribution across the script’s potential characters. The
prior information relevant to a language is combined with the
softmax layer logits. A weight (referred to as a “decoder weight”
in the following) is captured for each of these extra information
sources, and they are linearly combined. The combination that
was learned is used as described in Graves et al. (2006, 2014) to
model the beam search during decoding. It is possible to train one
recognition model per script using a combination of different
knowledge sources and then use that model to deliver numerous
languages.

2.6.2. GRU used for speech recognition
The model proposed in Ravanelli et al. (2017) is a revised

version of the GRUs. The main modifications concern reset gate
and ReLU activations. When there are several discontinuities in
the sequence, the reset gate can be crucial. When switching from
one text to another that is not semantically relevant, this may
happen in language design. In these circumstances, it is wise to
clear the stored memory to avoid making a choice that is
influenced by an unrelated past. Yet, for some tasks such
functionality might not be important. For instance, in Zhou et al.
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(2016) discarding reset gate vector from the GRU model has led to a
single-gate architecture called minimal gated recurrent unit
(M-GRU), which accomplishes a performance comparable to that
achieved by standard GRUs in handwritten digit recognition along
with in a sentiment classification job. A voice signal is, in fact, a
sequence that develops quite slowly (the features are essentially
calculated every 10 ms), in which the prior history can almost
never be unnecessary. It can be dangerous to completely erase the
past even when there are stable discontinuities, such as those that
can be seen at the border between a vowel and a fricative. The
first modification to standard GRUs proposed in this work thus
relates the elimination of the reset gate, which benefits in reducing
the redundancy in the gating mechanism. The main benefits of
this intervention are in the improved computational efficiency,
which is accomplished with the help of the few parameters
required to complete the function of a typical GRU.

In the state update equations, the second modification involves restoring
the conventional hyperbolic tangent with ReLU activations. Tanh
activations are critical since their saturation minimizes the training
process and causes gradient issues. Due to numerical instabilities
caused by the unbounded ReLU functions utilized over large time
series, RNNs did not previously embrace ReLU-based neurons, which
have proven helpful in resolving such restrictions.

Batch normalization (Ioffe et al., 2015) has just been put forth in the
machine learning field and proposes a solution to the so-called
internal covariate shift problem by normalizing the mean and
variance of each layer’s pre-activations for each training set. Such
a procedure has proven to be crucial for improving the training
process as well as system performance. To RNNs, batch
normalization can be applied in a variety of ways. The
normalization procedure is improved to include recurrent
connections in Cooijmans et al. (2016), while authors in Laurent
et al. (2016) proposed to use it just for feed-forward connections.
It is also observed that coupling the proposed model with batch-
normalization encourages in bypassing the numerical issues that
often appear when dealing with ReLU RNNs used for long-time
sequences. Batch normalization essentially bounds the values of
the ReLU neurons by rescaling the neuron pre-activations. This
makes it easier for the network to profit from the notable
advantages of such activations.

3. DL in the Biomedical Applications

An extremely diverse study area with several applications,
medical specializations, and related disorders is nourished by the

biomedical domain. Physicians are quite knowledgeable about and
skilled in some of these illnesses, but not all of them. The
biomedical data used by medical profession al nowadays are
highly varied due to scientific and technical advancements and
include a variety of biological factors, clinical evaluations and
metrics, and imaging modalities. Biomedical data are typically
unbalanced (He & Garcia, 2009; Yu et al., 2018) and
nonstationary (Ditzler et al., 2015), being defined by a high
complexity (He & Garcia, 2009). This is due to the abundance of
these data as well as the completeness of some uncommon
conditions. Machine learning offers a huge opportunity in this
situation to help doctors, biologists, and medical authorities in
utilizing and significantly improving big medical data analysis;
lower the risk of medical errors; and produce a better
harmonization of the diagnosis and prognosis protocols. DL is one
of the emerging machine learning tools in various domains such
as image analysis and defect diagnosis. All medical levels are
covered by the DL applications in the biomedical sectors, starting
with genomic applications like gene expression and ending with
public medical health management like forecasting demography
data or infectious disease epidemics.

The first phase of biomedical research encompasses all studies,
ranging from protein structure prediction and interactions with other
proteins and medications to genome sequencing and gene
expression. The application of DNNs in this area of research is
expanding quickly. The term “Omics” is frequently used in the
literature to refer to this field of study, while others have included
bioinformatics (Raví et al., 2017) and biomedicine (Mamoshina
et al., 2016). Aiming to explore and comprehend biological
processes at a molecular level to forecast and prevent diseases by
involving patients in the development of more effective and
individualized treatment, the Omics covers data from genetics and
Omics (Mahmud et al., 2018). Protein–protein interactions
(Bagchi A, 2018), the prediction of human drug targets and their
interactions (Nath et al., 2018), and the prediction of protein
function (Shehu et al., 2016) all play a significant role in the field
of genomics.

The examination of the cell (cytopathology) and the tissue
comes next following the DNA and protein levels
(histopathology). Histopathology and cytopathology are frequently
utilized in the diagnosis of inflammatory disorders, cancer, and
several infectious diseases. Under a microscope, the histological
and cytopathological slides, which are often obtained via fine-
needle aspiration biopsies, are inspected. The primary study area
for DL in biomedical applications is bioimaging, as it is known in

Table 1
Different deep learning methods with brief information

Name of work
Type of deep
learning method Advantage Disadvantage

CNN-based document analysis
by Oleveira et al. (2017)

CNN Applicable for image Not used for other data rather than image

Image classification by Ramprasath et al. (2018) CNN Applicable for image Not used for other data rather than image
Automatic feature extraction by Kunang et al. (2018) AE Applicable for text data Not used for other data rather than text
Classification of hepatocellular carcinoma
by Koziol et al. (2014)

RBM Applicable for text data Not used for other data rather than text

Image compression by Lokare et al. (2015) DBN Applicable for image Not used for other data rather than image
Speech recognition by Venkateswarlu et al. (2011) RNN Used for audio data Not applicable for other data rather than audio
Information retrieval by Deng et al. (2013) DSN Applicable for text data Not used for other data rather than text
Handwriting recognition by Carbune et al. (2018) LSTM Applicable for image Not used for other data rather than image
Speech recognition by Ravanelli et al. (2017) GRU Used for audio data Not used for other data rather than audio
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the literature. Medical imaging studies human organs by examining
many types of imaging (Mahmud et al., 2018). Today, there are
major medical high-resolution image acquisition systems
available, including parallel MRI, multi-slice computed
tomography (CT), ultrasound (US) transducer technology, digital
positron emission tomography (PET), and 2D/3D X-ray. The
majority of DL applications in bio and medical imaging deal with
the interpretation and analysis of computer-aided images
(de Bruijne, 2016; Kergosien & Racoceanu, 2017). A digital
pathology and image analysis with a focus on research and
biomarker identification (Hamilton et al., 2014) and evaluating
histopathology images for the detection of breast cancer (Chen
et al., 2017; Veta et al., 2014) are two examples.

The brain and bodymachine interfaces (BBMIs), which include
electrical impulses produced by the brain and muscles and obtained
using the proper sensors, are the next level of biomedical applications
(Mahmud et al., 2018). Four components make up a BBMI system: a
control system, an amplifier, a filter, and a sensing device (Major &
Conrad, 2014). To provide a digital interface between the brain and
the computer, the system for the brain interface decodes and analyzes
signals from a complicated brain mechanism (Kerous & Liarokapis,
2016). The brain signals represent the conscious or unconscious
neuronal actions brought about by a person’s current activity.
Recently, a variety of signal acquisition methods have been
developed (Abdulkader et al., 2015): invasive methods requiring
the implantation of electrodes beneath the scalp (such as
electrocorticography (ECoG)) and non-invasive methods that do
not need placing foreign objects within the brains of subjects.
There are numerous assessment methods available, including
functional magnetic resonance imaging, functional near-infrared
spectroscopy, electroencephalography (EEG), and
magnetoencephalography. The second stage of DL applied to
BMIs follows the brain–machine interface and focuses on
anomaly detection and illness diagnosis, such as the recognition
of coronary artery disease by ECG readings (Tan et al., 2018),
automatic myocardial infarction diagnosis using ECG signals
(Acharya et al., 2017), data from EEG to identify seizures (Turner
et al., 2017), and EEG diagnosis of Alzheimer’s disease (Zhao &
He, 2015).

Analysis of extensive medical data is the goal of public and
medical health management (Pm-HM), which aims to improve
healthcare choices for the benefit of humanity. One of Pm-HM’s
challenges in the coming years will be analyzing the spread of
disease in cases of epidemics and pandemics in relation to social
behavior and environmental factors (Ong et al., 2016). Electronic
health records, one of the most important and comprehensive
sources of patient data, contain information on a patient’s medical
history, including information on medications and treatment plans
as well as information on allergies, radiology images, and sensors
multivariate time series (such as EEG). In-depth learning in
healthcare decision-making (Liang et al., 2014), knowledge-
distillation approach development (Che et al., 2015), temporal
pattern discovery over Rochester epidemiology project data
(Mehrabi et al., 2015), or diagnosing given multivariate pediatric
intensive care unit time series (Lipton et al., 2015) are all made
possible by the analysis of such clinical data against temporal
dimensions. Modeling lifestyle disorders like obesity in relation to
geographic locations is another aspect of PM-HM. It is now
possible to monitor public health issues like contagious intestinal
infections (Zou et al., 2016) or regional obesity via social media,

where users’ lives and social interactions are publicly disclosed
online (Phan et al., 2015). In Garimella et al. (2016), geo-tagged
images from Instagram are used to study the lifestyle diseases,
such as obesity, drinking, or smoking. Zhao et al. (2015) created
the social media nested epidemic simulation (SimNest) using
online semi-supervised DL. Das & Das (2020a, 2020b), proposed
how Parkinson’s disease is detected from hand-drawn images
using DL. Das & Das (2021) also proposed how breast cancer is
detected from mammogram images using DL.

4. Rising Architectures: The Generative
Adversarial Networks

Generative adversarial networks (GANs) are one of the newest
topologies used in biomedical applications. Without heavily
annotated training data, GANs offer a method of data
augmentation to expand the deep representations. A GAN, first
proposed in 2014 by Goodfellow et al. (2014), consists of two
deep networks: a discriminator and a generator. Finding the
parameters of a discriminator and a generator is necessary for
training a GAN, with the discriminator’s goal being to optimize
classification accuracy and the generator’s goal being to
completely puzzle the discriminator (Creswell et al., 2018). Only
one of the two networks is affected by the parameters update
during the training phase. The second one maintains a freeze on
its own parameters.

Recently, GANs have been used in all biomedical fields. For
example, Li et al. (2017) used Omics to model a protein, and they
viewed the loop modeling problem as an image in painting
problem where the generative network had to accurately estimate
the missing area and capture the context of the loop region.

In the BBMI applications, such as cardiac ECG applications,
Dhamala et al. (2018) employed a unique idea to estimate tissue
excitability in a cardiac electrophysiological model by embedding
a generative variational autoencoder within the objective function
of Bayesian optimization.

The majority of GANs research focuses on applications in
medical imaging. Enhancing image quality, reconstructing images,
creating created images, registering images, and segmenting
images are the key goals. Enhancing image quality is the GANs’
primary goal in medical imaging. To reduce the metal artifacts in
CT ear pictures of cochlear implant receivers (CIs) in Wang et al.
(2018), a conditional GAN is utilized to distinguish between the
low-dose PET images in Wang et al. (2018) and the full-dose
PET images of good quality.

Medical image segmentation also employs GANs. For 3D left
ventricle segmentation using 3D echocardiography, a unique real-
time voxel-to-voxel conditional generative adversarial net is
applied in Fichtinger et al. (2018). Zhao et al. (2018) employed a
cascaded GAN with deep-supervision discriminators to
automatically segment bony structures. For reliable segmentation
of several HEp-2 datasets, a novel transfer-learning architecture
utilizing GANs is proposed in Li & Shen (2018).

Giger et al. (2018) created a conditional GAN that was trained to
recognize the relationship between temporally related ultrasound and
4D MRI navigator images in order to predict the respiratory motion
for trackingmovable malignancies in the thorax and abdomen during
radiotherapy.

Table 2 illustrates the recent published papers of DL in the
biomedical applications.
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5. Basics of DNAm and DMR

DNAm (Riggs, 1975) is commonly used epigenetic
mechanisms and balanced genetic attributes which cannot be
illustrated by DNA sequences. DNAm is a procedure where a
methyl group is appended to DNA nucleotides. DNAm is an
epigenetic approach (Nanney, 1958) that modifies gene expression
and changes the function of genes by adding a methyl (CH3)
group to DNA. The methyl group is added to the cytosine ring’s
fifth carbon, resulting in 5-methylcytosine, which is a common
DNA modification process (5-mC) (Okano et al., 1998). DNAm
essentially behaves to decrease gene transcription (Maulik et al.,
2015; Xin et al., 2016) while found in a gene promoter. Whole-
genome bisulfite sequencing is a crucial benchmark for
determining methylation status (WGBS). However, the high price
ofWGBS restricts its use in significant epidemiological applications.

The majority of epigenome-wide association studies (EWASs)
conducted today use array-based technologies, which provide a full,
affordable, and efficient replacement. The MethylationEPIC
BeadChip (Infinium) microarray (850K) was created at this time
(Moran et al., 2016). In addition to the additional 333 265 probes
targeting sites in regulatory areas already discovered by the
ENCODE (ENCODE Project Consortium, 2012; Siggens &
Ekwall, 2014) and FANTOM5 (Lizio et al., 2015) programs, this
enhanced array includes more than 90% of the 450K array probes.

Currently, it has been observed that adjacent epigenetic regions
with variable levels of methylation (DMRs) are associated with
various disorders (De Jager et al., 2014; Duan et al., 2018; Omura
& Goggins, 2009). Additionally, hypermethylation of candidate
gene promoter region aids in the development of neoplasms and
contributes to the carcinogenesis of colon cancer (Lao & Grady,
2011). In postmortem brain cells from patients with autism
spectrum disorder, Ladd-Acosta et al. (2014) identified and cloned
three genomic sites with significant DNA reversal in neuro-
developmental disorders. The vast histocompatibility complex
region has two clusters whose differential methylation likely
resolves the hereditary hazard for rheumatoid arthritis, according
to Liu et al. (2013).

The different tolls have been created for the study of DMRs.
There are two types of DMR finding techniques: supervised and
unsupervised approaches. The unsupervised techniques discover
each genomic region for organization with phenotypic information
after organizing the CpG probes into genomic regions. On the
other hand, supervised algorithms calculate a p-value or related
t-statistic at each CpG first, after which user-specified parameters
are used to identify the sections of the genome with a string of
tiny p-values or t-statistics. The portions of the genome with a
string of modest p-values or t-statistics are identified using
user-specified parameters after supervised algorithms generate a
p-value or associated t-statistic at each CpG. Two earlier

Table 2
Recent papers of deep learning in biomedical applications

Name of work Description Advantage Disadvantage

Deep learning networks in
medical imaging by Wang et al.
(2022)

Through bibliometric and hot spot
analysis

Assesses the DL network
application in medical image
analysis

Only applied in PubMed

Deep neural networks for the
early detection of COVID-19
by Islam et al. (2022)

Create an algorithm for automatic
diagnosis of COVID-19

Speedy detection of COVID-19
because of its high accuracy

Cannot use other respiratory
diseases

DL algorithm for the detection of
heart diseases. by Roy et al.
(2022)

To determine the best classifiers
for valvular heart disorders

Finds the most efficient,
straightforward classifier tool

Requires more time during the
learning phase

Serial electrocardiography to
detect cardiac pathology by
Sbrollini et al. (2019)

To identify newly developing
cardiac disease in serial ECGs

Identifies acute ischemia and
detects newly arising heart
failure

Not mentioned

Deep learning-based medical
image analysis by Liu et al.
(2021)

CNN-based DL algorithms for
clinical applications

Highly accurate, efficient, and
scalable

Reduces the quality of high-
quality large-scale datasets

Deep learning method for
ultrasonic microbubble
imaging by Dai et al. (2019)

To suggest and validate a brand-
new post-processing technique

Shows excellent imaging
performance and great
consistency

Not mentioned

A deep learning X-ray-based
COVID-19 diagnosis by
Hertel & Benlamri (2022)

An ensemble classifier to help
diagnose probable COVID-19
patients

Most publicly available COVID-
19 images in the two-class and
three-class datasets

To increase the pipeline’s
capacity, it needs to expand
categorical and numerical data

Neural network model for
detection of abnormal
heartbeat by Malik et al.
(2022)

To categorize auditory signals of
irregular heartbeats

Diagnoses a heart condition
using sound signals

Not mentioned

GANs and its applications in
biomedical informatics by Lan
et al. (2020)

How GAN is utilized in different
fields

High-resolution image creation
from low resolution images

Limited sample size will result in
a relatively low level accuracy

An improved COVID-19
detection using GAN by
Asghar et al. (2022)

Suggests a neural network to
enhance the identification of
COVID-19

Good outcomes for COVID-19
detection using X-ray
imaging

Does not specify the ideal
automated method for finding
COVID-19
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researches (Li et al., 2015; Zhang et al., 2016) analyzed unsupervised
DMR search techniques that check for prefixed genomic regions.
Yet, there is presently a shortage of supervised DMR finding
techniques calculation.

In this survey, we prepare a thorough evaluation of the key
software tools for supervised DMR study, including bump hunting
(Jaffe et al., 2012), comb-p (Pedersen et al., 2012), DMRcate
(Peters et al., 2015), and Probe Lasso (Butcher & Beck, 2015).
We elect these mechanisms using a variety of different principles:
(i) it is possible to use them to assess Illumine methylation arrays.
(ii) To find DMRs, they employ the supervised search technique.
(iii) The open source code software can be expanded to identify
an EWAS with a balanced sample size in a reasonable amount of
time. R or Python programming languages are the most popular
programming languages for epigenetic research.

In essence, we identify that the algorithms associated with these
methylation analysis tools frequently require a variety of criteria to
be presented.We intend to conduct a thorough evaluation of the tools
with various parameter settings in order to help users relate to and
find the optimal parameter settings for DNAm analysis tools. By
using these multiple methods, we may compare additional
characteristics of the analysis results, such as the size of the
DMRs and overlap between the techniques. In the Methods
section, we go into detail about the simulation technique, and in
the Results section, we go into detail about the results of the
simulation research and a real-world dataset. In the final section,
we provide a succinct summary of our key findings and highlight
potential future study avenues in this broad field.

6. Methods for Identifying DMRs

6.1. DMRcate

The DMRcate (Peters et al., 2015) technique is used in the
Bioconductor package DMRcate. The empirical Bayesian
methodology from the limma R package was used to fit a linear
model at each CpG before employing the DMRcate procedure. In
our study, this model incorporated group status as an independent
variable and methylation M value as an outcome variable. In the
study of methylation data, M values, which are logit transformed
beta values with the formula M = log(beta/1 − beta), have been
shown to have improved statistical features such as
homoscedasticity (Du et al., 2010). After that, for each position,
the statistic Y = t2 is calculated, where t is the t-statistic from the
linear model associated with the group effect. In the following
phase, DMRcate applies kernel smoothing using a bandwidth-
scaled Gaussian smoother. The p-values at each position are then
calculated by moment-matching using Satterthwaite’s approach
(Satterthwaite, 1946). Then, the Benjamini & Hochberg (1995)
technique is used to select the CpG sites with multiple
comparison-corrected p-values as significant CpGs. By splitting
adjacent important CpGs that are within nucleotides of one
another, regions for DMRs are discovered. Stouffer’s technique
(Riley et al., 1949) is used to calculate the p-value for DMR.

6.2. Bumphunter

Bumphunter (Jaffe et al., 2012) is applied in the Bioconductor
packages bumphunter and minfi. In this bumphunter method,
differential methylation between case and control groups at each
CpG site is first modeled using a linear regression model
degenerating the M value on group. Then candidate regions
(bumps), which are groups of subsequent probes for which all

t statistics exceeded a user-defined threshold, are examined. The
statistical significance of the candidate regions separated by at
least maxgap base pairs is then estimated using permutation tests,
which permute sample labels to produce the null distribution of
candidate regions. Spatial correlation structures are used in the
description of regions to visualize correlations of methylation
levels between nearby CpGs. We looked at how bumphunter
behaved in the simulation research in relation to the parameters
maxGap, pickCutoffQ, and B (the number of resamples) used to
estimate DMR P-values.

6.3. Probe Lasso

Probe Lasso (Butcher & Beck, 2015) is utilized in the
Bioconductor package ChAMP. In the Probe Lasso method, the
differential methylation between case and control groups at each
CpG site is first determined using a linear model regressing beta
value on group. Based on the sort of genomic characteristics the
probe is situated in (such as TSS200, 3 UTR), the Probe Lasso
describes adjustable borders around each probe. The Probe
Lasso algorithm “throws” a lasso around each probe with dynamic
bounds that is focused on the target probe, much like a real lasso
would. If there are more significant probes stored within the Probe
Lasso boundary than the user-specified threshold, a region surrounding
the target probe is selected. Using the Stouffer’s method, Probe Lasso
calculates a p-value for each region by weighting individual probes
by the inverse sum of their squared correlation coefficient in the
correlation matrix. This is done for each region by first calculating a
correlation matrix of normalized beta values within that region. In
order to achieve Probe Lasso, we looked at the effects of the
parameters adjPvalProbe (significance threshold for probes to be
included in DMRs), meanLassoRadius (radius around each useful
probe to discover a DMR), and minDmrSep (the minimal separation
in base pairs between nearby DMRs).

6.4. Comb-p

Comb-p (Pedersen et al., 2012) is a command-line utility and a
Pythonmodule. However, none of the threemethods described above
allow for the determination of p-values for individual CpGs.
Nevertheless, comb-p requires a .BED file as input, which contains
the p-values and chromosome locations of the CpG sites. The
Stouffer–Liptak–Kechris correction (Kechris et al., 2010) is used to
determine adjusted p-values at each CpG site after the comb-p tool
generates correlations at various distance lags. If the neighboring
CpG sites also have relatively low p-values, the corrected p-value
at a CpG site will be lower than the initial p-value. However, if
nearby p-values are similarly high, the adjusted p-value at a CpG
site will continue to be high. The false discovery rate (FDR) is then
calculated at each CpG site, after which a peak-finding technique is
used to identify regions enhanced with low p-values. Following the
discovery of the regions, the Stouffer–Liptak adjustment is used to
determine the final p-value for each region. We examined how the
parameters distance (which increased a region if there was another
p-value narrower than seed within this distance) and seed
(the p-value implication threshold to start an area) affected the
performance of comb-p.

6.5. IMA: Different index metrics

IMA (Wang et al., 2012) is used in R and executed on any
platform that already has R and Bioconductor installation. The
user has the option to specify alternative tracks in the parameter
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file or run the pipeline with default settings. Below is an analysis of
the IMA pipeline:

The methylation values of specific sites expressed by Illumina
BeadStudio or GenomeStudio software are used as input by IMA
during the preprocessing stage. For the purposes of particulate
quality control, it allows the user to choose different filtering steps
or modify the filtering criteria. Users can choose to filter out the
loci whose DNAm levels are determined by probes holding
SNP(s) at/near the specified CpG site because they may not be
sufficient to calculate DNAm value. Additionally provided is the
option for sample-level quality control. Although Illumina will
recommend using the raw values for evaluation, the user has the
option to structure the methylation level as the response in a linear
model using the arcsine square root transformation (Marsit et al.,
2011; Rocke, 1993). The option of logit transformation is also
available (Kuan et al., 2010). The default setting for IMA is that
no normalization will be used, while quantile normalization is an
alternative preprocessing option that is available. Quantile
normalization has been shown to be insufficient for eliminating all
of the additional technical variation across samples (Teschendorff
et al., 2009). The development of a normalization approach for
DNAm research is a fruitful field of expanding inquiry (Aryee
et al., 2011).

Three different index metrics are now used in IMA: mean,
median (Wang et al., 2012) , and Tukey’s biweight robust average
(Belsley et al., 1980; Kohl et al., 2010; Mosteller et al., 1977).
Typically, the region’s methylation index will be determined by
taking the median value. For each particular region, the Wilcoxon
rank-sum test (the default), the Student’s t-test, and empirical
Bayes statistics can be used in the differential methylation
analysis step. The implication criterion can be mentioned by users
in the parameter file. To find site-level differential methylation
inference, the same statistical supposition and multiple test
correction approaches described above can be used to each
individual site. For each of the three aforementioned sections,
specific output files are provided during the output stage. The
result for the preprocessing stage includes a matrix of methylation
values for approved loci across approved samples. There is a
matrix of methylation index across the samples for each region
class of relevance for the part on methylation index calculation.
The differential methylation values as well as the raw and
modified p-values of each region of interest are given for the
differential methylation analysis section.

6.6. Aclust

There are two stages to the epigenome-wide investigation.
Using the Adjacent sites algorithm (“A-clustering,” or shortly
“Aclust”) (Sofer et al., 2013), clusters of associated methylation
sites are identified in the first stage. In the next stage, generalized
estimating equations (GEEs) are used to examine these clusters
for finding results (Liang et al., 1986).

The grouping of nearby linked CpG sites is the initial step. This
clustering algorithm, Aclust, is identical to the agglomerative nesting
clustering algorithm (Izenman, 2008). However, it is constrained in
such a way that only probes that are adjacent to one another can be
grouped together, or more broadly, only adjacent clusters can be
merged to form a larger one-cluster arrangement. If the distance
between two clusters is less than a set threshold, neighboring
clusters are combined. In this case, the clustering is used by
cycling over the sites, A-clustering ordered by location. The
distance metric in this case is identical and is based on the actual
methylation levels found in the sample. The distance metric

between two clusters depends on how far apart the cluster’s
probes are from one another.

The algorithm next examines the impact of exposure on the
identified clusters of methylation sites, where one can choose the
minimum cluster sizes, after determining clusters of probes,
whether with or without an initial dbp-combine step. This
technique involves first fitting a GEE model that dominates
individual location effects for each site as well as common
exposure and covariate effects on all sites within a cluster. If the
batch effect was previously removed, say via ComBat (Johnson
et al., 2007), further fitting for batch serves no purpose.
The p-value for the exposure variable from the GEE model is then
the raw p-value. Using established techniques, such as control of the
FDR, it is corrected for multiple testing after providing raw
p-values for each of the clusters.

6.7. Seqlm

The Seqlm (Kolde et al., 2016) technique is achieved by using
the following three phase procedures: 1. The distances between
adjacent CpG probes are used to divide the genome into
beginning segments. 2. Based on the varied methylation patterns,
these segments are divided into regions. 3. The statistical
significance of differential methylation is examined for each
location. The implementation of Stages 1 through 3 is rather simple.

The CpG sites on the genome are first clustered into smaller
groups close to the promoters and other functional components in
the initial segmentation process, and the arrays also concentrate
on these regions. The distance between two successive probes
must be at least 1000 bp apart in order for them to belong to the
same area in this case. The precise cut-off value is assessed by
examining the relationship between the genomic distance and the
methylation correlation of consecutive sites in a sizable dataset
(Lokk et al., 2014). As is typical, there is high correlation
between relatively adjacent pairs of probes (less than 100 bp),
although the favored correlation effect appears to be diminished
when the distance is already over 1000 bp. This initial
segmentation creates a large number of sparsely populated
segments in locations where the array has adequate coverage as
well as several solitary sites and brief periods. These will be
sorted into regions in the following stage based on their
methylation patterns.

The degree of differential methylation is fixed within each
segment in the refined methylation-based segmentation stage,
which divides an extended distance of CpG probes into sections
with uniform methylation patterns. As long as the segment-wise
linear models serve a strong match, the ideal segmentation should
favor longer regions over shorter ones. The minimum description
length (MDL) concept can be used to identify this aim as a model
selection problem (Rissanen, 1978).

6.8. coMethDMR

The coMethDMR (Gomez et al., 2019) has two vital phases: (i)
find the subregion of a genomic area that has nearby and
co-methylated CpGs first and (ii) analyze the relationship between
the subregion’s CpG methylation and phenotypic while
accounting for CpG variation collectively. The genome will be
divided into areas in the first stage using methylation array
annotations as a guide. The regions can be chosen based on their
relationships to genes or CGIs because the Illumina chips target
methylation sites primarily at genomic regions and CpG islands.
Alternatively, CpG probes can be arranged into islands, coasts, or
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shelves depending on how they relate to CGIs. First, the CpG probe
clusters are extracted that are almost within these genomic areas. The
genetic areas would have equal CpG concentrations, thanks to this
procedure. In the second phase, a random coefficient combination
model is suggested for evaluating groups of CpGs against
phenotype in order to simultaneously design modifications among
the co-methylated CpGs and relationship with phenotype. This
design offers (i) values of normalized methylation as the outcome
variable, (ii) a structured element that calculates the average for
each group of CpGs, and (iii) the random coefficients, which
determine how each CpG’s slope per stage differs from the group
mean, are a random component. This model is a combined effects
model since it includes both fixed and random effects.

7. Comparative Study of Supervised and
Unsupervised Consecutive Clustering Methods

According to the article (Mallik et al., 2019), an experiment has
been carried out in terms of simulation study using a real methylation
dataset (see Table 3). According to that result mentioned there, the
performance of different supervised consecutive clustering algorithms
is described in terms of small effect size (low μ value) (in Table 4),
large effect size (higher μ value) (in Table 5), and elapsed time
(in Table 6).

A comparative study of different unsupervised techniques (i.e.,
IMA: Different Index Metrics, Aclust, Seqlm and coMethDMR) is
illustrated in the following:

IMA: Different Index Metrics: The IMA package’s primary
goal is to generate a variety of frequently used DNAm microarray
analysis choices for users to choose from for their previous
analysis and characterization in an automated manner. It was
developed in an open-source R environment, giving users the
freedom to maintain and enhance the functionality to suit their
own requirements. It can be used as a pipeline of differential
analysis and methylation level index for later functional analysis
and hypothesis formation. To locate clustered coastlines
associated with the desired trait, for instance, model-based
clustering (Houseman et al., 2008) can be used with the matrix of
methylation index for shore regions established by IMA.

The development of analytical methods for DNAm microarray
research is still accelerating (Laird et al., 2010; Siegmund et al.,
2011). The IMA package’s capabilities will be expanded in the
future by incorporating fresh preprocessing and differential
analysis methods.

Aclust: A clustering technique that groups nearby methylation
sites in respect to their distance typically inferred from their
correlation and provides a pipeline for methylation data testing as

Table 3
Different methods of DMRs

Name of the method Source of the method
Brief definition of
model/statistics Type of method Reference

DMRcate rdrr.io/bioc/DMRcate/ Empirical Bayesian
methodology

Supervised Peters et al. (2015)

Bumphunter github.com/rafalab/bumphunter Linear regression Supervised Jaffe et al. (2012)
Probe Lasso ChAMP/versions/1.8.2/topics/champ.lasso Linear regression Supervised Butcher & Beck (2015)
Comb-p github.com/brentp/combined-pvalues Stouffer–Liptak–

Kechris correction
Supervised Pedersen et al. (2012)

IMA:mean (rforge.net/IMA/) Regression Unsupervised Wang et al. (2012)
IMA:median (rforge.net/IMA/) Regression Unsupervised Wang et al. (2012)
IMA:Tukey’s
Biweight robust average

https://rdrr.io/cran/DescTools/f/ Regression Unsupervised Kohl et al. (2010)

Aclust (github.com/tamartsi/Aclust/) Regression Unsupervised Sofer et al. (2013)
Seqlm (github.com/raivokolde/seqlm) Regression Unsupervised Kolde et al. (2016)
coMethDMR (github.com/lissettegomez/coMethDMR) Regression Unsupervised Gomez et al. (2019)

Table 4
Comparative outcomes of different supervised consecutive

clustering tools for small effect size

Method Precision Power

DMRcate ++ –

Bumphunter – –

Probe Lasso + –

Comb-p ++ –

“ ” and “-” signify very poor and poor outcome for the said standard,
respectively. “+” and “++” refer to fair and excellent outcomes for the
said standard, respectively.

Table 5
Comparative outcomes of different supervised consecutive

clustering tools for large effect size

Method Precision Power

DMRcate ++ +
Bumphunter + –

Probe Lasso ++ +
Comb-p ++ ++

“-” indicates poor outcomes for the said standard. “+” and “++” signify
fair and excellent outcomes for the said standard, respectively.
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outcomes. By creating a smaller number of analytic units, the
clustering is used to both locate coregulated regions of sites and
reduce dimension. This technique can also be used with sparser
sequencing data. Powerful grouping and analysis tools can
determine p-values without the use of resampling methods.

Seqlm: The seqlm MDL framework is a flexible method for
identifying genomic areas. The target regions’ attributes can be
defined using a variety of statistical models. For instance, more
complex linear models can be added to examine more complex
hypotheses, and clustering techniques can be specified to
accomplish unsupervised region discovery. Future directions for
the advancement of this methodology are numerous. Along with
the two sets of data, the existing model may evaluate continuous
variables as well. As a result, seqlm can be used to identify loci
for methylation quantitative traits.

coMethDMR: When DMR analysis is performed on array-
based DNAmethylation data, coMethDMR produces an
expandable, reliable, and accurate result. The entire analytical
process has been resolved as an open-source R package that the
scientific community can use for free. Gomez et al., 2019
demonstrated that coMethDMR outperforms directly testing a
genomic region with a continuous phenotype in terms of power
and well-contained false positive rate. With the use of
coMethDMR, epigenetic researchers can extract pertinent
biological observations from vast, intricate datasets on DNAm.

8. Conclusion

DL is an emerging topic used everywhere. Here, we provided an
extensive survey on DL and consecutive clustering in the field of
biomedical and health sciences. Until now, various DL algorithms
and consecutive clustering algorithms (viz., DMR finding algorithms)
have been developed, but for the bioinformatics and biomedical
research specially for the epigenetics/epigenomic study, only a few
review papers have been produced so far. Thus, in this paper, we
provided a comprehensive review article on various DL and
consecutive clustering algorithms (DMR finding algorithms) for
biomedical research (specially, for epigenetics study). To do so,
initially we demonstrated several DL architectures (viz., CNN, AE,
RBM and DBN, RNN, DSN, and LSTM/GRU) along with their
advantages and disadvantages. Thereafter, we described different
categories of consecutive clustering algorithms for epigenetics study
(termed as DMR finding tools), viz., supervised DMR finding
techniques (e.g., DMRcate, Bumphunter, Probe Lasso, and Comb-p)
and unsupervised DMR finding methods (viz., IMA: different index
metrics,Aclust, SeqlmandcoMethDMR)alongwith theirprosandcons.

In the final part of the survey, we provided a summary of various
consecutive clustering algorithms applied to epigenetics study based

on several evaluation metrics such as precision, power, and speed
as collected from literature search. Clustering refers to a group of
unsupervised classification techniques which, generally, only rely
on the available data patterns to infer groups of similar patterns.
Among the many available clustering algorithms, the so-called
consecutive clustering algorithms have been characterized as fast
and straightforward methods which produce better result with high
accuracy as compared to other clustering algorithms. Moreover, our
survey paper is highly useful for the bioinformatics researchers
(specially, epigenetics researchers) to understand where and how to
utilize DL algorithms and consecutive clustering algorithms to
fulfill specific computational biomedical problems. As a future
work, we will develop a new algorithm integrating DL and
consecutive clustering strategies together applied on DNAm data to
find DMRs (consecutive clusters of CpG sites) for any kind of
tissue-specific cancer disease (e.g., breast cancer, kidney cancer,
etc.) that will be benevolent for the bioinformatics researchers to
catch and grasp the new domain of epigenetics.
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