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Abstract: In this article, we describe an improved model for batch image analysis of pesticide residues in the edible parts of green peppers, 
tomatoes, cabbages, and carrots. Our method uses a deep learning–based convolutional neural network (CNN), an advanced image processing, 
feature extraction, and a dataset of 1,094 photographs collected from Mbarara city markets to accurately identify the presence of pesticides in 
the edible parts of vegetables. The model employs the following preprocessing techniques, that is, adaptive histogram equalization and Gaussian 
filtering, to enhance image quality before feature extraction through color analysis, edge detection, and texture measurement using the Gray Level 
Co-occurrence Matrix. The major improvement in this study was batch image processing, which significantly increases computational efficiency 
and enables the simultaneous analysis of several images. The CNN design consists of three convolutional layers, with max pooling coming after 
each layer. A probabilistic output is then generated by two fully connected layers. The other improvement was made on performance where the 
accuracy, precision, recall, and F1 score of the models particularly ResNet50 and Inception V3 produce dependable results. The accuracy and 
precision of ResNet50 were 93.2% and 94.0%, respectively. In comparison to the single image processing model for detecting pesticide residues 
in edible parts of vegetables, this improved model of batch image processing reduced the training time by 40%, demonstrating scalability for 
bigger datasets. Our results highlight the potential influence of this model on agricultural food safety practices by indicating that it can be used 
for the quick and extensive identification of pesticide residues. We suggest that future studies concentrate on the possibility of using multispectral 
photography and real-time apps to automate the identification of pesticide residues in vegetables.
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1. Introduction
The  detection of pesticide residues in edible vegetables, such as 

tomatoes, cabbages, carrots, and green peppers, is essential for ensuring 
food safety and regulatory compliance [1–3]. Traditional methods for 
analyzing pesticide residues, including gas chromatography and mass 
spectrometry [4, 5], are effective but often require extensive time and 
resources [6]. Recent advancements in image analysis technologies, 
particularly batch image analysis, offer a compelling alternative that 
can enhance both the efficiency and accuracy of residue detection [7, 8]. 
This article proposes an improved model that leverages batch image 
analysis to detect pesticide residues in these vegetables, providing a 
significant advantage over single image analysis approaches.

Batch image analysis involves processing multiple images 
simultaneously, which contrasts sharply with single image analysis that 
evaluates one image at a time. This concurrent processing capability 
offers several benefits. First, batch image analysis substantially 
increases throughput, making it possible to handle larger volumes 
of samples in less time. Recent studies have shown that batch image 
analysis can accelerate the detection process by up to 60% compared 
with traditional single image methods [9, 10]. This efficiency is 

particularly advantageous in high-throughput settings where rapid 
analysis is crucial.

Batch image analysis not only improves throughput but also 
enhances the accuracy of pesticide residue detection. Single image 
analysis is prone to the following errors due to variations in lighting 
conditions, image quality, and other factors that affect individual 
images. Batch image analysis models integrate images from multiple 
sources, thereby minimizing errors commonly associated with single-
image analysis and enhancing the overall reliability of the results. In 
their research, batch image analysis methods reduce detection errors by 
35% compared with single image analysis models leading to improved 
accuracy through advanced data integration and noise reduction 
algorithms that process multiple images collectively [11]. 

Additionally, the application of machine learning and deep 
learning techniques has improved the success rate of batch image 
analysis in the detection of pesticide residues in fruits and edible parts 
of vegetables. Current improvements like use of convolutional neural 
networks (CNNs) have made it feasible to more accurately identify 
patterns and abnormalities in complex vegetable conditions [12]. The 
mentioned methods improve the accuracy of pesticide residue detection 
while noticing the residue patterns that might be overlooked by the 
single image analysis technique. When batch image analysis employs 
these advanced methods, pesticide residue assessments become more 
reliable and accurate.
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Overall, using batch image analysis instead of single image 
analysis for the identification of pesticide residues in edible parts of 
vegetables such as green peppers, tomatoes, cabbages, and carrots 
shows a great improvement. Batch analysis has been found to be a 
more effective and accurate method for detecting pesticide residues 
in vegetable edible parts which improves throughput and accuracy 
and incorporates cutting-edge machine learning algorithms. The 
disadvantages of single image analysis and conventional approaches 
are addressed by this enhanced model, which also complies with current 
technical developments to satisfy the requirements of contemporary 
food safety regulations.

2. Literature Review

2.1. Methods of image analysis for pesticide residue 
detection: single versus batch

There are commonly two modern techniques used in the detection 
of pesticide residues among the edible parts of cabbages, green peppers, 
tomatoes, and carrots. Each of these techniques has been found to have 
benefits and limitations. Below is a discussion of the limitations of the 
single image analysis compared with the batch image analysis.

2.1.1. Single image analysis
Single image analysis refers to the detection of pesticide residues 

in a single image of the vegetable, and techniques like visible near-
infrared (Vis-NIR) spectroscopy and hyper spectral imaging (HSI) are 
commonly used in this process.

1)  HSI
By providing comprehensive spectrum information at various 

wavelengths, HSI makes it possible to precisely detect pesticide residues 
using their unique spectral fingerprints. According to Benelli et al. [13] 
and Keshava & Mustard [14], the method’s major disadvantages are its 
expensive costs and difficult data processing needs; however, it also has 
a high spectral resolution that makes it possible to detect tiny residue 
concentrations. HSI systems have been found to be expensive and 
generate huge amounts of data, which require advanced computational 
resources and expertise [15, 16]. More so, single image analysis can 
be limited by variability in sample conditions, such as lighting and 
vegetable surface texture, which may affect detection accuracy.

2)  Vis-NIR
Vis-NIR imaging is faster and more cost-effective than HSI, 

offering a practical solution for real-time applications [17]. It provides 
sufficient spectral information to detect certain pesticide residues with 
moderate accuracy. On the other hand, Vis-NIR has lower spectral 
resolution compared with HSI, which may reduce its effectiveness in 
detecting residues at very low concentrations or distinguishing between 
similar compounds [17]. Single image analysis with Vis-NIR can also 
be affected by variations in sample presentation and environmental 
conditions.

3)  A model for detecting the presence of pesticide residues in edible 
parts of tomatoes, cabbages, carrots, and green peppers

This model was purposely designed to detect the presence of 
pesticide residues in edible parts of vegetables with the following 
benefits as discussed below:

With a detection accuracy of 96.77% for Inception V3 and 
98.97% for ResNet50, the model showed excellent performance in 
identifying pesticide residues [18]. The high accuracy shows that the 
model is capable of detecting pesticide residues in edible parts of 
vegetables, including methidathion, dioxacarb, and mancozeb. CNNs, a 
type of deep learning approach, greatly improved the model’s capacity 
to detect pesticide residues. By extracting and learning information 

from images, CNN produces a more accurate and dependable detection 
than conventional image analysis techniques.

The development of a mobile application with a user-friendly 
interface makes the model more accessible to users while giving them 
a good user experience. This approach enables consumers to easily 
utilize the detection application in practical settings, enabling real-time 
analysis and enhancing user experience. Last, the model’s ability to 
specifically detect multiple pesticide residues (mancozeb, dioxacarb, 
and methidathion) using a single image analysis technique enables 
targeted monitoring of harmful chemicals in edible vegetable parts. 
This specialization is valuable for ensuring food safety and compliance 
with health regulations.

However, this model has the following limitations: 
The model’s reliance on single image analysis limits its ability to 

handle bulk processing effectively. Analyzing only one image at a time 
is inefficient for large-scale vegetable production environments, where 
multiple samples need to be tested quickly (as identified in the study’s 
conclusion). While the model is effective for the specific chemicals it 
was trained on, its application is restricted to mancozeb, dioxacarb, and 
methidathion. It does not accommodate the detection of other pesticides 
or chemicals, which limits its versatility and broader applicability in 
diverse agricultural settings (as noted in the study). The correctness of 
the model is significantly dependent on the quality and quantity of the 
training dataset. If the training data do not sufficiently represent the 
unevenness of pesticide residues in different vegetables and conditions, 
the model’s performance might be affected [18]. 

Developing and training deep learning models, such as ResNet50 
and Inception V3, involve significant computational resources 
and development costs. This may pose a barrier for widespread 
implementation, especially in resource-constrained settings where high-
performance computing infrastructure is not readily available. More so, 
the model’s high accuracy on training and testing datasets raises the 
concern of overfitting, where the model may perform well on specific 
data but struggle with new or unseen data. This risk underscores the 
need for ongoing validation and testing with diverse datasets to ensure 
robust performance in real-world applications.

2.1.2. Batch image analysis techniques
Batch image analysis involves processing multiple images of 

vegetables simultaneously or sequentially, often using advanced image 
processing algorithms and machine learning models. A number of 
advantages are offered by batch image analysis including the following: 

Enhanced accuracy and robustness: Batch image analysis 
can improve detection accuracy by aggregating information from 
multiple images, thus mitigating the effects of single image variability. 
Techniques like batch hyperspectral imaging or multispectral imaging 
combined with machine learning models can analyze a larger volume 
of data to enhance residue detection capabilities [19, 20]. The use of 
deep learning algorithms, such as CNNs, allows for the integration 
of data from multiple images to improve model performance and 
robustness [21]. It also offers reduced impact of noise and variability: 
by analyzing multiple images, batch methods can average out noise 
and inconsistencies, leading to more reliable detection of residues. 
This approach accounts for variations in sample appearance and 
environmental conditions, reducing the likelihood of false negatives 
and positives [22].

Batch image analysis is disadvantageous in a way that it requires 
increased complexity and computational demand: Batch image analysis 
requires significant computational resources to process and analyze 
large datasets. The complexity of managing and integrating multiple 
images can be a challenge, particularly in real-time applications [23]. 
Furthermore, the need for extensive training data for machine learning 
models adds to the complexity and cost of implementation.
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In summary, single image analysis techniques offer specific 
advantages such as non-destructive testing and rapid results but are 
limited by high costs, lower resolution, and sensitivity to sample 
variability. Batch image analysis techniques, while more complex 
and resource intensive, provide enhanced accuracy and robustness by 
leveraging multiple images and advanced data processing algorithms. 
The ability of batch analysis to reduce the impact of variability and 
integrate comprehensive data makes it generally more effective for 
pesticide residue detection in vegetables.

Therefore, this article is focused on the improvement of the single 
image analysis model for detecting the presence of pesticide residues in 
edible parts of tomatoes, cabbages, carrots, and green peppers.

3. Methodology
This improved model was developed to accurately identify and 

quantify pesticide residues through a combination of image processing, 
feature extraction, and classification techniques. The process flow is 
illustrated in Figure 1 and described in the following steps.

3.1. Data collection 
We used secondary data from our previous study [18]. This dataset 

has 1,094 images of both infected and healthy vegetables (tomatoes, 
carrots, green peppers, and cabbages) obtained from different daily 
markets in Mbarara city, Southwestern Uganda. The images have a 
scale magnification of 800 × 1,276 pixels taken using an InfiRay P2 pro 
Night Vision Go Mini Infrared Thermal camera with a thermal module. 
The dataset was collected in a balanced number of the three categories 
of vegetables including fresh vegetables (those that were collected from 
the garden on the day their images were taken), old vegetables (those 
that had spent some days in stock), and rotten vegetables (those that 
had gone bad).

3.2. Image preprocessing 
Image preprocessing was done to ensure uniformity by 

removing noise from the images. Several preprocessing techniques 
were applied: image resizing—all images were resized to 256 × 256 
pixels to standardize the dimensions. Thereafter, adaptive histogram 
equalization, a contrast enhancement technique, was used to enhance 

the image contrast thereby highlighting the key features. The initial 
cleaning did not eliminate all the noise; thus, further noise reduction 
and image smoothening were done using a Gaussian filter, ensuring 
only relevant features are retained. 

3.3. Feature extraction 
Key features that can indicate the presence of pesticide, such as 

color variations, texture changes, and surface anomalies, were extracted 
using the following approaches: Color Features technique was applied 
to detect unnatural hues (discoloration) associated with pesticide 
contamination. This was done through analyzing RGB and HSV color 
space. To perform texture analysis, a Gray Level Co-occurrence Matrix 
was employed to capture texture variations resulting from chemical 
interactions between the pesticide and the vegetable surface. Finally, the 
canny edge detection technique was applied to highlight the boundary 
anomalies with possible indication of residue deposits.

3.4. Model development 
A deep learning-based CNN illustrated in Figure 1 was developed 

to perform classification of images into two categories: pesticide residue 
present and pesticide residue absent. The CNN architecture consisted of 
the following layers: Three convolutional layers with 64, 128, and 
256 filters were applied to extract hierarchical image features. The 
pooling layer (max pooling) was used after each convolutional layer 
to downsample the feature maps and reduce computational complexity. 
Two fully connected layers were added after each convolutional layer 
to combine the extracted features for final classification. Finally, the 
output layer was used to output the probability of pesticide residues 
present or absent in the image.

3.5. Batch image analysis 
Batch image analysis was a critical component in this research that 

is aimed at improving efficiency and applicability, thus, complementing 
our prior study where a single image analysis technique was applied 
[18]. By adopting the batch processing technique, we were able to 
analyze multiple images simultaneously, thus reducing computational 
overhead and improving model scalability for a large dataset [24]. This 
section presents a breakdown of how batch processing was achieved, 
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the underlying techniques, and the overall performance improvement 
yielded.

3.5.1. Batch processing implementation 
Batch image analysis was done during training, testing, and 

validation phases of the model. In each case, a batch size of 32 images 
was chosen as a trade-off between computation efficiency and memory 
constraints, which allowed full utilization of the GPU parallelism 
while maintaining a stable memory usage, thus reducing the overall 
processing time with an increased throughput. This was achieved 
through the following steps. 

Batch loading: Preprocessed images from the dataset were 
loaded in a batch of 32, each containing a mix of the four vegetables 
to expose the model to different types of vegetables in each iteration. 
This helped improve the model’s generalization across these vegetable 
categories. 

Simultaneous processing: Once the batch was loaded in 
the memory, each image in the batch was passed through the model 
to extract the features from the images in parallel, utilizing the high 
computational capacity of the GPU. This parallel extraction of features 
was mainly beneficial in the convolutional layers of the model, where 
filtering and pooling operations are done across images in the batch 
without the need for additional computational overhead.

Forward and backward propagation: Forward pass was applied 
to all images in the batch during model training. The loss function 
(categorical cross-entropy) was applied to calculate the discrepancy 
between the predicted and the actual labels (pesticide residue present or 
absent) for each image whereas in the backward pass, the gradient was 
used to update the model weights. This improved the model’s stability 
by preventing extreme weight updates that could happen with single 
image processing. 

3.5.2. Batch processing techniques applied 
The processing pipeline was enriched with several image and 

machine learning techniques to ensure effective batch processing. 
These techniques were applied as follows: 

Mini-batch Gradient Descent was used instead of traditional 
gradient descent or stochastic gradient descent. Using this approach, 
the model’s weight was updated based on an averaged gradient of 
32 images per batch, thus balancing the benefits of both batch and 
stochastic approaches. This approach achieved faster convergence 
while maintaining a relatively stable learning process.

Parallel convolutional operations, which are the core of batch 
image processing, were applied, where convolutional filters were 
simultaneously used across all images in a batch. Due to the fact that 
it is in the convolutional layers where features such as edges, color 
variation, and textures related to pesticide residues are detected, batch 
processing yielded a significant reduction of computation burden. This 
was mainly important for images with high resolution where sequential 
processing would have been much slower. 

Each convolutional layer was followed by batch normalization to 
further stabilize the learning process. To ensure that the model remains 
robust to changes in the input image, the batch normalization scales 
and modifies the neuronal activations across the images in the batch. 
This technique helped in reducing the impact of variations in color 
and lighting conditions present in the dataset, which otherwise would 
affect model performance. The categorical cross-entropy function for 
each forward pass was used to determine the loss function for each 
image in the batch, and we made sure the model received a balanced 
update based on a variety of images by averaging the computed losses 
across all of the batch’s images. In a similar manner, during the learning 
phase, the gradient linked to the backward pass was averaged to avoid 
domination by a single image. By increasing stability during the model 
training phase, this gradient averaging strategy decreased loss function 

oscillations.

3.5.3. Batch image inference 
Upon successful model training, batch processing was applied 

during model testing to detect pesticide residues using a non-labeled 
dataset. The model was able to classify all the 32 images in a batch 
simultaneously. This step is aimed at assessing the model applicability 
in a real-world scenario, where large volumes of images might need to 
be processed in a short period of time. During the inference process, 
similar preprocessing techniques including resizing, noise reduction, 
and contrast enhancement were applied to the input batch before passing 
the images to the trained model. Similarly, each batch used underwent 
the parallel processing through the convolutional layers. The output of 
each batch was a set of 32 predictions, corresponding to the prediction 
of the likelihood of the pesticide residues being present in each image. 
This output made substantial reduction in processing time, making the 
model more suitable for deployment in high-throughput environments 
such as food safety testing facilities.

4. Results and Discussion 
In this section, we present results obtained from the application 

of the improved model for detection of pesticide residues in edible parts 
of the selected vegetables. The findings are evaluated based on the 
model’s precision, accuracy, recall, F1 score, and processing efficiency. 
Additionally, results are discussed in relation to the significance of 
batch processing and drawing insights into the practical implications of 
the approach for real-world applications.

4.1. Proposed method 
In this research, we developed an improved model for analyzing 

pesticide residues in vegetables including green peppers, tomatoes, 
cabbages, and carrots. Our CNN design features three convolutional 
layers, each followed by max pooling, and ends with two fully 
connected layers presented in Figure 1.

From a previous study by Evarist et al. [18], during data 
processing, some critical features were missed out in complex images. 
To address this, we enhanced the CNN-based model by adopting 
adaptive histogram equalization and Gaussian filtering. These methods 
improved image clarity, ensuring features such as color, edge, and 
textures are highlighted for precise analysis.

High computational time was a big limitation in previous studies. 
To address this limitation, we implemented batch image processing. 
Instead of analyzing one image at a time, our model processes multiple 
images simultaneously, cutting training time by 40%. This makes our 
method highly scalable, perfect for large datasets, and a game changer 
for agricultural monitoring. 

The model’s demonstrated scalability and efficiency make it 
a valuable tool for extensive monitoring in agriculture food safety 
practices. By significantly reducing training time and enhancing 
accuracy, the model provides a scalable solution that can be further 
developed for real-time application. 

4.2. Model performance
Table 1 presents the performance metrics of the selected transfer 

learning models: Inception V3, ResNet50, VGG16, VGG19, and the 
proposed batch analysis model. These models were evaluated based 
on their ability to both detect the presence of three studied pesticide 
residues and quantify the likelihood of residue presence as a probability 
percentage using binary classification. The performance metrics used 
include accuracy, precision, recall, F1 score, and testing validation loss, 
all derived through batch image analysis.
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Form the results, Inception V3 and ResNet50 stand out with the 
best overall performance across all metrics. There was a slight edge 
by ResNet50 for both precision (94.0%) and accuracy (93.2%); this 
implies that it performed slightly better at correctly identifying true 
positives compared with Inception V3. Inception v3, however, scored a 
comparable F1 score (92.7%) and slightly higher recall (92.0%), which 
means it is marginally better at recovering all relevant instances. All 
models have a relatively low training and validation losses, implying 
strong generalization capabilities. The higher performance of ResNet50 
is attributed to architectural structure, while Inception V3’s multi-scale 
convolutional modules enhance its ability to capture diverse spatial 
features; ResNet50’s residual learning framework enables deeper 
representation with reduced risk of vanishing gradient, leading to more 
stable optimization and better generalization on complex patterns like 
residue texture [24].

Both VGG16 and VGG19 had a slightly lower performance 
compared with Inception V3 and ResNet50. Though an overall accuracy 
of 91% demonstrates solid results, their higher validation and training 
losses compared with those of Inception V3 and ResNet50 indicate a 
struggle with overfitting or failure to efficiently learn from the data. As 
much as VGG19 outperformed VGG16, the differences are minimal.

The model trained from scratch presented the weakest 
performance across all metrics compared with transferring models. This 
implies that training a model from scratch without leveraging transfer 
learning can be less effective, especially where the available datasets 
lack diversity or are relatively small.

4.3. Analysis based on vegetable varieties and pesticide 
types

We performed a disaggregated performance analysis across both 
the pesticide residues and vegetable types in order to further evaluate 
the robustness of the proposed batch image analysis model. The results 
are presented in Table 2.

From the results presented in Table 2, the model achieved a 
highest accuracy on carrots (92.3%) and tomatoes (92.1%) out of the 

four vegetable types, with relatively similar high F1 scores of 92.2% 
and 92.1%, respectively. This high performance is attributed to the more 
uniform surface textures and consistent color contrasts of tomatoes 
and carrots, which creates clearer visual cues enabling the model to 
detect the presence of pesticide residues. Next was green pepper with 
an accuracy of 89.7% and an F1 score of 89.1%, demonstrating some 
variability in residue visibility, possibly due to the reflective surface and 
irregular shapes. Cabbage had the lowest recorded performance among 
the four vegetable types with an accuracy of 88.5% and an F1 score of 
88.2%. This low performance is attributed to its complex leaf structure, 
overlapping layers, and inconsistent surface patterns, which may 
obscure residue marking and reduce the model’s ability to generalize.

On one hand, the model achieved a higher performance on 
mancozeb-contaminated samples across all vegetable types with an 
accuracy of 94.7% and an F1 score of 94.3%. Mancozeb presents 
a distinctive visual residue pattern when it comes in contact with 
the vegetable surface; this creates a higher pixel contrast and more 
consistent surface texture alteration in the contaminated regions [26]. 
These features enhance edge definition and spatial gradients within 
feature maps during the convolutional process, hence making it easier 
for feature extraction by CNNs. Besides, the high signal-to-noise 
ratio in mancozeb-affected images creates possibilities for improved 
feature separation in the latent space, enabling the model to make 
more confident and accurate predictions [27]. These characteristics 
make mancozeb residues more detectable by the model compared with 
methidathion and dioxacarb.

Below mancozeb, the model achieved a moderate performance in 
detecting dioxacarb with an accuracy of 88.3% and F1 score of 88.2%, 
indicating fairly higher results compared with methidathion, where 
the model achieved 83.6% accuracy and an F1 score of 83.4%. These 
results reveal that residues from these two pesticides are less visually 
distinctive and more challenging for the model to identify with high 
confidence.

4.4. Computation efficiency

5

Models Accuracy Precision Recall F1 score Training loss Validation loss
Inception v3 92.8 93.5 92.0 92.7 0.15 0.18
ResNet50 93.2 94.0 92.5 93.1 0.12 0.16
VGG16 91.0 91.5 90.8 91.1 0.18 0.20
VGG19 91.2 91.8 91.0 91.4 0.17 0.19
Proposed model 84 .5 85.0 83.7 84.2 0.28 0.31

Table 1
Model performance using batch image analysis

Category type Category name Dataset size Accuracy (%) Precision (%) Recall (%) F1 score (%)
Vegetable Cabbage 210 88.5 87.2 89.3 88.2

Tomato 337 92.1 91.8 92.5 92.1
Green pepper 257 89.7 88.1 90.2 89.1
Carrot 290 92.3 91.5 93.0 92.2

Pesticide Mancozeb 410 94.7 93.5 95.2 94.3
Dioxacarb 350 88.3 87.0 89.5 88.2
Methidathion 334 83.6 82.1 84.8 83.4

Table 2
Analysis based on vegetable varieties and pesticide types
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Compared with the previous study by Evarist et al. [18], which 
utilized single image processing, batch image analysis offered several 
notable performance enhancements. Specifically, by processing 32 
images simultaneously, the model significantly reduced the training 
time per epoch. This approach led to a 40% decrease in training 
time (presented in Table 3) relative to single image processing. The 
efficiency gains were particularly evident in the convolutional layers, 
where batch processing optimized GPU resource utilization, enabling 
faster computation and improved overall model performance. Another 
significant achievement was scalability. The batch processing pipeline 
was designed to easily accommodate larger datasets, as demonstrated by 
processing 273 images per vegetable type in this study. This approach 
can seamlessly scale to tens of thousands of images without requiring 
major architectural changes. By adopting batch processing, the model 
efficiently handles increasing data volumes, a critical feature for real-
world application where the number of samples may be substantial.

A batch size of 32 was selected because it provided a balance 

between memory efficiency and convergence speed, as batch 16 tends 
to produce nosier gradient updates, which can slow down convergence 
and increase training time per epoch without significant increase in 
classification accuracy [28], while batch 64 may speed up training 
but often requires higher GPU memory, hence leading to reduced 
generalization due to smoother loss surfaces and lower gradient 
variance [29].

Although batch analysis had various advantages, there were 
drawbacks as well, especially with regard to memory consumption 
and batch size selection. When working with deep CNN architectures 
and high-resolution images, a larger batch size requires more memory 
than small batches. In this study, we overcome this problem by 
selecting a batch size of 32 images in the experiment setup to balance 
computational performance and memory constraint. Techniques like 
distributed training [30] or memory-efficient designs like pruning and 
quantization [20] could be implemented in future implementations if 
larger or higher-resolution images are used. Additionally, choosing 
the right batch size was essential for balancing model performance 
and speed through experimentation; for this study, a batch size of 32 
provided the optimum balance.

4.5. Comparative results on detection performance 
This section presents a comparison of our proposed model’s 

detection performance against exiting models commonly used for 
pesticide residue detection. The evaluation focuses on the performance 
of each method. This comparison (in Table 4) highlights the practical 
advantage of our model, such as its ability for batch processing and 
handling variations in residue concentrations, making it a promising 
solution for real-world applications in pesticide residue monitoring. 
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no = 32 per batch 
Models Θ (ms) Ω (ms) O (ms)
Inception V3 80,280 133,020 185,760
ResNet50 164,160 236,160 308,160
VGG16 196,920 214,920 232,920
VGG19 128,164 272,160 416,160
Proposed Model 143,966 179,787 215,601

Table 3
Model execution time per epoch 

Author Description Single or batch analysis Performance
Soltani Nazarloo et al., 2021 
[12]

Investigated the detection of pesticide 
residues, specifically profenofos in 
tomatoes using visible/near-infrared 
(VIS/NIR) spectroscopy

The study does not explicitly 
state whether batch or single 
analysis was used in processing 
the images

Correct classification rates 
(accuracy): 90%
Cross-validation 
coefficient: 0.8

Aira et al., 2022 [31] Developed a solution for detecting 
glyphosate residues in water. The meth-
od is based on colorimetric chemical 
reaction

Single processing Speed: 10 minutes (results 
are delivered within 10 
minutes, significantly 
faster than traditional 
laboratory methods)

Yazici et al., 2020 [32] Developed a rapid non-destructive 
method for detecting pesticide residues 
in strawberries using bear-infrared (NIR) 
spectroscopy

Batch processing Residue predictive 
deviation: 2.28 (for 
boscalid) and 2.31 (for 
pyraclostrobin)

Watanabe et al., 2015 [33] Developed a method for detecting seven 
hydrophilic neonicotinoid insecticides in 
cucumber and eggplant. In this method, 
water-based extraction was applied

Batch processing Recovery rates: between 
82% and 114% with a 
relative standard deviation 
below 10%

Saranwong & Kawano, 2005 
[34]

Developed a rapid method for detecting 
fungicide residues on the tomato surface 
using NIR spectroscopy combined 
with the dry extract system for infrared 
technique

NA Standard error prediction: 
6.58 ppm

Proposed method An improved model for batch image 
analysis of pesticide residues in the 
edible parts of green peppers, tomatoes, 
cabbages, and carrots

Batch processing Accuracy: 84.5%
Precision: 85.0%
Recall: 83.7%
F1 score: 84.2%

Table 4
Comparative results on detection performance
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In Table 3, the proposed method demonstrates several advantages 
over existing approaches, particularly in its enhanced applicability 
and efficiency. Unlike most existing methods that focus on detecting 
pesticide residues in a single produce type or specific chemicals, the 
proposed method is versatile, analyzing multiple vegetable types. 
Similar to methods by Yazici et al. [32] and Watanabe et al. [33], the 
proposed approach employs batch processing, which allows for the 
simultaneous analysis of multiple samples, significantly enhancing 
efficiency compared with single processing methods such as those by 
Aira et al. [31].

In terms of performance, the proposed method achieves an 
accuracy of 84.5%, precision of 85.0%, recall of 83.7%, and F1 score of 
84.2%. While the accuracy is slightly lower than the 90% achieved by 
Soltani Nazarloo et al. [11], the proposed method provides a balanced 
evaluation of performance metrics, including recall and F1 score, 
which are often overlooked in other studies. This balanced performance 
makes it highly suitable for practical application. Although speed is 
not explicitly emphasized as in that by Aira et al. [31], the proposed 
method’s ability to process samples in batches ensures efficient analysis 
for agricultural and industrial use cases. The combination of versatility, 
robust performance, and batch processing capability positions the 
proposed method as a scalable and efficient solution for monitoring 
pesticide residues in diverse agricultural produce.

4.6. Comparative results on computational efficiency
In this section, we present a comparative analysis of our model’s 

computational efficiency compared with those of previous methods. 
The primary improvement highlighted in this study is the optimization 
of computational resources, which significantly reduces model training 
and validation times. Unlike existing recent methods, which utilized 
traditional single image processing techniques, our batch image processing 
approach not only accelerates analysis but also ensures scalability for 
larger datasets, making it highly suitable for practical applications.

The performance comparison between the proposed method 
and the approach by Evarist et al. [18] reveals a marked improvement 
in computational efficiency. Specifically, the proposed method 
demonstrates significantly reduced execution times across all evaluated 
complexity measures: 

Average-case complexity θ (ms): The proposed method records 
a computational time of 143,966, substantially lower than the 239,940 
reported for the method by Evarist et al. [18]. This reduction suggests a 
considerable improvement in handling typical scenarios.

Best-case complexity Ω (ms): The best-case performance of the 
proposed method was 179,787 compared with 299,640 from Evarist 
et al.’s [18] method, indicating a more efficient algorithm in optimal 
conditions. 

Worst-case complexity O (ms): In terms of worst-case 
performance, the proposed method achieved a time of 215,601, 
significantly less than the 359,360 reported for the earlier method, 
showcasing the robustness of the proposed approach in the most 
challenging scenarios.

The results illustrate that the proposed method reduces 
computation times by over 40% across all complexity measures. 
This notable enhancement could be attributed to more efficient 
algorithmic designs or improved resource management strategies. Such 
advancements make the proposed method more effective and scalable, 
which could be beneficial in applications requiring high efficiency.

5. Experimental Configuration
All experiments including model testing, training, and validation 

were carried out on a system running Ubuntu 20.04LTS and equipped 

with an Intel Core i7 processor, with 16GB of RAM and an NVIDIA 
GeForce RTX3080 GPU (10 GB VRAM). The model was implemented 
in Python 3.9 using PyTorch 1.13 and CUDA 11.6. To train the model, we 
used the Adam optimizer [35] with a learning rate of 0.001 and a batch 
size of 32 and trained the model for 50 epochs. We used cross-entropy 
for loss function, and we applied early stopping based on validation loss 
to prevent overfitting. To ensure reproducibility of results, we set a fixed 
random seed (42) and used deterministic operations where possible.

The dataset was divided into three subsets: 70% for model 
training, 15% for model testing, and 15% for model validation. All 
experiments were logged and version controlled using TensorBoard and 
Git, respectively. 

6. Conclusion
The results presented from this research reveal that the improved 

model, with the adoption of batch image analysis, is highly effective in 
detecting pesticide residues in tomatoes, green peppers, cabbages, and 
carrots. This performance across different vegetable types, coupled with 
efficiency gain from batch processing, positions it as a suitable model 
for rapid, large-scale food safety inspections. Although there are some 
challenges, particularly in detecting residues on a uniform surface, 
the model’s non-destructive, cost-effective, and scalable nature offers 
significant potential for real-world application in agriculture and food 
safety.

7. Future Work 
While the improved model demonstrated better results, there still 

exist several areas to improve on, which include enhancing detection 
on uniform surfaces using advanced techniques like spectral imaging 
and thermal imaging. Real-time application is another area of interest 
where future studies can pick interest and deploy the model in real-time 
settings, integrating it into automated sorting and inspection systems 
for real-time pesticide detection. Incorporating multispectral imaging 
can also be an interesting area for future studies targeting to expand 
the model to utilize multispectral or hyperspectral imaging to provide 
additional layers of information, potentially to improve the detection of 
invisible to standard RGB imaging. 
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