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Abstract: The digital imaging and communications in medicine (DICOM) format is a widely adopted standard for storing medical imaging
data, integrating both image and metadata critical for clinical diagnostics. However, its complexity poses challenges for deep learning
applications, particularly in extracting and processing this dual-layered data. This review analyzes 23 peer-reviewed studies published
between 2014 and 2024, sourced from PubMed, Google Scholar, PLOS, Science Direct, and IEEE databases. Guided by Arksey and
O’Malley’s scoping methodology, the review reveals that existing deep learning techniques typically rely on converting DICOM images
into simpler formats like JPEG, TIF, or PNG for classification, a process that often results in metadata loss and reduced classification
accuracy. Frameworks such as MONAI, NVIDIA Clare, SimpleITK, and OpenCV facilitate direct DICOM processing but face
limitations, including overfitting, challenges with data heterogeneity, and inefficiencies in handling large datasets. This review
emphasizes the urgent need for developing a robust convolutional neural network architecture capable of directly processing DICOM
data to preserve metadata integrity and enhance predictive performance, paving way for more reliable and scalable medical imaging solutions.

Keywords: DICOM image processing, deep learning in radiology, convolutional neural network, medical imaging frameworks, medical
metadata preservation, scalable image analysis models

1. Introduction

Deep learning (DL) has revolutionized the field of artificial
intelligence (AI), offering significant advancements in tasks such
as image classification, object detection, and natural language
processing [1]. In the domain of medical imaging, DL techniques
have emerged as a transformative tool, aiding in the diagnostic
and analysis of anatomical structure to support clinical decision-
making [2–5]. These methods have shown remarkable promises in
handling large volumes of medical data with high accuracy and
speed, making them particularly valuable in resource-constrained
settings where traditional diagnostic tools and skilled
professionals are limited [6].

A critical component of medical imaging is the digital imaging
and communication in medicine (DICOM) format, the industry
standard for storing and transmitting medical images [7]. DICOM
files integrate both image data and metadata, providing essential
information about patient demographics, imaging settings, and
diagnostic context. However, unlike standard image formats such
as JPEG, TIF, and PNG, the complexity of DICOM files presents
unique challenges for DL applications, particularly in metadata
extraction and image classification [8–10].

Several foundation DL techniques and frameworks, including
CNN, have been adopted to process medical images. CNNs excel in
feature extraction and classification but face limitations when
applied directly to DICOM files. This is largely due to
pre-processing pipelines that convert DICOM files into simpler
formats ([11–13]), resulting in metadata loss and reduced model
accuracy [14]. Existing frameworks such as MONAI [15],
NVIDIA Clare [16], SimpleITK [17], and OpenCV [18] have
attempted to address this by enabling direct DICOM processing.
However, these tools are often constrained by issues like
overfitting to specific datasets [19], inability to handle DICOM
format variability, and inefficiencies in processing large datasets,
thereby limiting their scalability and reliability in clinical
applications [20].

This review examines the current state of DL applications in
DICOM file processing, highlighting the challenges, gaps, and
limitations of existing techniques. Furthermore, it emphasized
the need for a DL model specifically designed to handle
DICOM files without requiring format conversion. Such a
model would preserve metadata integrity, enhance classification
accuracy, and overcome the constraints of existing
methodologies. By synthesizing findings from 23 peer-reviewed
studies, this review aims to provide a comprehensive
understanding of the field and propose directions for future
research in medical imaging.
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2. The DICOM File Structure

The DICOM format was designed by the ElectronicManufacture
Association [21] and the American College of Radiology in the
PlayStation3.10 (PS3.10) specification for media storage and file
format for media interchange [22]. It consists of a header and the
image data sets wrapped in a single file, as shown in Figure 1.

The header stores the patient’s demographic information, image
dimensions, color space, matrix size, acquisition parameters for
the imaging study [21, 23], and other additional non-intensity
information to support image display on the computer. Below the
header, there is an attribute (7FE0) that contains the image pixel
intensity. Both the header and the 7FEO are stored in a series of 1s
and 0s [7]. The header information is encoded together with the
actual image to enable the computer to recognize the imaging study
and support image display, ensuring proper documentation for
medicolegal purposes.

2.1. Reading DICOM file information

Header information: The header information is constant,
standardized, and presented using a sequence of tags organized in
collections of data elements such as zeros and ones (e.g., 0110).
Extracting header information helps to uncover relevant insights
about the image and requires third-party software. Due to an
increased utilization of DICOM files in medical imaging, several
free software packages for extracting header information have
been developed, for example DicomWorks as used by Yaneva-
Sirakova [24], XnView [25], and ImageJ [26]. With the help of
the header information, dataset can be extracted.

Dataset: To extract patient data from a DICOM file, DICOM
Unique Identifiers (UIDs) and header information are required.
The patient’s biodata and imaging study are encoded within the
image header. Therefore, this information can be extracted by
anyone with access to UIDs. However, this poses a risk to patient
privacy especially when the file is shared over the internet.

3. Research Methods

This section outlines the strategies and methods used to identify
suitable studies for this review. The selected articles were carefully
chosen and analyzed to find the recent advancements in the
application of DL in DICOM processing.

3.1. Scoping review methodology

In this review, we adopted the scoping methodology proposed
by Arksey and O’Malley [27] which consists of six steps, namely
(1) formulation of the research question, (2) identifying relevant
studies, (3) selecting studies, (4) charting data, (5) collecting,
summarizing, and reporting findings, and (6) consulting experts
[28]. This methodology was chosen because it provides
researchers with a quick overview of the existing literature on the
topic [29] and accommodates the inclusion of various study types
thereby reducing bias in the study conclusions [30].

3.2. Identification of studies

To obtain studies for inclusion in the review, an automatic
search was conducted to retrieve relevant studies published
between 2014 and 2024. The search was limited to articles
published in the past 10 years to ensure the inclusion of
studies that reflect current knowledge, latest advancements,
methodologies, and practices in the field of DICOM processing.
The primary search returned a total of 287 papers (excluding
duplicates); however, only 23 met the inclusion criteria.

The review aimed to explore the current state of DL in DICOM
processing and classification, identify gaps within existing DL-based
models for DICOMprocessing, and propose a solution that addresses
these limitations.

3.3. Search strategy

The search was conducted in August 2024 on five selected
publically available databases: PubMed, Google Scholar, PLOS,
Science Direct, and IEEE. These were considered because of their
extensive integration and indexing capabilities. To find articles
relevant to the study, a total of three search terms were used,
namely “Deep Learning AND DICOM”, “DICOM Processing”,
“DICOM Classification OR DICOM processing”. Each search
term was entered in PubMed, Google Scholar, PLOS, Science
Direct, and IEEE databases to find articles suitable for our study.
A Boolean search method was employed, using “OR” to include
articles related to each concept individually and intersection
“AND” to combine key concepts thereby focusing on the primary
objective of this review. Additionally, the reference lists of
selected studies were reviewed to identify additional studies to
include in the review. The retrieved articles from all five
databases were imported into the Mendeley referencing
management tool (Mendeley Desktop v1.19.8) and were
independently assessed for inclusion based on their titles,
abstracts, and full texts. Any disagreements regarding the
inclusion of studies were resolved through discussion among
authors until a consensus was reached.

3.4. Inclusion criteria

Only studies that met the following criteria were included.

1) Explicitly described the ML/DL techniques used to process
DICOM files

Figure 1
DICOM file structure
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2) Published between 2014 and 2024
3) Paper available in English language
4) Explicitly utilized dataset in DICOM files
5) Clearly described the outcome of DICOM file processing.

Criteria (1) ensure that only studies applyingmachine learning and
DL in their methods were included. Criteria (2) and (3) were established
to ensure the inclusion of only recent studies published inEnglishwithin
the last ten years, excluding any papers published prior to 2013. This
approach was adopted to maintain the relevance and currency of the
review. Criteria (4) and (5) were considered to ensure that only
studies that utilized DICOM files in model training, testing, and
validation with clear performance results are considered.

3.5. Exclusion criteria

Any studies that did not meet the inclusion criteria listed in
Section 3.4 were excluded from the study. The selected studies
were assessed to confirm that they reported primary outcomes.
Thus, review papers, position papers, protocols, and formative
studies were excluded. Geographical location and study design
were never considered as exclusion criteria.

3.6. Data extraction and analysis

The extracted data from the included studies were as follows: the
techniques applied, the major objectives, the proposed solutions for
processing DICOM files, and the performance outcomes.

3.7. Quality appraisal

To assess the quality and relevance of each selected study, a set
of criteria were used, guided by PRISMA [31]. Tomeasure the extent

to which a study is appropriate and capable of yielding results
suitable for the scope of inquiry, the following questions were used;

1) QA1: Y (Yes), the dataset used in the study contained DICOM
files, P (Partially) –the dataset used in the study contained
DICOM files but format conversion was done, N (No) – the
dataset used in the study contained images of other formats.

2) QA2: Y (Yes) – the study fully applied DL techniques for image
pre-processing and classification, N (No) – the study did not apply
DL techniques for image pre-processing and classification.

The grading techniques were established as follows: Yes= 1,
Partial= 0.5, and No= 0 or unknown. A study that met all the
criteria was given a rating of 1. If a study met some of the
criteria, it was given a rating of 0.5, while a study that did not
meet any of the criteria was given a rating of 0. All studies with
scores between 2 and 4 points, based on the criteria, were considered.

4. Results

4.1. Search results

Figure 2 presents the search results, screening, exclusion, and
final inclusion in the study.

4.2. Survey of existing literature

Fajar et al. [11] applied histogram equalization and a trainer to
reconstruct 3D images from DICOM files of MRI brain images. A
visual quality score (mean opinion score (MOS)) between 3 and 5
was obtained for different images.

H. H. Pham et al. [32] presented a method for classifying body
parts fromDICOM files using CNNs, which achieved 95% precision

Figure 2
Search results
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on X-ray images. In their experiment, DICOM files were first
converted to PNG format before being subjected to the
classification algorithm.

Mamdouh et al. [13] proposed a method for converting 2D
DICOM images to 3D images using Seg3D2 and ImageVis3D
techniques. Although no quantifiable results are presented in their
findings, the authors claim a successful conversion.

Vallez et al. [33] used transfer learning techniques such asAlexNet,
VGG, Inception V3, ResNet, and GoogleNet to develop a web viewer
system for interpreting WSI DICOM images. The experimental results
produced 96% accuracy in interpreting DICOM files.

Kathiravelu et al. [8] proposed a processing pipeline using
machine learning techniques to convert DICOM files into standard
formats like JPEG and PNG. In their experiment, X-ray images
were used, and conversion accuracy of 96% was achieved.

Kawuma et al. [34] proposed a method for diagnosing and
classifying TB chest X-ray images for children under 15 years. In
their method, transfer learning models – VGG16, VGG19, ResNet50,
and Inception V3 – were trained and fine-tuned to form a scratch
layer tailored to the local dataset collected from Mbarara Regional
Referral Hospital. The model yielded an overall accuracy of 88.23%
on the local dataset and 50% accuracy on a multicenter dataset.

Alshmrani et al. [35] applied VGG19 to develop a method for
classifying multi-class lung diseases using X-ray images. The
experimental results showed successful classification, with
96.48% accuracy, 93.75% recall, and 97.59% precision.

Basaia et al. [36] conducted an automated classification of
Alzheimer’s disease and cognitive impairment using CNN. The
classification was done using MRI images. The method was evaluated,
and 75% classification accuracy was achieved using a testing dataset.

Kuraparthi et al. [37] proposed a method for brain tumor
classification in MRI images using a deep convolutional neural
network. In their experiment, transfer learning models, including
AlexNet, VGG16, and ResNet50, were applied. The proposed
approach achieved an overall classification accuracy of 97.89%.

Jia and Chen [38] proposed a method for brain tumor
identification and classification using a dataset of MRI images.
Their approach utilized a support vector machine for
classification, focusing on distinguishing tumor types with high
precision. The performance of their method was evaluated,
achieving an impressive classification accuracy of 98.51%.

Zeimarani et al. [39] developed a method for breast lesion
classification using a dataset of ultrasound images. They implemented
a custom-built CNN specifically tailored for this task. Their approach
was evaluated for its classification performance and achieved an
accuracy of 85.98%, demonstrating the potential of CNN models in
enhancing the accuracy of breast lesion diagnosis.

R. Kumar et al. [40] proposed a method for classifying carotid
artery media thickness using ultrasound images. In their method, a
custom-built CNN was developed and tested on ultrasound images.
The model demonstrated strong performance, achieving an accuracy
of 89.1%, with a specificity of 88% and a sensitivity of 89%.

Liebenlito et al. [41] developed a method to classify
tuberculosis (TB) and pneumonia in human lungs using chest
X-ray images. They employed a CNN with optimized
hyperparameters to enhance classification accuracy. The model’s
performance was evaluated using area under the curve (AUC),
achieving 86% for TB and 96% for pneumonia classification.

Masood et al. [42] proposed a method for recognizing and
classifying brain tumors using MRI image datasets. They
employed a custom mask region-based CNN with a DenseNet40
backbone architecture. The model achieved a segmentation
accuracy of 96.3% and classification accuracy of 98.34%,

demonstrating its effectiveness in both segmenting brain tumor
regions and classifying tumor types.

Yimer et al. [43] developed a method for classifying multiple lung
diseases, including lung cancer, pneumonia, TB, pneumothorax, and
chronic obstructive pulmonary disease, using chest X-ray images. In
their setup, Xception model, built on a CNN architecture was used.
The model attained an overall accuracy of 97.3%, with a sensitivity
of 97.2% and a specificity of 99.4%.

Ibrahim et al. [44] proposed a method for pneumonia classification
using chest X-ray images. The classification was performed using the
AlexNet CNN architecture. The model achieved an accuracy of
93.4%, with a sensitivity of 98.18% and a specificity of 98.18%.

Cao et al. [45] conducted a systematic evaluation of the
performance of several state-of-the-art object detection and
classification methods for computer-aided diagnosis of breast
lesions using ultrasound images. The study compared multiple
CNN architectures, including ZFNet, VGG16, AlexNet,
GoogleNet, ResNet, and DenseNet. The best-performing models
achieved an average precision rate of 96.89%, an average recall
rate of 67.23%, and an F1 score of 79.38%.

Jabeen et al. [46] developed a method for breast cancer
classification using ultrasound images. In their experiment, the
DarkNet-53 CNN architecture was used to perform classification
task. The model demonstrated outstanding performance, achieving
an accuracy of 99.1%.

Yimer et al. [43] developed a DL model named AM_DenseNet
for the classification of chest X-ray images, employing the
DenseNet121 architecture. The model’s performance was
evaluated using the AUC, achieving a value of 85.37%.

Mamdouh et al. [47] developed a 3D model for converting
DICOM files using the Visualization Toolkit (VTK) library. The
visual quality of the resulting 3D model was assessed using the
MOS, ranging from 1 to 5. Similarly, Nguyen et al. [48]
reconstructed 3D objects from a 2D DICOM dataset using a
similar tool, also evaluating the visual quality with the MOS
scale. Another study by Van Sinh et al. [49] applied the VTK
library to construct models from X-ray CT and MRI images, with
the visual quality rated using the same MOS scale. These studies
emphasize the utility of the VTK library in generating high-
quality 3D visualizations from medical imaging data.

4.3. Summary of reviewed methods

All studies (presented in Table 1) included in this review were
either moderate or of high performance with a score ranging between
50% (2) and 95% (3.8).

4.4. Inferences and analysis of reviewed methods

The reviewed methods reveal a wide range of techniques and
models applied to various datasets, specifically for disease
classification tasks. The methods employed different DL
architecture, including VGG variants, AlexNet, ResNet, Inception
V3, and other third-party libraries for DICOM file conversion,
each selected based on the classification needs and imaging
modalities such as MRI, X-ray, and ultrasound. Some of the key
inferences drawn from the review include:

1) Compression and conversion impact on detail preservation:
Converting DICOM image formats, like JPEG and PNG for
model compatibility led to a significant metadata loss,
impacting the classification performance. Models for tasks like
lung and brain tumor classification experienced up to 5%
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decrease in accuracy due to compression. To establish this
variation, we plotted the loss across methods utilizing
converted datasets with an average drop of around 4% as
illustrated in Figure 3. This highlights the importance of
maintaining DICOM format integrity for critical diagnostic tasks.

2) Variability in model choice based on dataset size: Complex
architectures like Inception V3 and DenseNet perform better
with larger datasets, especially for multi-class disease
classification. However, custom-built CNNs often suffice for
smaller datasets, as shown by models handling fewer than 500
images. From Figure 4, the statistical regression on dataset size
versus accuracy indicates a positive correlation, with large
datasets (over 10,000 images) yielding up to a 5% improvement
in model accuracy when complex architectures are applied.

3) Model performance across modalities: The performance of
models varies significantly depending on the image modality

and dataset size. For example, models for MRI images, such as
ResNet50, and SVM, achieved high accuracy (up to 98.5%),
indicating MRI’s higher feature consistency for tasks like brain
tumor classification. On the other hand, models for chest X-rays,
like VGG19 and DenseNet121, are preferred for lung disease
classification due to their robust performance in handling large
datasets. To quantitatively establish this comparison, average
accuracy and recall across different modalities were computed.
For instance, from Figure 5, MRI-based models had an average
accuracy of approximately 91% while for X-ray images, it
reached 94%, demonstrating MRI’s reliability for specific tasks
but highlighting X-ray’s broader applicability.

5. Discussion

The analysis of existing studies reveals that many approaches
rely on a processing pipeline that converts DICOM images into
standard formats such as PNG, TIF, and JPEG before subjecting
them to classification or segmentation networks. While this
conversion facilitates the use CNNs for image classification, it
introduces critical challenges. Specifically, this process often results
in the loss of essential DICOM metadata [50], including clinical
parameters like slice thickness, image resolution, and spacing
between slices [14]. The absence of this metadata compromises the
accuracy and reliability of diagnostic predictions, as it removes
crucial contextual information required for informed clinical
decisions. Furthermore, the resizing and compression associated
with these standard formats can lead to a loss of image details,
negatively impacting the precision of disease classification.

Studies indicate that methodologies that preserve DICOM
metadata alongside image data tend to achieve superior precision
in diagnostic tasks compared to those that rely on converted
image formats like PNG, JPEG, and TIF. For instance, Stiefel
et al. [51] demonstrated the significant advantages of maintaining
metadata integrity in improving diagnostic accuracy.

In addition, several methods have adopted third-party libraries,
such as VTK, and foundation models, such as NVIDIA Clare, to
process DICOM images directly, eliminating the need for format
conversion. While these libraries are designed for DICOM image

Figure 3
Impact of image format on classification performance metrics
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handling, they face limitations in specific scenarios. A key issue is their
tendency to overfit to specific datasets, where models perform well on
training data but fail to generalize effectively to diverse datasets [19].
For example, Kawuma et al. [34] reported that a model achieving
88.23% accuracy on local dataset saw its accuracy drop to 50%
when tested on multicenter datasets. This lack of generalization
restricts their applicability in real-world clinical settings, where
variability in DICOM image composition arises from differences in
scanning protocols, imaging conditions, and equipment used [20].

Moreover, foundation models often encounter difficulties in
handling large datasets, a critical requirement for machine learning
applications. The size and complexity of these datasets frequently
hinder effective processing and classification, impacting the
scalability of these models in medical imaging contexts.

These observations underscore the need for developing a DL
architecture that process DICOM images natively while preserving
essential metadata. Such an architecture would ensure the
retention of critical clinical information and enhance diagnostic
reliability. Furthermore, improving the generalization of these
models to accommodate the variability of DICOM datasets is
imperative. Addressing overfitting and incorporating robust data
handling technique as parallel data processing and advanced data
augmentation strategies could improve the challenges associated
with large datasets. These innovations would contribute to higher
accuracy and scalability, enabling the deployment of DL models
in diverse clinical environment.

6. Conclusion

This review has presented a summary of ten years of published
studies in application of DL techniques in DICOM file classification.
The finding should assist researchers in understandings the benefits
and limitations of existing techniques to guide the development of
better solutions aimed at improving medical imaging results,
specifically those that apply to DICOM images.

Although the current advancements in DL provide valuable tool
for medical image analysis, there is significant room for
improvement in handling the unique challenges posed by DICOM
files. Developing a more robust, sophisticated, and flexible model
with the abilities to directly process DICOM images without
compromising the image composition will be a crucial step
towards advancing the application of AI in medical diagnosis.
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[29] Pham, M. T., Rajić, A., Greig, J. D., Sargeant, J. M.,
Papadopoulos, A., & McEwen, S. A. (2014). A scoping
review of scoping reviews: Advancing the approach and
enhancing the consistency. Research Synthesis Methods,
5(4), 371–385. https://doi.org/10.1002/jrsm.1123

[30] Westphaln, K. K., Regoeczi, W., Masotya, M., Vazquez-
Westphaln, B., Lounsbury, K., McDavid, L., : : : , & Ronis,
S. D. (2021). From Arksey and O’Malley and Beyond:
Customizations to enhance a team-based, mixed approach to
scoping review methodology. MethodsX, 8, 101375. https://
doi.org/10.1016/j.mex.2021.101375

[31] Mustapha, I., Ali, M., Khan, N., & Sikandar, H. (2023). The
impact of industry 4.0 on innovative organisations, a
thematic review using the PRISMA statement 2020.
International Journal of Interactive Mobile Technologies,
17(9), 88–105. https://doi.org/10.3991/ijim.v17i09.39465

[32] Pham, H. H., Do, D. V., & Nguyen, H. Q. (2021). DICOM
imaging router: An open deep learning framework for
classification of body parts from DICOM X-ray scans. arXiv
Preprint:2108.06490. https://doi.org/10.48550/arXiv.2108.
06490

[33] Vallez, N., Espinosa-Aranda, J. L., Pedraza, A., Deniz, O., &
Bueno, G. (2023). Deep learning within a DICOM WSI
viewer for histopathology. Applied Sciences, 13(17), 9527.
https://doi.org/10.3390/app13179527

[34] Kawuma, S., Kumbakumba, E., Mabirizi, V., Nanjebe, D.,
Mworozi, K., Oyesigye Mukama, A., & Kyasimire, L. (2024).
Diagnosis and classification of tuberculosis chest X-ray images
of children less than 15 years at Mbarara regional referral
hospital using deep learning. Journal of AI and Data Mining,
12(2), 315–324. https://doi.org/10.22044/jadm.2024.14270.2530

[35] Alshmrani, G. M. M., Ni, Q., Jiang, R., Pervaiz, H., &
Elshennawy, N. M. (2023). A deep learning architecture for
multi-class lung diseases classification using chest X-ray
(CXR) images. Alexandria Engineering Journal, 64,
923–935. https://doi.org/10.1016/j.aej.2022.10.053

[36] Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G.,
Santangelo, R., : : : , & Alzheimer’s Disease Neuroimaging
Initiative. (2019). Automated classification of Alzheimer’s
disease and mild cognitive impairment using a single MRI
and deep neural networks. NeuroImage: Clinical, 21,
101645. https://doi.org/10.1016/j.nicl.2018.101645

[37] Kuraparthi, S., Reddy, M. K., Sujatha, C. N., Valiveti, H.,
Duggineni, C., Kollati, M., & Kora, P. (2021). Brain tumor
classification of MRI images using deep convolutional neural

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

09

https://doi.org/10.37394/23205.2020.19.2
https://doi.org/10.37394/23205.2020.19.2
https://doi.org/10.48550/arXiv.2211.02701
https://doi.org/10.1109/UFFC-JS60046.2024.10794017
https://doi.org/10.1016/j.softx.2024.101744
https://doi.org/10.1109/ICICV50876.2021.9388375
https://doi.org/10.1177/0192623320965893
https://doi.org/10.1177/0192623320965893
https://doi.org/10.1007/978-3-030-36778-7_43
https://doi.org/10.1007/978-3-030-36778-7_43
https://doi.org/10.3390/tomography7010001
https://doi.org/10.3390/tomography7010001
https://doi.org/10.1017/S1431927620001713
https://doi.org/10.3897/folmed.65.e100100
https://doi.org/10.3897/folmed.65.e100100
https://doi.org/10.1002/smr.2508
https://doi.org/10.1002/pro.3993
https://doi.org/10.1002/pro.3993
https://doi.org/10.1111/medu.14431
https://doi.org/10.1186/s13643-021-01821-3
https://doi.org/10.1002/jrsm.1123
https://doi.org/10.1016/j.mex.2021.101375
https://doi.org/10.1016/j.mex.2021.101375
https://doi.org/10.3991/ijim.v17i09.39465
https://doi.org/10.48550/arXiv.2108.06490
https://doi.org/10.48550/arXiv.2108.06490
https://doi.org/10.3390/app13179527
https://doi.org/10.22044/jadm.2024.14270.2530
https://doi.org/10.1016/j.aej.2022.10.053
https://doi.org/10.1016/j.nicl.2018.101645


network. Traitement du Signal, 38(4), 1171–1179. https://doi.
org/10.18280/ts.380428

[38] Jia, Z., & Chen, D. (2020). Brain tumor identification and
classification of MRI images using deep learning techniques.
IEEE Access. https://doi.org/10.1109/ACCESS.2020.3016319

[39] Zeimarani, B., Costa, M. G. F., Nurani, N. Z., Bianco, S. R.,
Pereira, W. C. D. A., & Costa Filho, C. F. F. (2020). Breast
lesion classification in ultrasound images using deep
convolutional neural network. IEEE Access, 8, 133349–133359.
https://doi.org/10.1109/ACCESS.2020.3010863

[40] Kumar, R., Mohanty, K., Mundra, A. S., & Sai, B. G. K. (2024).
Classification of carotid artery intima-media thickness
ultrasound images with deep learning. In AIP Conference
Proceedings, 3075(1), 1–12. https://doi.org/10.1063/5.0226744

[41] Liebenlito, M., Irene, Y., & Hamid, A. (2020). Classification of
tuberculosis and pneumonia in human lung based on chest
X-ray image using convolutional neural network. InPrime:
Indonesian Journal of Pure and Applied Mathematics, 2(1),
24–32. https://doi.org/10.15408/inprime.v2i1.14545

[42] Masood, M., Nazir, T., Nawaz, M., Mehmood, A., Rashid, J.,
Kwon, H. Y., : : : , & Hussain, A. (2021). A novel deep learning
method for recognition and classification of brain tumors from
MRI images. Diagnostics, 11(5), 744. https://doi.org/10.3390/
diagnostics11050744

[43] Yimer, F., Tessema, A. W., & Simegn, G. L. (2021). Multiple
lung diseases classification from chest X-ray images using deep
learning approach. International Journal of Advanced Trends
in Computer Science and Engineering, 10(5), 2936–2946.
https://doi.org/10.30534/ijatcse/2021/021052021

[44] Ibrahim, A. U., Ozsoz, M., Serte, S., Al-Turjman, F., & Yakoi,
P. S. (2024). Pneumonia classification using deep learning from
chest X-ray images duringCOVID-19.Cognitive Computation,
16, 1589–1601. https://doi.org/10.1007/s12559-020-09787-5

[45] Cao, Z., Duan, L., Yang, G., Yue, T., & Chen, Q. (2019). An
experimental study on breast lesion detection and classification
from ultrasound images using deep learning architectures. BMC
Medical Imaging, 19, 1–9. https://doi.org/10.1186/s12880-019-
0349-x

[46] Jabeen, K., Khan, M. A., Alhaisoni, M., Tariq, U., Zhang,
Y. D., Hamza, A., : : : , & Damaševičius, R. (2022). Breast
cancer classification from ultrasound images using
probability-based optimal deep learning feature fusion.
Sensors, 22(3), 807. https://doi.org/10.3390/s22030807

[47] Mamdouh, R., El-Bakry, H. M., Riad, A., & El-Khamisy, N.
(2020). Converting 2D-medical image files “DICOM”

into 3D- models, based on image processing, and analysing
their results with Python programming. WSEAS
Transactions on Computers, 19(2), 10–20. https://doi.org/
10.37394/23205.2020.19.2

[48] Tran, M. H., & Vu, H. M. Q. (2018). An improved method for
building a 3D model from 2D DICOM. In 2018 International
Conference on Advanced Computing and Applications, 125–131.
https://doi.org/10.1109/ACOMP.2018.00027

[49] Tran, M. H., & Vu, H. M. Q. (2016). A research on 3D model
construction from 2D DICOM. In 2016 International
Conference on Advanced Computing and Applications,
158–163. https://doi.org/10.1109/ACOMP.2016.031

[50] Vahdati, S., Khosravi, B.,Mahmoudi, E., Zhang, K., Rouzrokh,
P., Faghani, S., : : : , & Erickson, B. J. (2024). A guideline for
open-source tools to make medical imaging data ready for
artificial intelligence applications: A society of imaging
informatics in medicine (SIIM) survey. Journal of Imaging
Informatics in Medicine, 37(5), 2015–2024. https://doi.org/
10.1007/s10278-024-01083-0

[51] Stiefel, M., Müller, M., Bachmann, B. I., Guitar, M. A.,
Nayak, U. P., & Mücklich, F. (2024). Enhancing machine
learning classification of microstructures: A workflow
study on joining image data and metadata in CNN. MRS
Communications, 14(3), 363–371. https://doi.org/10.1557/
s43579-024-00549-0

How to Cite: Mabirizi, V., Kawuma, S., Natumanya, D., & Wasswa, W. (2025).
Deep Learning Techniques in DICOM Files Classification: A Systematic
Review. Artificial Intelligence and Applications. https://doi.org/10.47852/
bonviewAIA52024425

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

10

https://doi.org/10.18280/ts.380428
https://doi.org/10.18280/ts.380428
https://doi.org/10.1109/ACCESS.2020.3016319
https://doi.org/10.1109/ACCESS.2020.3010863
https://doi.org/10.1063/5.0226744
https://doi.org/10.15408/inprime.v2i1.14545
https://doi.org/10.3390/diagnostics11050744
https://doi.org/10.3390/diagnostics11050744
https://doi.org/10.30534/ijatcse/2021/021052021
https://doi.org/10.1007/s12559-020-09787-5
https://doi.org/10.1186/s12880-019-0349-x
https://doi.org/10.1186/s12880-019-0349-x
https://doi.org/10.3390/s22030807
https://doi.org/10.37394/23205.2020.19.2
https://doi.org/10.37394/23205.2020.19.2
https://doi.org/10.1109/ACOMP.2018.00027
https://doi.org/10.1109/ACOMP.2016.031
https://doi.org/10.1007/s10278-024-01083-0
https://doi.org/10.1007/s10278-024-01083-0
https://doi.org/10.1557/s43579-024-00549-0
https://doi.org/10.1557/s43579-024-00549-0
https://doi.org/10.47852/bonviewAIA52024425
https://doi.org/10.47852/bonviewAIA52024425

	Deep Learning Techniques in DICOM Files Classification: A Systematic Review
	1. Introduction
	2. The DICOM File Structure
	2.1. Reading DICOM file information

	3. Research Methods
	3.1. Scoping review methodology
	3.2. Identification of studies
	3.3. Search strategy
	3.4. Inclusion criteria
	3.5. Exclusion criteria
	3.6. Data extraction and analysis
	3.7. Quality appraisal

	4. Results
	4.1. Search results
	4.2. Survey of existing literature
	4.3. Summary of reviewed methods
	4.4. Inferences and analysis of reviewed methods

	5. Discussion
	6. Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


