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Abstract: Early detection of plant diseases is crucial for minimizing crop losses and improving agricultural productivity. However, current manual
detection methods are time-consuming and inaccurate. Although advanced techniques such as pattern recognition (PR) and image processing have
demonstrated potential in automating disease identification, there is still a need for more accurate and efficient methods that can handle various
image qualities such as complex backgrounds and complex leaf structures. This paper introduces a method that uses PR and convolutional neural
network (CNN) models to detect and classify diseases in infected bean leaves based on shape features. Using contour detection, a computer-
vision-based PR method, we can effectively detect and distinguish different shapes in images. Two datasets were prepared: original bean leaf
images subjected to background removal and enhanced images subjected to background removal, binary thresholding, and contour detection.
These preprocessing steps reduced noise, improved color differentiation, and enhanced shape detection for more precise disease identification.
Experimental results show that the models trained on the enhanced images showed up to an 8.16% improvement in accuracy, precision, and
sensitivity compared to those trained on the original images. This study highlights the potential of integrating image processing techniques with

CNN models for more accurate and efficient plant disease detection.
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1. Introduction

Plant diseases and pests pose a significant threat to crops,
potentially causing severe damage if not identified early. These issues
lead to reduced crop yields, resulting in substantial financial losses.
Without early detection, crop losses can exceed 45% annually, even
with the use of pesticides [1-5]. Automatic disease identification in
agriculture is among the several applications that have emerged because
of recent advancements in artificial intelligence (Al) and computer
vision (CV). Plant disease detection systems have been developed using
Al approaches, particularly deep learning [6, 7].

Several image-based studies have integrated Al, machine learning
(ML), and pattern recognition (PR) to detect plant leaf diseases and pests.
Singh et al. [8] proposed several optimization strategies and convolutional
neural network (CNN)-based models for detecting diseases in a bean leaf
image. The models were trained on a publicly available dataset consisting
of 1295 images captured using a smartphone camera. The dataset has
three classes, namely, angular leaf spot, bean rust, and healthy. They
used various optimization strategies, including Adam, stochastic gradient
descent (SGD), and Nadam, to train different CNN-based models. After
training the models for 25 epochs, their experimental results showed
that the EfficientNetB6 architecture with the Adam optimizer achieved
the highest accuracy of 91.74%. However, the limited preprocessing
techniques used led to reduced classification accuracy in the implemented
model. Elfatimi et al. [9] introduced a method that uses MobileNet
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models to classify bean leaves into three classes, namely, angular leaf
spot, bean rust, and healthy. They used a publicly available dataset with
1296 images. They compared and evaluated various architectures with
different hyperparameters and optimization methods, employing five
different optimizers, including Adagrad, Nadam, SGD, RMSprop, and
Adam, with asynchronous gradient descent. After training for 100 epochs,
the MobileNet model outperformed others, achieving a 92% accuracy on
the testing data. However, its efficiency dropped by 5% during testing.
Sembiring et al. [10] used a CNN architecture, such as VGGNet,
ShuffleNet, and SqueezeNet, to detect 10 diseases in tomato plants
using leaf images. This method achieved an accuracy rate of 97.15%
while maintaining model simplicity. Gui et al. [11] developed a method
for the early diagnosis of soybean mosaic virus disease (SMV) using
hyperspectral images, grading severity as 0, 1, or 2. Their hybrid model
combining CNN and support vector machine (SVM) achieved accuracy
rates of 96.67% for the training set and 94.17% for the test set. The model’s
efficiency dramatically dropped when the sample size was halved, but
it maintained an accuracy above 90%, demonstrating robustness with
fewer samples. Moreover, Agarwal et al. [12] introduced a CNN-based
architecture for classifying tomato crop leaf diseases using a Plant-
Village dataset that is publicly available. The dataset consists of 50,000
images with 14 classes. After training the models for 1000 epochs, their
proposed method achieved an accuracy of 91.2%. However, this method
was susceptible to overfitting, particularly with a limited number of
classes. Aravind et al. [13] used a CNN, specifically AlexNet, to classify
three diseases and healthy leaves of grape images from the Plant-Village
dataset. Using a transfer learning approach with pretrained AlexNet, the
model achieved a remarkable 97.62% classification accuracy. Further
performance analysis using multiclass support vector machine (MSVM)
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revealed that features from the ReLU 3 layer of AlexNet attained the
highest classification accuracy of 99.23%. Picon et al. [14] developed a
method for detecting three wheat diseases in natural environments using
the ResNet50 model. The model was trained on 8,178 images captured
with a mobile phone, achieving an accuracy of 96%.

Yang et al. [15] conducted research aimed at identifying abnormal
hydroponic lettuce leaves, specifically yellow and rotten varieties,
using multiple linear regression (MLR), K-nearest neighbor (KNN),
and SVM techniques. MLR recorded detection accuracies of 89.48%
for yellow leaves and 99.29% for rotten leaves, and SVM achieved
98.33% accuracy for yellow leaves and 97.91% for rotten ones. In
contrast, KNN demonstrated a significant disadvantage with a longer
detection time of 20.25 s, compared to 0.61 s for MLR and 1.98 s
for SVM. Additionally, Pantazi et al. [16] introduced a method for
categorizing various plant diseases by employing the local binary pattern
algorithm in conjunction with an SVM classifier. Although this approach
exhibited strong generalization capabilities, its classification performance
diminished when faced with noisy samples, resulting in an average
accuracy of 95%.

Previous studies have used ML- and CNN-based models to detect
crop diseases in images, but these methods face challenges when extracting
disease patterns from images with complex backgrounds. Issues such as
varying lighting conditions, overlapping objects, and similarities between
diseased plants and background elements complicate this task. Traditional
ML algorithms struggle to consistently identify disease and pest-related
elements in such dynamic environments, resulting in unstable models
for disease and pest detection. Additionally, these algorithms often fail to
generalize well with limited datasets, especially after only a few training
epochs. Relying solely on optimization strategies to improve model
generalization is insufficient.

To overcome these challenges, this study employs various
preprocessing methods and PR techniques to enhance image quality
in complex environments, ultimately improving the performance of
ML models on limited datasets. The method integrates PR techniques
with CNN-based models to enhance the detection of disease on bean
leaves. These PR techniques play a crucial role in separating background
from foreground images and locating infected areas, thereby facilitating
CNN-based models in efficiently identifying the affected regions. The
CNN-based models used in this study are trained on both original
and enhanced datasets to compare their performance before and after
implementing the proposed method. The original images undergo
background removal to reduce background interference, whereas the
enhanced images undergo additional processes, including background
removal, binary thresholding, and contour detection. These combined
strategies effectively minimize image noise and enhance the accuracy
of disease diagnosis.

The remainder of this paper is structured as follows. The next
section describes the materials and methodology, followed by Section 3,
which covers the experimental setup. Section 4 discusses the experiment’s
results, and finally, the conclusion is provided in Section 5.

2. Materials and Method
2.1. Dataset

This study utilized a publicly available bean leaf disease dataset,
which can be accessed from the Makerere Al Lab [17]. This dataset
consists of 1,296 images, each with a resolution of 500 x 500 pixels,
and is categorized into four groups: angular leaf spot (Als) with 432
images, bean rust (Br) with 436 images, and healthy (He) with 428
images. Figure 1 shows the three categories of the bean leaf images that
were captured in a normal environment.

The dataset used in this study contains a total of 4,040 images,
divided in a 70:20:10 ratio for training, validation, and testing. To meet
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Figure 1
Bean leaf dataset: (a) angular leaf spot, (b) bean rust, and
(¢) healthy

(b)

the requirement of 500 images for each group, the images were expanded
using the 90-degree rotation method from the image augmentation
technique, as shown in Figure 2. In this stage, we employed only one
augmentation technique to obtain the minimal images required for each
class because the Als, Br, and He classes required 68, 64, and 72 images,
respectively. During model training, further augmentation approaches
were used to improve the learning process and performance.

2.2. Preprocessing method

In the preprocessing stage, we employed three methods to
minimize noise: background removal, binary thresholding, and contour
detection, as depicted in Figure 3. The background was removed
using Python’s remove-background “rembg” function, which reduces
distracting noise. This function utilizes a neural network model that has
been trained on an extensive dataset to efficiently remove backgrounds
from the images.

A binary threshold is employed to discern color variations in
images. Every pixel in a binary image must have one of two values, i.e.,
0 or 1, indicating black or white, respectively (see Equation (1)). The
binary threshold process involves establishing a specific threshold value
and subsequently assigning pixels in the input image to either 0 or 1.
This assignment is based on whether the intensity value of each pixel is
less than or greater than the threshold value [18].

B(x,y) = {1 ifI(x,y) > T

0 ifI(x,y) <T M

where T is the threshold value, I(x,y) is the intensity value, and B (x, y)
is the binary image.

Once a binary image is obtained, contour (C) can be defined as a
set of connected points where the binary value changes from 0 to 1 or
vice versa, as shown in Equation (2).

C={(xy)B(xy) = land 3(x',y’) € N(x,y)

2
such that B(x’,y’) = 0}, &

where N(x,y) is the neighborhood of point (x, y).

Figure 2
Image augmentation technique used in this study: (a) original
image and (b) 90-degree rotated image

(a)

(b)
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. Figure 3 . . Step 6. Draw Draw the detected contours on the copied
The preprocessing procedure used: (a) primary image, Contours: image using blue color (255, 0, 0) and
(b) background removal, and (c) binary threshold and contour line thickness of 1.
tecti
detection Step 7. Save the Save the image to destination folder.
Image:

Finally, contour detection is used to extract object or region
boundaries in an image. A contour refers to a curve connecting points
along a consistent intensity edge, as shown in Equation (2) [19]. This
analysis reveals the shape, size, and spatial distribution of the infected
regions. Such geometric and morphological features can train classifiers or
can be inputted to deep learning models for automated disease diagnosis.
In this study, the method effectively highlighted high circularity and small
contours on Br and irregular shapes on Als.

The contour detection method is summarized in the following
algorithm.

Algorithm
Step 1. Load Image:  Read the RGB image with no background
from disk using OpenCV.
Step 2.  Convert to Convert the RGB image to grayscale to
Grayscale: simplify further processing
Step 3. Apply Binary ¢ Convert the grayscale image to binary
Thresholding:  using a fixed threshold.
* Pixels above the threshold are set to
255 (white), and those below to 0 (black).
Step 4. Find Detect contours from the binary image
Contours: using tree-based contour retrieval and
simple chain approximation.
Step 5. Copy Original Make a copy of the original color image
Image: for drawing purposes.

2.3. Convolutional neural network

CNNs play a crucial role in deep learning and are widely used
in CV tasks. They recognize visual patterns across image pixels with
minimal preprocessing, making them highly effective in image-based
detection studies. This section outlines the CNN models used in this
research. GoogLeNet offers an alternative to CNNs by incorporating
an inception module that introduces additional layers. GoogLeNet
utilizes a replacement of average pooling for fully connected (FC)
layers situated at the uppermost section of the convolutional network,
resulting in a significant reduction in the quantity of parameters [20].
The architectural design of GoogLeNet was developed with the
objective of minimizing energy consumption and memory utilization.
This study also investigates InceptionV3, which is anticipated to
succeed InceptionV1 and InceptionV2 [21].

Furthermore, it is worth noting that XceptionNet exhibited superior
performance compared to InceptionV3, despite both models having an
equal number of parameters. This notable difference in performance was
observed specifically on the largest dataset. In this model, the conventional
inception modules of GooglLeNet were substituted with depth-wise
separable convolutions, which were subsequently followed by point-
specific convolutions (1 x 1 convolutions) [22].

MobileNet is a paradigm that has been put up by Google as
a solution for mobile and embedded systems, characterized by its
lightweight nature. The utilization of depth-wise separable convolutions
in the model leads to a reduction in the number of parameters necessary
for network training. Additionally, it facilitates the construction of thin
deep neural networks in comparison to the GoogLeNet and InceptionV3
models [23].

The CNN architecture consists of three main types of layers:
convolutional, pooling, and FC layers. Feature extraction is performed
using convolutional and pooling layers, and the FC layer maps these
features to the final output, typically through a softmax function. As
shown in Figure 4, this study employed three transfer learning CNN-based
models, namely, InceptionV3, XceptionNet, and MobileNet, to train,
validate, and test both the original and enhanced datasets. During training,
the lower layers were frozen for feature extraction and the upper layers
were fine-tuned for classification. Input images were resized to 150 x 150
pixels, and the FC layer contained 128 neurons, followed by a softmax
layer with three output classes.

Figure 4
Proposed CNN architecture
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3. Experimental Setup and Evaluation Parameters

Figure 5 shows the suggested architecture with a 500 x 500-pixel
input image. The input images are sent via the background removal
block to maintain the needed section before being converted to
grayscale. Grayscale images aid the contour detection approach in
detecting forms generated by bacteria or pests. The binary threshold
block aids in distinguishing between image hues. The images are
then subjected to contour detection to identify the various shapes on
the images. This block’s images are transformed to 150 x 150 pixels
for faster processing and then trained using the CNN-based models
InceptionV3, XceptionNet, and MobileNet to test and compare their
performance. After testing the CNN-based models on the two sets of
data, MobileNet trained on the enhanced data outperformed the others
with an average accuracy of 96.69% and average Fl-score of 0.97.
Training was carried out using a 32 fixed batch size, a learning rate of
0.001, and a dropout rate of 0.05. Various augmentation approaches were
employed to enhance the dataset and the overall learning process and
performance. These techniques included random vertical and horizontal
flipping, 90-degree rotation, and zooming [24-26]. Furthermore, the
Adam optimizer was employed because Sembiring et al. [10] and Gui
et al. [11]] demonstrated that it performed better in the dataset that we
used in this work. All models were trained on a system outfitted with an
Intel Core 15-7200u CPU (2.50 and 2.71 GHz) and 16 GB of memory.

We use four metrics to evaluate the classification models, as shown
in Equations (3)—(6): accuracy (Ay), precision (Pn), recall (Rl), and
F1-score (Fs).

Ay = T ©)

P, = @

R = 125 )
Fy=2((P.-R)/(P. + R)) (6)

The term “true negative (Tne)” denotes the correct identification
of the negative class by the model. Conversely, “true positive (Tve)”
indicates a state in which the model correctly identifies the positive
class. “False negative (Fne)” signifies an incorrect prediction made
by the model regarding the negative class. Moreover, “false positive
(Fve)” describes a case where the model mistakenly predicts a positive
class.

Figure 5
Framework of the proposed method

Input image of i
si:e (;335500 Convertinazes Binary threshold
pixels) L0812y
PR Dataset divided into training,
Training CCN based models S SIS Contour
(input images size 150x150 pixels) VM”{' Eadiesnp kil detection
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Remove the
background
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generalizing?
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4. Experimental Results and Discussion

This section describes the experimental findings, covering
the training accuracy and losses for models trained on two separate
datasets. It also evaluates each model’s confusion matrix and compares
the results of the proposed method to those of existing methodologies.

Figure 6 shows the average accuracy and loss of the models trained
on both original and enhanced images. These averages were calculated
by taking the mean of the training and validation accuracies, as well
as the losses, throughout all epochs. In this study, the models trained
on original images are referred to as InceptionV3, XceptionNet, and
MobileNet, and those trained on improved images are referred to as
InceptionV3-en, XceptionNet-en, and MobileNet-en. The orange line
in the graph presents a model trained on enhanced images, whereas the
blue line indicates a model trained on modified images. Figures 6(a)
and (b) show the average accuracy and loss of the models trained on
InceptionV3 and InceptionV3-en, respectively. The average accuracy
rates of InceptionV3 and InceptionV3-en were 79.53% and 82.78%,
respectively, with average losses of 0.45 and 0.36. Figures 6(c) and
(d) illustrate the average accuracy and loss of the models trained on
XceptionNet and XceptionNet-en, respectively. The average accuracy
rates of XceptionNet and XceptionNet-en were 83.65% and 93.84%,
respectively, with average losses of 0.35 and 0.14. Finally, Figures 6(e)
and (f) show the average accuracy and loss of the models trained on
MobileNet and MobileNet-en, respectively. The average accuracy rates
of MobileNet and MobileNet-en were 93.72% and 96.69%, respectively,
with average losses of 0.15 and 0.11.

Figure 7 compares the six models’ average accuracies. The
graph clearly demonstrates that MobileNet-en surpasses all other
models with an average accuracy of 96.69%, and InceptionV3 has the
lowest average accuracy with 79.36%. In particular, when compared to
existing methods, the suggested approach improves average accuracy
by 2.97%—8.16%.

The confusion matrix of the models trained on original and
enhanced images is presented in Table 1. The InceptionV3 model
exhibited the lowest performance with an accuracy of 79.36%, followed
by the XceptionNet model at 84.68% and the MobileNet model at
93.72%. For the InceptionV3 model, the precision, recall, and F1-score
for the Br class were all recorded at 0.72, and these metrics for the
other classes ranged from 0.74 to 0.92. The XceptionNet model also
showed low precision, recall, and F1-score of 0.8 for the Br class, with
values for the other classes varying between 0.81 and 0.93. In contrast,
the MobileNet model demonstrated precision, recall, and F1-scores
ranging from 0.90 to 0.96, with the He class achieving the highest
score of 0.96, indicating a balanced detection of true positives and
true negatives. Notably, all three models exhibited low precision for
the Br class, and the He class performed better than the other classes
in terms of recall.

In comparison, the InceptionV3-en, XceptionNet-en, and
MobileNet-en models showed enhancements in performance of 3.35%,
8.16%, and 2.97%, respectively. The precision, recall, and F1-scores
for the InceptionV3-en model ranged from 0.74 to 0.94, those for
the XceptionNet-en model ranged from 0.88 to 1, and those for the
MobileNet-en model ranged from 0.94 to 1. The F1-scores for all three
classes in the MobileNet-en model surpassed those of the other models,
demonstrating a favorable balance between true positives and false
negatives. Moreover, the He class consistently achieved the highest
F1-score of 0.98 across all classes. The experimental findings indicate
that the application of preprocessing techniques led to an improvement
in model performance by as much as 8.16%.

Table 2 compares the accuracy performance of the proposed models
in our work to similar approaches in the literature. The data presented in the
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Figure 6
The average accuracy and loss of the models trained on both original and enhanced images. (a) InceptionV3 and InceptionV3-en
average accuracy, (b) InceptionV3 and InceptionV3-en average loss, (¢) XceptionNet and XceptionNet-en average accuracy,
(d) XceptionNet and XceptionNet-en average loss, (¢) MobileNet and MobileNet-en average accuracy, and
(f) MobileNet and MobileNet-en average loss
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table demonstrate that the models proposed in this study exhibit superior
performance compared to all previously suggested methodologies. The
models that were suggested attained an accuracy of 96.69%.

5. Conclusion

This study employed a variety of preprocessing approaches and
PR techniques to improve images collected in challenging conditions
such as poor lighting, noise, or background complexity, ultimately
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improving the performance of ML models. PR methods were applied
alongside CNN-based models to enhance the identification of disease-
related characteristics on bean leaves. Two datasets were utilized for
model training: the original bean images and the enhanced versions.
The original images underwent preprocessing to eliminate the
background. In contrast, the enhanced bean images experienced a
three-step preprocessing process that involved background removal,
binary filtering, and contour detection, effectively minimizing
background noise. The average accuracy rates of the models trained
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Figure 7
Comparison of accuracies of the models
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Table 1
Confusion matrix of all models
Ay Improvement
Class Als Br He (%) P R F (%)
n 1 s
InceptionV3

Als 37 10 3
Br 6 36 8

7936 0.86 0.74 0.80 -
0.72 0.72 0.72
0.80 0.92 0.86
XceptionNet
84.68 0.80 0.82 0.81 -
0.80 0.80 0.80
094 092 0.93
MobileNet
93.72 0.96 0.92 094 -
090 094 0.92
096 0.96 0.96
InceptionV3-en
82.71 0.88 0.74 0.80 3.35
0.74 0.80 0.77

Als 41 8 1

Als 46 3 1
Br 2 47 1

Als 37 12 1
Br 4 40 6

He 2 47 0.87 0.94 0.90
XceptionNet-en
Als 4 2 4 9284 096 0.88 0.92 8.16
Br 45 096 0.90 0.93
He 0 0 50 0.88 1.00 0.94
MobileNet-en
Als 47 2 1 96.69 0.98 0.94 0.96 2.97

0.96 0.96 0.96
0.96 1.00 0.98

Table 2
Comparison of the proposed method to existing methods

Method used Accuracy on test set (%)

Proposed  MobileNet-en 96.69
Existing EfficientNetB6 [8] 91.74
MobileNet [9] 92

390

on the enhanced images showed considerable improvement, reaching
82.71%, 92.84%, and 96.69%. In contrast, models that were trained on
the original images achieved accuracy rates of 79.36%, 84.68%, and
93.72% for InceptionV3, XceptionNet, and MobileNet, respectively.
Experimental results revealed that models utilizing enhanced images
exhibited performance boosts of up to 8.16%. MobileNet-en performed
particularly well, outperforming all other models with an average
accuracy of 96.69% and an F1-score of 0.97.

A key limitation of this study is the sensitivity of the contour
detection technique to background noise. Although the method is designed
to identify irregular shapes in the foreground, it often misidentifies
features when applied to images with complex or noisy backgrounds. As
aresult, its effectiveness is reduced in field conditions where background
interference is common. Future studies will explore the impact of the
contour recognition method on various crop types.
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