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1.  Introduction
Plant diseases and pests pose a significant threat to crops, 

potentially causing severe damage if not identified early. These issues 
lead to reduced crop yields, resulting in substantial financial losses. 
Without early detection, crop losses can exceed 45% annually, even 
with the use of pesticides [1–5]. Automatic disease identification in 
agriculture is among the several applications that have emerged because 
of recent advancements in artificial intelligence (AI) and computer 
vision (CV). Plant disease detection systems have been developed using 
AI approaches, particularly deep learning [6, 7].

Several image-based studies have integrated AI, machine learning 
(ML), and pattern recognition (PR) to detect plant leaf diseases and pests. 
Singh et al. [8] proposed several optimization strategies and convolutional 
neural network (CNN)-based models for detecting diseases in a bean leaf 
image. The models were trained on a publicly  available dataset consisting 
of 1295 images captured using a smartphone camera. The dataset has 
three classes, namely, angular leaf spot, bean rust, and healthy. They 
used various optimization strategies, including Adam, stochastic gradient 
descent (SGD), and Nadam, to train different CNN-based models. After 
training the models for 25 epochs, their experimental results showed 
that the EfficientNetB6 architecture with the Adam optimizer achieved 
the highest accuracy of 91.74%. However, the limited preprocessing 
techniques used led to reduced classification accuracy in the implemented 
model. Elfatimi et al. [9] introduced a method that uses MobileNet 

models to classify bean leaves into three classes, namely, angular leaf 
spot, bean rust, and healthy. They used a publicly available dataset with 
1296 images. They compared and evaluated various architectures with 
different hyperparameters and optimization methods, employing five 
different optimizers, including Adagrad, Nadam, SGD, RMSprop, and 
Adam, with asynchronous gradient descent. After training for 100 epochs, 
the MobileNet model outperformed others, achieving a 92% accuracy on 
the testing data. However, its efficiency dropped by 5% during testing.

Sembiring et al. [10] used a CNN architecture, such as VGGNet, 
ShuffleNet, and SqueezeNet, to detect 10 diseases in tomato plants 
using leaf images. This method achieved an accuracy rate of 97.15% 
while maintaining model simplicity. Gui et al. [11] developed a method 
for the early diagnosis of soybean mosaic virus disease (SMV) using 
hyperspectral images, grading severity as 0, 1, or 2. Their hybrid model 
combining CNN and support vector machine (SVM) achieved accuracy 
rates of 96.67% for the training set and 94.17% for the test set. The model’s 
efficiency dramatically dropped when the sample size was halved, but 
it maintained an accuracy above 90%, demonstrating robustness with 
fewer samples. Moreover, Agarwal et al. [12] introduced a CNN-based 
architecture for classifying tomato crop leaf diseases using a Plant-
Village dataset that is publicly available. The dataset consists of 50,000 
images with 14 classes. After training the models for 1000 epochs, their 
proposed method achieved an accuracy of 91.2%. However, this method 
was susceptible to overfitting, particularly with a limited number of 
classes. Aravind et al. [13] used a CNN, specifically AlexNet, to classify 
three diseases and healthy leaves of grape images from the Plant-Village 
dataset. Using a transfer learning approach with pretrained AlexNet, the 
model achieved a remarkable 97.62% classification accuracy. Further 
performance analysis using multiclass support vector machine (MSVM) 
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revealed that features from the ReLU 3 layer of AlexNet attained the 
highest classification accuracy of 99.23%. Picon et al. [14] developed a 
method for detecting three wheat diseases in natural environments using 
the ResNet50 model. The model was trained on 8,178 images captured 
with a mobile phone, achieving an accuracy of 96%.

Yang et al. [15] conducted research aimed at identifying abnormal 
hydroponic lettuce leaves, specifically yellow and rotten varieties, 
using multiple linear regression (MLR), K-nearest neighbor (KNN), 
and SVM techniques. MLR recorded detection accuracies of 89.48% 
for yellow leaves and 99.29% for rotten leaves, and SVM achieved 
98.33% accuracy for yellow leaves and 97.91% for rotten ones. In 
contrast, KNN demonstrated a significant disadvantage with a longer 
detection time of 20.25 s, compared to 0.61 s for MLR and 1.98 s 
for SVM. Additionally, Pantazi et al. [16] introduced a method for 
categorizing various plant diseases by employing the local binary pattern 
algorithm in conjunction with an SVM classifier. Although this approach 
exhibited strong generalization capabilities, its classification performance 
diminished when faced with noisy samples, resulting in an average 
accuracy of 95%.

Previous studies have used ML- and CNN-based models to detect 
crop diseases in images, but these methods face challenges when extracting 
disease patterns from images with complex backgrounds. Issues such as 
varying lighting conditions, overlapping objects, and similarities between 
diseased plants and background elements complicate this task. Traditional 
ML algorithms struggle to consistently identify disease and pest-related 
elements in such dynamic environments, resulting in unstable models 
for disease and pest detection. Additionally, these algorithms often fail to 
generalize well with limited datasets, especially after only a few training 
epochs. Relying solely on optimization strategies to improve model 
generalization is insufficient.

To overcome these challenges, this study employs various 
preprocessing methods and PR techniques to enhance image quality 
in complex environments, ultimately improving the performance of 
ML models on limited datasets. The method integrates PR techniques 
with CNN-based models to enhance the detection of disease on bean 
leaves. These PR techniques play a crucial role in separating background 
from foreground images and locating infected areas, thereby facilitating 
CNN-based models in efficiently identifying the affected regions. The 
CNN-based models used in this study are trained on both original 
and enhanced datasets to compare their performance before and after 
implementing the proposed method. The original images undergo 
background removal to reduce background interference, whereas the 
enhanced images undergo additional processes, including background 
removal, binary thresholding, and contour detection. These combined 
strategies effectively minimize image noise and enhance the accuracy 
of disease diagnosis.

The remainder of this paper is structured as follows. The next 
section describes the materials and methodology, followed by Section 3, 
which covers the experimental setup. Section 4 discusses the experiment’s 
results, and finally, the conclusion is provided in Section 5.

2.  Materials and Method
2.1. Dataset

This study utilized a publicly available bean leaf disease dataset, 
which can be accessed from the Makerere AI Lab [17]. This dataset 
consists of 1,296 images, each with a resolution of 500 × 500 pixels, 
and is categorized into four groups: angular leaf spot (Als) with 432 
images, bean rust (Br) with 436 images, and healthy (He) with 428 
images. Figure 1 shows the three categories of the bean leaf images that 
were captured in a normal environment.

The dataset used in this study contains a total of 4,040 images, 
divided in a 70:20:10 ratio for training, validation, and testing. To meet 

the requirement of 500 images for each group, the images were expanded 
using the 90-degree rotation method from the image augmentation 
technique, as shown in Figure 2. In this stage, we employed only one 
augmentation technique to obtain the minimal images required for each 
class because the Als, Br, and He classes required 68, 64, and 72 images, 
respectively. During model training, further augmentation approaches 
were used to improve the learning process and performance.

2.2. Preprocessing method
In the preprocessing stage, we employed three methods to 

minimize noise: background removal, binary thresholding, and contour 
detection, as depicted in Figure 3. The background was removed 
using Python’s remove-background “rembg” function, which reduces 
distracting noise. This function utilizes a neural network model that has 
been trained on an extensive dataset to efficiently remove backgrounds 
from the images.

A binary threshold is employed to discern color variations in 
images. Every pixel in a binary image must have one of two values, i.e., 
0 or 1, indicating black or white, respectively (see Equation (1)). The 
binary threshold process involves establishing a specific threshold value 
and subsequently assigning pixels in the input image to either 0 or 1. 
This assignment is based on whether the intensity value of each pixel is 
less than or greater than the threshold value [18].

where T is the threshold value, I(x,y) is the intensity value, and B (x, y) 
is the binary image.

Once a binary image is obtained, contour (C) can be defined as a 
set of connected points where the binary value changes from 0 to 1 or 
vice versa, as shown in Equation (2).

where N(x,y) is the neighborhood of point (x, y).

(1)

(2)
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 Figure 1
Bean leaf dataset: (a) angular leaf spot, (b) bean rust, and 

(c) healthy

 Figure 2
Image augmentation technique used in this study: (a) original 

image and (b) 90-degree rotated image



Finally, contour detection is used to extract object or region 
boundaries in an image. A contour refers to a curve connecting points 
along a consistent intensity edge, as shown in Equation (2) [19]. This 
analysis reveals the shape, size, and spatial distribution of the infected 
regions. Such geometric and morphological features can train classifiers or 
can be inputted to deep learning models for automated disease diagnosis. 
In this study, the method effectively highlighted high circularity and small 
contours on Br and irregular shapes on Als.

The contour detection method is summarized in the following 
algorithm.

Algorithm

Step 1. Load Image: Read the RGB image with no background 
from disk using OpenCV.

Step 2. Convert to 
Grayscale:

Convert the RGB image to grayscale to 
simplify further processing

Step 3. Apply Binary 
Thresholding: 

•  Convert the grayscale image to binary 
using a fixed threshold.
•  Pixels above the threshold are set to 
255 (white), and those below to 0 (black).

Step 4. Find 
Contours: 

Detect contours from the binary image 
using tree-based contour retrieval and 
simple chain approximation.

Step 5. Copy Original 
Image:

Make a copy of the original color image 
for drawing purposes.

Step 6. Draw 
Contours:

Draw the detected contours on the copied 
image using blue color (255, 0, 0) and 
line thickness of 1.

Step 7. Save the 
Image:

Save the image to destination folder.

2.3. Convolutional neural network
CNNs play a crucial role in deep learning and are widely used 

in CV tasks. They recognize visual patterns across image pixels with 
minimal preprocessing, making them highly effective in image-based 
detection studies. This section outlines the CNN models used in this 
research. GoogLeNet offers an alternative to CNNs by incorporating 
an inception module that introduces additional layers. GoogLeNet 
utilizes a replacement of average pooling for fully connected (FC) 
layers situated at the uppermost section of the convolutional network, 
resulting in a significant reduction in the quantity of parameters [20]. 
The architectural design of GoogLeNet was developed with the 
objective of minimizing energy consumption and memory utilization. 
This study also investigates InceptionV3, which is anticipated to 
succeed InceptionV1 and InceptionV2 [21].

Furthermore, it is worth noting that XceptionNet exhibited superior 
performance compared to InceptionV3, despite both models having an 
equal number of parameters. This notable difference in performance was 
observed specifically on the largest dataset. In this model, the conventional 
inception modules of GoogLeNet were substituted with depth-wise 
separable convolutions, which were subsequently followed by point-
specific convolutions (1 × 1 convolutions) [22].

MobileNet is a paradigm that has been put up by Google as 
a solution for mobile and embedded systems, characterized by its 
lightweight nature. The utilization of depth-wise separable convolutions 
in the model leads to a reduction in the number of parameters necessary 
for network training. Additionally, it facilitates the construction of thin 
deep neural networks in comparison to the GoogLeNet and InceptionV3 
models [23].

The CNN architecture consists of three main types of layers: 
convolutional, pooling, and FC layers. Feature extraction is performed 
using convolutional and pooling layers, and the FC layer maps these 
features to the final output, typically through a softmax function. As 
shown in Figure 4, this study employed three transfer learning CNN-based 
models, namely, InceptionV3, XceptionNet, and MobileNet, to train, 
validate, and test both the original and enhanced datasets. During training, 
the lower layers were frozen for feature extraction and the upper layers 
were fine-tuned for classification. Input images were resized to 150 × 150 
pixels, and the FC layer contained 128 neurons, followed by a softmax 
layer with three output classes.
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 Figure 3
The preprocessing procedure used: (a) primary image, 

(b) background removal, and (c) binary threshold and contour 
detection

 Figure 4
Proposed CNN architecture
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3. Experimental Setup and Evaluation Parameters
Figure 5 shows the suggested architecture with a 500 × 500-pixel 

input image. The input images are sent via the background removal 
block to maintain the needed section before being converted to 
grayscale. Grayscale images aid the contour detection approach in 
detecting forms generated by bacteria or pests. The binary threshold 
block aids in distinguishing between image hues. The images are 
then subjected to contour detection to identify the various shapes on 
the images. This block’s images are transformed to 150 × 150 pixels 
for faster processing and then trained using the CNN-based models 
InceptionV3, XceptionNet, and MobileNet to test and compare their 
performance. After testing the CNN-based models on the two sets of 
data, MobileNet trained on the enhanced data outperformed the others 
with an average accuracy of 96.69% and average F1-score of 0.97. 
Training was carried out using a 32 fixed batch size, a learning rate of 
0.001, and a dropout rate of 0.05. Various augmentation approaches were 
employed to enhance the dataset and the overall learning process and 
performance. These techniques included random vertical and horizontal 
flipping, 90-degree rotation, and zooming [24–26]. Furthermore, the 
Adam optimizer was employed because Sembiring et al.  [10] and Gui 
et al. [11]] demonstrated that it performed better in the dataset that we 
used in this work. All models were trained on a system outfitted with an 
Intel Core i5-7200u CPU (2.50 and 2.71 GHz) and 16 GB of memory.

We use four metrics to evaluate the classification models, as shown 
in Equations (3)–(6): accuracy (Ay), precision (Pn), recall (Rl), and 
F1-score (Fs).

The term “true negative (Tne)” denotes the correct identification 
of the negative class by the model. Conversely, “true positive (Tve)” 
indicates a state in which the model correctly identifies the positive 
class. “False negative (Fne)” signifies an incorrect prediction made 
by the model regarding the negative class. Moreover, “false positive 
(Fve)” describes a case where the model mistakenly predicts a positive 
class.

4. Experimental Results and Discussion
This section describes the experimental findings, covering 

the training accuracy and losses for models trained on two separate 
datasets. It also evaluates each model’s confusion matrix and compares 
the results of the proposed method to those of existing methodologies. 

Figure 6 shows the average accuracy and loss of the models trained 
on both original and enhanced images. These averages were calculated 
by taking the mean of the training and validation accuracies, as well 
as the losses, throughout all epochs. In this study, the models trained 
on original images are referred to as InceptionV3, XceptionNet, and 
MobileNet, and those trained on improved images are referred to as 
InceptionV3-en, XceptionNet-en, and MobileNet-en. The orange line 
in the graph presents a model trained on enhanced images, whereas the 
blue line indicates a model trained on modified images. Figures 6(a) 
and (b) show the average accuracy and loss of the models trained on 
InceptionV3 and InceptionV3-en, respectively. The average accuracy 
rates of InceptionV3 and InceptionV3-en were 79.53% and 82.78%, 
respectively, with average losses of 0.45 and 0.36. Figures 6(c) and 
(d) illustrate the average accuracy and loss of the models trained on 
XceptionNet and XceptionNet-en, respectively. The average accuracy 
rates of XceptionNet and XceptionNet-en were 83.65% and 93.84%, 
respectively, with average losses of 0.35 and 0.14. Finally, Figures 6(e) 
and (f) show the average accuracy and loss of the models trained on 
MobileNet and MobileNet-en, respectively. The average accuracy rates 
of MobileNet and MobileNet-en were 93.72% and 96.69%, respectively, 
with average losses of 0.15 and 0.11.

Figure 7 compares the six models’ average accuracies. The 
graph clearly demonstrates that MobileNet-en surpasses all other 
models with an average accuracy of 96.69%, and InceptionV3 has the 
lowest average accuracy with 79.36%. In particular, when compared to 
existing methods, the suggested approach improves average accuracy 
by 2.97%–8.16%.

The confusion matrix of the models trained on original and 
enhanced images is presented in Table 1. The InceptionV3 model 
exhibited the lowest performance with an accuracy of 79.36%, followed 
by the XceptionNet model at 84.68% and the MobileNet model at 
93.72%. For the InceptionV3 model, the precision, recall, and F1-score 
for the Br class were all recorded at 0.72, and these metrics for the 
other classes ranged from 0.74 to 0.92. The XceptionNet model also 
showed low precision, recall, and F1-score of 0.8 for the Br class, with 
values for the other classes varying between 0.81 and 0.93. In contrast, 
the MobileNet model demonstrated precision, recall, and F1-scores 
ranging from 0.90 to 0.96, with the He class achieving the highest 
score of 0.96, indicating a balanced detection of true positives and 
true negatives. Notably, all three models exhibited low precision for 
the Br class, and the He class performed better than the other classes 
in terms of recall.

In comparison, the InceptionV3-en, XceptionNet-en, and 
MobileNet-en models showed enhancements in performance of 3.35%, 
8.16%, and 2.97%, respectively. The precision, recall, and F1-scores 
for the InceptionV3-en model ranged from 0.74 to 0.94, those for 
the XceptionNet-en model ranged from 0.88 to 1, and those for the 
MobileNet-en model ranged from 0.94 to 1. The F1-scores for all three 
classes in the MobileNet-en model surpassed those of the other models, 
demonstrating a favorable balance between true positives and false 
negatives. Moreover, the He class consistently achieved the highest 
F1-score of 0.98 across all classes. The experimental findings indicate 
that the application of preprocessing techniques led to an improvement 
in model performance by as much as 8.16%.

Table 2 compares the accuracy performance of the proposed models 
in our work to similar approaches in the literature. The data presented in the 

(3)

(4)

(5)

(6)
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 Figure 5
Framework of the proposed method



table demonstrate that the models proposed in this study exhibit superior 
performance compared to all previously suggested methodologies. The 
models that were suggested attained an accuracy of 96.69%.

5. Conclusion
This study employed a variety of preprocessing approaches and 

PR techniques to improve images collected in challenging conditions 
such as poor lighting, noise, or background complexity, ultimately 

improving the performance of ML models. PR methods were applied 
alongside CNN-based models to enhance the identification of disease-
related characteristics on bean leaves. Two datasets were utilized for 
model training: the original bean images and the enhanced versions. 
The original images underwent preprocessing to eliminate the 
background. In contrast, the enhanced bean images experienced a 
three-step preprocessing process that involved background removal, 
binary filtering, and contour detection, effectively minimizing 
background noise. The average accuracy rates of the models trained 
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 Figure 6
The average accuracy and loss of the models trained on both original and enhanced images. (a) InceptionV3 and InceptionV3-en  

average accuracy, (b) InceptionV3 and InceptionV3-en average loss, (c) XceptionNet and XceptionNet-en average accuracy,  
(d) XceptionNet and XceptionNet-en average loss, (e) MobileNet and MobileNet-en average accuracy, and  

(f) MobileNet and MobileNet-en average loss
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on the enhanced images showed considerable improvement, reaching 
82.71%, 92.84%, and 96.69%. In contrast, models that were trained on 
the original images achieved accuracy rates of 79.36%, 84.68%, and 
93.72% for InceptionV3, XceptionNet, and MobileNet, respectively. 
Experimental results revealed that models utilizing enhanced images 
exhibited performance boosts of up to 8.16%. MobileNet-en performed 
particularly well, outperforming all other models with an average 
accuracy of 96.69% and an F1-score of 0.97.

A key limitation of this study is the sensitivity of the contour 
detection technique to background noise. Although the method is designed 
to identify irregular shapes in the foreground, it often misidentifies 
features when applied to images with complex or noisy backgrounds. As 
a result, its effectiveness is reduced in field conditions where background 
interference is common. Future studies will explore the impact of the 
contour recognition method on various crop types.

Ethical Statement
This study does not contain any studies with human or animal 

subjects performed by any of the authors.

Conflicts of Interest 
The authors declare that they have no conflicts of interest to this 

work.

Data Availability Statement 
The data that support the findings of this study are openly 

available in AI-Lab-Makerere at https://github.com/AI-Lab-Makerere/
ibean/.

Author Contribution Statement
Farian S. Ishengoma: Conceptualization, Methodology, 

Software, Validation, Formal analysis, Investigation, Resources, 
Data curation, Writing – original draft, Writing – review & editing, 
Visualization, Supervision, Project administration, Funding acquisition. 
Joseph P. Telemala: Software, Validation, Formal analysis, Writing – 
review & editing.

References
[1]	 Sarkar, C., Gupta, D., Gupta, U., & Hazarika, B. B. (2023). Leaf 

disease detection using machine learning and deep learning: 
Review and challenges. Applied Soft Computing, 145, 110534. 
https://doi.org/10.1016/j.asoc.2023.110534

[2]	 Shoaib, M., Shah, B., Ei-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., 
…, & Ali, F. (2023). An advanced deep learning models-based plant 
disease detection: A review of recent research. Frontiers in Plant 
Science, 14, 1158933. https://doi.org/10.3389/fpls.2023.1158933

[3]	 Harakannanavar, S. S., Rudagi, J. M., Puranikmath, V. I., Siddiqua, 
A., & Pramodhini, R. (2022). Plant leaf disease detection using 
computer vision and machine learning algorithms. Global 
Transitions Proceedings, 3(1), 305–310. https://doi.org/10.1016/j.
gltp.2022.03.016

[4]	 Liu, J., & Wang, X. (2020). Tomato diseases and pests detection 
based on improved Yolo V3 convolutional neural network. 
Frontiers in Plant Science, 11, 898. https://doi.org/10.3389/
fpls.2020.00898

[5]	 Paithane, P., & Wagh, S. J. (2023). Novel modified kernel fuzzy 
c-means algorithm used for cotton leaf spot detection. System 
Research and Information Technologies, (4), 85–99. https://doi.
org/10.20535/SRIT.2308-8893.2023.4.07

390

Artificial Intelligence and Applications

Table 2
Comparison of the proposed method to existing methods

Method used Accuracy on test set (%)
Proposed MobileNet-en 96.69
Existing EfficientNetB6 [8] 91.74

MobileNet [9] 92

 Figure 7
Comparison of accuracies of the models

Table 1
Confusion matrix of all models

Class Als Br He
Ay 

(%) Pn Rl Fs

Improvement 
(%)

InceptionV3
Als 37 10 3 79.36 0.86 0.74 0.80 -
Br 6 36 8 0.72 0.72 0.72
He 0 4 46 0.80 0.92 0.86

XceptionNet
Als 41 8 1 84.68 0.80 0.82 0.81 -
Br 8 40 2 0.80 0.80 0.80
He 2 2 46 0.94 0.92 0.93

MobileNet
Als 46 3 1 93.72 0.96 0.92 0.94 -
Br 2 47 1 0.90 0.94 0.92
He 0 2 48 0.96 0.96 0.96

InceptionV3-en
Als 37 12 1 82.71 0.88 0.74 0.80 3.35
Br 4 40 6 0.74 0.80 0.77
He 1 2 47 0.87 0.94 0.90

XceptionNet-en
Als 44 2 4 92.84 0.96 0.88 0.92 8.16
Br 2 45 3 0.96 0.90 0.93
He 0 0 50 0.88 1.00 0.94

MobileNet-en
Als 47 2 1 96.69 0.98 0.94 0.96 2.97
Br 1 48 1 0.96 0.96 0.96
He 0 0 50 0.96 1.00 0.98

https://github.com/AI-Lab-Makerere/ibean/
https://github.com/AI-Lab-Makerere/ibean/
https://doi.org/10.1016/j.asoc.2023.110534
https://doi.org/10.3389/fpls.2023.1158933
https://doi.org/10.1016/j.gltp.2022.03.016
https://doi.org/10.1016/j.gltp.2022.03.016
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.20535/SRIT.2308-8893.2023.4.07
https://doi.org/10.20535/SRIT.2308-8893.2023.4.07


[6]	 Jung, M., Song, J. S., Shin, A. Y., Choi, B., Go, S., Kwon, S. Y., …, 
& Kim, Y. M. (2023). Construction of deep learning-based disease 
detection model in plants. Scientific Reports, 13(1), 7331. https://
doi.org/10.1038/s41598-023-34549-2

[7]	 Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer 
vision technology in agricultural automation—A review. 
Information Processing in Agriculture, 7(1), 1–19. https://doi.
org/10.1016/j.inpa.2019.09.006

[8]	 Singh, V., Chug, A., & Singh, A. P. (2023). Classification of 
beans leaf diseases using fine tuned CNN model. Procedia 
Computer Science, 218, 348–356. https://doi.org/10.1016/j.
procs.2023.01.017

[9]	 Elfatimi, E., Eryigit, R., & Elfatimi, L. (2022). Beans leaf diseases 
classification using MobileNet models. IEEE Access, 10, 9471–
9482. https://doi.org/10.1109/ACCESS.2022.3142817 

[10]	 Sembiring, A., Away, Y., Arnia, F., & Muharar, R. (2021). 
Development of concise convolutional neural network for 
tomato plant disease classification based on leaf images. Journal 
of Physics: Conference Series, 1845(1), 012009. https://doi.
org/10.1088/1742-6596/1845/1/012009

[11]	 Gui, J., Fei, J., Wu, Z., Fu, X., & Diakite, A. (2021). Grading 
method of soybean mosaic disease based on hyperspectral 
imaging technology. Information Processing in Agriculture, 8(3), 
380–385. https://doi.org/10.1016/j.inpa.2020.10.006

[12]	 Agarwal, M., Singh, A., Arjaria, S., Sinha, A., & Gupta, S. (2020). 
ToLeD: Tomato leaf disease detection using convolution neural 
network. Procedia Computer Science, 167, 293–301. https://doi.
org/10.1016/j.procs.2020.03.225

[13]	 Aravind, K. R., Raja, P., Aniirudh, R., Mukesh, K. V., Ashiwin, 
R., & Vikas, G. (2019). Grape crop disease classification using 
transfer learning approach. In Proceedings of the International 
Conference on ISMAC in Computational Vision and Bio-
Engineering 2018, 1623–1633. https://doi.org/10.1007/978-3-
030-00665-5_150

[14]	 Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, 
J., & Johannes, A. (2019). Deep convolutional neural networks 
for mobile capture device-based crop disease classification in the 
wild. Computers and Electronics in Agriculture, 161, 280–290. 
https://doi.org/10.1016/j.compag.2018.04.002

[15]	 Yang, R., Wu, Z., Fang, W., Zhang, H., Wang, W., Fu, L., …, & 
Cui, Y. (2023). Detection of abnormal hydroponic lettuce leaves 
based on image processing and machine learning. Information 
Processing in Agriculture, 10(1), 1–10. https://doi.org/10.1016/j.
inpa.2021.11.001

[16]	 Pantazi, X. E., Moshou, D., & Tamouridou, A. A. (2019). 
Automated leaf disease detection in different crop species through 
image features analysis and One Class Classifiers. Computers and 
Electronics in Agriculture, 156, 96–104. https://doi.org/10.1016/j.
compag.2018.11.005

[17]	 Emwebaze, E. (2020). AI-Lab-Makerere [Data set]. GitHub. 
https://github.com/AI-Lab-Makerere/ibean

[18]	 Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing 
(4th ed.). Malaysia: Pearson.

[19]	 Masoud, K. M., Persello, C., & Tolpekin, V. A. (2019). 
Delineation of agricultural field boundaries from Sentinel-2 
images using a novel super-resolution contour detector based on 
fully convolutional networks. Remote Sensing, 12(1), 59. https://
doi.org/10.3390/rs12010059

[20]	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. 
(2016). Rethinking the inception architecture for computer vision. 
In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 2818–2826. https://doi.org/10.1109/
CVPR.2016.308

[21]	 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual 
learning for image recognition. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 
770–778. https://doi.org/10.1109/CVPR.2016.90

[22]	 Chollet, F. (2017). Xception: Deep learning with depthwise 
separable convolutions. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, 1251–1258. https://
doi.org/10.1109/CVPR.2017.195

[23]	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. 
(2018). MobileNetV2: Inverted residuals and linear bottlenecks. 
In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 4510–4520. https://doi.org/10.1109/
CVPR.2018.00474

[24]	 Ishengoma, F. S., Rai, I. A., & Ngoga, S. R. (2022). Hybrid 
convolution neural network model for a quicker detection 
of infested maize plants with fall armyworms using UAV-
based images. Ecological Informatics, 67, 101502. https://doi.
org/10.1016/j.ecoinf.2021.101502

[25]	 Taghavi Namin, S., Esmaeilzadeh, M., Najafi, M., Brown, T. 
B., & Borevitz, J. O. (2018). Deep phenotyping: Deep learning 
for temporal phenotype/genotype classification. Plant Methods, 
14(1), 66. https://doi.org/10.1186/s13007-018-0333-4

[26]	 Bakkouri, I., Afdel, K., Benois-Pineau, J., & Catheline, G. 
(2022). BG-3DM2F: bidirectional gated 3D multi-scale feature 
fusion for Alzheimer’s disease diagnosis. Multimedia Tools and 
Applications, 81(8), 10743–10776. https://doi.org/10.1007/
s11042-022-12242-2

391

Artificial Intelligence and Applications Vol. 300Iss. 4002025

How to Cite: Ishengoma, F. S., & Telemala, J. P. (2025). Integrating Pattern Recognition 
and CNN-Based Models for Improved Bean Disease Detection and Agricultural Yield 
Enhancement. Artificial Intelligence and Applications, 3(4), 385–391. https://doi.
org/10.47852/bonviewAIA52024376

https://doi.org/10.1038/s41598-023-34549-2
https://doi.org/10.1038/s41598-023-34549-2
https://doi.org/10.1016/j.inpa.2019.09.006
https://doi.org/10.1016/j.inpa.2019.09.006
https://doi.org/10.1016/j.procs.2023.01.017
https://doi.org/10.1016/j.procs.2023.01.017
https://doi.org/10.1109/ACCESS.2022.3142817
https://doi.org/10.1088/1742-6596/1845/1/012009
https://doi.org/10.1088/1742-6596/1845/1/012009
https://doi.org/10.1016/j.inpa.2020.10.006
https://doi.org/10.1016/j.procs.2020.03.225
https://doi.org/10.1016/j.procs.2020.03.225
https://doi.org/10.1007/978-3-030-00665-5_150
https://doi.org/10.1007/978-3-030-00665-5_150
https://doi.org/10.1016/j.compag.2018.04.002
https://doi.org/10.1016/j.inpa.2021.11.001
https://doi.org/10.1016/j.inpa.2021.11.001
https://doi.org/10.1016/j.compag.2018.11.005
https://doi.org/10.1016/j.compag.2018.11.005
https://github.com/AI-Lab-Makerere/ibean
https://doi.org/10.3390/rs12010059
https://doi.org/10.3390/rs12010059
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1016/j.ecoinf.2021.101502
https://doi.org/10.1016/j.ecoinf.2021.101502
https://doi.org/10.1186/s13007-018-0333-4
https://doi.org/10.1007/s11042-022-12242-2
https://doi.org/10.1007/s11042-022-12242-2
https://doi.org/10.47852/bonviewAIA52024376
https://doi.org/10.47852/bonviewAIA52024376

