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Abstract: Crop diseases are incessant and significant challenges to global food security. Conventional disease control means are still utilized as the 
primary mitigation model, but they fall short at providing quick and precision-based responses that are required for quick outbreak containment, 
resulting in significant yield losses. New advances in Artificial Intelligence of Things (AIoT) technologies currently enabled novel capabilities to 
predict activities and initiate early-stage interventions in disease progression. This longitudinal scoping review, organized according to the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses protocol, examined 100 peer-reviewed articles from IEEE Xplore, PubMed, Springer, 
Elsevier, and MDPI to investigate AIoT applications in the prediction and control of crop diseases and assess the quality of articles published 
between 2019 and 2024. The literature reviewed indicated a variety of predictive models in farming that fused AI and IoT. Notably, the deployment 
of federated learning was suggested as a solution to minimize the risk of privacy breaches by training models using locally stored data whose 
heterogeneity allows them to avoid sharing sensitive on-farm data. The availability of large and standardized datasets is limited. Currently, the cost 
of deploying the systems, especially in smallholder agriculture, is a problem, although empirical evidence has shown that AIoT systems can result 
in significant gains in prediction accuracy (85%–98%). Scalable, explainable, and interpretable AIoT systems; robust benchmark datasets; and 
detailed system architectures are relevant to disentangle system impacts. The key to large-scale adoption and lasting impact will be the reduction 
of the deployment costs and the integration of more cutting-edge technologies and programs to offer training to farmers.
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1. Introduction
Current estimates reveal that the global population will exceed 

9.7 billion by 2050, and such a high number requires an increase in 
agricultural production by 70% to guarantee sufficient food supply. 
However, crop diseases, which cause approximately 20%–40% of the 
yearly yield losses, are a significant barrier to meeting this goal. There 
is a need to adopt innovative solutions, especially the use of Artificial 
Intelligence of Things (AIoT), which links IoT-enabled devices with 
advanced AI analytics to support ongoing data capture, analysis, and 
predictive disease treatment (see Figure 1) [1].

AIoT has great potential in revolutionizing precision farming. 
Integrating Internet of Things (IoT) devices such as, drones, sensors, 
and machine-learning algorithms, e.g., convolutional neural networks 
(CNNs) and support vector machines (SVMs), allows farmers to identify 
and control crop diseases well in advance. These applications enhance 
resource optimization, promote sustainability, and enhance decision-
making. However, a number of obstacles still exist, such as the high 
implementation cost, the inadequacy of the technical expertise, concerns 
over data privacy, and the lack of popular, standard representative 
databases. Smallholder farmers are the most severely affected group by 

such roadblocks, particularly in developing conditions, where financial 
scarcity, lack of infrastructure, and technological expertise shortcoming 
bar the intensive application of AIoT technologies in the agricultural 
sector.

This systematic review investigates recent advancements made 
in the use of AIoT systems in the management of agricultural diseases, 
highlighting their potential as predictors, methodological novelty, and 
issues connected to the implementation process. This paper highlights 
the key areas of unattained gaps, particularly the lack of standardized 
datasets, and outlines future research directions, especially the need 
to adopt federated learning (FL) that will help in alleviating privacy-
related issues and the addition of blockchain-based mechanisms that 
will enhance data integrity and scalability. Such weaknesses imply that 
AIoT has the potential to transform farm-level processes and produce 
enhanced productivity, sustainability, and resiliency throughout the 
global food system. Figure 2 [2] illustrates the path of AIoT research 
in addressing agricultural issues such as crop identification and disease 
management.

2. Literature Review
The remarkable potential in transformation through the integration 

of AIoT technologies into agriculture is attested with the advancement 
of increased precision of farming and control of crop diseases. With 
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the integration of IoT sensors and high-profile AI algorithms, AIoT can 
gather, analyze, and provide actionable information in real time [3]. 
This is a very important use of IoT, which appears in the form of sensors 
installed on an agricultural system to track important environmental 
variables, namely, soil moisture, temperature, and humidity. Along with 
these systems, more aerial photographs of fields are taken by drones with 
high-quality cameras, which increase the accuracy of the measurements 
of plant growth. These technologies have a strong analytical foundation 
that entails the use of sophisticated AI algorithms to identify trends 
linked to potential outbreak of diseases, such as SVMs and random 
forest (RF) models [4]. These insights would enable farmers to have 
remedial suggestions that they should take at the right time.

Studies have discussed the emergence of potential engagement 
of FL, the most prestigious privacy-resistant framework, in the use of 
AIoT technologies [5]. FL differs from more  conventional centralized 
structures as it enables artificial intelligence (AI) models to be trained 
using decentralized data that are physically kept under local farm 
conditions. This allows sensitive data to remain at the source so that 
privacy is preserved and together they can be used to enhance the 
accuracy of predictive analysis in a broader context. In addition, 
blockchain technology is emerging as an inseparable addition to 
FL, enhancing trust by ensuring secure and unalterable records of 
data. By increasing openness and data integrity, blockchain creates 
a sense of trust among farmers, tech developers, and policymakers, 
opening the possibilities of more inclusive and trusted agricultural 
innovation [6].

Although the field of study has come quite far, there are still 
important shortcomings, of which the lack of large-scale, normalized 
data is one of the most urgent ones. This type of data is required in 
the creation of AI models that demonstrate resilience and universal 
application in a variety of agricultural settings [7]. Representative 
datasets are not that large, and they are not standardized. Thus, models 

based on AI may struggle with widely varying geographical and 
agricultural conditions that characterize global agriculture. Meanwhile, 
the costs of implementation and the requirement of specialized technical 
expertise are major setbacks, especially when it comes to farmers in 
areas of limited resources (smallholder farms). The solutions that can 
mitigate these challenges include the dire requirement of addressing 
AIoT technologies by means of cost reductions, increased accessibility, 
and pragmatism toward various farming populations.

These obstacles should be overcome to enable the equal transition 
to AIoT technologies in agriculture. The tasks that should be performed 
include the standardization of datasets, the reduction of prices by 
providing affordable and scalable AIoT technology, and the provision 
of extensive training for farmers. By prioritizing such issues, the 
agricultural sector is in a position to maximize the revolutionary impacts 
of such advanced technologies in different farming communities [8]. 
Addressing these pitfalls will open the scene toward the implementation 
of AIoT technology in reshaping the way farming is conducted, which 
will push for more sustainability, resilience, and productivity in the 
agricultural sector.

3. Materials and Methods
This systematic review was conducted according to the Preferred 

Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 
framework, which guarantees proper and transparent completion of 
report synthesizing the research findings. Figure 3 shows the PRISMA 
flow diagram with the description of the steps in the overall process 
of identifying possible articles and inclusion. The review process was 
narrowed down to the assessment of the use of AIoT technologies in 
the sphere of predictive crop disease management, specifically the 
review of the methods, consequences, and challenges of the practical 
realization of those technologies [9].
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Figure 1
From smart “Things” in IoT systems to the adoption of AI techniques

Figure 2
AIoT progress in agriculture (2019–2024)
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The methodical review is ordered around the following research 
questions:

1)  Which methodologies of AIoT are of the most common when it 
comes to the predictive management of crop diseases?

2)  What is the efficacy of the methodologies in terms of prediction 
efficiency and on-time improvement?

3)  What problems are involved when adopting AIoT technologies in 
the field of agriculture and what measures are proposed to overcome 
them?

3.1. Search strategy
The search was conducted thoroughly in several of the largest 

databases of scholarly works, such as IEEE Xplore, PubMed, Springer, 
Elsevier, and MDPI, and was limited to studies published in 2019–
2024. The used search terms were related to the following concepts: 
AIoT in agriculture, predictive models of crop diseases, and precision 
agriculture technologies. To include quality and relevant studies, 
Boolean operators and better filtering conditions were used [10].

3.2. Inclusion and exclusion criteria
The studies were identified using predetermined parameters, 

which contributed to the relevance and quality of this review. The studies 
that met the set inclusion criteria were restricted to only those published 
between 2019 and 2024 and those with specific considerations of the 
use of AIoT technologies in predicting crop diseases in models related 
to precision agriculture. Only conference papers and articles in peer-
reviewed journals were considered to uphold high academic standards. 
The chosen articles were to expound on the importance of AI and IoT in 
predicting/controlling diseases in crops.

Studies that were published prior to 2019 or those that lacked an 
obvious focus on AIoT applications in food production were excluded. 
Articles that addressed the work of AIoT in other areas or those that did 
not mention the predictive aspects of disease control were also omitted. 
These stringent steps taken during the selection process made sure that 
the review was in line with its sentiment of examining the role played 
by AIoT technologies in predictive crop disease management [11].

To select the studies, inclusion criteria were developed and 
defined to cover studies that elaborate on the implementation of AIoT 

technologies in the agriculture domain, namely, predictive crop disease 
models, and are published in peer-reviewed journals or proceedings 
of conferences. The review excluded studies that were not related to 
agriculture or predictive modeling and those that were published before 
2019 [12].

Inclusion Criteria: 

1)  Published between 2019 and 2024.
2)  Focus on AIoT integration in agriculture.
3)  Direct application of predictive crop disease models.
4)  Peer-reviewed articles or conference papers.

Exclusion Criteria:

1)  Studies published before 2019.
2)  Lack of relevance to predictive models or AIoT technologies.
3)  Non-peer-reviewed materials.

An effective search strategy in the form of a search protocol 
was adopted to enable the identification of pertinent literature to 
complete this systematic review. Studies applying AIoT technologies in 
agriculture were identified using various available scholarly databases, 
such as IEEE Xplore, PubMed, Google Scholar, Springer, Elsevier, and 
MDPI, to maximize the coverage of the articles regarding the field in 
question (see Tables 1 and 2 for the selection process). These databases 
were selected because they have a positive reputation as a provider of 
quality research findings that are peer-reviewed on topics that pertain to 
technology and agriculture or interdisciplinary topics in general.

Keyword selection was very specific to retrieve the overlap 
between the keywords AI, IoT, and crop disease prediction models. 
The articles were evaluated based on their methodological rigor, 
applicability, and relevance to AIoT research in agriculture. Only 
studies with vague methodology or lacking information regarding 
predictive modeling were eliminated to ensure the quality and relevance 
of the review.

We considered performance indicators such as accuracy, 
precision, recall, and F1-score in analyzing the chosen works. These 
measures played a very important role in evaluating how well machine 
learning models predicted the presence of crop diseases. SVMs and RF 
were recurrent models that were used extensively, especially in binary 
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 Figure 3
PRISMA flowchart showing the selection process

Database Number of journals/articles
IEEE Access 15
PubMed 20
Google Scholar 25
Springer 10
Elsevier 10
MDPI 20
TOTAL 100

Table 1
Number of journals per database meeting the selection criteria

Selection phase Remaining articles
Initial search 500
Title/abstract screening 250
Full-text review 150
Final selection 100

Table 2
Selection process
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classification problems, including a healthy or diseased crop [13]. CNNs 
were primarily applied in tasks that focused on image-based prediction 
of diseases, i.e., the model inspected images of crops to identify 
diseases [4]. Using these metrics in combination with each other, we 
have conceptualized an overall idea of weaknesses and strengths that 
each of the three models have to offer in different settings.

3.3. Data extraction
In this review, data extraction entailed the retrieval of pertinent 

data in each of the selected studies. To have uniformity in the studies, 
a standardized form was utilized in data extraction. This template 
could document the necessary information, such as the study aims, 
the study methods, the utilized AIoT technologies, and the prediction 
model type, as well as the major findings of every research article. The 
information that was obtained in this procedure was systematically 
arranged to allow a clear comparison and synthesis among the various 
studies [10].

Usually, the major parameters derived out of any study were the 
following:

1)  Bibliographic details (authors, title, and publication year).
2)  Study design (experimental, observational, and simulation-based).
3)  Sample size and datasets used.
4)  AIoT technologies (IoT sensors and AI algorithms).
5)  Performance metrics (accuracy, precision, and recall).

Data extraction was followed by a formal analysis geared toward 
eliciting major themes and patterns in the use of the AIoT technologies 
in predictive models for crop diseases. The distribution of research 
according to region, the technology used, and the effectiveness of the 
outcomes were assessed using descriptive statistics. In an attempt to 
reduce the possibility of selection bias, the article screening process 
was carried out by two independent reviewers, with all disagreements to 
be resolved by discussion. In the studies, a number of limitations were 
noted, which included small sample sizes and limited study periods, 
which were also considered in the analysis.

Inclusion criteria were established to include studies that focused 
on the integration of AIoT technologies in agriculture, specifically 
targeting predictive crop disease models, and were published in peer-
reviewed journals or conference proceedings. Studies unrelated to 
agriculture or predictive modeling, along with those published before 
2019, were excluded from the review.

3.4. Addressing sensor heterogeneity and model 
generalization

A major difficulty noted in the review was that the new sensor 
technologies were quite different in various farms and regions. The 
varieties of the sensors, including soil moisture and temperature sensors, 
and weather monitors, and their set-up influenced the accuracy of the 
predictive models, particularly in those areas where no consistency is 
observed in the sensor data [14]. Another lesson learned in the review 
is the usage of machine learning. The application of numerous models 
was employed; among them are RF, SVMs, CNNs. To further prove the 
reliability of their data and verify that they are not far off the mark, most 
studies adopted k-fold cross-validation [15]. This is used to test the 
effectiveness of the models to cope with unseen, new data to determine 
their reliable performance under other circumstances. The second 
strategy that researchers frequently employed was ensemble learning 
when scientists used a pair of models together to attain improved 
findings [16]. Its example is making predictions regarding agricultural 
disease outbreaks based on weather reports, soil sensors, and drones. 
By combining all sources of data, they could make accurate prediction.

Studies that attempted to correct this heterogeneity by 
normalizing the results shown by their sensors or by implementing 
sensor calibration procedures were specifically mentioned in the data 
extraction process because they made efforts to generate more consistent 
data when measured in distinct agricultural settings [17]. Further, some 
of the studies used transfer learning and domain adaptation to deal 
with this heterogeneity [7]. Such methods have allowed models that 
are trained in one farming setting to be applied in another environment 
with other environmental conditions or sensor combinations. This 
enhances the capacity of predictive models to adapt to various farming 
conditions. The transfer of knowledge across domains has resulted in 
enhanced performance by the models used in predicting crop diseases 
in new environments. These approaches were assessed  based on their 
effectiveness in ensuring greater model reliability in different territories.

3.5. Data quality and validation techniques
Because the quality of the datasets used in the studies varied, 

it was hard to gauge the quality of the data [18]. The quality of the 
data turned out to be a crucial subject of this review. Many of the 
studies considered used agricultural data that were noisy, incomplete, 
or inconsistent. During data extraction, we were keen regarding how 
these studies overcame the limitations. We observed that data quality 
(improvement) was significantly enhanced when studies preprocessed 
their data via outlier detection, missing data imputation, and data 
augmentation [19]. Cross-validation methods were also employed in 
studies so that the resulting model can generalize to unknown databases 
[20]. Different people have assessed their predictive models using 
holdout datasets or even train–test splits. Such validation methods played 
a vital role in determining where the models are robust and reliable and 
therefore can be used in the real-world aspect of agriculture. The quality 
of the methodology of the studies conducted met high methodological 
standards, and the research work was prioritized in the synthesis when 
rigor of these validation methods was used.

3.6. Quality assessment
Considerable quality criteria have been strictly evaluated in 

every study, and they are the robustness of the methods, clear research 
design, and replicability of the findings. Conducting work with a clear 
description of the scope of limitations and carrying out extensive 
analysis carried greater emphasis. In the assessment, it was important 
to evaluate biases, giving special consideration to selection bias, 
measurement bias, and reporting bias. Such biases were considered 
thoroughly so that the validity and reliability of the presented findings 
could be achieved. Studies with well-defined research methodologies 
and those that dealt with the possibilities of bias were classified as 
better research studies [21]. The final synthesis included only studies 
that were of a certain quality level as defined in advance. This strictly 
developed selection process guaranteed that the review concerned only 
high-quality studies, as it ensured more precise and complete picture of 
the recent research landscape.

4. Results and Discussions
This systematic review demonstrated that AIoT technologies 

can considerably improve the accuracy and timeliness of predicting 
crop diseases, and it is possible to describe this paradigm as a shift in 
disease management toward prevention. SVMs and RF showed strong 
accuracy levels in the binary classification problem, with prediction 
grades in the range of 85%–92%. Meanwhile, deep learning networks, 
especially CNNs, have been successfully used to identify others using 
images, and multiple studies mention accuracy as high as 95%–96% 
(see Table 3) [22]. The findings are evidence of the opportunities of 
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AIoT technologies to contribute to the minimization of false positives 
and false negatives that could help in achieving intended interventions 
and maximizing resource consumption.

The uptake of AIoT technologies varies geographically (see 
Figure 4). Advanced North America and Europe have high adoption 
rates and advanced infrastructures, subsidies given by the governments, 
and constant advancement in technologies. On the contrary, developing 
economies, such as the regions of Africa and Asia, still have challenges, 

including the lack of IoT devices, stable internet, and specialists in 
technology.

The origins of FL appeared as an option to solve the question of 
data privacy. FL permits decentralized model training so that sensitive 
farm-level data can stay local. Nonetheless, there is a low extent of its 
implementation due to the lack of unified protocols and benchmarks to 
implement it. Moreover, blockchain technology has been proven to be 
an efficient technology to integrate into AIoT systems to increase the 
level of trust and data integrity, but it needs considerable technical input 
and expertise to be deployed.

In summary, the lessons of the study demonstrate the revolutionary 
nature of AIoT application technologies in the agricultural sector and 
the severity of the issues that must be addressed. There is a need to 
work collaboratively to mitigate obstacles, which include infrastructure 
difference, expensive implementation, and absence of uniformity. By 
considering these challenges, a balanced access to AIoT solutions will 
be guaranteed, and their effect may be optimized in various agricultural 
settings.

4.1. AIoT model analysis
The prediction models used in the review had a variety of 

machine learning algorithms (see Table 4), with SVM and RF being the 
commonly used models in predicting diseases [23]. These algorithms 
have the capacity to handle intricate and high dimensional data and 
classify the patterns of diseases in crops. SVM, owing to its success  
in binary classification, is widely used because it can detect or identify 
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 Figure 4
Geographical distributions of AIoT journals studied by regions 

(2019–2024)

Category Technique Applications Performance
ML Support vector machines (SVMs) Binary classification for disease detection 85%–92% accuracy

Random forest (RF) Multiclass disease classification 88%–94% accuracy
DL Convolutional neural networks (CNN) Image-based disease identification 95%–98% accuracy

Recurrent neural networks (RNNs) Time-series disease prediction 90%–96% accuracy
IoT IoT sensors Real-time data on soil, humidity High precision

Drones Aerial imagery for health assessment Enhanced coverage

Table 3
Classification table for AI and IoT techniques

Algorithm/model Description
Support vector machines (SVMs) Effective for binary classification tasks, used in distinguishing disease patterns.
Random forests (RF) Ensemble learning method, suitable for both classification and regression tasks.
Convolutional neural networks (CNNs) Specialized for image recognition tasks, applied in disease identification from imagery.
Recurrent neural networks (RNNs) Used for sequence data, such as time-series disease progression monitoring.
Deep learning models Includes CNNs and RNNs, capable of learning intricate patterns from large datasets.
Ensemble methods Combinations of models to improve accuracy and robustness through diverse predictions.
Decision trees Simple yet effective for classification tasks, used in identifying disease patterns.
Bayesian networks Probabilistic graphical models are useful for modeling uncertain relationships in data.
K-nearest neighbors (KNNs) Nonparametric method for classification, often used in spatial analysis of diseases.
Long short-term memory networks (LSTM) A type of RNN specialized for learning from sequential data with long-range dependencies.
Gradient boosting machines (GBMs) Boosted ensemble methods, suitable for predictive modeling in complex scenarios.
Gaussian processes Bayesian approach for regression tasks, useful in modeling disease spread dynamics.
Autoencoders Unsupervised learning models, used for feature extraction and anomaly detection in crops.

Table 4
Types of algorithms and models used by the studies reviewed
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the symptoms of diseases using minimum data. By contrast, RF is 
an effective ensemble learning algorithm whose performance is very 
flexible to different agricultural scenarios and is both a regression and 
classification model. Regarding deep learning methods, CNNs and 
RNNs have been widely used for tasks such as image recognition and 
time series analysis [24]. The use of CNNs has played a major role 
in interpreting images taken by IoT gadgets, e.g., drones and satellite, 
to identify the early symptoms of crop diseases. RNNs, as sequential 
models, are commonly used in analyzing time-related variables, which 
include weather patterns and crop growth stages [25].

The various predictive models reviewed had accuracies ranging 
from 85% to 98%, showing the capability to improve the disease-
predictive capabilities using AIoT systems. The precision and recall 
values of those models were often more than 90%, which underlines 
the dependability of AIoT technologies in early detection. These high 
precision rates therefore point toward a significant reduction in false 
positives and false negatives by an AIoT system, hence offering a 
targeted and timely intervention in the management of diseases [26]. 
Results clearly show that AIoT technologies have achieved remarkable 
improvement compared with traditional methods of crop disease 
management in terms of precision, timeliness of detection, and resource 
optimization. SVMs and RF were the most employed machine learning 
algorithms [27], with accuracy rates exceeding 90% in several studies 
(see Figure 5).

Modeling based on deep learning resulted in better performance 
on the task of disease detection in images using networks such as CNNs. 
Nevertheless, it was observed that there were substantial variations 
according to regions, especially between the developed and developing 
regions. North American and European AIoT research was more 
likely to include more advanced AIoT infrastructures that had more 
advantageous opportunities with governmental support and investment. 
Conversely, African countries and parts of Asia were characterized 
by poor reception of IoT devices and reliable internet connection to 
process data in real time [28].

4.2. Meta-analysis of predictive AIoT models
In this meta-analysis [29], we examined and retrieved 20 out 

of 100 studies that applied AIoT technologies to create predictive 
models related to crop diseases. Such technologies integrate machine  
learning algorithms, including CNNs and RF, into IoT devices, such as 
drones and soil sensors. The most relevant metrics of the performance 
were reported in each work, such as accuracy, precision, recall, and 
F1-scores. To fix disparities in study designs and datasets, we used a 
random-effects model to combine the data and analyze them.

The findings revealed that by average, the AIoT models could 

predict the study with an accuracy of 91.3% and confidence levels 
between 88.9% and 93.7%. The heterogeneity index (I²) was 56%, 
indicating moderate study variability. After conducting a subgroup 
analysis, it was revealed that model types based on the image data, 
e.g., using drone imagery, produced a higher rate of accurate prediction 
(92.5%) than models based on sensor-based data (89.8%). These 
results indicate the high accuracy of AIoT-based models in foreseeing 
crop diseases and the necessity of creating unified sets of data and 
methodologies to maintain a high degree of versatility in agricultural 
environments.

4.3. Advancements in real-time data collection
The strength of the AIoT system is so large because it introduces 

IoT sensors into existing data collection processes in real time. Such 
sensors allow constant assessments of important environmental 
conditions, including soil moisture, temperature, light intensity, 
and humidity, which are essential in detecting the early warnings of 
crop diseases. The sensors continually monitor minor fluctuations in 
environmental parameters, thus giving information that enables AI to 
detect the beginning of diseases in real time. This data-intensive process 
is more accurate and precise in the forecasting of diseases, and thus, 
disease management is transformed to a proactive strategy rather than 
a reactive strategy [30].

In addition to the sensors present on the ground, IoT-enabled 
drones in aerial imaging can expand the scope and accuracy of the 
collected data. Being equipped with high-resolution cameras, sensors 
allow drones to snap precise imagery of extensive cultivation areas, 
letting users make overall crop health evaluations. The information 
captured by drones is transmitted to AI algorithms that can detect 
anomalies such as coloration or deviations in the growth patterns, 
which are early signs of crop diseases. This approach provides a 
broader and more detailed perspective on crop conditions, supporting 
timely interventions [31].

The time span between the diagnosis of a disease and the 
deployment of appropriate corrective measures is immensely reduced 
through such integration of both aerial and ground-based IoT systems. 
AIoT systems can help  in preventing the spread of diseases by reducing 
detection delays [22], resulting in healthier agricultural production and 
reducing expensive chemical treatments. This real-time capability 
highlights how AIoT can revolutionize agriculture by maximizing 
sustainability and efficiency.

4.4. Statistical analysis of predictive AIoT models
Statistically comparing multiple models of prediction produced 

a few insights with a dedicated analysis. The accuracy rates evident 
in CNNs and RNNs were mostly between 90% and 98%, whereas 
accuracy levels in less advanced models such as SVMs were between 
85% and 92%. The mean performance accuracy of CNNs on drone 
imagery was 93.5%, with a confidence interval of 91.2%–95.8%, 
whereas that of SVMs on sensor-based datasets was 88.7% (p-value 
< 0.05), as summarized in Table 5. The use of IoT provides greater 
accuracy of such models using sensors and drones that collect 
real-time data that allow constant updating and adaptability to 
changes in the environment. This dynamic data input significantly 
improves model performance in detecting and predicting crop 
diseases [32].

4.5. Critical inferences and statistical analysis
This review investigates how AIoT systems are being put to 

work in precision agriculture, with a special focus on predicting crop 
diseases. The central message is simple: combining AI with IoT has the 
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 Figure 5
Comparative analysis of AIoT techniques in the researched 

journals
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potential to make disease detection faster and more accurate. In some 
studies, deep learning models, particularly CNNs, have accuracy levels 
of up to 98% when identifying crop issues from images. These numbers 
are impressive, but it is worth remembering that they often come from 
highly controlled experiments using large, polished datasets such as 
PlantVillage. In reality, small farms, especially in developing regions, 
do not always have the same resources, tools, or data quality, which 
makes it harder to obtain comparable results.

When traditional machine learning methods, such as SVMs and 
RF, were compared with deep learning techniques such as CNNs and 
RNNs, the difference was clear. On average, SVMs reached 89.5% 
accuracy, RFs scored approximately 91.2%, and deep learning models 
had approximately 96.7%. Both categories performed well on precision 
and recall, each averaging above 90%. Still, deep learning proved better 
for harder jobs, such as detecting exactly where a disease has spread in 
high-resolution imagery. The takeaway is that AIoT has real potential 
to change agriculture but only if it is adapted for farmers with fewer 
resources.

One obstacle is the trade-off between performance and computing 
needs. Deep learning accuracy comes at the cost of high processing 
power, something not every farm can afford [8]. This is where FL offers 
an answer to the problem. By letting models train locally and cutting 
back on heavy data transfers, it keeps accuracy high and reduces tech 
demands. Studies show that these approaches can hit approximately 
93.8% accuracy in real-world tests, making them a realistic choice for 
areas with weaker infrastructure [33].

A closer analysis of 15 studies on decentralized models showed 
more benefits: communication costs decreased significantly (p < 0.01), 
privacy protections improved (p < 0.05), and overall resource use 
decreased by 22%. All of this happened without sacrificing accuracy 
compared to centralized systems. Even so, a big barrier remains, i.e., 
the lack of universal benchmarks that can measure performance across 
different farming environments and crop types.

Moving forward, research should work toward creating fair, 
detailed evaluation standards. These need to look beyond accuracy and 
precision, factoring in things such as efficiency, scalability, and privacy. 
If such benchmarks become standard, AIoT tools could be more 
consistent, adaptable, and genuinely useful for farmers everywhere. 
With that kind of progress, we could see a shift toward crop disease 
management that is not only smarter but also more sustainable and 

grounded in the realities of everyday farming.

4.6. Challenges and solutions
Incorporating AIoT technologies with new agriculture techniques 

comes with its own difficulties, and these challenges are making it hard 
for smallholder farmers. The biggest challenge for these farmers is the 
upfront expenses, which make setting up AIoT systems a bit difficult 
as they will need to purchase IoT devices, such as sensors, drones, and 
monitoring equipment, together with basic infrastructures needed to 
run AI models. For those farmers in developing nations, these expenses 
are so overwhelming, which frequently place new tools out of reach. 
Beyond cost, there is the question of ability. Running AIoT systems is 
not as straightforward as switching on a machine; it involves running 
the devices, making sense of complicated data, and converting those 
insights into actual, day-to-day agricultural decisions. Many farmers, 
especially those in rural regions, do not have access to the training 
needed for this. Without those abilities, the divide between those who 
can use the technology and those who cannot merely gets bigger.

One of the key issues of concern that delay the adoption of 
AIoT is data privacy. Farms can use IoT devices to obtain data such 
as information on soil conditions, crop diseases, and farming methods. 
Due to the sensitivity of these data, farmers are often worried that their 
data will fall into the wrong hands or even competitors, which create 
the technology phobia. AI systems require diverse datasets to generalize 
effectively across various farming conditions and crop types, yet the 
current lack of such datasets limits AIoT solutions’ adaptability to 
different agricultural contexts.

To address these difficulties, several solutions have been presented 
(refer to Table 6). The privacy-preserving concept in FL allows for AI 
models to be trained in a decentralized setup where the datasets used 
are localized and not shared with the global setup. This strategy helps 
farmers retain control over their data and contributes to the collective 
advancement of predictive models. Technologies, such as blockchain, 
further improve trust on the use of AIoT solutions because they provide 
a solid platform for data sharing. With this, farmers can be assured that 
their data are safe, which fosters acceptance of AIoT systems.

To help smallholder farmers, governments and other agencies 
can offer them some sort of grant that will help in purchasing these 
technologies. Training programs, targeted to farmers’ unique needs, 
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Model Accuracy (%) Precision (%) Recall (%) F1-score (%) p-value Confidence interval
CNNs (drone data) 93.5 94.2 92.8 93.5 <0.05 [91.2%, 95.8%]
RNNs 92.3 93.1 91.6 92.3 <0.05 [90.5%, 94.1%]
SVMs (sensor data) 88.7 89.1 87.8 88.4 <0.05 [86.3%, 91.1%]
Random forests 91.2 90.8 89.5 90.3 <0.05 [88.1%, 93.4%]

Table 5
Performance metrics of AIoT approaches

Challenge Proposed solution
High implementation costs Subsidies, financial incentives, scalable low-cost solutions
Lack of technical expertise Tailored training programs for farmers
Data privacy concerns Federated learning and blockchain integration
Scarcity of standardized datasets Collaborative efforts to develop benchmark datasets
Infrastructure disparities in developing regions Governmental and organizational support for IoT deployment

Table 6
Summary of challenges and proposed solutions
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can bridge the technical knowledge gap, equipping them with the skills 
needed to run this advanced equipment effectively. Furthermore, all 
stakeholders, researchers, policymakers, and agricultural stakeholders 
can come together to create solutions that are important toward producing 
large-scale, standardized databases, just the way PlantVillage and 
PlantPAD are doing. These datasets, if obtained, can help in improving 
the generalization and scalability of current and future models, which 
will help in model adaptation.

Through targeted solutions, these challenges would be 
addressed. The agricultural sector can acquire the full potential of 
AIoT technologies. These advancements will revolutionize precision 
agriculture and improve productivity, sustainability, and resilience 
across global farming systems.

The integration of FL and AIoT in one system has emerged as 
a great motivation for researchers to present innovative solutions that 
address the farmers’ privacy concerns [34]. However, FL enables 
farmers to have control of sensitive information, such as data on 
crop health and farming practices, by processing these data locally. 
Instead of transferring raw data, only updates derived from the local 
data are shared, reducing the potential for breaches or misuse while 
still contributing to the development of a global AI model that benefits 
from diverse data sources [35]. This method reduces the danger of data 
breaches or misuse and still allows the global model to gain from a large 
and varied set of input sources.

Gaining trust and security in data-sharing processes will further 
be aided by the integration of blockchain technology as a proposed 
complementary solution [36]. Blockchain serves as a distributed and 
immutable ledger, recording each transaction and data interaction 
in the AIoT system. Its transparent and unalterable nature ensures 
that every action, model update, and decision made in the system are 
verifiable and auditable, thereby fostering trust among stakeholders 
regarding data integrity and decision-making processes [6]. Therefore, 
the agricultural sector will benefit through the integration of FL and 
blockchain technology, with a secure and transparent balance, ensuring 
data privacy while encouraging wider adoption of AIoT systems [37].

5. Future Direction
AIoT technologies have the potential to reshape agriculture, 

especially when it comes to predicting and managing crop diseases. 
Traditional machine learning tools, such as SVM and RF, perform 
well in binary classification, whereas deep learning methods, such as 
CNN, stand out in diagnosing plant diseases from images. However, 
widespread adoption remains slow due to familiar obstacles: high setup 
costs, limited technical skills among farmers, and ongoing worries 
regarding how data are handled and protected.

One promising solution to the privacy challenge is FL, which 
allows models to be trained locally so that sensitive farm data never 
leave the source. Blockchain can add another layer of trust by making 
records tamper-proof and ensuring transparency. However, the absence 
of common benchmark datasets makes it difficult to measure progress 
fairly. Addressing this will require coordinated work between researchers, 
policymakers, and the private sector to create shared datasets that help 
models perform reliably in different agricultural environments.

Looking ahead, integrating edge computing into AIoT systems 
could make on-the-spot predictions faster and more. At the same time, 
designing IoT devices that are both affordable and durable and offering 
targeted training programs for specific regions will help in narrowing 
the gap between farmers who can adopt these tools and those who 
cannot. Overcoming these barriers would make AIoT systems more 
scalable, accessible, and effective in tackling the very challenges that 
agriculture faces today.

6. Conclusion
AIoT apps have shown great promise in improving the prediction 

of crop diseases and making precision agriculture better by allowing 
for the early and accurate identification of pathogens. This system 
uses AI and IoT together to make real-time changes that help farmers 
cut losses and increase production. These technologies are becoming 
increasingly important worldwide because they can be used in many 
different farming situations.

However, there are still big problems that need to be solved. 
One major gap is that there is insufficient long-term research that 
investigates how AIoT systems work when conditions change, such 
as when new diseases break out or climate change happens. The lack 
of clear statistics and benchmarks makes it even harder for current 
solutions to be scaled up, which limits their usefulness in a wide range 
of areas and farming systems. Making global benchmarks, especially 
for FL models, could speed up comparisons between studies and could 
help in making progress in predicting crop diseases.

In the future, we should work on making datasets more consistent 
so that we can compare AIoT models across crops and locations. In 
addition, giving real-time validation and dynamic model updates will 
help systems adjust to changes in the environment. To make these 
technologies available to people with limited resources, it is important 
to create cost-effective and scalable solutions that are tailored to 
smallholder farmers. This will help in getting rid of infrastructure and 
financial barriers.

Explainable AI is another topic that needs to be thought about. 
Farmers and government officials are more likely to use systems that 
give clear and simple information. People will be more likely to use AI 
technologies if they are given clear, useful advice. This will make sure 
that they are widely used. Long-term research will also be particularly 
important for figuring out how these systems change as farming 
conditions change, so they stay useful over time.

AIoT technologies could change farming for the better by 
encouraging practices that are both sustainable and strong. To reach this 
potential, we will need to work together to find new ways to get around 
current problems, make targeted policies, and do research together. 
AIoT could be a key part of sustainable global agriculture if it focusses 
on cost, scalability, and privacy.
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