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Abstract: This work presents amulti-level hierarchical control strategy to address the problem of complexmulti-objective optimization-based
control in real time. Our suggested strategy utilizes evolutionary algorithms to solve the high-level optimization problem, providing a control
policy under which a lower-level control loop handles the dynamics of the control values while respecting both regional and dynamical input
constraints. Moreover, a real-time under-policy prediction phase is developed to absorb the latency of the computationally expensive policy
search phase. The overall strategy is designed to leverage nonlinear systems without the need for further linearization or operating point
approximations. Experimental results on a drum boiler-turbine unit simulation demonstrate the capabilities of our suggested strategy to
steer the system outputs toward desired values with faster convergence compared to traditional methods. The proposed approach shows
significant improvements in control performance, handling complex nonlinear control problems in real time, and providing optimized
and fast control signals to guide the system outputs towards different operating points.
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1. Introduction

Controlling nonlinear dynamic systems with input constraints
poses significant challenges in modern control engineering. Such
challenges are exemplified in systems like thermal power units,
which are essential in converting chemical fuels such as coal, oil,
or gas into electrical energy, and represent a critical component in
modern energy conversion systems [1]. Controlling such units
requires maintaining certain safety limitations and constraints
while simultaneously meeting the fluctuating demands for power,
electricity for example. The operation of thermal power units is
fraught with challenges, particularly due to severe non-linearity
and the intricate coupling of multiple variables. This complexity
often results in performance and stability issues [2]. Controlling
such thermal systems poses significant challenges due to its
inherent non-linearity and the decoupling between its inputs and
outputs [3, 4].

While classic controls are deemed sufficient for most control
problems [5], recent insights suggest model predictive control
(MPC) is versatile enough for almost all scenarios, including
those previously challenging due to limited knowledge or
feasibility [6]. It’s shown in the literature that MPC is vastly
utilized in solving control problems of nonlinear dynamic systems
with constraints, and it’s often accompanied by system
linearization or fuzzification in the neighborhood of operating

points to make the optimization problem computationally feasible
for real-time implementation. On the other hand, machine learning
(ML) offers “intelligent” controllers that outperform adaptive
controls in handling system nonlinearities and uncertainties [7, 8].
However, implementing these ML controllers in real-time
scenarios can be challenging due to their computational demands [9].

In this work, we introduce a novel hierarchical control
methodology that leverages the harness of evolutionary ML
(EML) to guide a real-time fast control strategy with dynamical
(rate-of-change) constraints. Our proposed strategy is divided into
three phases: Online Under-policy Prediction, Policy Search, and
low-level control. This hierarchical structure helps leveraging the
power of evolutionary algorithms (EAs) to build a control policy
by solving a multi-objective optimization (MOO) problem, in the
Policy Search phase. Under this selected policy, the Online
Under-policy Prediction phase is designed to preempt the latency
encountered in the policy search stage, thereby circumventing
delays in the real-time control mechanism. The low-level control
phase, however, keeps track on the latest updates on the policy to
steer the control signals with respect to their regional and
dynamical constraints. Experimental results on a boiler-turbine
unit system demonstrate the capabilities of our suggested
approach to steer the system outputs towards the desired values
with respect to all input constraints and with minimal drifts from
the balance points. Moreover, our framework can utilize the
nonlinear dynamical equations of the system without the need for
any local approximations or further linearization, with a sampling
time of 0.1 s, allowing for a high degree of accuracy in capturing
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the true nonlinear behavior of the system while ensuring stable and
consistent performance under varying operational conditions.
Finally, our results show the ability to steer the control inputs of a
boiler-turbine system with a sampling period of 0.1 s, even if the
EAs search latency is up to 0.7 s. This last notation indeed
highlights the possibility of having our methodology applied in
real-time control loops.

The remainder of this paper is organized as follows: Section 2
delves into a literature review, laying the groundwork for our
approach. Section 3 articulates our unique problem formulation
and methodology. Section 4 presents a test case on a boiler-
turbine unit. Section 5 shows limitations and future work, while
Section 6 is the conclusion.

2. Literature Review

Boiler-turbine system control has been extensively studied in
the research literature, with a significant focus on system
identification and linearization at nominal operating points,
utilizing deterministic and fuzzy controllers. This task remains
challenging due to the complex dynamics inherent to boiler-
turbine systems, as noted in Wang et al. [10]. For instance, Wu
et al. [11] introduced a fuzzy multi-model MPC approach using
an extended fuzzy Lyapunov function, addressing control at
nominal points through linear matrix inequalities (LMIs).
Similarly, Wu et al. [12] proposed a hierarchical control structure
based on the Takagi-Sugeno fuzzy model, integrating an optimal
reference governor with a fuzzy model predictive controller to
improve the system’s disturbance rejection and stability.

Further research has aimed to address nonlinear system control
challenges, such as the work in Wang et al. [13], which presented a
robust MPC strategy with bi-level optimization, incorporating
multiple local models for nonlinear dynamics handling.
Meanwhile, Zhao et al. [14] proposed a nonlinear extended
predictive self-adaptive control method, simplifying the cost
function to integer order for easier implementation. Additionally,
Köhler et al. [15] introduced a computationally efficient robust
MPC framework for uncertain nonlinear systems, utilizing online
constructed tubes based on incremental Lyapunov functions to
ensure robust constraint satisfaction and practical asymptotic
stability with minimal computational overhead.

Other approaches like Zhao et al. [16] and Zhao et al. [17]
explored advanced techniques such as recurrent fuzzy neural
networks to model dynamic responses and Galerkin optimization
algorithms for control, demonstrating the continuous evolution of
methods to tackle nonlinear control issues. In parallel, Sanchez
et al. [18] applied a discrete state-feedback controller enhanced by
genetic algorithms (GAs) for LED drivers using a buck converter,
highlighting the potential of GAs in optimizing closed-loop
dynamics through LMIs and evolutionary techniques.

However, the reliance on linearization techniques, such as
Taylor series approximations, presents limitations when trying to
capture the full nonlinear behavior of these systems. As seen in
Yang et al. [19], while linearization can be effective at steady-
state points, identifying piecewise models is necessary for better
system representation across different operational zones. For
example, Ławryńczuk et al. [20] suggested a MPC strategy based
on online linearization of the state-space model at current
operating points, facilitating future control policy determination.
This method, combined with the use of local linearization and

polytopic uncertain LPV models, enables robust MPC for output-
tracking control. Yet, such approaches still face challenges when
handling the non-linearity inherent in real-world systems,
prompting further exploration of simulation-assisted methods.

Adaptive control methods, including those based on ML, have
shown potential to overcome these limitations. Cornejo Maceda and
Noack [21] discuss the benefits of reduced-order models and local
linearization but also highlight their limitations in robustness and
applicability. In this context, Song et al. [22] proposed an
adaptive MPC for the yaw system of variable-speed wind
turbines, where the control horizon adapts based on predictive
performance, demonstrating enhanced comprehensive performance
over baseline MPC methods. Similarly, Cui et al. [23] developed
a deep-neural-network-based economic MPC for ultrasupercritical
power plants, utilizing deep belief networks to accurately model
system dynamics and ensure closed-loop stability through
embedded predictors.

ML controllers, by framing control as a regression task, offer
more flexibility in adapting to complex dynamics. Wei et al. [24]
introduced an optimal tracking control scheme for boiler-turbine
systems using integral reinforcement learning, achieving faster
convergence compared to traditional MPC methods. Despite the
promise of these methods, challenges such as slow learning rates
and high computational expenses persist, as noted in Noack and
Kwasnicka [25]. Nevertheless, EAs like those in [18] provide
gradual optimization, offering a more robust alternative to
traditional control methods. This naturally leads to the need for
novel approaches that merge traditional control theory with
advanced ML techniques to better handle the nonlinearities and
uncertainties present in boiler-turbine systems. By leveraging the
strengths of both domains, such frameworks can achieve higher
accuracy and stability, ensuring reliable and efficient control
under varying operational conditions.

3. Problem Formulation

3.1. Motivation and preliminary research

Nonlinear MPC (NMPC) combined with EML has been
demonstrated to efficiently control nonlinear systems, as shown in
recent studies [26, 27]. In such framework, the ML controller
solves an optimization problem, searching for a set of future
control values to minimize the error over a future horizon.

However, this process is challenged by the curse of
dimensionality, particularly when dealing with rate-of-change
control constraints. While the optimization problem can identify
the control parameters needed to steer the system toward the
desired state, the search space must be sufficiently large to
account for dependencies between parameters over the future
horizon.

For instance, in a boiler system, the horizon may need to be 10 s
to considerably affect the outcome function or gain to guide the search
strategy.With a control time step of 0.1 s, this results in 100 different
values for each, leading to a search space of [−1, 1]300—a
computationally intensive task to be solved in real time by EML.

3.2. Proposed solution

MPC has been extensively applied in literature for the control of
dynamic systems. MPC necessitates a model of the system dynamics
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along with an optimization strategy. In this work, we proceed under
the assumption that we possess a sufficiently accurate model of the
system dynamics, bypassing the details of the identification process.

Consider a system defined by the following nonlinear
equations:

Ẋ tð Þ ¼ F X tð Þ; U tð Þð Þ;
Y tð Þ ¼ g X tð Þ; U tð Þð Þ; (1)

Where

1) X tð Þ 2 Rn represents the state vector of the system at time t,
2) U tð Þ 2 Rm denotes the control input vector at time t,
3) Y tð Þ 2 Rp is the output vector of the system at time t,
4) F : Rn � Rm ! Rn and g : Rn � Rm ! Rp are nonlinear

functions describing the system dynamics and output,
respectively.

To digitalize these dynamic equations, we apply Euler’s
method, which provides an approximate solution to the
differential equations by discretizing time. The discretized version
of the system’s dynamics can be written as:

Xkþ1 ¼ Xk þΔt � F Xk; Ukð Þ;
Yk ¼ g Xk; Ukð Þ; (2)

Where

1) Xk; Yk; Uk are the discretized states, outputs, and control inputs
at the k-th time step, respectively,

2) Δt is the time step size.

This discretization allows us to apply MPC by solving an
optimization problem at each time step to determine the optimal
control inputs Uk over a prediction horizon, subject to the system
dynamics and any constraints.

To formulate the optimization problem, consider a series of
control vectors U ¼ U0; U1; . . . ;UH�1f g over the prediction hori-
zon H, where the goal is to minimize the deviation of the system’s
output from a desired trajectory Yd ¼ Yd

0 ; Y
d
1 ; . . . ; Y

d
H�1

� �
The

optimization problem can be expressed as:

U� :¼ min
U

J Uð Þ ¼
XH�1

i¼0

γ i
����
����Yi � Yd

i

����
����2 (3)

Where

1) U 2 RH�m

2) j Uð Þ is the cost function to be minimized,
3) γ < 1 is a damping factor to progressively reduce the weight of

future errors in the cost function,
4) jjYi � Yd

i jj2 represents the squared norm of the error between the
actual output Yi and the desired output Yd

i at each step iwithin the
horizon.

The optimization seeks to find the control sequence U that
minimizes the weighted sum of squared output errors over the
horizon, subject to the system dynamics as described by the
discretized equations and any additional constraints on the states
and control inputs.

In this work, we discuss two types of constraints, boundary
constraints in which the value of the control input is limited, and

first-order dynamic constraints where the first-order derivative (the
speed) of every control input is limited.

H Uð Þ ¼ U � U � Ū ;
�µ � U̇ � µ;

�
(4)

whereU ; Ū , andµ fromRm represent the lower and upper bounds on
the control inputs, and the absolute value of control derivative,
respectively.

These constraints ensure practical feasibility when applying the
control method to real-world systems. The boundary constraints
U � U � Ūð Þ represent actuator saturation limits, while the rate-
of-change constraints �µ � U̇ � µ

� �
ensure smooth transitions,

preventing abrupt control actions that could damage system compo-
nents. For other systems, these limits should be defined based on
physical constraints of the actuators, system safety requirements,
and desired response speed.

Under a proper state-space representation of the control system,
as inherently expressed in Equation (1), we can introduce an
assumption that the system’s evolution follows the Markov
property. This implies that the future state of the system depends
only on the current state and the current control action, not on the
sequence of events that preceded it. Mathematically, this is
expressed as:

P Xkþ1jXk;Ukð Þ ¼ PðXkþ1j
X0;X1; . . . ;Xk;
U0;U1; . . . ;UkÞ;

(5)

and similarly, the output at the next time step depends only on the
current state and control input:

P Ykþ1jXk;Ukð Þ ¼ PðYkþ1j
X0;X1; . . . ;Xk;
Y0; Y1; . . . ;Yk;
U0;U1; . . . ;UkÞ;

(6)

These assumptions align the optimization problem with the
principles of a Markov decision process, where the decision-
making at each step k is based solely on the current state Xk and aims
to optimize a cumulative cost function, as defined previously. The
Markov property ensures that the system’s dynamics and the optimi-
zation strategy can be effectively modeled and solved using the
framework of MPC, leveraging the current state and control input
to predict and influence future states and outputs.

3.3. Control strategy

In the context of developing our control strategy, we define the
following terms and parameters:

Figure 1
Timeline of the proposed control strategy
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1) fs: Sampling Frequency. This represents the frequency at which
the system’s control loop is digitized, with a corresponding sam-
pling period denoted by Ts ¼ 1

fs
.

2) Tp: Prediction Phase Time. Denotes the time interval from which
the online prediction phase starts gathering data until making a
prediction, i.e., producing an output.

3) Π: Control Policy. Defined as a set of high-level control recom-
mendations that inform and guide the overarching control
strategy.

4) Tπ: Policy Application Time. This denotes the time interval
during which a specific control policy, Π, remains applied to
the system.

5) Tg : GA Search Latency. This term refers to the time required for
the GA to identify a suitable policy, in policy search phase, as per
the established search criteria.

Under these assumptions, the control strategy is divided into the
following three main phases:

1) Online Under-policy Prediction Phase: The initial phase, which is
responsible for predicting the system state after a period of time
based on online observations. It works in parallel without
interfering with the control loop.

2) Policy search Phase: The most computationally expensive phase,
responsible for building a policy for the next Tπ. This phase is
also designed to be performed on parallel, i.e., through multi-
threading or multi-processing.

3) Low-level Control Phase: This phase applies the control policy on
the actual values of control is and responsible for considering all
control constraints including the dynamic ones.

Following the assumptions and categories denoted, Figure 1
shows a timeline of the proposed control strategy. It’s clear that
Tπ ¼ Tp þ Tg . Moreover, Policy Search Phase is supposed to start
at time ta and end at time tb based on a specific design that includes
hyperparameters and hardware computational limitations. Therefore,
it takes predictions about the system state at time tb, from the online
prediction phase, to design a policy for the next policy slot Tπ

kþ1. At
the meanwhile, from ta to tb, and the old policy Πk continues to be
applied in the interval without disturbing or delaying the main con-
trol loop.

3.3.1. Online under-policy prediction phase
This phase is responsible for gathering online observations of

the system dynamics in every policy interval Tπ in order to make
predictions about the system state at the end of this interval. Predic-
tion strategies can vary from interpolations to simple ML strategies
reaching online Neural Networks training as function approximators.

X̃ kþ1ð ÞTπ ¼ X̃tc ¼ Φ Xta ; XtaþTs
; . . . ;Xtb

� �
(7)

This phase works on parallel without interfering with the
control loop and is supposed to give a prediction at the end of Tp

about the system state after Tg , as expressed in Equation (7). This
prediction X̃tc is then fed to the next phase to calculate the control
policy.

3.3.2. Policy search phase
For designing the control policy, we utilize a GA to explore the

space of possible control vectors U , aiming to find those that mini-
mize our multi-objective function J. This function is directly tied to
the system’s performance as defined by the deviation from desired

output trajectories and incorporates the system dynamics as charac-
terized by the system’s nonlinear equations. Therefore, the goal of
GA search at time KTπ is to find the set of control parameters
Uπ;k that minimize the following function:

min j Uπ;k
� � ¼ XH�1

j¼0

γ i
����
����Yπ;k

j � Yd;k
j

����
����2; (8)

where γ 2 0; 1ð Þ is a damping factor, H is the horizon of the policy
time with respect to the sampling time:

H ¼
�
Tπ

Ts

	
; (9)

here d : e is the ceiling function. Yπ;k
j and Yd;k

j are the output of the
system model with respect to the policy’s high-level dynamic con-
straints and the output reference at time

t ¼ kTπ þ jTs: (10)

Finally, we denote as Uπ;k the set of policy control values over the
time interval from kTπ to kþ 1ð ÞTπ:

Uπ;k ¼ Uπ;k
0 ;Uπ;k

1 ; � � � ;Uπ;k
H�1


 �
: (11)

In this phase, initially we have

Xπ;k
0 ¼ eX kþ1ð ÞTπ ; (12)

is the result from the online prediction phase. is the result from the

online prediction phase. Then, Yπ;k
j


 �
0�j�H�1

and Xπ;k
j


 �
0�j�H�1

are calculated based on the system dynamics described in

Equation (1), with control values Uπ;k
j


 �
0�j�H�1

subject to control

boundaries limitations only:

U � Uπ;k
j � Ū ; 0 � j � H � 1 (13)

3.3.3. Pareto front-based path selection
Multi-goal control problems can be discussed in several ways,

varying from scalarization to solving MOO problems. In our
implementation, we choose to develop a MOO framework to
build the Pareto front (PF), then select an optimization path from
the resulted PF based on our current outputs deviation vector from
the desired output vector.

MOO is an approach to problem-solving that involves the
simultaneous optimization of multiple, often competing, objective
functions. In mathematical terms, MOO seeks an optimal vector

X� ¼ x�1 ; x�2 ; � � � ; x�nf g; (14)

that maximizes or minimizes a set of objective functions

G X�ð Þ ¼ G1 X�ð Þ;G2 X�ð Þ; � � � ;Gk X�ð Þf g; (15)

where the vectorX� consists of decision variables within the feasible
decision space bounded by
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xmin � X� � xmax: (16)

The solution is subject to satisfying a series of constraints, whichmay
include equalities

hi X�ð Þ ¼ 0 ; i ¼ 1; 2; . . . ; p; (17)

and inequalities

gi X�ð Þ � 0; i ¼ 1; 2; . . . ;m; (18)

that define the permissible region of solutions, denoted as D. Each
objective function Gi in the vector G X�ð Þ represents a distinct cri-
terion to be optimized, and these criteria are typically non-commen-
surable, highlighting the complexity of the MOO process [28].

The aim is to identify the optimal set of decision variables X�

that yield the best possible outcomes across all objectives, consider-
ing the constraints that limit the feasible solutions. The decision-
making is guided by trade-offs between the different objectives, as
improving one function may lead to the detriment of another. This
necessitates the use of advanced optimization techniques to navigate
the complex solution landscape of MOO problems. Building on the
previously outlined framework of MOO, the concept of Pareto opti-
mality is crucial. This optimality is mathematically represented by a
set of solutions X� for which the corresponding vector of objective
functionsG X�ð Þ cannot be improved in any single objective without
causing a trade-off in at least one other.

This state of Pareto optimality can be denoted by the following
condition:

8X� 2 X ;9= X0 2 D : G X0ð Þ � G X�ð Þ (19)

where X� is an optimal Pareto solution, X0 is any other feasible sol-
ution, and the notation � indicates that X0 is strictly better than X�

across all objectives. The set D encompasses all feasible solutions
given the constraints, and X denotes the set of Pareto solutions.
Therefore, the set X can be defined as the following:

X ¼ X� 2 D : 9= X0 2 D : G X0ð Þ � G X�ð Þf g: (20)

The notion of Pareto optimality is essential as it establishes a
framework within which decision-makers can evaluate and choose
solutions that best meet their specific trade-offs and preferences
among multiple objectives. This selection process is often guided
by additional decision-making criteria or strategies, as the PF
typically presents a multitude of equally optimal solutions in the
absence of further preferences or constraints.

Based on the previous discussion, a strategy for selecting a
specific path to guide the system towards PF is essential. In other
words, we need to choose which of the PF points to drive the
system towards according to the current state, or need of the
system. This is equivalent to solving the following optimization
problem:

τ Xð Þ ¼ Xτ 2 X : ζ G Xτð Þð Þ � ζ G Xð Þð Þ; 8X 2 Xf g; (21)

where ζ is a function representing the priority of minimizing the
objective functions based on their current value.

To give more insights about how PF and MOO can guide the
control strategy we consider the following illustrative example:

xnþ1 ¼ xn þ Tsuj
g1n ¼ xn � 1ð Þ2
g2n ¼ xnð Þ2;

(22)

the goal to minimize both g1 and g2, with Ts ¼ 1 and π ¼ 4. We con-
sider the initial state x0 ¼ �3, and we draw the PF after one policy
time interval. Figure 2(a) shows the PF of updating the system in the
illustrative example with four time steps. We can see that the PF is
the minimum points of G1 and G1, and a set of points that com-
promises between minimizing these two conflicting objective
functions.

The output of this phase, a set of optimized control policy
vectors we refer to it as Uπ;k, is then fed into the low-level control
phase for further refinement and application.

Figure 2
Pareto front and guiding the system state of the illustrative

example. (a) Pareto front of the illustrative example. (b) Guiding
the system state to PF
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3.3.4. Low-level control phase
This phase is the main control thread that utilizes the last update

on the policy to design control vectors with respect to all constraints.
The low-level control phase is set to operate in a high sampling rate
without being interrupted by any calculations needed by the other
two phases.

Assume receiving a high-level control vectorUπ;k from the pol-
icy search phase at time kTπ, then the goal is to design the control
values denoted as:

Uc;k ¼ Uc;k
0 ;Uc;k

1 ; � � � ;Uc;k
H�1


 �
(23)

to operate within the time interval from kTπ to kþ 1ð ÞTπ following
the policy control values with respect to the dynamic and regional
input constraints. These values are said to be calculated iteratively
as the following:

Uc;k
jþ1 ¼ Ψ Uc;k

j ;Uπ;k
jþ1;U

c;k
jþ1;U

c;k
jþ1;U;U


 �
; (24)

where Ψ is the low-level control function and Uc;k
jþ1 and Ūc;k

jþ1 are the
lower and upper boundaries of the control values at time
kTπ þ jþ 1ð ÞTs, respectively, and are calculated as the following:

Uc;k
jþ1 ¼ Uc;k

j þ µT � Uc;k
j ;

Uc;k
jþ1 ¼ Uc;k

j � µT � Uc;k
j ;

(25)

to respect the constraints defined in Equation (4).

3.4. Implementation and tuning guide

To apply the proposed control strategy to different systems,
follow these key steps:

1) Define system dynamics

Identify the system’s state-space equations (e.g., nonlinear
differential equations).
Discretize the equations ifworking in a digital control environment.

2) Set control constraints

Determine boundary constraints (U � U � Ū) based on actua-
tor limits.
Define rate-of-change constraints (� µ � U̇ � µ) to ensure
smooth transitions and prevent abrupt control actions.

3) Configure the hierarchical framework

Choose an appropriate sampling time (Ts) that balances control
responsiveness and computational feasibility.
Set the policy interval (Tπ) based on system dynamics and GA
latency.

4) Tune GA parameters

Population size: Larger values (e.g., 80–100) improve solution
quality but increase computation time.
Number of generations: More generations (e.g., 30–50) enhance
optimization but require more iterations.

5) Run parallel execution

Ensure that policy search (GA) runs asynchronously while the
low-level control executes at high speed.
Validate that the Under-Policy Prediction Phase compensates
for GA search latency.

6) Test and adjust

Simulate the system and observe control performance.
If GA search is too slow, reduce population size or shorten the
horizon.
If control actions areunstable, adjust rate-of-change constraints (μ).

By following these steps, users can adapt the proposed method
to different systems while balancing accuracy and computational
efficiency.

4. Test Case: Drum Boiler-Turbine Unit

Building upon the state of the art, this study explores the
operational dynamics of a drum-type boiler-turbine system, central
to thermal power units. Unlike traditional approaches that
often resort to linearization around fixed points, our approach
embraces the system’s inherent nonlinearities. We focus on a
comprehensive model integrating combustion, steam-water,
control, electrical, and condensing systems, leveraging EML for
dynamic adaptability.

We investigate the established model of a 160 MW boiler-
turbine generator, previously analyzed in literature [29]. This
model encapsulates the quintessential elements of the system,
focusing on the dynamics of steam pressure, electrical power
output, and the thermal-fluid processes.

The governing state equations of the system are outlined as
follows:

ẋ1 ¼ �0:0018u2x
9=8
1 þ 0:9u1 � 0:15u3;

ẋ2 ¼ 0:073u2 � 0:016ð Þx9=81 � 0:1x2;
ẋ3 ¼ 141u3 � 1:1u2 � 0:19ð Þx1:

(26)

The outputs of the system, y1, y2, and y3, are defined in relation to the
state variables x1 and x2, along with a combined function of the states
and control inputs, detailed below:

y1 ¼ x1;

y2 ¼ x2;

y3 ¼ 0:05 0:13073x3 þ 100acs þ
qe
9
� 67:975


 �
:

(27)

Here, x1, x2, and x3 signify the steam pressure in the drum, electrical
power output, and fluid density, respectively. The control inputs u1,
u2, and u3 correspond to the positioning of valves regulating fuel
flow, steam, and feed-water flow. The level of water in the drum
is indicated by y3. The steam quality qe and coefficient acs, which
are pivotal for computing y3, are given by:

qe ¼ 0:854u2 � 0:147ð Þx1 þ 45:59u1
�2:514u3 � 2:096;

(28)

acs ¼
1� 0:001538x3ð Þ 0:8x1 � 25:6ð Þ
x3 1:0394� 0:0012304x1ð Þ : (29)

In the practical implementation of this model, the capabilities of the
actuators are considered, leading to the establishment of constraints
on the magnitude and rate of change of the control inputs. The
magnitudes are confined within the range:

0 � uq � 1; q ¼ 1; 2; 3; (30)
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and the rate-of-change constraints are defined as:

�0:007 � u̇1 � 0:007;
�2 � u̇2 � 2;

�0:05 � u̇3 � 0:05:
(31)

For our control strategy, we choose to define the online under-policy
prediction phase function Φ as a simple linear interpolation,
therefore:

X̃ tcð Þ ¼ Φ Xta ;Xtb

� � ¼ Tπ

Tp X tbð Þ � X tað Þð Þ þ X tað Þ (32)

For the online controller, we chooseΨ to guide the values of control
towards increasing or decreasing within the limited speed based on
the policy as the following:

Uc;k
jþ1 ¼ Ψ Uc;k

j ;Uπ;k
jþ1;U

c;k
jþ1;U

c;k
jþ1;U ;U


 �
¼ ℭ ℭ Uπ;k

jþ1;U
c;k
jþ1;U

c;k
jþ1


 �
;U;U


 � (33)

with ℭ being a trimming function, defined as the following:

C X;A;Bð Þ ¼ min B;max A;Xð Þð Þ; (34)

for X; A; B fromRn. This will limit the rate of changes to the allow-
able interval for the provided control values.

We apply our control strategy on the boiler-turbine system on a
simulation model for a simulation time of 2100 s. As in Wang et al.
[29], the initial state of the boiler is:

Xeq ¼ 115; 85; 402:759½ 	T
Ueq ¼ 0:4147; 0:7787; 0:5436½ 	T
Yeq ¼ 115; 85; 0½ 	T

(35)

The goal in Wang et al. [29] was to balance the system around
Yref ¼ Yeq. Our goal, however, is to assure balance then try balancing
the system around other points. We specifically choose:

Yd tð Þ ¼
115; 85; 0½ 	; 0 � t � 1000s;
110; 85; 0½ 	; 1000 � t � 2000s;
110; 60; 0½ 	; 2000 � t � 3000s:

8<
: (36)

By formulating three objective functions as the Euclidean distance
between the desired value and the current value of each output,
we use NSGA-II [30], that uses non-dominated sorting to get the
PF. After which, we design our PF-based path selection function
as the following:

τ Xð Þ ¼ Xξ Xξ Xξ X ;G2ð Þ;G3

� �
;G1

� �
; (37)

where Xξ A; fð Þ, with A a finite set and f is an evaluation function, is
the set of values B 
 A for which:

8x 2 B; f xð Þ � f x�ð Þj j � ξ: (38)

with x� defined as:

x� :¼ x� 2 Að Þ ^ f x�ð Þ � f xð Þ; 8x 2 Að Þ: (39)

The subset Xξ A; fð Þ, with Card Að Þ > 0, can be proven not to be
empty since it has at least one item x�. Conversely, if the final set
τ Xð Þ has more than one item, we choose to select any.

In our strategy’s hyperparameters, we set the population size to
80, the number of generations to 40, and the number of offsprings per
generation also to 40. We define the GA search model’s future hori-
zon to be 10. The sampling time (Ts) is 0.1 s, and the policy interval
(Tπ) is set to 1 s. We also choose ξ ¼ 1 in Equation (38).

These values were selected based on a balance between
computational feasibility and control accuracy. In systems with
limited computing resources, these parameters can be adjusted by
reducing population size or demand at the cost of slightly slower
convergence. Similarly, tuning the prediction horizon can help
optimize performance for real-time constraints.

Building on the setup described, the experimental simulation
took place on a Core-i5 12th generation processor equipped with
32GB of RAM and utilized Ubuntu 22.04 as its operating system.
The development of the simulation model and algorithms was
carried out using the Python programming language. On this
hardware, the machine demonstrated the capability to perform the
GAs policy search in approximately 0.3 seconds. Consequently,
we executed two separate experiments; in the first, the Tg interval
was maintained at 0.3 s, as illustrated in Figure 3, and in the second
experiment, the Tg interval was extended to 0.7 s, as depicted in
Figure 4. Moreover, Figure 5 shows how the control values (in blue)
are guided by the policy values (in orange) with respect to their
allowed rate of change as in Equation (31).

Results demonstrate the ability of the proposed control strategy
to guide the boiler-turbine system towards the desired output in both
cases.We can notice the small required change ofwater level u3 along
the control interval. This highlights the possibility to use our strategy
even with slower computational hardware to perform GA search.

Our hierarchical framework is specifically designed to ensure
real-time feasibility. The under-policy prediction phase
compensates for GA latency, ensuring continuous control without
delays. Additionally, GA-based optimization is executed in
parallel with low-level control, preventing bottlenecks in
execution. While alternative methods like heuristic search or
hybrid GA-local optimization could reduce computational
demands, our results demonstrate that the current approach
already achieves real-time performance within practical constraints.

4.1. Comparison with recent work

Our proposed methodology offers a more general approach to
controlling the boiler-turbine unit without the need for linearization
or operating point approximations, which is a key contribution of our
research. To demonstrate the effectiveness of our approach, we
compare it with existing methods for boiler control.

For this comparison, we selected the method reported in [24],
focusing on load-changing conditions tested by varying the load
from 120 MW to 140 MW. The operating points under a load of
120 MW are given by:

x120 ¼ 137; 120; 299:09½ 	T ;
u120 ¼ 0:563; 0:868; 0:743½ 	T : (40)

For a load of 140 MW, the operating points are:

x140 ¼ 148:94; 140:7; 356:3½ 	T
u140 ¼ 0:648; 0:9081; 0:8545½ 	T : (41)

Table 1 presents the convergence times (in seconds) for different
control variables using the IRL method, MPC method, and our
proposed strategy. The results from [24] demonstrate that our
approach achieves significantly faster convergence across all variables.
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Figure 6 illustrates the performance comparison of the different
control strategies under varying load conditions. The figure
complements the tabulated convergence times, providing a visual
representation of the superior efficiency and effectiveness of our
proposed strategy in reducing convergence time and enhancing
control performance of the boiler-turbine unit.

These results highlight the efficiency and effectiveness of our
proposed strategy in reducing convergence time, thereby

enhancing the control performance of the boiler-turbine unit under
varying load conditions.

5. Limitations and Future Work

The current approach mitigates the computational demands of
GA search through a hierarchical structure, parallel execution, and
predictive modeling. The Online Under-policy Prediction Phase

Figure 3
Simulation results for Ts= 0.1, Tp= 0.7, Tg= 0.3, the output signals of (y1, y2, y3) with respect to time in seconds

Figure 4
Simulation results for Ts= 0.1, Tp= 0.3, Tg= 0.7, the output signals of (y1, y2, y3) with respect to time in seconds
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Figure 5
Policy and control signals for inputs (u1, u2, u3), with respect to time in seconds

Table 1
Convergence time comparison (seconds)

Control variable IRL method MPC method Proposed strategy

Drum Pressure 335 380 150
Water Level 287 195 55
Power Output 320 405 85

Figure 6
Results of the proposed control strategy on the load-varying test
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reduces unnecessary search space exploration, while the parallelized
GA execution ensures that policy search does not interfere with the
real-time control loop. Additionally, low-level control smoothing
prevents excessive fluctuations in control inputs, reducing the
computational load.

However, real-time applications with stricter timing constraints
may still pose challenges. Future enhancements could focus on:

1) Adaptive horizon adjustment: Dynamically adjusting the GA
prediction horizon based on system conditions to optimize
speed vs. accuracy trade-offs.

2) Efficient population management: Reducing unnecessary GA
iterations by reusing prior solutions (e.g., warm-starting the
GA with previous optimal policies).

3) Embedded system deployment: Evaluating the feasibility of this
approach on resource-limited platforms such as microcontrollers
or FPGAs, testing how well the framework scales under real-
world conditions.

6. Conclusion

Our study introduces a multi-level hierarchical control strategy
that effectively tackles complex, real-time MOO challenges in
nonlinear systems through the use of EAs. This strategy integrates
a high-level optimization problem solution with a dynamic lower-
level control loop, avoiding linearization or operating point
approximations. Our innovative approach, demonstrated through
simulations on a drum boiler-turbine unit, highlights the strategy’s
capability to deliver optimized, real-time control signals for
various operational goals. The promising results not only
showcase the potential of EAs in refining control strategies for
intricate systems but also open avenues for real-world applications
and future enhancements. This work paves the way for advanced,
adaptive control mechanisms in complex system management,
promising significant advancements in control engineering.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Author Contribution Statement

Ali Deeb: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data
curation, Writing – original draft, Writing – review & editing,
Visualization. Vladimir Khokhlovskiy: Conceptualization,
Methodology, Validation, Formal analysis, Investigation,
Resources, Writing – original draft, Writing – review & editing,
Visualization, Supervision. Viacheslav Shkodyrev: Conceptualiz-
ation, Methodology, Validation, Formal analysis, Investigation,
Resources, Writing – original draft, Writing – review & editing,
Visualization, Supervision, Project administration.

References

[1] International Energy Agency. (2022). World energy outlook
2022. International Energy Agency. https://www.iea.org/repo
rts/world-energy-outlook-2022

[2] Lee, Y., Yoo, E., Lee, T., & Moon, U. C. (2018).
Supplementary control of conventional coordinated control
for 1000 MW ultra-supercritical thermal power plant using
dynamic matrix control. Journal of Electrical Engineering
and Technology, 13(1), 97–104. https://doi.org/10.5370/
JEET.2018.13.1.097

[3] Wu, X., Wang, M., Shen, J., Li, Y., Lawal, A., & Lee, K. Y.
(2019). Reinforced coordinated control of coal-fired power
plant retrofitted with solvent based CO2 capture using model
predictive controls. Applied Energy, 238, 495–515. https://
doi.org/10.1016/j.apenergy.2019.01.082

[4] Wu, Z., Gao, Z., Li, D., Chen, Y., & Liu, Y. (2021). On
transitioning from PID to ADRC in thermal power plants.
Control Theory and Technology, 19(1), 3–18. https://doi.org/
10.1007/s11768-021-00032-4

[5] Ogata, K. (2010). Modern control engineering.
UK: Pearson.

[6] Schwenzer, M., Ay, M., Bergs, T., & Abel, D. (2021). Review
on model predictive control: An engineering perspective.
The International Journal of Advanced Manufacturing
Technology, 117(5), 1327–1349. https://doi.org/10.1007/
s00170-021-07682-3

[7] Duriez, T., Brunton, S. L., & Noack, B. R. (2017). Machine
learning control-taming nonlinear dynamics and turbulence.
Switzerland: Springer Cham. https://doi.org/10.1007/978-3-
319-40624-4

[8] Lawrence, N. P., Damarla, S. K., Kim, J. W., Tulsyan, A.,
Amjad, F., Wang, K., : : : , & Gopaluni, R. B. (2024).
Machine learning for industrial sensing and control: A
survey and practical perspective. Control Engineering
Practice, 145, 105841. https://doi.org/10.1016/j.conengprac.
2024.105841

[9] Ahmed, C. M., MR, G. R., &Mathur, A. P. (2020). Challenges
in machine learning based approaches for real-time anomaly
detection in industrial control systems. In Proceedings of the
6th ACM on Cyber-Physical System Security Workshop,
23–29. https://doi.org/10.1145/3384941.3409588

[10] Wang, C., Liu, M., Zhao, Y., Qiao, Y., Chong, D., & Yan, J.
(2018). Dynamic modeling and operation optimization for
the cold end system of thermal power plants during transient
processes. Energy, 145, 734–746. https://doi.org/10.1016/j.
energy.2017.12.146

[11] Wu, X., Shen, J., Li, Y., & Lee, K. Y. (2011). Stable model
predictive control based on TS fuzzy model with application
to boiler-turbine coordinated system. In 2011 50th IEEE
Conference on Decision and Control and European Control
Conference, 2981–2987. https://doi.org/10.1109/CDC.2011.
6160553

[12] Wu, X., Shen, J., Li, Y., & Lee, K. Y. (2014). Hierarchical
optimization of boiler–turbine unit using fuzzy stable model
predictive control. Control Engineering Practice, 30,
112–123. https://doi.org/10.1016/j.conengprac.2014.03.004

[13] Wang, L., Cai, Y., & Ding, B. (2021). Robust model predictive
control with bi-level optimization for boiler-turbine system.
IEEE Access, 9, 48244–48253. https://doi.org/10.1109/
ACCESS.2021.3066371

[14] Zhao, S., Wang, S., Cajo, R., Ren, W., & Li, B. (2022). Power
tracking control of marine boiler-turbine system based on

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

10

https://www.iea.org/reports/world-energy-outlook-2022
https://www.iea.org/reports/world-energy-outlook-2022
https://doi.org/10.5370/JEET.2018.13.1.097
https://doi.org/10.5370/JEET.2018.13.1.097
https://doi.org/10.1016/j.apenergy.2019.01.082
https://doi.org/10.1016/j.apenergy.2019.01.082
https://doi.org/10.1007/s11768-021-00032-4
https://doi.org/10.1007/s11768-021-00032-4
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1016/j.conengprac.2024.105841
https://doi.org/10.1016/j.conengprac.2024.105841
https://doi.org/10.1145/3384941.3409588
https://doi.org/10.1016/j.energy.2017.12.146
https://doi.org/10.1016/j.energy.2017.12.146
https://doi.org/10.1109/CDC.2011.6160553
https://doi.org/10.1109/CDC.2011.6160553
https://doi.org/10.1016/j.conengprac.2014.03.004
https://doi.org/10.1109/ACCESS.2021.3066371
https://doi.org/10.1109/ACCESS.2021.3066371


fractional order model predictive control algorithm. Journal of
Marine Science and Engineering, 10(9), 1307. https://doi.org/
10.3390/jmse10091307

[15] Köhler, J., Soloperto, R., Müller, M. A., &Allgöwer, F. (2021).
A computationally efficient robust model predictive control
framework for uncertain nonlinear systems. IEEE
Transactions on Automatic Control, 66(2), 794–801. https://
doi.org/10.1109/TAC.2020.2982585

[16] Zhao, M., Wan, J., & Peng, C. (2023). Generalized predictive
control using improved recurrent fuzzy neural network for a
boiler-turbine unit. Engineering Applications of Artificial
Intelligence, 121, 106053. https://doi.org/10.1016/j.engappai.
2023.106053

[17] Zhao, G., Sun, Y., Su, Z. G., & Hao, Y. (2023). Receding
Galerkin optimal control with high-order sliding mode
disturbance observer for a boiler-turbine unit. Sustainability,
15(13), 10129. https://doi.org/10.3390/su151310129

[18] Sanchez,R.O.,RumboMorales, J.Y.,OrtizTorres,G.,PérezVidal,
A. F., Valdez Resendiz, J. E., Sorcia Vázquez, F. J., & Nava, N. V.
(2022). Discrete state-feedback control design with D-stability and
genetic algorithm for LED driver using a buck converter.
International Transactions on Electrical Energy Systems,
2022(1), 8165149. https://doi.org/10.1155/2022/8165149

[19] Yang, C., Zhang, T., Zhang, Z., & Sun, L. (2022). MLD–MPC
for ultra-supercritical circulating fluidized bed boiler unit using
subspace identification. Energies, 15(15), 5476. https://doi.org/
10.3390/en15155476

[20] Ławryńczuk, M. (2017). Nonlinear predictive control of a boiler-
turbine unit: A state-space approach with successive on-line
model linearisation and quadratic optimisation. ISA Transactions,
67, 476–495. https://doi.org/10.1016/j.isatra.2017.01.016

[21] Cornejo Maceda, G. Y., & Noack, B. R. (2024). Evolutionary
machine learning in control. In W. Banzhaf, P. Machado, & M.
Zhang (Eds.), Handbook of evolutionary machine learning
(pp. 629–656). Springer. https://doi.org/10.1007/978-981-99-
3814-8_22

[22] Song, D., Chang, Q., Zheng, S., Yang, S., Yang, J., & Joo, Y. H.
(2021). Adaptive model predictive control for yaw system of
variable-speed wind turbines. Journal of Modern Power
Systems and Clean Energy, 9(1), 219–224. https://doi.org/10.
35833/MPCE.2019.000467

[23] Cui, J., Chai, T., & Liu, X. (2020). Deep-neural-network-based
economic model predictive control for ultrasupercritical power
plant. IEEE Transactions on Industrial Informatics, 16(9),
5905–5913. https://doi.org/10.1109/TII.2020.2973721

[24] Wei, Q., Liu, Y., Lu, J., Ling, J., Luan, Z., & Chen, M. (2023).
A new integral critic learning for optimal tracking control with
applications to boiler-turbine systems. Optimal Control
Applications and Methods, 44(2), 830–845. https://doi.org/
10.1002/oca.2792

[25] Slowik, A., & Kwasnicka, H. (2020). Evolutionary algorithms
and their applications to engineering problems. Neural
Computing and Applications, 32(16), 12363–12379. https://
doi.org/10.1007/s00521-020-04832-8

[26] Deeb, A., Khokhlovskiy, V. N., & Shkodyrev, V. P.
(2024). Model predictive control and genetic algorithms for
optimization of continuous stirred tank reactors. In I. L.
Tarasova, & B. A. Kulik (Eds.), Smart electromechanical
systems: Mathematical and software engineering (pp.
185–191). Springer. https://doi.org/10.1007/978-3-031-
64277-7_14

[27] Biegler, L. T. (2021). A perspective on nonlinear model
predictive control. Korean Journal of Chemical Engineering,
38(7), 1317–1332. https://doi.org/10.1007/s11814-021-0791-7

[28] Jones, D. F., & Florentino, H. O. (2022). Multi-objective
optimization: Methods and applications. In S. Salhi, & J.
Boylan (Eds.), The Palgrave handbook of operations
research (pp. 181–207). Springer. https://doi.org/10.1007/
978-3-030-96935-6_6

[29] Wang, J., Ding, B., & Wang, P. (2022). Modeling and finite-
horizon MPC for a boiler-turbine system using minimal
realization state-space model. Energies, 15(21), 7935. https://
doi.org/10.3390/en15217935

[30] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A
fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6(2),
182–197. https://doi.org/10.1109/4235.996017

How to Cite: Deeb, A., Khokhlovskiy, V., & Shkodyrev, V. (2025).
Hierarchical Multi-objective Control of Nonlinear Systems with Dynamical
Input Constraints. Artificial Intelligence and Applications. https://doi.org/
10.47852/bonviewAIA52024314

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

11

https://doi.org/10.3390/jmse10091307
https://doi.org/10.3390/jmse10091307
https://doi.org/10.1109/TAC.2020.2982585
https://doi.org/10.1109/TAC.2020.2982585
https://doi.org/10.1016/j.engappai.2023.106053
https://doi.org/10.1016/j.engappai.2023.106053
https://doi.org/10.3390/su151310129
https://doi.org/10.1155/2022/8165149
https://doi.org/10.3390/en15155476
https://doi.org/10.3390/en15155476
https://doi.org/10.1016/j.isatra.2017.01.016
https://doi.org/10.1007/978-981-99-3814-8_22
https://doi.org/10.1007/978-981-99-3814-8_22
https://doi.org/10.35833/MPCE.2019.000467
https://doi.org/10.35833/MPCE.2019.000467
https://doi.org/10.1109/TII.2020.2973721
https://doi.org/10.1002/oca.2792
https://doi.org/10.1002/oca.2792
https://doi.org/10.1007/s00521-020-04832-8
https://doi.org/10.1007/s00521-020-04832-8
https://doi.org/10.1007/978-3-031-64277-7_14
https://doi.org/10.1007/978-3-031-64277-7_14
https://doi.org/10.1007/s11814-021-0791-7
https://doi.org/10.1007/978-3-030-96935-6_6
https://doi.org/10.1007/978-3-030-96935-6_6
https://doi.org/10.3390/en15217935
https://doi.org/10.3390/en15217935
https://doi.org/10.1109/4235.996017
https://doi.org/10.47852/bonviewAIA52024314
https://doi.org/10.47852/bonviewAIA52024314

	Hierarchical Multi-objective Control of Nonlinear Systems with Dynamical Input Constraints
	1. Introduction
	2. Literature Review
	3. Problem Formulation
	3.1. Motivation and preliminary research
	3.2. Proposed solution
	3.3. Control strategy
	3.3.1. Online under-policy prediction phase
	3.3.2. Policy search phase
	3.3.3. Pareto front-based path selection
	3.3.4. Low-level control phase

	3.4. Implementation and tuning guide

	4. Test Case: Drum Boiler-Turbine Unit
	4.1. Comparison with recent work

	5. Limitations and Future Work
	6. Conclusion
	Ethical Statement
	Conflicts of Interest
	Data Availability Statement
	Author Contribution Statement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


