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Abstract: The automation of defect detection in smartphone screens is important in ensuring fairness in the refurbished smartphone market. 
Conventional methods for evaluating screen damage rely on manual assessments, which are subjective, unreliable, and susceptible to human error. 
This paper presents a deep-learning-based approach using a convolutional neural network (CNN) to classify smartphone screens as cracked or 
uncracked. The CNN model was trained using a custom dataset of smartphone images, with an accuracy rate of 92.0% in classifying screen damage. 
CNN outperformed conventional machine learning methods in terms of feature extraction, resulting in higher precision in defect detection. However, 
the model encountered difficulty in identifying subtle crack patterns, fluctuations in light conditions, and overfitting resulting from the dataset’s limited 
diversity. Future work will focus on expanding the dataset, refining methods for data augmentation, and exploring alternative algorithms such as a 
transformer-based or hybrid model to improve model quality. This study aims to facilitate the standardization of defect assessment in the refurbished 
smartphone industry by automating screen damage detection, thereby increasing consumer confidence and boosting resale market efficiency.
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1. Introduction
In the digital age, computer vision has evolved into a 

transformative technology that enables machines to interpret and 
comprehend the visual world with human-level intelligence [1]. One 
significant application is defect detection, which is crucial for quality 
control in many industries, including manufacturing and electronics 
resale. In the refurbished smartphone market, screen damage analysis is 
very important for determining the value of the product and maintaining 
a fair price. However, current techniques for assessment heavily rely 
on manual inspection, which can be time-consuming, inconsistent, and 
susceptible to human error. The core objective of computer vision is 
to enable machines to analyze and interpret images or video content, 
allowing them to recognize patterns, detect anomalies, and understand 
scenes in a manner that mimics human visual perception [2].

According to the study reported in [3], image recognition is a key 
area of study that focuses on analyzing key features of images rather 
than relying solely on raw pixel values. Convolutional neural networks 
(CNNs) have greatly improved image recognition accuracy by learning 
structured patterns from image data. When applied to a refurbished 
market, this recognition ability can be integrated with pricing algorithms 
to enable more accurate product valuation, increasing transparency and 
trust between buyers and sellers.

Although current research on image recognition spans from 
feature extraction methods to advanced deep learning models, its real-
world application remains a challenge. Specifically, product variation, 

degree of damage, and user preference all interfere with image 
assessment and automated pricing. Further work is required to create an 
effective system that can address these challenges and offer a scalable 
and fair pricing solution.

Prior research on defect detection applied traditional machine 
learning techniques such as support vector machines and decision 
trees. Although these techniques perform well in detecting basic 
defects, they often struggle to identify more complex and fine-
grained patterns of screen damage such as microcracks, surface 
abrasions, and impact-induced distortions. To address this limitation, 
this study applies a deep learning approach using CNN, which can 
learn hierarchical visual representations directly from image data. A 
custom CNN model was developed and trained on a specific dataset 
of images, which maximizes feature extraction for fine-grained defect 
classification. This study aims to improve pricing transparency for 
consumers and sellers by helping in automating quality assessment 
in the refurbished smartphone market, thereby lowering variations in 
damage evaluation.

2. Literature Review
In recent years, significant progress has been observed in image 

recognition technology, rooted in computer vision and deep learning. 
Businesses are increasingly utilizing photo recognition technology as 
big data and AI continue to advance. Digital images are essential for 
object recognition and information retrieval, known as image retrieval. 
Image recognition aims to search and retrieve similar images based on 
a query and user-specified information. This process relies on pixel 
values, with images composed of pixels arranged in rows and columns. 
Image recognition technology closely resembles the manner the human 
brain processes images. Key steps involve preprocessing, feature 
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extraction, and classification, which aim to improve image processing 
accuracy by improving pertinent information [4].

Li [5] assessed different deep learning methods used in image 
recognition, which were centered on CNNs, recurrent neural networks, 
and generative adversarial networks. The study highlighted the 
widespread use of CNNs in image recognition due to their potential 
to facilitate preprocessing and enhance feature extraction efficiency. 
The study also addressed the development of deep learning methods 
and their impact on prioritizing inputs in image recognition tasks. 
Similarly, Esteva et al. [2] highlighted how CNNs have revolutionized 
medical computer vision by improving the accuracy of diagnosis and 
the interpretation of imaging data. This progress results in better patient 
care outcomes and empowers healthcare professionals to make more 
informed decisions.

Artificial neural networks (ANNs) were used in the study 
reported in [6] to simulate the brain’s structure for computing purposes. 
Despite their remarkable capabilities, they are still constrained 
by modern technology. These networks provide a streamlined 
representation of the brain’s complexity using interconnected layers. 
CNNs adopt a different approach by integrating convolutional layers, 
which helps in hierarchical information processing. These layers 
enable effective data management, which produces more precisely 
targeted results. This study paves the way for understanding and 
creativity by proving the interaction between biology and technology 
in neural networks.

Bhatt et al. [1] emphasized CNN architectural advancement, 
which accelerated the creation of potent variants. The authors discussed 
how CNN design progress resulted in improved efficiency in image 
processing. CNNs have been extensively tested for image recognition 
in several fields.

Image recognition technologies can analyze visual cues to 
support pricing strategies, as shown by a food image identification 
system that uses CNN to estimate prices [7]. Wei et al. [8] addressed 
issues such as appearance variations, lighting, and cluttered 
backgrounds when using deep learning for retail product identification. 
These findings show the significance of image recognition systems for 
data-driven pricing decisions, improved inventory management, and 
heightened competitiveness in ever-changing market conditions. The 
two experiments underscored the capacity of CNN and deep learning 
to precisely evaluate aesthetic features, hence influencing pricing 
strategies across different markets.

2.1. Defect detection
Recent advancements in CNN-based defect identification have 

shown significant promise in several quality control applications, 
particularly in identifying smartphone screen defects. The field has 
benefited from the robustness of CNN architectures, which excel in 
object detection, image segmentation, and classification tasks.

CNNs have been successfully detecting cracks, scratches, and 
damages on phone screens, making it well suited for quality control 
in mobile devices. Chen et al. [9] developed a method that combines 
R-CNN with an efficient channel attention mechanism to detect defects 
in liquid crystal displays. With an accuracy of 91%, the model revealed 
the efficacy of CNN-based methodologies in processing multifaceted 
visual inputs. This is essential to the identification of defects in 
smartphone screens, where high-resolution images must be processed 
swiftly and precisely.

The study conducted by Ma et al. [10] on GoogLeNet-based 
CNN for defect detection on smartphone surfaces reported an accuracy 

of 99.5% in identifying surface defects such as scratches. Yu and 
Yang [11] presented a Faster R-CNN model improved by a multihead 
attention mechanism for detecting defects in cell phone screens, with an 
average accuracy of 95.71%. In addition, the smartphone screen glass 
dataset, which consists of over 2,500 high-quality images classified into 
seven defect categories, was introduced [12].

Dung [13] developed a deep FCN-based technique for identifying 
cracks in concrete buildings, with an average accuracy of almost 90%. 
This FCN-based technique was also effective in identifying various 
types of damage (such as cracks, spalling, efflorescence, and holes) in 
concrete structures. Although ANNs have been used to detect concrete 
cracks [14], their limited processing capacity makes it impossible 
for them to precisely identify local features in images. Conventional 
machine learning methods depend on manual extraction of low-
dimensional features, but because of background noise, this can be 
time-consuming and inefficient.

Current defect detection methods have several limitations 
despite their promising results. Many deep-learning techniques, 
such as Faster R-CNN, ANNs, and Mask R-CNN, are not suitable 
for real-time detection on devices with limited hardware capabilities 
because they need substantial computational resources. This presents 
a challenge for practical deployment in mobile applications, where 
rapid processing and minimal computational requirements are 
essential. Although CNNs elevate the detection rate, they can still 
result in false positives, especially in cluttered or noisy backgrounds. 
In some cases, defects are small or subtle, making them difficult to 
detect accurately without a high-resolution image.

The developments of automated quality control systems in 
sectors such as smartphone manufacturing are pertinent in CNN-based 
defect identification. The efficiency of CNN-based methodologies 
in detecting defects on smartphone screens has been proven by 
recent studies. These models offer promising solutions to issues in 
automated quality control in the smartphone sector using advanced 
techniques such as attention mechanisms and curated datasets. This 
literature review highlights how ongoing advancements in CNN 
architectures continue to drive innovation in the field, making them a 
suitable choice for further investigation in smartphone screen defect 
detection.

This study aimed to develop a lightweight and efficient CNN 
architecture to alleviate the computational load of traditional CNN 
models. Our model has a small size and computational demands 
yet retains a high accuracy by employing techniques such as model 
pruning and quantization. This makes real-time detection possible 
on smartphones and allows deployment on devices with limited 
hardware.

In summary, although existing CNN-based approaches 
have greatly improved defect detection, issues with computational 
cost, accuracy, and scalability remain. Our proposed method 
address these drawbacks by providing a more precise and accurate 
approach that is scalable to smartphone screens. This method offers 
a promising advancement in automated defect detection in various 
materials by integrating advanced techniques such as attention 
mechanisms and optimizing the model for real-time detection on 
mobile devices.

3. Research Methodology
A technical overview of the proposed CNN that detects cracked 

screens in mobile phones is provided. This section outlines the research 
design, along with the CNN model selection, hyperparameters, data 
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augmentation strategies, and dataset biases. The model was trained on 
publicly available phone images, which can correctly identify cracked 
phone screens by analyzing the visual pattern of the input image.

3.1. Research design
The research design proposed the development of a CNN model 

for the identification of cracked and uncracked phone screens. Raw 
image data of Samsung phones were collected and processed to develop 
a deep-learning model for image classification. A CNN model was 
trained and tuned with hyperparameters using evaluation criteria such 
as accuracy, precision, and recall gauge performance.

The dataset was randomly split into training, validation, and 
testing sets to reduce bias and ensure adequate representation of both 
cracked and uncracked phone images. The completed model was 
converted into a mobile-compatible format and integrated into the 
application for prediction.

To uncover patterns and correlations, image data were collected 
and analyzed using quantitative methodology. The CNN model was 
tested using images of both cracked and unblemished Samsung phone 
screens. The overall design structure for real-time prediction on mobile 
applications, from model training to deployment, is shown in Figure 1.

3.2. Data collection
Acquiring labeled data for deep learning was more challenging 

than building and training the machine learning model. The quantity 

and quality of data used to train the model greatly affect its performance. 
Deep learning models depend on large amounts of data to make accurate 
predictions, and poor performance can result from a lack of sufficient 
data. Collecting and processing large datasets can be time-consuming 
and tedious. 

Using a Google Chrome plugin, web scraping was utilized in 
this study to gather 635 publicly accessible images of both cracked and 
uncracked Samsung phones from online sources, of which 322 were 
cracked and 313 were uncracked. This dataset was hosted on Google 
Drive for easy access and processing, and the images were categorized 
and stored in standard file formats.

3.3. CNN architecture
CNNs are feedforward neural networks designed for analyzing 

image data and have been successful in image classification tasks by 
learning and extracting features automatically. Neurons are the basic 
building blocks of CNNs, which consist of multiple layers for analyzing 
different parts of an image. The CNN architecture draws inspiration 
from visual perception. CNNs are widely used in deep learning and 
can uncover complex data structures by consolidating properties from 
previous layers [15, 16].

The flowchart of the CNN model shown in Figure 2 was created 
to classify images of cracked and uncracked phone screens. To extract 
features and make predictions, the architecture consists of convolutional 
layers, max pooling, a flattening layer, and a dense layer.

The first layer, known as the input layer, accepts raw input data 
of an image with dimensions of 150 × 150 × 3, corresponding to the 
image’s height, width, and RGB color channels, respectively. This layer 
offers a structured format for the data, ensuring that it is appropriately 
scaled and normalized, making it easier for subsequent layers to process 
and extract useful features, which helps the CNN learn from the data 
and perform well in classification.

CNN’s fundamental building blocks are convolutional layers, 
also known as Conv2D layers. They use an array of filters to perform 
convolution operations on input images. These layers are responsible 
for identifying features such as edges, textures, and patterns. A 
convolutional layer’s depth is determined by the number of filters that 
it has. Convolution is an iterative method used to discover significant 
patterns that involves sliding a filter across the layer and computing 
the dot product between the filter and the layer values, which develops 
feature maps [17]. These feature maps are the output of the convolutional 
layer, which detects features and provides input for subsequent layers 
in the neural network architecture. These layers can include additional 
convolutional layers or a final layer that makes a prediction based on the 
patterns discovered from the data [18].

This study used 32, 32, and 64 filters for the first, second, and 
third convolutional layers, respectively, using a 3 × 3 kernel size and a 
rectified linear unit (ReLU) activation function. After each convolution 
operation, a ReLU activation function was applied to introduce a 
nonlinear behavior into the model, which converted all negative 
values in the feature map to zero, allowing the network to identify 
and understand complex patterns in the data. The activation function 
decides if a neuron is activated by computing the weighted sum and 
then adding bias to introduce nonlinearity to the output. These functions 
enhance the network’s capacity to understand and represent complex 
relationships between the input and output.

The MaxPooling2D layer, also known as downsampling, is an 
intermediary layer in many neural networks that connects the fully 
connected (FC) layer and the convolutional layer. It was used to 
minimize the spatial dimensions of the feature map while keeping the 
most essential characteristics. The technique reduces computational 
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complexity and helps in generalizing the model by providing 
translation invariance. In accordance with the study reported in [18], 
max pooling is the most common type of pooling strategy used in 
neural networks, with strong characteristics such as edges or lines 
being well preserved by max pooling, in contrast to average pooling, 
which tends to blend activations.

The flattening layer converts the feature maps, which are a 
multidimensional array (3D) from the Conv2D and MaxPooling2D 
layers into a one-dimensional (1D) array, making it suitable for the dense 
layer to understand. The FC (dense) layers can identify global patterns 
in the data, given that every neuron in one layer is linked to all neurons 
in the next layer. The first dense layer in our model consists of 256 
units with ReLU activation, which helps in incorporating nonlinearity 
into the model and allows the model to learn complex patterns. Dense 
layers gather data from all regions of the image to determine the class 
by linking all neurons in the image. The second dense layer serves as 
the output layer, containing a single unit and using a sigmoid activation 
function. This setup is utilized for the binary classification of phone 
images. The sigmoid function returns a probability ranging from 0 to 1. 
The probable outcome suggests that the input image matches a specific 
class. For an output closer to 1, the model predicts an intact image, 
and when the output is closer to 0, the model predicts a cracked image. 
Table 1 presents the parameters of the CNN used to optimize the model 
for improved performance and detection.

3.4. Data augmentation
To improve model generalization and reduce overfitting, data 

augmentation methods were adopted. Classification accuracy can be 
improved by 5% using data augmentation [19]. Table 2 shows the 
parameters used for augmenting the input image

ImageDataGenerator was used to rescale the pixel values to the 
[0,1] range. The efficient operation of any deep learning algorithm is 
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Figure 2
Flowchart of the CNN pipeline for cracked/uncracked classification

Hyperparameter Value
Learning rate 0.001
Optimizer Adam
Batch size 32
Epochs 20
Activation function ReLU (hidden layers),  

sigmoid (output layer)
Kernel size 3 × 3
Pooling MaxPooling2D (2 × 2)

Table 1
CNN hyperparameters
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greatly affected by the normalization strategy. Normalization aims to 
generate high-quality data that can be fed into the deep learning model, 
which involves converting the input into a standardized scale. The 
normalized data helps in retaining a more consistent gradient throughout 
the CNN layers, preventing them from increasing or shrinking. In 
addition, this speeds up model training and reduces the probability 
of poor convergence with the optimizer conducting enhanced weight 
updates.

A total of 635 images were gathered for this study. Out of 
these 635 images, 80.48% (511 images) were labeled for training; 
15.71% (100 images), for validation; and the remaining 3.81%, for 
testing. This sectioning allows for thorough model training, tuning, 
and evaluation, ensuring a robust process with sufficient data for 
validation and testing. 

3.5. Dataset bias and handling 
Potential biases in the dataset were considered and mitigated as 

follows:

1)  Imbalanced representation of cracked versus uncracked screens: The 
dataset was roughly split (322 cracked and 313 uncracked images) 
to provide balanced training data. Augmentation was also added to 
expand the training dataset. 

2)  Lighting conditions: Images from various lighting environments 
were included to improve robustness. 

3)  Device variations: Although only Samsung phone screens were 
used, future work aims to include other brands of phone screens to 
improve generalization. 

3.6. Evaluation metrics
Numerous performance indicators were used to assess the 

effectiveness of the trained CNN model, with accuracy being the key 
measure. The reliability of the model is demonstrated by high accuracy 
on new data. Poor accuracy indicates that improvement through training 
or tuning is required.

where “TP” denotes true positives; “TN,” true negatives; “FP,” 
false positives; and “FN,” false negatives in this context.

 The confusion matrix, F1-score, precision, and recall are 
additional crucial measures used in this study. The key to precision 
is how well a model distinguishes between real positives and false 
positives among all occurrences that it flags as positive. It is computed 
as the ratio of true positives to the sum of true positives and false 
positives. A precision score that is close to 1 indicates that the model 
performs well in recognizing real positives, whereas a score that is 
lower than 0.5 indicates a high number of false positives, which may be 
the result of class imbalances or incorrect parameter tuning.

Recall assesses the model’s accuracy in identifying the true 
positive cases in the data. It is often referred to as sensitivity or positive 
rate. A high recall rate means that the model reduces false negatives and 
captures most positive cases.

The F1-score is a balanced measure of a model’s accuracy, 
considering both precision and recall by taking their harmonic mean. 
A high F1-score indicates balanced performance with high precision 
and recall, suitable for imbalanced classification problems. Conversely, 
a low F1-score indicates limited insight, with low recall indicating 
inaccurate positive case identification and low precision implying many 
incorrect positive predictions.

As illustrated in Figure 3, the confusion matrix provides a 
comprehensive visual overview of classification performance in a 
tabular style by comparing expected and actual outcomes to assess the 
accuracy of a classification model.

3.7. Flutter application
This study introduced a mobile application that was developed 

using Flutter, an open-source UI framework for cross-platform 
application development, to assess the image recognition capabilities 
of the model. The application functions as an easy-to-use interface 
for image classification and real-time model performance tracking. 
Flutter offers a vast array of user interface (UI) components for 
creating engaging UIs, with a focus on real-time image recognition. 
Its integration of deep learning model plugins, multiplatform 
compatibility, and a rapid development process led to its selection. 
The trained model was converted into TensorFlow Lite format, 
which enabled efficient mobile device deployment. Post-training 
quantization techniques were implemented to adjust model size and 
accuracy. The TensorFlow Lite Flutter plugin ensures compatibility 
with both iOS and Android. The model was loaded dynamically 
during runtime to perform optimal mobile performance.

This study establishes an extensive framework for integrating 
deep learning in the assessment of mobile device damage and 
the potential for notable advancement in automated image classification.

4. Results
In this section, the outcome of the trained CNN model shows how 

well it performed in categorizing images of cracked phone screens and 
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Rotation To replicate different views, images were 
arbitrarily rotated by up to 15°.

Flipping To increase the diversity of the input image.
Noise addition To simulate real-world faults.
Scaling Images were randomly zoomed by up to 10%. 

Table 2
Data augmentation parameters

 Figure 3
Confusion matrix representation
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those that are intact. In addition, its performance is compared with that 
of other deep learning architectures. This analysis examines the trade-
offs between precision, computational efficiency, and the practicality of 
real-time implementation .

4.1. Comparative analysis
The performances of various deep learning models are 

summarized in Table 3.
With the addition of extensive preprocessing and an optimization 

strategy, the model could identify cracked and uncracked phone 
screens, achieving 92.0% accuracy. The performance metrics shown in 
Table 4 indicates model precision of 1.00 for cracked screens and 0.86 
for uncracked screens, confirming reliable cracked screen detection. 
Recall is 0.83 for cracked screens and 1.00 for uncracked screens, with 
high F1-scores of 0.91 and 0.92, implying a balanced performance.

Figure 4 shows the training and validation performances of the 
CNN model over 20 epochs. The left graph demonstrates accuracy, where 
both the training and validation accuracy values steadily improve, with 
a small fluctuation in the validation accuracy due to dataset variability. 
The right graph presents the loss curves, which demonstrate a steady 
decrease over epochs in both training and validation losses, indicating 
effective learning and reduced errors over time. This suggests that 
the model is learning effectively and improving prediction precision. 
Fluctuations in validation loss are normal, reflecting dataset variations. 
The overall decline  in loss without a significant gap between losses 
indicates that the model has not overfitted to the training data.

The confusion matrix shown in Figure 5 displays high true 
positives, true negatives, low false positives, and false negatives when 
categorizing smartphone screens as cracked or uncracked. By averaging 
the counts of true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN) predictions, the matrix shows the model’s 
performance.

TP: the number of correctly detected cracked screens.
TN: the number of correctly detected uncracked screens.
FP: the number of screens incorrectly classified as cracked when 

they are not.
FN: the number of cracked screens misclassified as being in good 

condition.

The high values for TP and TN suggest that the model effectively 
detects screen conditions, whereas the low values for FP and FN reflect 
minimal misclassification. This matrix is an integral tool for evaluating 
the accuracy and validity of the model in practical applications.

4.2. Real-world application
Figure 6 [23] displays how the trained CNN model was 

successfully incorporated into a mobile application, which enables real-
time screen damage predictions. Using this software, users can pick 
images of smartphone screens and determine swiftly if the screen is 
intact or damaged.

The CNN model’s ability to learn and generalize was improved 
by effective data preprocessing involving feature scaling, data 
augmentation, and normalization. These steps lowered the risk of 
overfitting. Efficient training with a well-constructed CNN architecture 
and the Adam optimizer notably improved the convergence and learning 
process. The capacity of the model to generalize new data was ensured 
using a balanced dataset that included separate training, validation, 
and test datasets. The model’s integration into a mobile application 
and its performance in real-world tests show its practical usability and 
the quality of the training process. It is easy to upload images, and the 
model assesses the visual input in a timely manner to obtain precise 
results. This helps consumers make better-informed decisions regarding 
their product and improves user experience.

4.3. Potential impact 
Automated detection of cracked phone screens offers substantial 

benefits, which can be used across numerous industries, such as phone 
repair services, refurbished smartphone markets, and manufacturing 
quality control. Businesses can greatly benefit by improving operational 
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Precision Recall F1-score
Cracked = Class 0 1.00 0.83 0.91
Uncracked = Class 1 0.86 1.00 0.92

Table 4
Precision, recall, and F1-score of the implemented model

Table 3
Comparison of deep learning models for smartphone screen damage detection

Model Strength Limitation Accuracy
Proposed CNN model It is lightweight, performs well in generalizing 

new data, and is more optimized for real-time 
mobile deployment. Special hyperparameters 

such as ReLU activation are used during 
training. It offers a greater capability for feature 

extraction and removes the need for manual 
engineering.

The proposed model can be improved when 
exposed to larger datasets or several images. 
In addition, transfer learning integration can 

enhance performance.

92.0%

ResNet-50 This architecture optimizes feature extraction 
using residual blocks while achieving 

remarkable accuracy.

ResNet requires greater processing power and 
a larger number of parameters. It may not be 

ideal for real-time deployment.

97.5% [20]

VGG-19 This model is more efficient in transfer learning 
and has a strong feature extraction ability.

Because of its heavy architecture and 
computational cost, it poses a challenge 
for deployment in resource-constrained 

environments (e.g., mobile apps) due to its 
lengthy training time.

90%
[21]

EfficientNetV2 This model delivers an optimal ratio between 
accuracy and computational speed.

An enormous amount of computing resources 
is needed during the first phase of training.

93.2%
[22]



Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

efficiency, reducing human error, and improving customer trust. 
By streamlining diagnostic procedures, automated crack detection 
enables technicians to assess damage quickly and accurately. Standard 
assessments ensure that customers receive fair and consistent repair 
suggestions, reducing disputes over unnecessary repairs.

In the refurbished smartphone market, sellers can use automated 
defect detection tools to verify and certify the condition of used phones, 
reducing human bias in cases where damaged devices are marketed 
as intact. Buyers benefit from increased openness, allowing them to 
make more informed purchasing decisions based on confirmed screen 
conditions. Using this technology, marketplaces and resale platforms 
can offer automated condition reports, decreasing the need for arbitrary 
assessments.

In manufacturing and quality control, automated defect detection 
can be integrated into production lines to identify screen defects early, 
lowering manufacturing flaws and preventing faulty products from 
reaching consumers. This procedure lowers returns and warranty 
claims, saving costs for manufacturers and improving brand reputation.

4.4. Limitations and ethical considerations
This study developed a CNN deep learning model that classifies 

cracked and uncracked phone screens, with an accuracy rate of 92%. 
The model still faces drawbacks arising from the diverse shapes, sizes, 
and patterns of cracks, making it difficult for the model to accurately 
detect unusual or less common cracks that are not present in the training 
data. The model may also struggle to adjust to various phone models 
with differing screen materials or designs. Another issue is detecting 
minute or subtle cracks that blend into the phone’s surface, which 
can hamper the model’s ability to identify all damaged screens. The 
model’s accuracy is also affected by factors such as poor lighting 
or distracting backgrounds in the input images. Addressing these 
challenges will require training the model on a more diverse dataset, 
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 Figure 4
Performance accuracy and loss over 20 epochs

 Figure 5
Model performance based on the confusion matrix

 Figure 6
Application prediction of a cracked and intact phone screen
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employing additional model techniques, and making sure that images 
are captured under standardized conditions. Although the model is 
lightweight, deploying it for real-time use on mobile applications still 
requires optimization to balance speed and accuracy without excessive 
computational load.

Ethical considerations include the potential risk of 
misclassification, which occurs when an intact screen is incorrectly 
classified as cracked while failing to detect genuine cracks. This may 
pose a risk of unnecessary repairs and customer dissatisfaction. Dataset 
bias can lead to unfair outcomes, particularly affecting users of lesser-
known phone models. Enhancing the dataset can help in mitigating this 
risk. A hybrid strategy that combines AI with human verification can 
be employed in automated decision-making and can improve reliability 
and accountability while ensuring fairness in outcomes.

 5. Conclusion
This study shows the effectiveness of the CNN model in 

classifying cracked and uncracked phone screens with an accuracy of 
92%. The findings suggest that the CNN-based model is competitive 
with other deep learning models in detecting smartphone defects 
because of its lightweight nature and seamless integration with a mobile 
application. This discovery has practical applications for phone repair 
shops and refurbished smartphone market, offering a swift, dependable, 
and automated method for identifying screen damage. The findings 
could reduce the deceptive resale of damaged devices, which can 
improve quality control in production and optimize repair procedures 
while ensuring transparency.

Regardless of the promising result, several constraints remain: 
the model had difficulty in evaluating rare or subtle crack patterns that 
are present in the input image, potential biases in predictions due to 
lack of diversity in training data, and computational constraints for 
real-time mobile implementation. This study establishes a foundation 
for AI-driven quality evaluation in the smartphone industry and 
beyond by addressing these problems and enhancing automated defect 
detection.

Future work seeks to focus on expanding the dataset to include 
several screen conditions, diverse phones, and better lighting conditions. 
In addition, incorporating transfer learning from a domain-specific 
dataset may improve accuracy. A significant improvement would 
be developing a severity classification system to categorize cracks 
based on the level of crack damage, along with a pricing algorithm to 
evaluate the market value of damaged smartphones. This aims to offer a 
transparent and unbiased valuation tool for consumers, enterprises, and 
stakeholders in the refurbished market.

Recommendations
The performance of the CNN model in detecting phone screen 

damage can be significantly improved using several strategies. En-
hancing the training dataset by including several phone models, screen 
types, and damage patterns will enable the model to generalize more ef-
fectively. High-quality images are needed to obtain more precise model 
predictions. Images with standard conditions must be considered. Con-
sistent lighting, minimal reflections, and high resolution can reduce the 
outcome of misclassification and minimize noise. In addition, exploring 
advanced deep learning can improve the efficiency of the model. 

Finally, real-world testing and user feedback can also help in 
confirming the model’s reliability and performance. This feedback 
results in iterative refinement of the model, which improves the 
experience for both buyers and sellers in the refurbished smartphone 
market.
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