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Abstract: This study addresses the increasing global need for upper limb prostheses (ULPs), particularly those controlled by
electroencephalogram (EEG) signals, due to the rising number of amputations. Focusing on an EEG signal acquisition system integrated
with a machine learning (ML)-driven pattern recognition framework, the research investigates the control of a robotic ULP. The study is
divided into two phases: EEG data acquisition and pattern recognition using an ensemble of K-nearest neighbors (KNN), support vector
machines (SVM), and artificial neural networks (ANN) models within a brain-machine interface. Each ML model demonstrated distinct
strengths—KNN in rapid pattern recognition, SVM in reliable state differentiation, and ANN in handling complex, non-linear data
relationships. The ensemble ML (eML) leveraged these strengths, achieving approximately 90% accuracy in final training rounds and
showing superior performance compared to individual models. The eML was successfully integrated into the robotic ULP control
system, demonstrating high potential for real-world applications by efficiently processing brain activity signals and making precise
control decisions.
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1. Introduction

Approximately 16% of the global population has a significant
disability [1]. Malformations and amputations of upper limbs have a
profound impact on the quality of life of affected individuals, posing
challenges in performing daily tasks. The lack of targeted attention to
this population results in neglecting their specific rehabilitation and
assistance needs for societal integration, underscoring the necessity
of addressing this gap in the literature and research.

In this context, upper limb prostheses (ULPs) emerge as devices
designed to compensate for the partial or total absenceof a limb, aiming
to restore both the esthetic and functional abilities of individuals in
performing daily activities such as dressing, eating, using equip-
ment, and participating in various activities [2]. ULPs, as assistive
technologies, can be categorized into cosmetic, mechanical, and
myoelectric types. Myoelectric ULPs represent the pinnacle of this
technology, as they utilize biosignals obtained directly from the user
to enable automatic control of the prosthesis [3]. An electrical
biosignal generated by brain activity can be detected using electro-
encephalogram (EEG) techniques and subsequently processed through
an interface to control the device’s functioning [4].

Although non-invasive EEG-controlled ULPs hold promise for
improving the quality of life for individuals with physical
disabilities, the scientific literature lacks sufficient exploration of
their practical application and benefits [5, 6]. Research in this
domain remains nascent, leaving critical gaps in knowledge
regarding the design, efficacy, and accessibility of EEG-controlled
prostheses for this population.

This study aims to address this gap by developing a (machine
learning) ML-based system for acquiring, processing, and utilizing
EEG signals to control a robotic ULP. It employs a structured,
well-referenced methodology leveraging publicly available tools
to facilitate advancements in bioengineering and assistive
technologies, thereby improving accessibility for diverse users.

The exposition is organized as follows: Section 1 provides
an introduction, setting the stage for the study. Section 2
comprehensively reviews related works, focusing on Robotic ULP
and EEG signal acquisition systems. Section 3 details the
materials and methods used in the research. The findings are
outlined in Section 4, with an in-depth discussion in Section 5.
Finally, Section 6 concludes the exposition with a summary of
key insights.
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2. Related Work

This section presents a study on the evolution of ULP to define
the equipment for control implementation. After introducing the
selected device, the focus shifts to a detailed exploration of the
EEG data acquisition system, highlighting its key features. This
system plays a central role in acquiring the EEG signals required
for pattern recognition, which will be the foundation for
controlling the ULP.

2.1. Robotic ULP

The evolution of ULP demonstrates humanity’s pursuit to
restore functionality through advancements in science, technology,
and medicine. This review outlines ULP’s historical progression
from ancient artifacts to modern innovations, highlighting the
synergy between material development, medical knowledge, and
engineering. The shift from basic prostheses to advanced
myoelectric systems reflects enhanced functionality and deeper
insights into anatomy, biomechanics, and neurophysiology.

The history of ULP has deep roots in human civilization. A
prosthesis was discovered on the forearm of an Egyptian mummy
dating back over 2000 BCE. Around 400 BCE, the hand hook
was introduced as a prosthetic device to replace missing limbs.
Advances in ironworking made prosthetics more durable and
capable of handling heavier objects, as evidenced by a Roman
general’s use of an iron prosthesis in the first century CE. By
1500 CE, a craftsman developed a steel arm for German knights,
enabling independent movement of each finger phalange. A
skeleton dated between 1450 and 1620, found in southern
Freising, Germany, featured a metal prosthetic hand covered with
leather and attached to the arm with bandages. This metal
prosthesis is one of approximately 50 found in Central Europe,
dating from the late Middle Ages to the early Modern era, some
of which were notable for their movable and sophisticated
components [7–9].

The role of prosthetic devices in non-military settings became
more prominent over time, indicating an expansion in societal
applications and a shift in priorities toward improving patient care
and daily functionality. In the 17th century, non-military
prosthetics emerged, such as “Le Petit Loraine”, developed by
military physician Ambroise Paré, featuring movable fingers and
flexion-extension movement at the elbow. In 1818, German
dentist Peter Baliff created a self-propelled prosthesis operated by
leather straps connected to muscles. In the 1860s, Count Beaufort
utilized levers and contralateral shoulder power to operate
prosthetics. By 1916, German surgeon Sauberbruch described a
limb design controlled by muscle movements. The first clinically
accepted myoelectric ULP appeared in 1960, though it faced
challenges like excessive weight and low electrical reliability
[7–9]. Since then, myoelectric ULP has undergone continuous
improvements in functionality, materials, design, and
ergonomics [2].

Myoelectric ULP are characterized by their ability to replicate
natural body movements. Achieving this level of functionality
requires an external power source, such as batteries, and various
signal input methods, including electromyography (EMG),
electrocorticography (ECoG), and EEG. These input systems
enable myoelectric ULP to interpret user commands and translate
them into automatic movements, emulating the function of the
amputated limb [10].

EMG measures the electrical activity of skeletal muscles and is
often used to diagnose neuromuscular disorders, monitor post-injury

recovery, and study biomechanics. EMG electrodes, placed on the
skin or inserted into muscles, capture muscle action potentials and
are amplified and recorded to analyze muscle activity and provide
insights into neuromuscular function [11]. ECoG, which involves
recording electrical activity directly from the cortical surface,
requires the implantation of electrodes on the brain’s surface and
is commonly used during brain surgeries for real-time monitoring
of critical areas [12]. EEG, a non-invasive technique, records
brain activity through scalp electrodes and is widely used in
clinical and research settings to study brain activity in various
conditions. Although ECoG offers more precise spatial and
temporal resolution than EEG, EEG remains a valuable tool for
analyzing brain wave patterns and detecting abnormal electrical
events [13].

Technological advancements, particularly in signal processing,
have paved the way for the development of more sophisticated
control systems for prosthetics, enhancing user experience and
autonomy. The article by Masson et al. [14] introduces a
simplified interface for processing and analyzing myoelectric
signals from the MYO armband (Thalmic Labs, Kitchener,
Canada) for gesture control to control upper limb prosthetics.
The MYO wearable device features eight EMG electrodes and a
nine-axis inertial measurement unit. It includes open-source
software (https://github.com/thalmiclabs) with pattern recognition
capabilities such as raw signal display, feature extraction, and
K-Nearest Neighbors classification for mapping arbitrary hand
movements to prosthetics.

Gaetani et al. [15] describe the design of the electronic module
for the “Adam’s Hand” (BionIT Labs, Soleto, Italy), a myoelectric
transradial ULP that innovatively controls five three-phalange
fingers (15 degrees of freedom) using a single motor, an
improvement over the conventional five/six motor approach. The
prosthesis incorporates temperature and pressure sensors at the
fingertips and wirelessly acquires myoelectric signals from the
MYO armband. Data are transmitted via an HM-11 BLE module
to Adam’s Hand’s custom-printed circuit board, powered by an
Arduino Micro board (Arduino, Ivrea, Italy) for data processing
and actuator control. A Raspberry Pi 3 (Raspberry Pi Foundation,
Cambridge, UK) manages a touchscreen display for data
visualization and sends data to a dedicated cloud platform,
facilitating real-time monitoring by orthopedic technicians and
enhancing user rehabilitation.

The “SSSA-MyHand” ULP was developed to enable
movements analogous to a biological limb and offers a sensory
system intended for automatic grip control, providing the user
with valuable sensory feedback. Milea et al. [16] propose an
innovative approach by incorporating a matrix of sensors and
actuators into the myoelectric prosthesis, providing tactile
feedback to the user during object manipulation. This tactile
feedback is particularly beneficial for individuals with forearm
amputations, allowing complex movements and promoting the
development of automatic responses to everyday actions and
external stimuli.

Additive manufacturing enhances prosthesis production by
enabling customization, precision, and accessibility [17]. Through
3D printing, it allows tailored prosthetics to meet individual
anatomical and functional needs, improving comfort and
functionality [18]. Economically, it reduces material waste and
lead times, particularly for customized or small-scale production.
The use of clinically approved materials ensures adaptability to
specific patient requirements [19].

Beyrouthy et al. [13] present a 3D-printed ULP controlled by
brain commands from a portable EEG system. This arm
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incorporates a network of intelligent sensors and actuators, providing
thoughtful feedback on the environment and object interactions.
These sensors include temperature, pressure, ultrasonic proximity,
accelerometers, potentiometers, strain gauges, and gyroscopes.
Fuentes-Gonzalez et al. [20] reported a case where a patient
successfully controlled the opening and closing movements of a
3D-printed prosthetic arm with nominal strength via EEG signals,
enabling the patient to perform grasping actions on everyday
objects. De Araújo et al. [21] focused on developing an
anthropomorphic ULP designed to meet the needs of transradial
amputees. This development relies on additive manufacturing and
open-source technology to provide a cost-effective solution for
addressing a regional issue.

The Youbionic project combines 3D printing and robotics to
create customizable, gesture-controlled prosthetics for individuals
with disabilities, supported by resources for user adaptation. The
InMoov project advances humanoid robotics and additive
manufacturing, offering open-source 3D models for constructing
customizable robots with diverse control interfaces and integration
with computer vision and ML systems. Community collaboration
has established InMoov as a research platform for robotic
prosthetics [22, 23].

Sidher and Shen [24] present a modified 3D-printed artificial
hand and control technique to enhance trajectory smoothing. In
this context, the InMoov hand was improved by adding medial
rotation to the thumb, enabling its opposition. An open-loop
control system was implemented in the hand, allowing quick and
continuous trajectory adjustments. Additionally, cameras and
proximity sensors were incorporated into the InMoov model,
improving its ability to identify objects of interest for future
research. The effectiveness of open-loop control was evaluated,
confirming trajectory smoothing and overshoot reduction.
Cherichel and De Curtis [25] introduced EMG control for the
3D-printed InMoov hand prosthesis, enabling individual finger
control through EMG sensors placed on the user’s forearm. Test
results demonstrated the effectiveness of this approach,
contributing to making prosthetics more accessible and functional,
thereby increasing the autonomy of amputees.

ULP evolution reflects advances in history, technology, and
medicine. Next, EEG systems for ULP integration are examined
to improve command precision and amputee quality of life.

2.2. EEG signal acquisition systems

This section will explore the study and application of methods
for capturing, interpreting, and utilizing brain biosignals that have
driven significant advances in understanding cognitive processes
and the development of robotic ULPs described in the previous topic.

The electrical biosignal generated by brain activity can be
captured using EEG. EEG is a widely employed non-invasive
technique for recording brain electrical activity. The EEG signal
originates from neurons in the cerebral cortex, which produce
electrical oscillations that can be measured by electrodes placed
on the patient’s scalp, thereby enabling the monitoring and
analysis of brain function. The pattern of EEG signal oscillations
varies depending on the state of wakefulness or sleep, brain
activity, and other conditions. This technique has diverse
applications in clinical practice and scientific research [26].

The electrical signals captured by EEG electrodes are initially
considered raw data, existing in the time domain and reflecting
amplitude variations in electrical voltage. However, these raw
signals require processing—such as filtering and amplification—to
extract meaningful information, generating standardized rhythmic

oscillations called brain waves [27]. Transforming raw data into
brain wave patterns is essential for understanding brain activity
and its correlation with an individual’s mental state. The
frequency bands of brain waves are categorized as Delta (δ),
Theta (θ), Alpha (α), Beta (β), and Gamma (γ), each associated
with distinct mental processes [26].

Brain wave activity spans five frequency bands, each with
distinct functions and regional detection patterns: Delta waves
(0.5–4 Hz) support deep sleep and tissue repair across various
brain regions. Theta waves (4–8 Hz), linked to light sleep,
relaxation, and creativity, are primarily detected in parietal and
temporal areas. Alpha waves (8–13 Hz), associated with
relaxation and sensory processing, are dominant in occipital and
posterior lobes. Beta waves (13–32 Hz), tied to alertness and
concentration, are prominent in frontal and central regions.
Gamma waves (≥32 Hz), crucial for cognitive integration and
consciousness, are concentrated in front-central areas.

The acquisition of brain biosignals can be achieved through two
primary approaches [6]: EEG, a non-invasive method involving the
placement of electrodes on the scalp, or ECoG, an invasive technique
with electrodes positioned subcortically. In the 1950s, John C. Lily
recorded monkey brain signals through implanted electrodes. Later
developments by David Nowlis and Joe Kamiya explored
biofeedback techniques, enabling patients to control brain signals
through auditory feedback. The 1960s marked significant
advancements, particularly in the Neural Control Laboratory’s
work on artificial actuators for individuals with disabilities. A
landmark study involved Brindley and Graggs, who recorded
motor cortical fields from baboons to develop neuroprosthetic
systems. However, progress in this field slowed until the mid-
1990s, when introducing flexible multi-electrode arrays reignited
research efforts [28].

EEG signals are integral to device control technologies,
including advanced robotics and prosthetics via brain-machine
interfaces (BMIs). The Fourier transform facilitates the conversion
of EEG signals from the time to the frequency domain, enabling
spectral analysis [29]. Its efficient variant, the fast Fourier
transform (FFT), decomposes EEG signals into frequency
components, supporting precise analysis and real-time applications
[30]. BMIs function through four stages: (1) signal acquisition—
amplification and analog-to-digital conversion; (2) data extraction
—noise and artifact removal via filtering; (3) interpretation—
pattern identification using ML algorithms; and (4) command
execution—translating signals into control commands for devices
[31–33].

The BMI technologies continue to evolve; modern prosthetic
systems increasingly demand higher computational power, multi-
degree-of-freedom control, and integrated feedback mechanisms.
However, balancing these capabilities while maintaining energy
efficiency and real-time performance remains a significant
challenge. In response, developers are investigating hybrid models
combining classification and regression techniques to enhance
control precision and system functionality [34]. One illustrative
example is the embedded BMI system developed by Bueno, Pons,
and Bastos Filho [35], which integrates a microcontroller and a
digital signal processor to handle data processing, storage, and
communication. Their work aligns with the goals of the OpenBCI
initiative (https://openbci.com/), which promotes open-source
neurotechnologies to democratize access to BMI tools and foster
collaborative research efforts within the field.

In parallel, developing portable EEG devices has enabled the
non-invasive monitoring of brain activity in real time, supporting
research in naturalistic settings. These devices offer promising
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opportunities for practical applications, such as controlling external
equipment, while expanding the range of real-world use cases for
BMI technologies [36].

The Neuroheadset Emotiv Insight (Emotiv, San Francisco,
USA) captures brain electrical signals and converts them into
information regarding emotions, attention levels, and other
physiological conditions. The device features an advanced and
optimized electronic system that produces clean and robust signals
from seven semi-dry, hydrophilic polymer sensors, two of which
are used for reference (CMS/DRL). In contrast, the remaining
sensors acquire EEG signals operating in the frequency range of
0.16 Hz to 43 Hz, generating 128 samples per second. The
electrodes are positioned on the scalp based on the international
10–20 system [37], covering the frontal, prefrontal, temporal,
parietal, and occipital lobes. The device establishes a wireless
connection with a computer via a USB receiver, commonly
known as a USB dongle, utilizing the Bluetooth Low Energy
(BLE) standard. Additionally, the company provides the
EmotivPRO software to users with at least a basic license,
granting access to various EEG-related tools and resources,
including mental commands, raw and processed EEG graphs,
facial expressions, and movements.

However, the full potential of such systems depends on access
to brain data for further research and development. The Emotiv
Software Development Kit allows access to brain data collected
by Emotiv devices, yet some advanced functions require a paid
license, which imposes limitations. Addressing this challenge, the
CyKIT project (https://github.com/CymatiCorp/CyKit) was
developed in Python, enabling the acquisition and storage of raw
EEG data from Emotiv Insight. This open-source initiative
empowers developers to tailor brain data to their research needs
by modifying the source code and enhancing customization and
accessibility.

This overview addresses EEG signal acquisition advancements
and their applications in robotic ULP, followed by a design
methodology based on reviewed literature.

3. Proposed Methodology

Figure 1 illustrates a flowchart detailing the process for
developing and validating control mechanisms of a robotic ULP
using ML techniques to acquire EEG signals. Designed to clarify
the methods employed in this proposal, the flowchart uses distinct
symbols and colors for each stage: purple indicates data input,
blue represents processing, yellow denotes decision conditions,
and red signifies data storage. Arrows depict the progression
between steps. The following sections will examine each
component of the flowchart in detail.

The data used to formulate and validate the proposed command
classification for controlling a robotic ULP based on EEG signals
were obtained from an EEG data acquisition system developed in
this study called EmotIF. The processes involved will be detailed
in the subsequent section.

After the acquisition process is completed, the generated dataset
is used in a training process for EEG pattern recognition using ML
techniques termed PaRecoML, which will be described in detail in
the respective section.

3.1. EmotIF: EEG data acquisition system

This section describes the EEG device employed, focusing on
the procedure for collecting EEG data and the software required for
its operation.

For this experiment, the Emotiv Insight Neuroheadset was
carefully assembled regarding electrode positions and moistened
with glycerin saline solution to obtain high-accuracy EEG data, as
detailed in steps A, B, and C in Figure 2.

The EEG device was securely attached to the participant’s head,
and electrodes were placed on the scalp according to the
manufacturer’s instructions to ensure optimal electrical contact
(Figure 2C). The USB dongle was then connected to the
computer, and the EmotivPRO interface was initialized. The free
license of EmotivPRO provides minimal access to basic

Figure 1
Flowchart of EEG signal acquisition and ML-controlled robotic ULP
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functionalities such as viewing raw EEG data, frequency band
analysis, facial expression detection, mental command
recognition, and signal saving (a maximum of five records at a time).

The CyKIT library was employed to circumvent these
limitations. This open-source tool enables the acquisition and
transmission of EEG data from headsets, primarily using the
accompanying USB dongle. The platform operates within a
Python environment, requiring the installation of a version earlier
than 3.9 and utilizing the PyCharm development environment.

CyKIT begins by importing essential libraries and modules
—“queue”, “signal”, “time”, and “logging”—which are crucial for
data manipulation and interaction with the operating system.
These modules facilitate the creation of temporary storage
structures, control of program execution flow, event logging, and
signal processing, ensuring efficient system interactions.

Two additional modules, “cyPyWinUSB” and “cyCrypto”,
play a fundamental role in CyKIT’s functionality. The
“cyPyWinUSB” module enables detection and interaction with
connected human interface devices, such as the EPOC+ USB
dongle, while “cyCrypto” is responsible for managing encryption
operations. Specifically, “cyCrypto” implements the Advanced
Encryption Standard (AES) algorithm to secure data transmission
by encoding 128-bit messages, ensuring data integrity during
transmission and facilitating secure decryption upon acquisition.

A core component of the CyKIT architecture is the
‘signal_handler’ function, which ensures controlled termination of
the data acquisition process. It also defines several global
variables, ensuring consistency throughout the codebase. A
dedicated class has also been developed to structure methods
related to device identification, encryption management,
decryption of acquired data, and conversion of data into
microvolts (μV). The class constructor, defined in the ‘__init__’
method, is responsible for locating the EPOC+ device and
encrypting its serial number to establish a Bluetooth connection
via the USB dongle.

The data acquisition process starts by receiving encrypted
Bluetooth packets containing a header with a counter field that
indicates the order of data segments. During processing, irrelevant
bytes from the packet header and footer are discarded, leaving
only the relevant EEG data for decryption. The ‘get_data’ method
is critical to decrypting the data using AES encryption and
converting the results into μV via the ‘convertEPOC_PLUS’
method. To maintain data integrity and enable future analysis, the
program generates a log file (.log) in real time using the “logging”
module, storing all acquired data.

A module was also developed to simulate microvolt-level data
and perform FFT operations as part of the project. This simulation
utilizes the minimum and maximum μV intensity values provided
by the CyKIT developers. The “numpy” module processes the
simulated data for FFT computations. However, discrepancies
were identified between the simulated data and the expected
output, with the resulting data failing to reflect the anticipated
intensities across three distinct brainwave patterns and the
frequencies not aligning with known neurological rhythms. To
resolve these issues, users are advised to use the latest version of
Python and the appropriate development environment. Further-
more, properly including the “cyCrypto” and “cyPyWinUSB”
modules in the project directory ensures access to the computer’s
USB ports and accurate decryption of the headset’s transmitted data.

The main code is implemented in the ‘cyKIT_INSIGHT.py’
script, which begins by importing the necessary modules. The
“EEG_insight” class encapsulates the methods for coordinating
data acquisition. The class constructor (‘__init__’) initializes
critical variables and identifies the USB dongle connected to the
system. The ‘interface__eeg’ method provides a user-friendly
interface that supports real-time EEG graph visualization and
reading EEG data from .csv files.

The ‘data_handler,’ ‘convert_v2’, and ‘get_data’methods work
in unison to ensure efficient data processing, starting with the initial
handling of encrypted data and culminating in its conversion into
voltage units. The ‘data_list’ method organizes the acquired data
into categorized lists, streamlining subsequent analysis. A headset
object is created to integrate the functionalities of the
“EEG_insight” class. At the same time, the graphical interface is
managed by the ‘ifkit_GRAPH.py’ module, which leverages the
“PyQTGraph” library for real-time data visualization.

Functions within the graphical module, such as ‘graph_timer’
and ‘update_graph,’ ensure continuous updates every five
milliseconds, enabling interactive and dynamic data visualization.
The ‘gen_file()’ and ‘read_file()’ functions manage the storage
and retrieval of data in.csv format, allowing users to store and
analyze the acquired EEG data as needed. The “CyKIT”
framework represents a robust and well-structured system that
seamlessly integrates data acquisition, encryption, visualization,
and storage, significantly contributing to EEG data research and
analysis.

For this project, the CyKIT software was customized and
extended into a new program called “EmotIF” to achieve the
following objectives: (i) real-time acquisition of raw EEG
data; (ii) real-time graph plotting based on data from five sensors;

Figure 2
Preparation of the neuroheadset Emotiv Insight: (a) sensor attachment, (b) moistening with a saline glycerin solution,

and (c) successful connection between the computer and EmotivPRO
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(iii) storage of acquired data in.csv format; (iv) reading of raw
EEG data from.csv files; (v) graph plotting of raw EEG data
extracted from.csv files; (vi) dynamic graph plotting, allowing
users to define the maximum acquisition time; (vii) processing of
EEG data using FFT; and (viii) storage of processed data in.csv
format.

The EmotIF enhances the functionalities of CyKIT, facilitating
more flexible and efficient management of EEG data for real-time
monitoring and subsequent experimentation. Upon completing this
phase, we proceeded to the next stage, during which the operation
of the EEG device in the experiment revealed that eye movements
induced abrupt changes in the behavior of the graph generated by
EmotivPRO, as illustrated in Figure 3.

Consequently, an experiment was conducted to identify the
oscillation peaks in the graph corresponding to each blinking
action. In this investigation, three simultaneous data acquisitions
were performed using EmotivPRO and EmotIF to address this
phenomenon. The first acquisition focused on recording the
oscillations triggered by the left-eye blinks, the second documented
the oscillations caused by right-eye blinks, and the third captured
the effects of simultaneous blinking with both eyes. Each blink
was performed with a one-second interval between successive
actions, and the duration of each data acquisition was set to 15 s.

After this experiment, a deeper understanding was gained
regarding how eye movements influence the graphs generated
during the operation of the EEG device. Additionally, eye-blinking
events were employed as sample markers to synchronize events
across both data acquisition programs. The strategy of utilizing eye
blink events as markers and synchronizers is employed due to the
inadequacy of time-based synchronization. While the EmotIF
approach uses the number of samples on the x-axis, the EmotivPRO
approach relies on time in seconds. Achieving temporal
synchronization between the two on the x-axis is challenging
because the processing time of the Python-based program differs
from that of the proprietary software. This discrepancy, as the
Python program is still undergoing optimization in terms of
operational routines, could lead to interpretative anomalies.

The primary experimental test was conducted to collect EEG
data simultaneously using EmotivPRO (the manufacturer’s

software, Figure 4A) and EmotIF (the developed software,
Figure 4B) to validate the data acquired through the proposed
code. The EEG signals were recorded during the one-minute trial,
with the participant intentionally blinking every five seconds. The
voltage variations, measured in μV, were plotted on the Y-axis of
the resulting graphs. To ensure synchronization, data collection in
both environments was performed in real time. Both software
environments were closed after the acquisition period, and the
collected data were subjected to a validation process that involved
a morphological comparison between the graphs generated by the
EmotIF program for each channel with the respective ones
produced by EmotivPRO, aiming to check the consistent accuracy
of the recorded data.

The EEG data obtained through the methodology described in
this topic will be used to detect EEG patterns via the ML models
described below.

3.2. PaRecoML: EEG pattern recognition via
machine learning

After establishing the EEG data acquisition system captured
through the methodology described above, the next phase focuses
on leveraging this data to implement ML techniques for effective
EEG pattern recognition to control a robotic ULP.

The method for control mechanisms of a robotic ULP utilizing
ML techniques in the acquisition of EEG signals involves
the following five steps: (1) creation of dataset; (2) preprocessing
of the dataset; (3) selection of ML models; (4) training of ML
models; and (5) evaluation of the performance of ML models.

The dataset generation process (Stage 1) was based on
experimental trials designed to build datasets from selected
categories using the EmotIF program (as detailed in the previous
section). A continuous 5-minute session was conducted for each
dataset category to acquire the required data. A detailed
description of each category is provided below:

1) Calibration: This category aims to establish consistent parameters
for color identification, facilitating inference verification and
improving perceptibility. It includes three distinct datasets for

Figure 3
The interface of the proprietary software EmotivPRO highlights (in red) the abrupt change in graph behavior during eye movement
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each color (black and white), consisting of six data sets in total,
using the following approaches:

Visual Stimulus (Round 1): The participant observes the
corresponding color to generate brainwaves in resonance
with the visual perception of that color.

Auditory Stimulus (Round 2): The participant listens to a verbal
cue representing the corresponding color to form brainwaves
aligned with the color’s auditory memory.

Mixed Stimulus (Round 3): A combination of visual and
auditory stimuli to generate brainwaves synchrony with the
visual perception and the aural memory of the color.

These stimulus variations simulate different interaction
scenarios where color recognition must occur through multiple
sensory channels (vision and hearing). The calibration type
focuses on establishing reference parameters to ensure the data
acquisition system continues to function correctly over time.

2) Action: The Action category enables prosthesis control based on
the participant’s intent to open or close their hand. This category
consists of four datasets, divided into two distinct routines:

Pure Thought (Round 4): This approach relies exclusively
on the participant’s mental intention, without external
stimuli or interference. The action is driven solely by the
participant’s will.

Oriented Thought (Round 5): This approach involves using
vocal commands to reinforce the participant’s mental
intention, improving the accuracy of prosthesis control.

The distinction between pure and oriented thought is essential for
exploring the differences between direct mental control and stimulus-
reinforced control. Oriented thought offers an additional layer of
reliability, helping the system correctly interpret the participant’s
intention, especially in cases where direct neural signal
interpretation may be ambiguous. The action type prioritizes the
recognition of the participant’s intention, which is central to the
proposed system, ensuring effective control of the robotic ULP.

3) Feeling: The Feeling category focuses on identifying the
participant’s emotional state during interaction with the

prosthesis, particularly regarding excitement and frustration.
This category consists of four datasets, divided into the
following emotional states:

Excitement (Round 6): Assess the participant’s enthusiasm or
satisfaction when using the prosthesis.

Frustration (Round 7): Identifies potential signs of
disappointment or dissatisfaction, indicating difficulties
using the device.

These emotional subdivisions allow the system to function as an
emotional feedback mechanism, ensuring the correct interpretation
and execution of the participant’s intention. This is particularly
relevant since user frustration may indicate potential performance
issues within the system. The feeling type enables internal
assessment, verifying whether the intended control actions were
effectively executed.

In the preprocessing phase (Stage 2), the fourteen datasets were
reorganized into seven datasets across three specific categories, each
designed to structure distinct aspects of system control and feedback
(Calibration, Action, and Feeling).

The next stage was executed based on this dataset composition.
The ML model selection (Stage 3) was based on representing the
main niches of mathematical model architectures: K-nearest
neighbors (KNN), support vector machines (SVM), and artificial
neural networks (ANN).

The KNN is an instance-based classification algorithm that
leverages the proximity between data points to make predictions.
As a non-parametric method, it does not assume explicit data
distribution, making it a versatile solution applicable to various
scenarios. The core premise of KNN is that “objects located close
to each other in feature space are likely to belong to the same
class.” During the training phase, KNN only stores the dataset
without performing any active learning process. To classify a new
data point, the algorithm computes the distance between this point
and all the points in the training dataset using metrics such as
Euclidean or Manhattan distance. It then selects the KNNs, which
are the closest points to the new input. The most frequent class
among these neighbors is assigned to the latest point. This
simplicity makes KNN intuitive and easy to implement. However,
its performance can degrade with large datasets, as each

Figure 4
Comparison of graph recording interfaces in EEG data acquisition validation. (a) EmotivPRO proprietary software

interface at the start of graph recording. (b) EmotIF developed a code interface at the start of graph recording
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classification requires comparing the new point with all training
points [38, 39].

The SVM is a supervised classification method designed to find
an optimal hyperplane that separates samples from different classes
while maximizing the margin between them. The margin is the
distance between the hyperplane and the nearest data points from
each class, known as support vectors. These vectors are pivotal in
determining the decision boundary and the hyperplane’s position.
Maximizing the margin enhances the robustness of the model by
reducing the likelihood of classification errors. When the data is
linearly separable, SVM identifies a line or hyperplane that
separates the classes. However, many real-world problems, such
as EEG analysis, involve data that cannot be easily separated in a
linear space. To address this, SVM employs kernel functions that
map the data into a higher-dimensional space, where a more
precise separation between classes becomes feasible. Standard
kernels include the linear, RBF (Radial Basis Function), and
polynomial kernels [39–41].

ANNs are inspired by the structure and functionality of the
human brain, consisting of artificial neurons organized into
multiple layers. Each layer comprises a set of interconnected
neurons linked by weighted connections that determine the
influence each neuron exerts on the others. During training, the
network adjusts these weights iteratively to minimize the error
between the predicted output and the expected result. A typical
ANN architecture includes an input layer that receives the
problem variables, hidden layers that process the data through
activation functions such as ReLU (rectified linear unit) or
Sigmoid, and an output layer that generates the final prediction.
The training process relies on the backpropagation algorithm,
which computes the prediction error and propagates it backward
through the network layers, progressively adjusting the weights to
reduce the error [38, 42].

Due to its simplicity and ease of implementation, KNN is
suitable for basic classification tasks but becomes inefficient with
large datasets due to its high computational cost. In contrast, SVM
performs well in high-dimensional problems, as it identifies
hyperplanes that maximize the margin between classes. However,
its effectiveness critically depends on the appropriate choice of
kernel function and parameter tuning. ANNs are the most
powerful and flexible of the three algorithms. Still, they require
intensive training and substantial computational resources, making
them ideal for complex tasks.

These ML models were selected as representatives of ML
techniques with similar characteristics, including methods such as
SVM and linear regression. To implement these algorithms, we
employed the widely recognized scikit-learn library (https://scikit-
learn.org/stable/), which is well-regarded within the ML and deep
learning communities. Python was chosen as the development
language to streamline the entire acquisition and inference
process, ensuring seamless integration and simplifying data
analysis and compilation in embedded systems.

Grid Search was utilized to identify optimal hyperparameters
for the ML models by systematically evaluating all possible
combinations within a predefined search space. Hyperparameters,
which control algorithm behavior without being directly learned
from data, are crucial for model performance. To prevent
overfitting and improve generalization, cross-validation was
employed within Grid Search.

Cross-validation ensures a model’s ability to generalize to
unseen data. The dataset was divided into folds, with the model
trained and tested iteratively across partitions. In k-fold cross-
validation, data is split into k equal parts, each serving as a test

set once while the rest form the training set. Performance metrics
are averaged across k iterations for reliable estimates.

For KNN, tested hyperparameters included n_neighbors,
controlling neighbor count (low values risk overfitting, higher
values increase bias); weights, determining neighbor influence
(‘uniform’ for equal, ‘distance’ for weighted); algorithm,
specifying neighbor search strategy (e.g., ‘kd_tree’); leaf_size,
balancing query and construction times; and metric, defining
distance functions like Manhattan (p= 1) or Euclidean (p= 2).

For SVM, hyperparameters included C, balancing margin and
misclassification penalties (higher values risk overfitting); kernel,
mapping data into complex spaces (e.g., ‘linear,’ ‘rbf’); gamma,
adjusting boundary influence (higher values create localized
boundaries); coef0, relevant for polynomial/sigmoid kernels;
shrinking, enhancing computational efficiency; and probability,
enabling class probabilities.

For ANN, tested hyperparameters included hidden_layer_sizes,
defining layer structure; activation, transforming neuron inputs
(e.g., ReLU for efficiency); solver, optimizing training (‘adam’ is
common); alpha, penalizing large weights for regularization;
batch_size, determining samples per iteration; learning_rate,
influencing convergence; and max_iter, setting training iteration
limits.

The datasets used for training and testing were split into 70%
training and 30% testing, a widely adopted strategy that reduces
the likelihood of overfitting. Each baseline model underwent
twenty epochs of training (approximately one hour) using the
same training dataset, comprising 76,801 inputs. In each epoch
and for each model, test accuracy values were recorded and stored
in a vector, allowing direct comparative evaluation of the models’
performances through histogram plots.

The initial training process employed accuracy as the primary
criterion to assess model progression, with a minimum acceptable
threshold set at 80%. Models meeting or exceeding this accuracy
during testing were preserved; otherwise, they were reverted to
the training phase for further refinement. This iterative evaluation
cycle ensured continuous optimization before the final assessment
of performance metrics.

The final training encompassed the most optimized versions of
the previously discussed ML models—namely KNN, SVM,
and ANN—selected based on their superior performance during
initial training and integrated into an ensemble framework. This
diverse combination of models provided a consistent framework
for pattern detection in EEG within a BMI. The ensemble of ML
models (eML) was designed to combine multiple ML models to
achieve enhanced performance. It involved model selection,
parallel processing, and consensus building. By capitalizing
on the unique strengths of each model, the eML optimized
decision-making, leading to more precise and reliable pattern
recognition [43].

The eML submodule adheres to the previously established
procedure (Stages 1–4), with an additional phase dedicated to
prediction integration. In this phase, the majority voting technique
is employed to aggregate the predictions from the ML models.
This method assigns the class with the highest number of votes
from the individual models as the final prediction of the eML.
Although simple, majority voting is an effective strategy for
reaching a consensus among the base models. Additionally,
combining these three ML models reduces ambiguities caused by
potential inference conflicts between individual models, making
decision-making more streamlined and reliable.

Validation metrics (Stage 5) are computed using specific
formulas. Accuracy measures the overall correctness of the model
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by evaluating the proportion of correctly predicted instances,
including both true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), about the total number of
predictions: (TP + TN)/(TP + TN + FP + FN). Recall quantifies
the model’s ability to accurately identify all actual positive
instances by determining the proportion of TP among all the
positive cases, including FN. Precision assesses the model’s
ability to accurately identify positive instances by calculating the
proportion of TP among all cases predicted as positive, including
FP: TP/(TP + FP). The F1 score is a harmonic mean of precision
and recall, providing a single metric representing the model’s
accuracy in predicting positive instances while considering both
FP and FN: TP/(TP+ 0.5*(FP + FN)).

With the methodology established, the methods described in
this section were applied to the collected dataset to assess the
performance of the EEG signal acquisition system and the
ML-based pattern recognition models. The following section
provides a detailed presentation of the results obtained and
discusses the performance metrics observed.

4. Experimental Results

As outlined in the methodology, this section discusses the
findings derived from the applied techniques. Specifically, we
explore the performance of the EEG signal acquisition system and
the pattern recognition capabilities through ML algorithms for
controlling a robotic ULP. The results follow the same structure
outlined in Section 3, maintaining consistency and facilitating the
reader’s understanding. The first subsection evaluates the EmotIF,
while the subsequent subsection analyzes the performance of the
PaRecoML.

4.1. EmotIF: EEG data acquisition system

Figure 5 presents a time series of signals across multiple EEG
channels from electrodes on the scalp. The channels are labeled
following the standard EEG nomenclature (AF3, AF4, T7, T8,
and Pz). For each channel, two plots are displayed, identified by
labels A (EmotIF wave) and B (EmotivPRO wave) on the left side.

Figure 5
EEG signal waveform graph for the “eye blink” event in Voltage (μV) vs. time (ms) data acquisition for all channels

(AF3, AF4, T7, T8, and Pz) via (a) EmotIF-developed program and (b) EmotivPRO proprietary program
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In channel AF3, the curve labeled A (red) exhibits a pronounced
oscillation at the beginning (between 0 and 200 ms), followed by
stabilization over time. Conversely, the curve labeled B (gray)
shows more minor fluctuations and lower variability. In channel
T7, curve A (blue) also demonstrates an initial significant change,
with a trend toward stabilization afterward, whereas curve B
(purple) is smoother and exhibits minimal variability. Similarly, in
channel Pz, curve A (green) follows a pattern comparable to the
previous channels, showing a noticeable oscillation in the early
stages and gradually stabilizing. Curve B (cyan) displays lower
amplitude and minimal perceptible activity. In channel T8, a
similar trend is observed: curve A (purple) oscillates more
prominently at the start before stabilizing, while curve B (light
green) remains less variable. Finally, in channel AF4, curve A
(orange) exhibits an initial peak followed by stabilization, whereas
curve B (gray) maintains a more consistent level.

Across all channels, initial peaks in the signals suggest a
response to an early stimulus. At the same time, the subsequent
stabilization indicates that, after the initial event, the signals enter

a more stable phase. Therefore, it can be inferred that the waves
generated by both EmotIF and EmotivPRO platforms can be
effectively synchronized through the eye-blinking event.

An experimental test was subsequently performed to collect
EEG data concurrently using both the EmotivPRO software and
the custom-developed EmotIF program, corresponding to each
channel of the EEG device. The data acquisition adhered to the
procedures described in the methodology section, in which the
eye blink event was used to sample the marker and synchronize
the events. A comparative visual analysis of the EEG graphs
generated by EmotIF (A label) and EmotivPRO (B label)
demonstrated consistent and comparable signal patterns across all
channels: AF3 (Figure 6), T7 (Figure 7), Pz (Figure 8), T8
(Figure 9), and AF4 (Figure 10).

Figure 6 shows graph A (red) exhibiting pronounced
fluctuations with sharp peaks and troughs around 2500 ms and
7500 ms, and voltage varying between 4000 μV and 4600 μV,
indicating substantial signal variability. In contrast, graph B (gray)
follows a similar pattern but with smoother transitions and

Figure 6
EEG signal waveform for the acquisition of Voltage (μV) x Time (ms) data for the AF3 channel via (a) developed software EmotIF, (b)

proprietary software EmotivPRO
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Figure 7
EEG signal waveform for the acquisition of Voltage (μV) x Time (ms) data for the T7 channel via (a) developed software EmotIF, (b)

proprietary software EmotivPRO

Figure 8
EEG signal waveform for the acquisition of Voltage (μV) × Time (ms) data for the Pz channel via (a) developed software EmotIF, (b)

proprietary software EmotivPRO
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reduced noise levels. Although distinct peaks and drops are still
observable, particularly around 2500 and 7800 ms, graph B’s
signal is more continuous and clearly defined.

In Figure 7, graph A (orange) displays frequent voltage
fluctuations with irregular peaks alternating between sharp
increases and decreases around 3000 ms, with voltage ranging
from 4100 μV to 4300 μV, indicating moderate signal variability.
Graph B (purple) maintains a similar trend but with less abrupt
transitions and more evenly distributed noise, suggesting a
smoother, preprocessed signal with improved trend visibility.

Figure 8 presents graph A (gray) with irregular fluctuations,
sharp peaks around 2900 ms, and sudden voltage drops between
4100 μV and 4250 μV, indicating a noisier signal. Conversely,
graph B (blue) exhibits fewer abrupt changes, with more gradual
transitions between peaks around 2000 ms and troughs within the
samevoltage range, suggestingnoise reductionand signal refinement.

Figure 9 illustrates graph A (yellow) with sharp peaks and drops
interspersed with brief stable periods, prominent around 2000 ms,
with voltage variations between 4100 μV and 4250 μV. Graph B
(light green) displays similar voltage ranges, with distinct peaks
and drops near 2000 ms but smoother transitions and fewer abrupt
changes, suggesting that the signal has undergone processing to
reduce noise and enhance pattern clarity.

Finally, in Figure 10, graph A (blue) displays sharp voltage
fluctuations, with peaks around 2500 ms and 7500 ms. The
voltage fluctuates between 4000 μV and 4500 μV, reflecting high
variability in the signal, followed by sharp drops. Graph B (gray)
covers the same voltage range but presents smoother transitions,
with peaks around 2000 ms and 7400 ms. This indicates that

noise reduction and preprocessing have been applied, enhancing
the clarity of the signal and making patterns more discernible.

The comparison between Figures 6 to 10 consistently illustrates
that the EmotIF graphs (labeled A) represent unfiltered data
characterized by sharper fluctuations and higher noise levels. In
contrast, the EmotivPRO graphs (labeled B) offer a more refined
and smoothed representation of the same data. This distinction is
likely attributable to preprocessing steps in EmotivPRO that reduce
noise and emphasize broader trends. However, it is evident that
both graphs, A and B, capture the same underlying waveform, as
indicated by their similar amplitude ranges and pattern structures.

These findings confirm the efficacy of the EmotIF software for
EEG signal acquisition, validating its capability to generate reliable
datasets. This supports its application in trainingMLmodels for EEG
pattern recognition.

4.2. PaRecoML: EEG pattern recognition via
machine learning

EmotIF collected brain activity data, systematically organized
and stored in “.csv” files. Tables from the experimental rounds
(R1–R7) were concatenated to create a training dataset for ML
models. For example, as illustrated in Figure 11, the tables from
round 1—specifically “1a_black_color_VISUALSTIMULUS”
and “1b_white_color_VISUALSTIMULUS”—were integrated
into a single dataset labeled “1_Dataset_CALIBRATION_
VISUALSTIMULUS”. Additionally, a “TARGET” column was
introduced, assigning a value of “0” to all entries from the first
table and “1” to those from the second table.

Figure 9
EEG signal waveform for the acquisition of Voltage (μV) × Time (ms) data for the T8 channel via (a) developed program

EmotIF, (b) proprietary software EmotivPRO
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Table 1 summarizes the signal characteristics in metrics related
to the activity of different EEG channels, expressed in μV, with the
highest and lowest values of each round highlighted in red and
blue, respectively. The characterization of recorded brain activity
involved an analysis of metrics within the inference datasets. These
metrics include each channel’s mean, standard deviation, and range
of values, playing distinct roles in assessing brain electrical

activity. The mean indicates central tendency, providing a
representative value for the channel under study. The standard
deviation quantifies the variability of brain electrical activity,
highlighting the degree of data dispersion. Finally, the range of
values, determined by the minimum and maximum values
observed in each channel, reflects the amplitude of the recorded
activity.

Figure 11
Representation of datasets generated by signals acquired through the EmotIF program

Figure 10
EEG signal waveform for the acquisition of Voltage (μV)×Time (ms) data for the AF4 channel via (a) developed software EmotIF, (b)

proprietary software EmotivPRO
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The dataset metrics in Table 1 indicate a comparative stability
among the voltage measurement channels (AF3, T7, Pz, T8, AF4),
with AF3 exhibiting the highest average values acrossmost tests. The
standard deviations reveal a moderate variability, suggesting that the
measurements are reasonably stable, albeit with some fluctuations.
The measurement ranges vary considerably, with AF3 reaching a
maximum of 7423 μV in R6, which may reflect variations in
cerebral activity or measurement sensitivity. A slight downward
trend was observed in the average values of T7, Pz, T8, and AF4
from R1 to R4, followed by fluctuations in R5 to R7, indicating
changes in physiological processes or external influences. The
consistency in the standard deviations across the channels
suggests that all may be affected by similar levels of noise or
artifacts during data collection.

Following the exploratory analysis phase of the dataset,
attention was directed towards the subsequent stage, which
involved the optimization of hyperparameters. This optimization
aimed to identify the most effective combination for refining the
ML models.

The KNN algorithm was configured using the following
parameters: n_neighbors=5, weights=‘uniform’, algorithm=‘auto,’
leaf_size=30, metric=‘minkowski’, and p=2 (corresponding to
Euclidean distance). The choice of n_neighbors=5 reflects a
commonly accepted value in the literature, offering a practical
balance between bias and variance by avoiding underfitting and
overfitting. A uniform weighting scheme (weights=‘uniform’) was
adopted to prevent overemphasis on closer neighbors, simplifying
the decision boundary and minimizing the risk of bias towards
local points. The algorithm=‘auto’ configuration allowed scikit-
learn to select the optimal algorithm based on the dataset size and
structure, ensuring flexibility and efficiency. The default
leaf_size=30 was also retained, as it has proven effective across
various scenarios, ensuring adequate computational performance.
The distance metric was defined as Minkowski with p=2,
corresponding to the Euclidean distance, which is particularly
appropriate for continuous data in multi-dimensional spaces. This
configuration aligns with established best practices in supervised
learning, ensuring robust performance.

The SVMwas parametrized with the following settings: C=1.0,
kernel=‘rbf’, degree=3, gamma=‘scale’, coef0=0.0, shrinking=
True, and probability=False. The regularization parameter C=1.0
was chosen as a reasonable trade-off between bias and variance,
helping to prevent both overfitting and underfitting. The rbf
kernel was selected for its ability to handle non-linear decision
boundaries efficiently, making it particularly suitable for complex
classification tasks. Although the parameter degree=3 does not
directly impact the RBF kernel, it was retained at its default value
to ensure completeness and consistency. The gamma=‘scale’
option was used to automatically compute the optimal value of
gamma based on the variance of the input data, facilitating
adaptive model performance. Since the coef0 parameter is
irrelevant for the RBF kernel, it was maintained at 0.0.
Furthermore, the shrinking heuristic enhanced computational
efficiency by focusing on crucial support vectors during
optimization. Finally, probability estimation was turned off to
prevent unnecessary computational overhead, ensuring faster
model convergence without compromising classification accuracy.

The ANN was configured with the parameters: hidden_layer_
sizes=(100,), activation=‘relu’, solver=‘adam’, alpha=0.0001,
batch_size=‘auto’, learning_rate_init=0.001, and max_iter=200.
A single hidden layer containing 100 neurons was utilized to
capture non-linear patterns while avoiding unnecessary complexity,
which could lead to overfitting and increased computational
demands. The ReLU activation function was selected for its
efficiency and capability to mitigate the vanishing gradient
problem, enhancing the stability of training in deep architectures.
The Adam optimizer was employed for its robustness and
adaptability across various learning tasks, offering efficient
convergence. The regularization parameter alpha= 0.0001 was
maintained to ensure moderate regularization, thereby controlling
the model’s capacity and preventing overfitting. The batch size
was set to “auto” to allow the algorithm to dynamically determine
the most appropriate size, balancing memory usage and
computational performance. An initial learning rate of 0.001
was chosen, representing a stable and commonly used value
supporting reliable model convergence. Finally, the maximum

Table 1
Table of signal characteristics for each routine for constructing inference datasets for training the

ensemble of machine learning models

R Metric [μV ]

CHANNEL

AF3 T7 Pz T8 AF4

1 Mean, Standard Deviation 3834 ± 1188 3863 ± 1186 3814 ± 1161 3796 ± 1135 3812 ± 1141
Range (Min∼Max) 0 ∼ 4766 0 ∼ 4666 0 ∼ 4695 0 ∼ 4667 0 ∼ 4733

2 Mean, Standard Deviation 3835 ± 1205 3895 ± 1204 3843 ± 1150 3792 ± 1136 3803 ± 1142
Range (Min∼Max) 0 ∼ 5088 0 ∼ 4667 0 ∼ 4533 0 ∼ 4470 0 ∼ 4463

3 Mean, Standard Deviation 3811 ± 1210 3836 ± 1198 3809 ± 1140 3788 ± 1142 3810 ± 1155
Range (Min∼Max) 0 ∼ 4465 0 ∼ 4470 0 ∼ 4365 0 ∼ 4497 0 ∼ 4432

4 Mean, Standard Deviation 3860 ± 1192 3819 ± 1216 3735 ± 1104 3709 ± 1193 3823 ± 1169
Range (Min∼Max) 0 ∼ 4729 0 ∼ 4891 0 ∼ 4731 0 ∼ 4829 0 ∼ 4665

5 Mean, Standard Deviation 3852 ± 1197 3819 ± 1209 3756 ± 1097 3744 ± 1167 3813 ± 1188
Range (Min∼Max) 0 ∼ 4729 0 ∼ 4891 0 ∼ 4731 0 ∼ 4829 0 ∼ 4665

6 Mean, Standard Deviation 3826 ± 1199 3819 ± 1183 3747 ± 1174 3769 ± 1124 3821 ± 1162
Range (Min∼Max) 0 ∼ 7423 0 ∼ 4432 0 ∼ 4301 0 ∼ 4399 0 ∼ 4565

7 Mean, Standard Deviation 3829 ± 1195 3817 ± 1187 3747 ± 1172 3770 ± 1119 3821 ± 1164
Range (Min∼Max) 0 ∼ 7357 0 ∼ 4700 0 ∼ 4500 0 ∼ 4632 0 ∼ 4733
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number of iterations was set to 200, ensuring the training process
achieves a reasonable trade-off between computational efficiency
and convergence quality.

An additional study using normalized values and a restructured
target variable was conducted to balance the dataset’s output
classes (0 and 1), aiming to explore potential performance
improvements in the ML models. However, no significant gains
were observed, rendering adjustments to the existing
hyperparameters unnecessary.

During the initial training phase with the “calibration” dataset,
three rounds were performed: visual stimulus (R1), vocal stimulus
(R2), and mixed stimulus (R3). Each round evaluated different
data presentation modalities to assess ML model performance
under varying conditions. The histogram in Figure 12 summarizes
the results for each round, comparing the performance of three
ML models: KNN, SVM, and ANN.

The results indicate that the KNN model achieved superior
accuracy across most rounds, attaining 99.13% ± 0.04% in R1,
99.78% ± 0.04% in R2, and 98.49% ± 0.06% in R3. In contrast,
the SVM model exhibited less consistent performance across the
three rounds, with an accuracy of 93.14% ± 0.13% in R1,
improving to 97.93% ± 0.08% in R2, but dropping significantly

to 90.43% ± 0.19% in R3. Meanwhile, the ANN demonstrated
relatively stable performance, yielding 95.85% ± 5.56% in R1,
98.85% ± 0.61% in R2, and 95.81% ± 3.26% in R3.

During the initial training phase with the “action” dataset, two
experimental rounds—“pure thought” (R4) and “reinforced thought”
(R5)—were conducted to investigate different cognitive states.
These rounds aimed to assess the effectiveness of ML models in
processing varying levels of mental activity, providing a
comparative analysis of model performance under conditions of
lower and higher cognitive engagement. The histogram in
Figure 13 summarizes the results for each evaluated model (KNN,
SVM, ANN).

The data reveal that the KNN model demonstrated high and
consistent performance across both rounds, achieving an average
accuracy of 98.22% ± 0.08% in R4 and 96.68% ± 0.12% in R5.
Conversely, the SVM model yielded the lowest accuracy among
the ML algorithms evaluated, with a mean accuracy of 90.51% ±
0.30% in R4 and 88.94% ± 0.69% in R5, indicating a decline in
performance as cognitive state intensity increased. The ANN
model also exhibited high accuracy under both conditions,
reaching 97.91% ± 0.94% in R4 and 95.50% ± 2.91% in R5,
albeit with higher variability, particularly in the R2.

Figure 12
Histogram comparing the performance of machine learning models (KNN, SVM, and ANN) across three rounds of

the “calibration” dataset: visual stimulus (R1), vocal stimulus (R2), and mixed stimulus (R3)
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During the initial training phase using the dataset labeled
“emotion”, two distinct rounds were conducted to explore
different cognitive states: “pure thought” (R6) and “reinforced
thought” (R7). The objective was to evaluate the performance of
ML models in processing variations in cognitive intensity
associated with emotional states. The histogram shown in
Figure 14 summarizes the results obtained for each model tested
(KNN, SVM, and ANN).

The results indicate consistent performance from the KNN
model, which achieved 97.31% ± 0.12% accuracy in R6 and
slightly improved to 97.40% ± 0.12% in R7. Although less
accurate than the other models, the SVM demonstrated a modest
improvement between rounds, with 88.31% ± 0.56% accuracy in
Round 6 and 89.27% ± 0.71% in R7, suggesting marginal
adaptation to the increase in cognitive intensity. The ANN
achieved 95.56% ± 3.50% accuracy in R6 but experienced a

Figure 13
Histogram comparing the performance of machine learning models (KNN, SVM, and ANN) across two rounds of the “action”

dataset: pure thought (R4) and reinforced thought (R5)
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decline to 93.68% ± 4.35% in R7, accompanied by increased result
variability, indicating heightened sensitivity to the complexity of
emotional data in the reinforced thought state.

Figure 15 presents the confusion matrices for the KNN, SVM,
ANN, and eML models. The eML model demonstrated superior
performance, achieving an accuracy of 98.25% and the lowest
root mean square error (RMSE) of 0.1324. Furthermore, it
recorded high values for precision (98.00%), recall (98.50%), and
F1-Score (98.25%), indicating a robust capability to accurately

classify both positive and negative cases with a low occurrence of
misclassifications.

The KNNmodel attained an accuracy of 98.04% and an RMSE
of 0.1401, with precision, recall, and F1-Score values of 97.74%,
98.34%, and 98.04%, respectively. This indicates consistent
performance, albeit slightly inferior to the eML model.

In contrast, the SVM model demonstrated the lowest accuracy
at 90.76% and a significantly higher RMSE of 0.3039, reflecting a
more significant error rate. Its precision (91.41%) and recall

Figure 14
Histogram comparing the performance of machine learning models (KNN, SVM, and ANN) across two rounds of the “emotion”

dataset: pure thought (R6) and reinforced thought (R7)
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(89.95%) were also lower, indicating difficulties in accurately
classifying positive and negative cases within the dataset. The
F1-Score of 90.68% underscores this limitation, suggesting the
need for adjustments to enhance its discriminative capability.

The ANN model was competitive, achieving an accuracy of
98.38% and the lowest RMSE among the analyzed models at
0.1272. Additionally, it demonstrated high precision (97.88%),
recall (98.90%), and F1-Score (98.39%), indicating excellent
performance in accurately identifying both positive and negative cases.

The results obtained from the eML are summarized in the
histogram in Figure 15. This graphical representation reveals a
high correlation between the observed values and predictions. Due
to this high correlation, the divergence is confined to a narrow
range, reflected at the top of the graph.

5. Comparative Study

The study utilized an EEG signal acquisition system and applied
ML algorithms to control a robotic ULP. EEG data were acquired via
a custom program and compared with data from the manufacturer’s
software for a portable EEG device.

Graphs (Figures 6–10) show voltage readings (μV) over time in
EmotivPRO and EmotIF, revealing consistent patterns of peaks and
troughs. The similarity in these patterns confirms significant
correspondence between the two approaches, validating the
reliability of the custom-developed program for brain activity
acquisition.

Statistical analysis of Table 1 reveals mean electrical potentials
around 3850 μV, with a channel variation of ±100 μV. Standard

Figure 15
Confusion matrix charts of eML, KNN, SVM, and ANN
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deviations (1100–1200 μV) indicate moderate heterogeneity across
channels, but insufficient to alter the mean values significantly.
Amplitude ranges (Min∼Max) highlight variations across
channels, with AF3 and AF4 exhibiting higher amplitudes (up to
7423 μV), suggesting greater signal fluctuation related to
cognitive processes. Other channels show lower variability (4300–
4900 μV), indicating stability.

Channels AF3 and T7 consistently recorded higher values,
suggesting their prominent role in calibration and task-related
neural activity. These results contribute to understanding the
neural mechanisms underlying task execution.

Preliminary signal dispersion analysis in inference datasets
informed parameter optimization for ML training. Graphs
indicated potential classification patterns, though with notable
complexity. Subtle interchannel relationships suggest a possible
linear correlation with enhanced acquisition systems and more
extensive channel data.

The results in Figure 12 indicate that the “vocal stimulus” (R2)
yielded the highest overall performance among the threeMLmodels,
suggesting these algorithms were particularly effective in processing
auditory data. However, the performance decline of the SVM model
during the “mixed stimulus” (R3) points to potential sensitivity to
mixed sensory modalities, emphasizing the need for model
adjustments or more targeted calibration when dealing with
combined stimuli. Conversely, the consistent outcomes observed
in the KNN and ANN models underscore their robustness across
varying conditions, with KNN demonstrating a slight advantage in
handling purely visual (R1) and auditory (R2) data.

Theanalysisof results inFigure13shows thatallmodels exhibited
a modest decrease in accuracy when processing data from the
“reinforced thought” state (R5). This reduction in accuracy can be
attributed to increased complexity arising from heightened cognitive
activity, suggesting that the engaging nature of this state may
introduce additional noise into the data. Notably, the KNN model
proved the most robust, displaying minimal performance variation
across rounds and achieving superior accuracy under both scenarios.
In contrast, the SVM model exhibited higher sensitivity to variations
between cognitive states, resulting in less consistent performance.
Although the ANN model experienced slightly reduced accuracy
during R5, it maintained competitive performance, demonstrating a
relatively strong capacity to manage the complexity of data
generated from cognitively demanding states.

A comparative evaluation of Figure 14 reveals that KNN
remained the most stable and efficient model across both
conditions, showing minimal variation in performance between
the “pure thought” (R7) and “reinforced thought” (R8) states.
While the SVM model displayed lower overall accuracy, its
progressive improvement across rounds suggests some capacity
for adaptation to increasing emotional complexity. On the other
hand, although ANN achieved high performance during R6, it
experienced a reduction in accuracy and a substantial increase in
standard deviation in R7, indicating greater susceptibility to
variability introduced by more intense emotional states.

The results obtained from the seven experimental rounds
indicate that the KNN algorithm demonstrated the best
performance in terms of accuracy, followed by ANN and SVM.
The KNN achieved an average accuracy of 98.15% ± 0.08%,
indicating high precision and consistency in data classification.
The ANN achieved an average accuracy of 96.02% ± 3.02%,
demonstrating good generalization and adaptability to the data,
though with more significant variability in the results. The SVM
achieved an average accuracy of 90.93% ± 0.38%, revealing
lower efficiency and robustness in data classification but less

variability in the results. These findings reinforce the robustness
of the KNN model across diverse emotional scenarios and
indicate that further adjustments may be necessary to optimize the
performance of the SVM and ANN models when exposed to
cognitively more demanding conditions.

These results can be explained by the nature of the algorithms
and the data used. KNN, being an instance-based algorithm,
classifies data by leveraging similarities between data points. This
algorithm is well-suited for high-dimensional data with minimal
class overlap, as was the case with the data used in this
experiment. The ANN is a deep learning algorithm that learns
complex patterns in the data and classifies them. While capable of
handling non-linear and noisy data, ANN requires large amounts
of data and parameters for proper training. SVM, a margin-based
algorithm, utilizes support vectors to define hyperplanes that
separate classes within the data. As observed in this experiment,
linear data with few outliers is efficient but may struggle with
non-linear and numerous outliers. Thus, the choice between these
algorithms should consider not only the type and complexity of
the problem but also the available computational resources and
the time required for processing and training.

Based on the obtained metrics, as illustrated in Figure 15, both
the eML and the ANN models emerged as the most robust options,
with the eMLmodel exhibiting a slight advantage in overall balance.
The KNNmodel also demonstrated satisfactory results, lagging only
marginally behind. In contrast, the SVM faced significant
challenges, suggesting it may not be the optimal choice for this
type of task or that more refined adjustments are necessary to
enhance its performance. The results indicate that the eML model
outperforms the individual models (ANN, KNN, and SVM) in the
data classification task. This distinction is evidenced by the
accuracy and RMSE values, which represent the rate of correct
classifications and the mean of the errors’ deviations, respectively.
The eML model achieved accuracies exceeding 98% and RMSE
values below 0.14, indicating greater precision and consistency in
distinguishing between true positives and negatives and false
positives and negatives. This superior performance, as presented
in Figure 16, can be attributed to the eML’s capacity to integrate
information from multiple classifiers, thereby enhancing the
robustness and generalization capabilities of the models.
Consequently, the results suggest that the eML is more suitable
for addressing this classification problem than the ML models.

The studies by Beyrouthy et al. [13] and Fuentes-Gonzalez et al.
[20] leverage EEG signals for prosthetic control, underscoring the
growing relevance of EEG and other biosignals as technological
advancements and domain knowledge progress. A thorough
literature review reveals a notable gap in studies utilizing ML to
detect brain patterns from EEG signals for ULP control. This
absence complicates direct comparisons with prior research;
however, the findings of this study suggest significant potential for
this application.

This research presents several limitations that must be
acknowledged. First, the experiments were conducted under
controlled conditions, and the system’s performance in real-world
environments—where EEG signals are inherently noisier and more
variable—was not evaluated. Thus, the accuracy of the ML models
may have been affected by the controlled nature of data collection,
potentially influencing the reported metrics. Furthermore, despite
extensive testing, the risk of overfitting remains a concern, as the
models may have adapted too closely to the training data, limiting
their capacity to generalize to unseen datasets. These factors
emphasize the need for future studies to assess the robustness of the
proposed approach under more realistic and challenging conditions.
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Real-world applications introduce complexities beyond
controlled lab conditions, such as perspiration, head movement,
and patient-related factors like stress and multitasking, which
degrade the physical interface between the scalp and electrodes,
reducing EEG signal quality [44]. ML offers solutions to address
these challenges by using large datasets to enhance pattern
detection and classification, improving control system reliability
in dynamic environments. ML-based frameworks can mitigate
noise and disturbances, facilitating personalized systems tailored
to individual patient needs [45]. However, ML faces challenges,
including algorithmic complexity and model biases [46],
necessitating further validation studies.

Integrating ML algorithms into portable devices is challenging
due to high computational demands, which often exceed the size and
power constraints of wearable systems [47]. Recent advances in ML
inference optimization enable more efficient integration [48].
Additionally, ML-enabled systems’ reliance on internet-based
solutions makes them vulnerable to cyber threats [49], highlighting
the need for robust security frameworks in real-world deployment.

6. Conclusion

An EEG signal acquisition system using KNN, SVM, ANN,
and eML controlled a robotic ULP with promising results across
metrics. The custom EmotIF software effectively captured EEG
signals, validated against manufacturer software, with minor
conversion discrepancies noted for further investigation.

Regarding PaRecoML performance, the eML demonstrated
high reliability with an accuracy of 98.25% and an RMSE of
0.1324. The ANN slightly outperformed other models with a peak
accuracy of 98.38% and the lowest RMSE of 0.1272, followed
closely by KNN, which achieved 98.04% accuracy with an RMSE
of 0.1401. Although exhibiting comparatively lower performance,
the SVM reached 90.76% accuracy with an RMSE of 0.3039.
Integrating KNN, SVM, and ANN into the eML combined the

strengths of individual models to accurately detect EEG patterns,
achieving approximately 90% accuracy in the final training rounds.

The study demonstrates ML’s potential in prosthetics,
encouraging further exploration. Project software is fostering
collaboration. Future work will optimize signal conversion,
integrate supervisory control for real-time monitoring, conduct
in vitro trials, and expand applications to assistive devices,
leveraging advanced ML methods like reinforcement or deep
learning for improved EEG interpretation and prosthetic control.
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