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Abstract:Cryptocurrencies, such as Bitcoin and Ethereum, are digital assets that use cryptographic techniques to enable secure and decentralized
transactions over the internet. Cryptocurrency prices exhibit highly nonlinear and non-stationary behavior, influenced by a wide range of financial
and nonfinancial factors, including market liquidity, regulatory developments, technological advancements, security incidents, and geopolitical
events. The unpredictable nature of these price fluctuations underscores the need for robust predictivemodels to aid investors inmaking informed
financial decisions. In this paper, we propose EMD-LSTM, a novel hybrid model that integrates empirical mode decomposition (EMD) and long
short-term memory (LSTM) networks to enhance the accuracy of cryptocurrency price forecasting. EMD is utilized to decompose raw price
signals into intrinsic mode functions (IMFs), which help in handling non-stationarity and extracting meaningful patterns. LSTM, with its
capability to capture long-term dependencies, is then applied to the decomposed signals to learn relevant temporal features from high-
frequency historical data. Our experimental results demonstrate that the EMD-LSTM model significantly outperforms traditional forecasting
methods, achieving superior RMSE and MAE scores. These findings highlight the potential of EMD-LSTM as an effective tool for traders,
investors, and researchers seeking reliable cryptocurrency price predictions in volatile market conditions.

Keywords: cryptocurrency price prediction, empirical mode decomposition, long short memory model, non-stationary time series, hybrid
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1. Introduction

Cryptocurrency is a virtual or digital currency [1].
Cryptocurrencies, such as Bitcoin and Ethereum, are decentralized
digital assets that rely on cryptographic techniques to facilitate secure
transactions. Unlike traditional fiat currencies, cryptocurrencies
operate without centralized control, making their prices highly volatile
and difficult to predict. The increasing adoption of cryptocurrencies in
global finance has heightened the need for accurate forecasting
models to support informed investment and trading decisions.

However, cryptocurrency price forecasting presents unique
challenges due to high volatility, regulatory uncertainties, and the
absence of intrinsic value. Traditional financial models struggle
with these characteristics, underscoring the need for robust
predictive models that can adapt to the dynamic and nonlinear
nature of cryptocurrency markets. While machine learning and
deep learning techniques have been increasingly applied to
financial time series forecasting, cryptocurrency markets demand
approaches that can effectively handle non-stationarity, noise, and
multiscale price movements.

To address these challenges, we propose empirical mode
decomposition-long short-term memory (EMD-LSTM), a hybrid
model that combines EMD [2] with LSTM [3] networks. EMD
decomposes the original price series into multiple intrinsic mode

functions (IMFs), each representing different frequency components
of the signal. This process helps mitigate non-stationarity, isolate
meaningful trends, and reduce noise, making the data more suitable
for deep learning models. LSTM, in turn, processes these structured
IMF components, capturing long-term dependencies while avoiding
overfitting to short-term fluctuations. This two-stage approach
enhances predictive accuracy by extracting both high-frequency and
long-term patterns from cryptocurrency price movements.

The proposed model was evaluated using historical price data
from major cryptocurrencies, considering various forecasting
horizons, from short-term to long-term predictions. Additionally,
we compared the performance of EMD-LSTM against several
benchmark models, including traditional time series methods,
machine learning models, and hybrid deep learning models, to
demonstrate its superiority.

The contributions of this paper are as follows:

1) A novel EMD-LSTM forecasting framework, where EMD
decomposes price signals into structured components, enabling
LSTM to effectively learn temporal dependencies and improve
predictive performance.

2) A thorough empirical evaluation of the proposed model against
benchmark models, demonstrating its effectiveness in
cryptocurrency price prediction.

3) Insights and recommendations for investors and stakeholders
based on the forecasting accuracy and practical implications of
the model.
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The remainder of this paper is structured as follows: Section 2
provides a comprehensive review of the related literature on
cryptocurrency price forecasting. Section 3 details the methodology,
including the integration of EMD and LSTM. Section 4 presents the
experimental results and analysis of the proposed model. Finally,
Section 5 offers concluding remarks and outlines potential future work.

2. Literature Review

Cryptocurrency price forecasting has attracted significant
attention from both researchers and practitioners, driven by the
increasing interest and investment in digital assets. Numerous
studies have investigated various approaches for predicting
cryptocurrency prices, spanning from traditional statistical models
to advanced machine learning algorithms.

Numerous studies have indicated that incorporating multiple
models in financial time series forecasting tends to yield better
results than relying on a single model [4]. These models, known
as ensemble models, consist of parallel base models that
collectively generate an optimal predictive model. Based on the
research conducted, ensemble models can be broadly categorized
into two types: traditional ensembles and decomposition ensembles.

Ensemble models have proven more effective than individual
models for forecasting financial time series. Traditional ensembles
consist of multiple parallel base models that are combined to create
an optimal predictive model. These base models work independently,
and their predictions are aggregated either through meta-learning
techniques or by using simple averages. Researchers have focused on
enhancing the diversity of the base models to mitigate their respective
weaknesses, leading to a more accurate collective prediction [5–10].

Recently, there has been growing interest in decomposition
ensembles [11]. EMD, introduced by Huang, decomposes a time
series into IMFs that capture different frequency components.
These ensembles decompose the original time series using signal
decomposition methods such as EMD, ensemble empirical mode
decomposition (EEMD) [12], multivariate ensemble empirical
mode decomposition (MEMD) [13], and complete ensemble
empirical mode decomposition (CEEMD) [14]. Each decomposed
spectrum is then fed into an independent deep learning model for
training. The predictions obtained from each spectrum are
combined to generate the final forecast for the response variable.

State-of-the-art decomposition ensembles include CEEMD-
CNN-LSTM [15], MEMD-LSTM [16], and EEMD-Cluster-SVR-
PSO-LSTM [17]. These models have shown superior performance
in financial time series forecasting by leveraging the advantages
of signal decomposition and deep learning techniques.

Compared to traditional statistical models like ARIMA [18], many
researchers are increasingly interested in applying LSTM networks and
their variants to predict cryptocurrency prices [19, 20]. Cerda andReutter
[21], for instance, introduced amultilayer LSTMdeep learningmodel for
Bitcoin price prediction. Their model’s accuracy was enhanced by
incorporating sentiment data from Twitter alongside Bitcoin prices.

A notable aspect of Cerda and Reutter’s study is the Bitcoin
dataset, which stands out compared to other cryptocurrency price
prediction studies. This uniqueness arises from the use of high-
frequency historical data, collected at minute intervals, whereas
most studies rely on daily data. The use of minute-level data is
particularly significant due to the nature of cryptocurrency
markets, which operate 24/7, allowing trades to occur at any time.
As a result, analyzing and predicting cryptocurrency prices using
high-frequency data provides a more accurate representation of

real-time market dynamics. This insight motivated us to use
minute-level data in our work as well.

In summary, integrating EMD with LSTM has proven to be a
promising approach for addressing the unique challenges of financial
data, particularly in the context of cryptocurrencies. While previous
studies have demonstrated the potential of this combination, there
remains considerable scope for further research and improvement.
This paper seeks to advance the field by developing an enhanced
cryptocurrency price forecasting model that integrates EMD and
LSTM and by evaluating its performance against existing models.

3. Research Methodology

This section presents the methodology employed in developing
and evaluating the proposed cryptocurrency price forecasting model
that integrates EMD and LSTM networks. We first start by
preprocessing the signals (Figure 1), then we experiment with two
different methodologies for the final price prediction. The process of
data selection, preprocessing, and the two models developed for
cryptocurrency price prediction are presented in detail in the
sections below.

3.1. Empirical mode decomposition

The next step in the proposed methodology consists of the
decomposition of the original cryptocurrency price series into
IMFs using the EMD technique. EMD is a data-driven signal
processing technique that separates a time series into different
frequency components. Each IMF represents a specific scale or
frequency present in the data, capturing different time scales of
the cryptocurrency price dynamics. The decomposition process
can be mathematically expressed as Equation (1).

x tð Þ ¼
X

N
i¼1

ci tð Þ þ rN tð Þ (1)

Where:

1) x(t) is the input signal being decomposed.
2) N is the number of modes extracted.
3) ci tð Þ represents the ith mode, which is an oscillatory component.
4) rN tð Þ is the final residue, which captures the trend or residual

behavior.

The EMD algorithm iteratively applies two steps until a
stopping criterion is met:

1) Find local maxima and minima called “extrema” in the signal.
2) Interpolate between adjacent extrema to obtain the upper and

lower envelopes, which form the so-called IMFs.

The IMFs are obtained by repeating these steps until certain
convergence criteria are satisfied. The final residue, rN tð Þ, is obtained
by subtracting all the extracted modes from the original signal.

3.2. Preprocessing

As shown in Figure 1, the preprocessing pipeline consists of three
key steps: noise filtering using a moving average filter, normalization,
and signal decomposition via EMD. The IMFs obtained fromEMDare
segmented into 288-data-point sequences, corresponding to 24-hour
windows with a 5-minute resolution. These preprocessed segments
serve as input for the forecasting model, ensuring the extraction of
meaningful patterns while reducing noise interference.
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3.2.1. Noise filtering
Cryptocurrency signals exhibit susceptibility to multiple noise

sources caused by the inherent volatility of this data, presenting
significant challenges in their analysis. To identify the underlying
trends that truly define the cryptocurrency price data, we applied a
moving average noise filtering technique. Moving averages
smooth out short-term fluctuations and highlight the long-term
patterns in the time series. This filter calculates the average of a
predefined number of consecutive data points within a time series.
The equation for calculating the moving average is as follows in
Equation (2):

Moving Average t; kð Þ ¼ 1
k

X
t
i¼t�kþ1

xi (2)

Where:
1) t represents the current time index or position in the time series.
2) k is the number of data points considered for averaging (also

known as the window size).
3) xi denotes the ith data point in the time series.

The moving average is computed by taking the sum of the k data
points preceding the current time index and dividing it by k. This
process slides along the time series, calculating the average for each
window of k data points. In our work, we filter the data by using
the moving average filter with a window size of 288 data points.

3.2.2. Normalization
Once the data are filtered, we apply normalization.

Normalization helps the model converge faster and prevents large
value differences from dominating the training process. We
employed a min-max scaler to normalize the dataset, rescaling the
values within the range of [0, 1].

3.3. Long short-term memory network

An LSTM network was developed for our prediction models.
The network consists of one LSTM layer, followed by a dropout
layer and a dense layer. The core of the model consists of the
LSTM layer, which has shown great success in various time series
forecasting tasks. LSTM is a type of recurrent neural network
specifically engineered to capture temporal dependencies and
long-term patterns in sequential data. As shown in Figure 2, the
LSTM model processes sequential data using gating mechanisms
that regulate memory updates. The cell state enables the retention
of long-term dependencies, which is particularly useful for time
series forecasting. The basic steps of LSTM are as follows:

First, as defined in Equation (3), the input gate it falters and extracts
new information from the input xt at the current state (time t) and creates
a candidate value ect for updating the state, as shown in Equation (4).

it ¼ σ Wi � ht�1; xt½ � þ bið Þ (3)

ect ¼ tanh Wc � ht�1; xt½ � þ bcð Þ (4)

Next, the forget gate ft filters and keeps the historical information
that can indicate the long-term trends and discards the non-critical
information, as defined in Equation (5).

ft ¼ σ Wf � ht�1; xt½ � þ bf
� �

(5)

By removing part of the information from the old cell and adding the
filtered candidate value, as shown in Equation (6), the old cell state
ct�1 is updated to the new cell state ct.

ct ¼ ft � ct�1 þ it �ect (6)

Finally, as shown in Equation (7), the output gate ot filters the
updated state ct , and the final output is calculated based on the
updated state and the output gate state.

Figure 1
Overview of the data pre-processing pipeline. The raw cryptocurrency price signal is smoothed with a moving average filter,
normalized, and decomposed into Intrinsic Mode Functions (IMFs) using EMD. The IMFs are segmented into 288-data-point

sequences (5-minute intervals), forming multidimensional input segments for the forecasting model
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ot ¼ σ Wf � ht�1; xt½ � þ bo
� �

(7)

ht ¼ ot � tanh ctð Þ (8)

Here, ht is the hidden layer state, namely the activation of the
memory cell, as defined in Equation (8). Wc, Wf , and Wo represent
the appropriate weight matrices, bi, bc, bf , and bo denote the corre-
sponding bias vector, σ and tanh are the sigmoid functions and
hyperbolic tangent functions, respectively.

The above-mentioned network is used to perform the final
prediction, as shown in Figures 3 and 4. We feed the IMFs as
input sequences to the LSTM model to capture the multiscale
dynamics and temporal dependencies within the cryptocurrency
price data. By combining the strengths of EMD and LSTM, we
aim to enhance forecasting accuracy and capture the complex
patterns present in the cryptocurrency market. After the
decomposition of EMD, we can obtain different components of

the original price series. Predicting each component can improve
the prediction accuracy. Compared to the other EMD-LSTM
models, this model does not train individual IMF signals with
separate LSTM models individually, rather it converts each input
sequence of the original input window into a concatenated
sequence of multiple input sequences of IMF window inputs as
shown in the bottom right part of the Figure 3.

3.4. EMD-LSTM model

We adopt a divide-and-conquer approach by leveraging EMD
and LSTM networks to improve cryptocurrency price forecasting.
EMD decomposes raw price signals into multiple IMFs, each
capturing different frequency components, while LSTM models
process these IMFs to learn meaningful temporal dependencies.

By decomposing the price series into IMFs, EMD isolates
meaningful trends from noise, allowing LSTM to focus on

Figure 2
Structure of an LSTM cell. The cell state preserves long-term dependencies, while the hidden state captures short-term patterns,

enabling effective sequential modeling for cryptocurrency price forecasting

Figure 3
Overview of the Parallel EMD-LSTMmodel. The process consists of training (purple) and testing (green) phases. EMD decomposes
the price series into Intrinsic Mode Functions (IMFs), each representing a distinct frequency. Separate LSTMmodels are trained on
each IMF to learn multiscale patterns. During testing, each LSTM predicts its respective IMF, and the final forecast is reconstructed

by summing all predictions, improving accuracy by reducing noise and capturing multiscale dependencies
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learning structured patterns rather than raw volatile price
fluctuations. This decomposition improves feature extraction and
helps LSTM capture both short-term fluctuations and long-term
dependencies more effectively.

Instead of directly predicting the price, we forecast data for each
IMF channel separately, leveraging EMD’s ability to break down the
original price series into different frequency components. By training
LSTM models on individual IMFs, we allow each LSTM model to
specialize in learning distinct price movement patterns at
different temporal scales—high-frequency fluctuations, medium-
term trends, and long-term trends. This divide-and-conquer
approach reduces noise interference and enhances predictive
accuracy. Since EMD is reversible, we reconstruct the final price
prediction by summing all IMF forecasts, thereby preserving both
short-term volatility and long-term market trends. During the
training phase, we experimented with two distinct methods,
leading to the creation of two separate models.

3.4.1. Parallel EMD-LSTM model
The Parallel EMD-LSTMmodel trains separate LSTM networks

for each IMF component, rather than using the raw price series. The
number of LSTM models equals the number of IMF channels,
ensuring that each network specializes in learning distinct
frequency-based patterns in price movements. During training, each
IMF segment is fed into its corresponding LSTM model, which
operates independently of the others. The final price prediction is
reconstructed by aggregating the outputs of all LSTM models. This
architecture allows each LSTM to focus on a specific frequency
range, improving predictive performance in volatile market
conditions. The entire process is illustrated in Figure 4.

3.4.2. Single EMD-LSTM model
The Single EMD-LSTMmodel differs from the Parallel approach

by utilizing a single LSTM network instead of multiple independent
models. Rather than processing each IMF separately, this model
incorporates all IMF components as input features, enabling LSTM
to capture cross-frequency dependencies within a unified architecture.

For example, if BTC price data is decomposed into 10 IMF
channels, the LSTM model receives a sequence of 10 IMF

segments for each time window. This approach preserves the
advantages of EMD-based decomposition while significantly
reducing computational cost, as only one LSTM network is
required. However, since all IMF components are processed
together, the Single EMD-LSTM model relies on LSTM’s ability
to internally capture frequency-specific patterns, rather than
learning them independently, as in the Parallel EMD-LSTM
approach. The entire process is illustrated in Figure 4.

While the Parallel EMD-LSTM model provides more
specialized learning per frequency component, it comes at the cost
of higher computational overhead due to multiple LSTM
networks. In contrast, the Single EMD-LSTM model offers a
computationally efficient alternative, processing all IMFs within a
single LSTM while still leveraging EMD’s decomposition benefits.

3.5. Parameter settings

When setting up an experiment for EMD-LSTM, meticulous
attention must be given to defining and configuring the
experiment parameters. These parameters play a critical role in
determining the training process of the model, data preprocessing
steps, and the overall setup of the experiment. In this section,
some essential considerations when establishing the experiment
parameters for EMD-LSTM are discussed.

Table 1 shows the parameters used for the training of the
proposed EMD-LSTM model. It is well known that deeper
architectures can capture more complex temporal patterns, but
may require more computational resources. We found that 2
layers did provide slightly better results for BTC 2018 dataset,
while it provided worse results for the rest of the 8 datasets.
Therefore, to address the generalization, we chose 1 layer LSTM
with 1 dropout and 1 dense layer. The number of units affects the
model’s capacity to learn complex patterns, but larger numbers
can increase the risk of overfitting. Hence, 512 units were chosen
with the best results after the experiments with a series of settings
from 64 to 1024 units shown in Figure 5. A 0.2 dropout was also
implemented, as it helps prevent overfitting and improves the
generalization capacity of our model. The chosen loss function
was the mean absolute error (MAE), which was selected to suit
our regression problem. We employed the Adam optimizer with

Figure 4
Overview of the Single EMD-LSTM model. Unlike the Parallel EMD-LSTM, this model uses a single LSTM network for all IMF
components. EMD decomposes the price series into IMFs, which are fed into the LSTM sequentially to capture cross-frequency
dependencies. During testing, IMF segments are processed through the same LSTM, and sub-predictions are summed to reconstruct

the final forecast, maintaining EMD’s benefits while reducing computational complexity
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an initial learning rate of 0.0005 and incorporated early stopping,
along with the use of the adaptive learning rate technique
ReduceLROnPlateau in TensorFlow. The experiments were
conducted using the Python Keras and TensorFlow libraries as
well as MATLAB, leveraging the computing power of a Windows

station equipped with 32GB RAM, an RTX 3090 GPU, and an
Intel i7 9700k CPU.

3.6. Evaluation metrics

To evaluate the performance of our proposedmodel, we employ
various evaluation metrics commonly used in time series forecasting.
These metrics include root mean squared error (RMSE) in Equation
(9) and mean absolute error (MAE) in Equation (10). We compare
the forecasting results of our two integrated EMD-LSTM models
against a single LSTM benchmark model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
T
t¼1

byt � ytð Þ2
r

(9)

MAE ¼
X

T
t¼1

byt � ytj j (10)

4. Results and Discussions

The performance of the cryptocurrency price forecasting
models was analyzed using two methodologies:

1) Parallel EMD-LSTM, where each IMF is processed by an
independent LSTM model.

2) Single EMD-LSTM,where all IMFs are processed within a single
LSTM model, expanding the training set.

This section presents the experimental results of the proposed
approaches. These results are then analyzed in the context of
cryptocurrency price prediction using the developed LSTM

Table 1
Experiment parameter settings

Parameter name Value

Dataset cryptocurrency BTC, ETH, and XRP
Dataset time range H2 of 2018, 2019 and 2020
Dropout rate 0.2
Use Early Stop Yes with Keras
Use ReduceLROnPlatean Yes with Keras
Input sequence time steps 288
Initial learning rate 0.0005
LSTM layer activation function Tanh
Loss function for LSTM layer Mean Square Error
Moving average window length 288
No. of LSTM units 512
No. of neurons of the Dense layer 1
Optimizer for LSTM layer Adam
Structure of the LSTM layer 1 LSTM layer,

1 dropout layer, and
1 dense layer

Scaling method Min-Max scaling
Type of gradient descent Batch gradient descent
Validation dataset 20% of the training dataset

Figure 5
Comparison of RMSE and MAE for different LSTM unit configurations using BTC 2018 data. The figure shows
how varying LSTM units affects model performance, with lower RMSE and MAE indicating better accuracy.

The results help identify the optimal LSTM architecture for effective cryptocurrency price forecasting
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model. Finally, we conclude this section with a comparison between
our EMD-LSTM models and benchmark models, emphasizing the
influence of integrating EMD-LSTM.

4.1. Data description and selection

The dataset consists of historical cryptocurrency price data
collected from Bitstamp, a European-based exchange, covering the
period January 1, 2018–December 30, 2020 (Figure 6). The
selected cryptocurrencies—Bitcoin (BTC), Ethereum (ETH), and
Ripple (XRP)—have a 5-minute price interval throughout the
dataset. The dataset is partitioned into training and testing sets, with
the split clearly indicated by a vertical line. The augmented
Dickey–Fuller (ADF) test [22] was applied to assess the stationarity
of each price series. If p-value is below a certain significance level
(e.g., 0.05), it can reject the null hypothesis of non-stationarity and
conclude that the time series is stationary. These datasets’ statistic
descriptions are listed in Table 2. As can be seen, none of their p-
values is below 0.05, and therefore, none of them is stationary.

A suitable time interval is then chosen (daily or hourly)
depending on the desired level of detail for forecasting. The
dataset should cover a sufficiently long period to capture different
market conditions and price trends. For our analysis, we focus on
the closing prices from July 1st to December 30th for 2018, 2019,
and 2020, resulting in 52,416 samples for each dataset. This data
comprise three cryptocurrencies: Bitcoin (BTC), Ethereum (ETH),
and Ripple (XRP). We then divide each price series into an 80%
training set and a 20% test set. The training set is used to train
and optimize the ensemble EMD-LSTM model, while the test set
assesses the model’s prediction accuracy.

4.2. Segment construction for LSTM input

Since shorter sequences capture short-term dependencies, this
study focuses on 5-minute segmentation to analyze short-term

cryptocurrency price fluctuations. These intervals represent 288
data points across the entire IMF components, which results in
multidimensional segments for the same time step. Following the
segmentation step, we obtain 288 data point segments across all
IMF components that are going to be used as input sequences in
the LSTM model.

4.3. Results using Parallel EMD-LSTM model

The Parallel EMD-LSTM model demonstrated strong
predictive performance across BTC, ETH, and XRP datasets over
three years. However, accuracy declined for XRP in 2020. By
dividing the RMSE values by the mean value of each dataset,
most of the ratios are below 1%, especially for the 2018 and 2019
datasets. It is similar to MAE results. But when using the 2020
XRP dataset, the ratio is 2.63%. On average across the 9 datasets,
the ratio of RMSE/Mean is 0.43%. On average across the 9
datasets, the ratio of MAE/Mean is 0.37%.

4.4. Results using Single EMD-LSTM model

This model consistently delivered strong performance across all
BTC, ETH, and XRP datasets over three years. When the RMSE
values are divided by the mean value of each dataset, the majority
of the resulting ratios are below 0.1%, especially for the 2018 and
2019 datasets, which aligns with the MAE results. In the case of
the 2020 dataset, the ratios consistently approach or exceed 0.1%.
On average, in the nine datasets, the RMSE/Mean ratio stands at
0.06%, while the MAE/Mean ratio is averaged at 0.05%.

4.5. Comparison with benchmark models

The EMD-LSTM model was evaluated against a standard single-
layer LSTM to assess its comparative performance. As shown in
Tables 3 and 4, the EMD-LSTM consistently outperformed the

Figure 6
Historical closing prices of three cryptocurrencies in H2 2018, 2019, and 2020 (5-minute intervals).

Each chart shows price fluctuations, with a purple line marking the split between the training
set (39,456 points, 137 days) and the testing set (9,791 points, 35 days) used for model evaluation

Table 2
The statistical description of all 9 cryptocurrency close price datasets

Ccy BTC ETH XRP

Year 2018 2019 2020 2018 2019 2020 2018 2019 2020

Mean 5992.26 9182.82 13558.26 250.11 187.28 414.89 0.41 0.27 0.31
Std 1277.93 1448.84 4355.12 119.62 38.49 115.75 0.08 0.05 0.13
Min 3178.46 6645.57 9054.20 82.77 123.30 226.07 0.26 0.18 0.18
Max 8284.72 12803.23 28135.61 499.77 312.59 735.90 0.59 0.40 0.68
P-Value 0.81 0.39 0.99 0.56 0.23 0.91 0.05 0.24 0.16
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benchmark model across multiple evaluation metrics, demonstrating its
ability to capture the unique characteristics and volatility of
cryptocurrency prices. One exception was the XRP 2019 dataset, where
performance did not follow this trend. These results highlight that the
integration of EMD with LSTM significantly enhances forecasting
capabilities by improving feature extraction and noise reduction.

Figure 7 presents a direct comparison between the standard
LSTM model and the proposed EMD-LSTM model using BTC
2018 data. The EMD-LSTM achieved an RMSE of 1.217,
significantly lower than the benchmark model’s RMSE of 10.87
as reported in Cerda and Reutter [21], highlighting a substantial
improvement in forecasting accuracy.

As shown in Figure 7(a), the standard LSTM model struggles to
capture the price trend accurately, particularly during volatile market
conditions. Predictions exhibit noticeable deviations from actual price
movements, resulting in higher forecasting errors. In contrast, the
EMD-LSTM model (Figure 7(b)) demonstrates improved alignment
with actual prices, particularly in the test prediction phase.

The zoomed-in section (Figure 7(c)) highlights this improvement:
the EMD-LSTMmodel closely tracks actual pricemovements, whereas
the standard LSTM exhibits greater divergence. This improvement is
attributed to EMD’s ability to decompose the price series into
structured components, enabling the LSTM network to focus on
meaningful price trends while mitigating the impact of market noise.

The integration of EMD and LSTM provides several key
advantages in cryptocurrency price forecasting:

1) Feature decomposition: EMD decomposes the cryptocurrency
price series into IMFs, isolating different frequency components
and their respective dynamics.

2) Noise reduction: By breaking down the raw price signal, EMD
filters out noise, allowing LSTM to process structured and
meaningful input rather than noisy raw data.

3) Capturing temporal dependencies: LSTMmodels long-termpatterns
and dependencies within the decomposed IMFs, effectively learning
from both short-term fluctuations and long-term trends.

These factors contribute to EMD-LSTM’s superior predictive
accuracy, as shown in the experimental results. By decomposing
price series into IMFs, the model effectively adapts to different
frequency components, capturing short-term volatility, and long-term
market trends separately. This multiscale learning approach enhances
forecasting performance, making EMD-LSTM particularly well-
suited for volatile financial time series like cryptocurrency markets.

4.6. Ablation study: Evaluating the impact of EMD
and LSTM variants

This section serves as an ablation study to assess the contribution
of EMD and different LSTM configurations in improving
cryptocurrency price forecasting. We compare three model variants:

1) Baseline LSTM (No EMD): Standard LSTM trained on raw price
data.

2) Parallel EMD-LSTM: Each IMF is processed by an independent
LSTM model.

3) Single EMD-LSTM: All IMFs are input into a single
LSTM model.

Tables 3 and 4 present the RMSE and MAE evaluation results
for these models across BTC, ETH, and XRP datasets (2018–2020).
The results confirm that EMD enhances forecasting accuracy, with
the Single EMD-LSTM model consistently delivering the best
performance across all datasets.

In Table 2, the 2018 dataset exhibits a substantially lower mean
value (5992.26) compared to 2019 (9182.82). Surprisingly, despite
this discrepancy, the RMSE value for BTC price prediction in 2018
exceeds that of 2019 for the LSTM model. In particular, when
employing both Parallel EMD-LSTM model and Single EMD-
LSTM Model, the RMSE values for the predictions in each year
consistently align with the ranking of the mean of the dataset for
that year, as detailed in Table 3. Consequently, the Single EMD-
LSTM Model consistently delivers significantly improved RMSE
values (1.217, 2.418, 13.81) and MAE values (1.018, 1.858,
12.864) throughout the three years for the prediction of BTC
prices. For ETH, the disparities in RMSE and MAE values among
the models are relatively minor and the selection of the model
does not appear to have a substantial impact on the accuracy of
predictions. The values are consistently low, signifying strong
predictive accuracy. Similarly to the BTC price prediction results,
both EMD-LSTM models significantly outperform the LSTM,
especially with Single EMD-LSTM Model RMSE values of
0.177, 0.033, 0.382 compared to 0.336, 0.16, 0.77, respectively.
Moreover, the Single EMD-LSTM Model also outperforms the
Parallel EMD-LSTM model consistently. Regarding XRP, both
EMD-LSTM models delivered superior performance when applied to
the 2018 and 2020 datasets. However, in the case of the 2019 data,
they both performed less effectively than the LSTM model. Yearly
trend analysis reveals fluctuations in RMSE and MAE values across
different years. For example, in 2020, errors were more pronounced
for most currencies and models compared to the years 2018 and
2019. This could be attributed to heightened volatility or other
factors influencing the cryptocurrency market in 2020.

Table 3
Prediction results evaluation usingRMSE for all BTC, ETH, and

XRP prices in H2 of 2018, 2019, and 2020

Currency Year LSTM
Parallel EMD
LSTM model

Single EMD
LSTM model

BTC 2018 29.73 5.05 1.217
2019 2.64 9.97 2.418
2020 70.68 17.96 13.81

ETH 2018 0.336 0.25 0.177
2019 0.16 0.05 0.033
2020 0.77 1.81 0.382

XRP 2018 0.00022 0.00077 0.00017
2019 0.00012 0.00022 0.00013
2020 0.00402 0.00815 0.00033

Table 4
Prediction results evaluation using MAE for all BTC, ETH, and

XRP prices in H2 of 2018, 2019, and 2020

Currency Year LSTM
Parallel EMD
LSTM model

Single EMD
LSTM model

BTC 2018 27.9 4.41 1.018
2019 2.1 9.1 1.858
2020 60.63 16.06 12.864

ETH 2018 0.319 0.24 0.173
2019 0.13 0.04 0.026
2020 0.68 1.78 0.353

XRP 2018 0.00016 0.00067 0.00013
2019 0.00009 0.0002 0.00012
2020 0.00334 0.00705 0.00027
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Figure 7
Comparison of BTC 2018 prediction results (5-minute intervals) (a) Prediction results using the standardLSTMmodel. (b) Prediction
results using the proposed EMD-LSTMmodel. (c) The zoomed parts in (a) and (b) were put together into single plot to compare the
difference more clearly. The EMD-LSTM model aligns more closely with actual price trends than the standalone LSTM, effectively

capturing both short-term fluctuations and long-term trends by reducing noise and learning meaningful temporal patterns
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Based on these results, it appears that incorporating EMD into
the LSTM model can lead to improved predictive accuracy for
cryptocurrencies for most of the datasets compared to using the
pure LSTM model, 84.1% improvement for BTC, 54.3%
improvement for ETH, and 85.5% improvement for XRP on
average across 3 years. When considering a 3-year window,
EMD-LSTM achieved an average RMSE of 5.815 for BTC, 0.197
for ETH, and 0.00021 for XRP, while the Parallel EMD-LSTM
model resulted in an average RMSE of 10.99 for BTC, 0.70 for
ETH, and 0.003 for XRP. Notably, for pricing data exclusively,
decomposing the original data using EMD yields more detailed
information for the model input. Furthermore, the way of storing
these details in the same place will improve the prediction better
than storing the details in different places.

4.7. Robustness and generalization

To assess the robustness and generalization of the proposed
model, additional experiments were conducted using different
cryptocurrencies, various periods, and distinct market conditions.
The model’s performance was evaluated consistently across
different datasets to ensure its reliability and applicability in real-
world scenarios. Therefore, as demonstrated by our experimental
results presented above, the proposed EMD-LSTM model
exhibited robustness and generalization capabilities. It consistently
produced accurate and reliable predictions across different
cryptocurrencies and periods, indicating its potential for practical
applications in the cryptocurrency market. The model’s ability to
generalize well across different datasets enhanced its reliability
and usefulness for various cryptocurrency assets.

5. Limitations and Future Directions

While the experimental results showcased the effectiveness of the
proposed EMD-LSTM model, certain limitations should be
acknowledged. The model’s reliance on historical price data may
restrict its ability to capture unforeseen market events or sudden
changes. Additionally, extreme price fluctuations and external factors
not considered in the dataset may impact the model’s performance.

Future research directions could address these limitations and
further enhance the proposed model. Incorporating additional
features such as volume data, sentiment analysis, or
macroeconomic factors into the model could improve its accuracy
and robustness. Exploring alternative deep learning architectures,
hybrid models, or ensemble techniques may also contribute to
advancing cryptocurrency price forecasting capabilities.

6. Conclusion

In this work, we have proposed a novel cryptocurrency price
forecasting model that integrates EMD and LSTM networks.
The aim was to develop an accurate and reliable model capable
of capturing the unique characteristics and volatility of
cryptocurrency prices. Through a comprehensive evaluation of the
model’s performance, we have demonstrated its effectiveness and
superiority over benchmark models.

The experimental results have shown that both proposed EMD-
LSTM models outperform the traditional LSTM model commonly
used in cryptocurrency price forecasting, especially with the Single
EMD-LSTM Model. It achieves higher prediction accuracy, lower
errors, and improved directional accuracy. The integration of EMD
with LSTM allows the model to capture multiscale features and
temporal dependencies within the data, leading to more accurate

and reliable forecasts. The robustness and generalization of the
proposed model have also been validated through additional
experiments using different cryptocurrencies, periods, and market
conditions. The consistent performance across diverse datasets
indicates the model’s reliability and applicability in real-world
scenarios. However, it is important to acknowledge certain
limitations of the proposed model. It relies on historical price data
and may be influenced by factors not accounted for in the dataset.
Additionally, sudden market changes, extreme price fluctuations,
and unforeseen events can impact the model’s performance. Future
research directions could focus on addressing these limitations and
further enhancing the proposed model. This may involve
incorporating additional features such as volume data, sentiment
analysis, or external factors that influence cryptocurrency prices.
Exploring different deep learning architectures, hybrid models, or
ensemble techniques could also contribute to improving the
accuracy and robustness of cryptocurrency price forecasting.

In conclusion, the proposed EMD-LSTMmodels offer a powerful
framework for cryptocurrency price forecasting. Its integration of EMD
and LSTM allows for the capture of complex patterns, multiscale
dynamics, and temporal dependencies within cryptocurrency price
data. The model’s superior performance and reliability make it a
valuable tool for investors, traders, and policymakers seeking to
make informed decisions in the dynamic cryptocurrency market.
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