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Abstract: Traffic signal control is a critical component of urban transportation management, and optimizing its performance can significantly
reduce congestion, decrease travel times, and improve air quality. This study proposes a novel approach to optimizing traffic signal control using
machine learning and environmental data. This work focuses on the interplay between smart city infrastructure and environmental data to provide a
novel method for traffic pattern prediction. Mitigating traffic congestion is a pressing concern in urbanized societies and emerging smart cities. This
study explores leveraging publicly available air pollution data as an environmental indicator to enhance urban mobility and predict traffic patterns.
Taking into account factors including vehicle emissions, weather patterns, and topographical features, the study will look at possible connections
between air pollution and traffic congestion. The goal of this project is to develop a prediction model that uses real-time air quality data for traffic
forecasting by utilizing big data analytics and machine learning approaches. According to our research, the K-nearest neighbors (KNN) model
performs better than any other regression model examined. According to experimental findings, the KNN model considerably lowers the error rate

in traffic congestion prediction by over 30%.
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1. Introduction

Traffic signal control is a crucial aspect of urban transportation
management, aiming to minimize congestion, reduce travel times,
and decrease environmental impact. Traditional traffic signal control
systems rely on fixed timers or simple sensor-based approaches, which
often lead to inefficient traffic flow and increased emissions. With
the rapid growth of urban populations and the resulting rise in traffic
congestion, there is a pressing need for innovative solutions to optimize
traffic signal control. Traffic congestion is a serious issue with significant
negative impacts on both the economy and the environment. One of the
primary contributors to urban traffic congestion is improperly operated
traffic signals [1]. The diversity and unpredictable nature of traffic have
surpassed the effectiveness of conventional traffic light systems, which
depend on predetermined, fixed-time plans for junction control, despite
major advances in online adaptive traffic signal control. When cars
are present at a junction, online adaptive signal control can react by
modifying the signal timings in real-time in response to shifting traffic
patterns, in contrast to pre-timed fixed signal control, which repeats a
predetermined regime. However, current adaptive control techniques
struggle to effectively manage congestion. These methods often rely
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on systems that fail to accurately simulate traffic flow or are based on
application-specific heuristics, which are inadequate due to the highly
unpredictable nature of real-world traffic, such as sudden accidents that
obstruct traffic flow [2, 3]. To improve the effectiveness of the traffic
light management systems in place today, automated agents with the
ability to learn, self-configure, and self-optimize must be put into place.
As global urbanization accelerates, the number of vehicles on the
road increases, exacerbating traffic congestion. This growth is placing
unprecedented strain on existing traffic infrastructures, contributing to
congestion, air pollution, and increased travel times in cities. Traffic
signal control, a fundamental component of urban traffic management
systems, plays a vital role in regulating the flow of vehicles.
Traditionally, traffic signals have been controlled by static or rule-based
systems, where the timing of signal phases is predetermined based on
historical traffic patterns [4, 5]. These systems, although effective to
some degree, are inherently limited in their ability to adapt to real-time
fluctuations in traffic conditions and environmental factors, leading to
inefficiencies and contributing to environmental and economic costs.
The advent of machine learning (ML) technologies offers a promising
avenue to enhance the efficiency of traffic signal control systems.
ML algorithms can learn from large volumes of real-time traffic data,
predict traffic conditions, and dynamically adjust signal timings to
optimize traffic flow [2, 6]. This capability represents a significant
departure from conventional systems, as it enables a more responsive
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and adaptive approach to managing traffic, ultimately helping to reduce
congestion, improve travel times, and lower emissions. In addition to
traffic data, incorporating environmental data into traffic signal control
strategies offers a powerful tool for addressing sustainability challenges
in urban environments. Environmental data, such as air quality metrics,
weather conditions, and noise levels, provide crucial context that can
inform more holistic traffic management strategies [7, 8]. For instance,
adjusting traffic signals in response to poor air quality or adverse weather
conditions can mitigate the negative impacts of vehicle emissions and
enhance the overall livability of urban areas.

With the advent of ML, there is an opportunity to revolutionize
how traffic signals are managed. By leveraging ML algorithms, traffic
signals can dynamically adjust based on real-time traffic data, leading to
more efficient traffic flow [9]. Additionally, incorporating environmental
data such as weather conditions and air quality can further enhance
these systems [3]. This data-driven approach can help reduce emissions,
improve air quality, and create more sustainable urban environments.
The use of ML as a direct technique to attain adaptive optimum control
in nonlinear systems has grown in popularity. ML agents carry out tasks
by using perception to keep an eye on their environment, acting to change
it, and then analyzing the results to gain knowledge and get better [10,
11]. Sequential decision-making control issues may now be effectively
tackled with the help of deep reinforcement learning (DRL) [12, 13]. In
high-dimensional, dynamic, and complicated settings like Atari games,
DRL has shown to be incredibly successful [4]. A DRL agent must
constantly interact with its surroundings to do a task, picking up on
the qualities that are essential for every assignment. Understanding the
connection between the agent’s activities and their ultimate effects on
the environment is a vital component of this interaction.

Medical experts assert that pollution and poor air quality, which
are primarily caused by traffic congestion, are the primary causes of
the higher-than-average death rates in metropolitan areas of big cities
[5]. The 115 biggest cities in the European Union, home to around 40
million people together, find it difficult to maintain the high criteria for
air quality. Many cities are putting sensor networks along their highways
to monitor air pollution levels from traffic and traffic movement to solve
this problem. An extended period of traffic congestion causes cars to
use more gasoline, which raises the emissions of hydrocarbons (HC),
nitrogen dioxide (NO,), carbon dioxide (CO,), and other pollutants
[14, 15]. Numerous health issues, like as respiratory infections and
diseases, heart disease, lung cancer, and other ailments, are linked to
these emissions. What is more worrisome is that if drivers are aware
of alternate routes or times to avoid traffic, they may reduce traffic
bottlenecks. This has the potential to improve health outcomes and
lessen air pollution.

Several studies have explored the use of traffic data analysis
to predict and simulate air quality [6]. This study mostly used long
short-term memory (LSTM) methods, which are well-known for
outperforming many other Deep Learning (DL) models in terms of
performance. Quantifying important pollutants including O,, CO, NO,,
and CO, was made possible in large part by LSTM models [5]. Weather,
car emissions, pollution levels, and traffic data were among the five
different combinations of measures and components examined during
the experiment [16]. It is important to keep in mind that the impacts
of high traffic volume were not considered in the study. Agrahari et al.
[17] propose a stochastic adaptive traffic signal control system utilizing
reinforcement learning to effectively prevent traffic congestion. This
system enhances the standard intersection model by incorporating real-
world complexities like turning fractions and lane configurations.

The study highlights the importance of traffic awareness
for travelers’ comfort and reduced stress, emphasizing that traffic
management systems are an essential component of smart cities [8]. A
critical aspect of comprehensive traffic management services is the smart
mobility component. Traffic congestion not only causes inconvenience

in many large cities but also contributes to various health issues and
consumes significant amounts of time [5]. The key to minimizing the
harmful health consequences of traffic-related air pollution is to put well-
managed programs into place to reroute traffic onto less crowded routes
in addition to lowering air pollution levels. Given the complexity and
dynamic nature of road networks, accurately and efficiently predicting
traffic flow is difficult. Urban growth, ease of travel, and mobility are
all critical components of traffic management in smart cities, and they
are intimately related to intelligent solutions for reducing congestion. In
contrast to other research that mostly relied on transport data to predict
air pollution, this study emphasizes the critical role that air quality data
plays in predicting traffic intensity, proving that air pollution data might
be a useful tool for precise road traffic forecasting.

DL is one of the most well-known subfields within ML, which
comprises multiple subfields. An essential component of artificial
intelligence (Al) is DL, which makes use of algorithms meant to get
better over time. At its foundation, DL uses artificial neural networks
(ANNs), in contrast to standard ML, which is predicated on more
straightforward ideas [9]. By mimicking cognitive processes seen in the
human brain, these ANNs replicate human cognition and learning. An
age of intricate and multipurpose neural networks has been ushered in
by improvements in processing power and the introduction of Big Data
technologies. Computers can now recognize patterns, learn from them,
and solve difficult problems more quickly than humans ever could
thanks to this ground-breaking advancement [10].

Significant improvements have been achieved in various
domains, including image classification, language translation, and
speech recognition, thanks to DL. Without requiring human assistance,
DL has demonstrated leadership in several disciplines, including speech
recognition, picture categorization, and pattern detection [18, 19]. Many
layers, each utilizing the potential of DL, form the basis of an ANN [20,
21]. Deep neural networks, a subset of neural networks, have layers
capable of interpreting complex patterns related to image analysis and
textual data [22, 23]. As the field of ML continues to expand quickly,
more businesses are utilizing this ground-breaking technology to create
creative models [24, 25].

Optimizing traffic signal control to minimize congestion, reduce
environmental impact, and improve traffic flow, while considering
real-time environmental factors such as air quality, weather, and traffic
volume. The main goal of the study is to assess how well the suggested
strategy works to reduce traffic congestion and produce the intended
results. It also aims to assess the effectiveness of the models used in
this study and their ability to reduce reliance on different types of traffic
sensors installed on roadways, while the objective of this research is to
develop an intelligent traffic Signal control system using ML algorithms
and environmental data to enhance responsiveness to dynamic traffic
conditions. To run and maintain these sensors, a substantial number
of resources is needed. A traffic forecasting model that solely uses
data on air pollution might be developed if it becomes feasible to rely
mostly on commonly used sensors made for intricate urban traffic
situations, thereby making the intricate network of traffic sensors
unnecessary. This research contributes to the development of intelligent
transportation systems by presenting a novel approach to optimizing
traffic signal control using ML and environmental data. The proposed
method integrates real-time environmental data with ML algorithms to
adapt traffic signal control to current conditions, reducing congestion
and minimizing environmental impact. The gap in this research lies in
the integration of environmental data, such as air quality and weather
conditions, with ML algorithms to optimize traffic signal control. This
approach differs from existing methods that solely rely on traffic volume
and timing data, providing a more comprehensive and sustainable
solution for traffic management. Additionally, the use of ML enables
real-time adaptation to changing conditions, improving the efficiency
and effectiveness of traffic signal control.
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This study is organized as follows: Section 2 presents the
methodology, the schematic framework, sample dataset data
preprocessing and diagnosis model, parameters, and metrics explained.
Section 3 presents experimentation results and are discussed. Section 4
presents the conclusion and future works.

2. Methodology

2.1. Predictive analytics in urban environments

Among the several subfields that make up Al is ML. ML
approaches comprise a range of models and algorithms that learn from
and adapt to the data they analyze, imitating human decision-making.
Based on the data they are trained on these ML models gradually pick
up new talents and improve their learning capacity. In the context
of traffic management, the control unit at an isolated junction can
be viewed as an agent that engages in closed-loop Markov Decision
Process interaction with the traffic environment, as shown in Figure 1
[26, 27]. Traffic circumstances (e.g., waiting time, queue length, and
total delay) are mapped to the control policy to identify the best course
of action, which may include phase shift, cycle length adjustment, and
green time extension [28, 29].

On the training set and the testing set, the suggested model
showed an accuracy of 72.25% and 85.03%, respectively. The data
had a mean absolute error (MAE) of 0.28 and a root mean square error
(RMSE) of 0.46. The Naive Bayes (NB) classifier model’s results
demonstrate its efficacy in predicting the impact of weather on traffic
patterns. The objective of this strategy was to create an Advanced
Traveler Information System and an Advanced Traffic Management
System for the city of Dhaka. This would allow cars to choose less
congested routes, therefore reducing traffic congestion.

The approach of supervised learning regression and classification
issues are addressed by K-nearest neighbors (KNN), which assumes that
comparable objects are near to one another. Sreejith et al. [11] tackle the
issue of inflexible model designs that fail to account for interactions
dependent on time and space. For short-term traffic flow prediction,
they suggest the Adaptive-STKNN model, which is based on Adaptive
Space and Time and utilizes KNN methodology. The spatiotemporal
weights, adaptive spatial neighbors, and time intervals included in this
model allow it to fully account for spatial variations in urban traffic.
Cross-correlation and autocorrelation functions were employed to
determine the optimal spatial and temporal dependencies for each road
segment, enabling an accurate assessment of traffic impacts. Then,
to improve the effectiveness of candidate neighbor search strategies,
distance functions are coupled with adaptive spatiotemporal weights.

Figure 1
An example of how several techniques were used to forecast traffic
flow
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After several potential neighbors and a weighting variable in the
prediction module, this method produces an adaptive spatiotemporal
model that incorporates real-time changes in traffic circumstances. In
Noaeen et al. [12], with an emphasis on time series data about traffic
conditions on the roads, the Kernel KNN approach is developed. To
ascertain the dynamic aspects of traffic, the process entails gathering
data on road traffic flow and using reference sequences. To analyze time
series data on road traffic conditions, a kernel module is developed that
compares and matches data sequences from reference and current data,
with a focus on the use of automobiles for transportation.

2.2. Environmental data sources

Incorporating environmental data into traffic signal control
optimization is a forward-thinking strategy that aims to balance traffic
efficiency with environmental sustainability. Various environmental
data sources provide valuable insights into the external conditions that
can affect traffic flow and the environmental impact of vehicles. These
data sources range from air quality measurements and weather data to
noise pollution levels and even real-time emissions data. Understanding
these sources and their potential applications is essential to developing
smarter, more adaptive traffic control systems. Air quality data is one
of the most critical environmental data sources for optimizing traffic
signal control in urban areas. Poor air quality is often associated with
high levels of vehicle emissions, particularly in densely populated
areas. By monitoring air quality in real-time, traffic management
systems can adjust signal timings to reduce congestion and emissions
in areas where air quality is deteriorating. Air quality data is typically
collected using sensors that measure the concentration of various
pollutants in the air, such as nitrogen dioxide (NO,), carbon monoxide
(CO), particulate matter (PM2.5 and PM10), and ground-level ozone
(O,). These pollutants are primarily generated by vehicle emissions
and can have severe health impacts on urban populations, particularly
those with respiratory conditions. Several organizations provide air
quality data through networks of sensors and monitoring stations. For
instance, the Environmental Protection Agency in the United States
operates the Air Quality System, which collects data from thousands
of monitoring stations across the country. Other countries have similar
systems in place, such as the European Environment Agency’s Air
Quality e-Reporting system. By integrating air quality data with traffic
signal control systems, ML algorithms can be used to prioritize traffic
flow in ways that minimize emissions. For example, during periods of
poor air quality, the system could give priority to public transportation
or low-emission vehicles, while reducing the frequency of signals for
high-emission vehicles. Alternatively, traffic could be rerouted away
from areas with particularly poor air quality to minimize exposure to
harmful pollutants.

Weather conditions have a significant impact on traffic patterns
and vehicle performance. Rain, snow, fog, and extreme temperatures
can all affect driver behavior, vehicle speed, and road safety. By
incorporating weather data into traffic signal control systems, cities
can improve traffic flow and safety under various weather conditions.
Weather data is collected from a variety of sources, including weather
stations, satellites, and radar systems. National meteorological
agencies, such as the National Weather Service in the United States
and the European Centre for Medium-Range Weather Forecasts,
provide real-time weather data and forecasts that can be integrated into
traffic management systems. ML algorithms can analyze weather data
in conjunction with traffic data to predict how weather conditions will
impact traffic flow. For instance, during periods of heavy rain, traffic
signal timings could be adjusted to allow for longer stopping distances
and slower speeds. Similarly, during periods of extreme heat, traffic
signals could be optimized to reduce the amount of time vehicles spend
idling at intersections, thereby reducing the risk of overheating and
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improving fuel efficiency. In addition to real-time adjustments, weather
data can also be used to inform long-term traffic signal planning. For
example, historical weather data can be analyzed to identify patterns in
traffic behavior during different seasons, allowing for the development
of more effective traffic management strategies for specific weather
conditions.

Noise pollution is another environmental factor that can be
incorporated into traffic signal control optimization. High levels of noise
pollution are often associated with heavy traffic and can have negative
health effects, including stress, sleep disturbances, and cardiovascular
issues. By monitoring noise levels in real-time, traffic management
systems can adjust signal timings to reduce noise pollution in sensitive
areas, such as residential neighborhoods or near schools and hospitals.
Noise pollution data is typically collected using sensors that measure
sound levels in decibels (dB). These sensors can be placed at strategic
locations throughout a city to monitor noise levels in real-time. In some
cases, noise pollution data may also be available from mobile devices
or crowd-sourced platforms, where users can report noise levels in
their area. By integrating noise pollution data with traffic signal control
systems, cities can develop strategies to reduce noise in high-traffic
areas. For example, during periods of high noise pollution, traffic signals
could be adjusted to reduce the speed of vehicles in sensitive areas, or
traffic could be rerouted away from these areas altogether. Additionally,
traffic signals could be synchronized to reduce the number of stop-and-
go movements, which are a significant source of vehicle noise.

Real-time emissions data provides insights into the environmental
impact of vehicles on the road. By monitoring emissions from
individual vehicles or groups of vehicles, traffic management systems
can adjust signal timings to reduce overall emissions and improve air
quality. Emissions data is typically collected using sensors that measure
the concentration of pollutants in vehicle exhaust. These sensors can be
placed at strategic locations throughout a city, such as at intersections
or along major roadways, to monitor emissions in real-time. In some
cases, emissions data may also be available from vehicles equipped
with onboard diagnostic systems, which can report emissions directly
to traffic management systems. By integrating real-time emissions
data with traffic signal control systems, cities can develop strategies to
reduce emissions in areas with high levels of pollution. For example,
during periods of high emissions, traffic signals could be adjusted to
prioritize the flow of low-emission vehicles, such as electric cars or
public transportation. Additionally, traffic signals could be synchronized
to reduce the number of idling vehicles at intersections, which are a
significant source of emissions.

In recent years, the proliferation of mobile devices and apps
has opened up new opportunities for collecting environmental data
through crowd-sourced platforms. Apps that allow users to report traffic
conditions, air quality, and noise pollution in real-time provide a valuable
supplement to traditional sensor networks. By leveraging crowd-sourced
data, traffic management systems can gain a more comprehensive and
granular understanding of environmental conditions across a city.
Mobile data can be collected through a variety of apps, including those
designed specifically for environmental monitoring, as well as more
general navigation or health apps. For instance, users of navigation apps
like Waze or Google Maps can report traffic incidents, congestion, and
other conditions in real-time, providing valuable data that can be used
to optimize traffic signal control. Additionally, some apps are designed
to collect environmental data passively, such as air quality monitoring
apps that use the sensors in smartphones to measure pollutant levels in
the air. By integrating crowd-sourced and mobile data with traditional
environmental data sources, traffic management systems can develop
more responsive and adaptive strategies for optimizing traffic flow
and reducing environmental impacts. The performance of the model
is greatly impacted by the vital duties of data processing and gathering
in any technique. This study made use of a sizable, openly accessible

dataset that City Pulse in Aarhus, Denmark, gathered in real time.
Two datasets were primarily used: pollution data and traffic intensity
data [13]. The city has numerous sensors deployed that gather data
on passing cars every five minutes. The air dataset includes details on
pollutants emitted by these vehicles, such as particulate matter, ozone
(O,), carbon monoxide (CO), and sulfur dioxide (SO,). The statistics
on traffic, vehicle density, and pollution included 96,000 occurrences
of data spanning more than a year. Each instance had characteristics
including O,, CO,, SO,, and NO, levels, as well as a date indicating
the arrival of a vehicle and a vehicle count. Because traffic flow and
pollution were used to predict each other, separate statistics were
provided for each. By comparing the timestamps of the two databases,
pollution levels and vehicle traffic data from the Aarhus website were
merged. This study provided insightful information on the dynamic
pulse of Aarhus by using real-time data from publicly accessible, open-
source sensor datasets.

In addition to pollution statistics (NO,, CO, SO,, O,, latitude,
longitude, and information on the distance between two locations),
the traffic datasets utilized in the investigations contained information
on traffic intensity. The associations between the dataset’s properties
were examined using a correlation matrix graph (Figure 2). This graph
indicates the degree of correlation between the various qualities.

This research does not directly use the vehicle data from the
traffic dataset. Rather, they were timestamp-based, therefore they were
incorporated into the pollution dataset. The fact that the sensors utilized
to collect the data were positioned along the same paths made the
combining of these datasets conceivable. There is a direct relationship
between the quantity of pollutants released and the number of cars on
the road; larger traffic volumes result in higher emissions of CO,, SO,,
and NO,,.

Figure 2
Leverage on the ML and ensemble models for traffic forecasting in
a smart city
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Rather than focusing on minute details, the study primarily
uses pollution data to develop a model suited for broader metropolitan
monitoring, which helps reduce infrastructure costs associated with
traffic flow evaluation. By relying on pollution data for generalized
predictions, the approach eliminates the need for specialized sensors,
offering a financial advantage through reduced sensor requirements.
Table 1 provides a sample of the dataset, and Figure 2 illustrates the
ensemble models used for smart city traffic forecasting.

2.3. Ensemble methods for regression modeling

In this stage, a three-step procedure was used to create an
ensemble model, as shown in Figure 3. The first step involved dividing
the data into several bootstrap samples, or samples of size “B,” by
randomly choosing ‘B’ observations from an initial dataset of size “N.”
Further actions were then done in the following ways:

A" =a'l,a'2,...a'B,...a’1,a%,...a%B,....d%1,a%,...a’B. (1)

After using bootstrapping, N independent weak learners were fitted on
each dataset in the following phase:

Wl =w! w?w,.. . Wk ®)
After fitting, the outcomes of every N-independent weak model were
merged using the following formula to produce an ensemble model
with low variance:

AN =1/n 3N Wt 3)

AN was an aggregated result after the ensemble.

To improve prediction accuracy, this work integrated many
models using a variety of bagging ensemble strategies. The final model
improved its predictions by incorporating the knowledge from multiple
inferior models. The following is a summary of this model’s workflow:
The bootstrap technique was initially used to divide the dataset into
numerous B-sized samples. Next, many weak models were trained on
various samples from the original dataset at the same time. Conclusions
were reached by combining the predictions produced by these weak
models using techniques such as averaging.

The following three combinations of bagging ensembles were
used in the study:

1) KNN ensemble
2) Random forest ensemble
3) Multi-layer perceptron ensemble

Because it had the lowest error rate out of all three models, the
KNN ensemble performed best.

Figure 3
Performance comparison between proposed model and other
baseline model
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2.4. Evaluation metrics

To evaluate the models, we employed established measures.
The most often utilized assessment measures that were employed were
R-squared (R-SQR), MAE, relative absolute error (RAE), and RMSE.

MAE=1¥" |6, - GP| 4)
MAE=1¥" (G, -GP)’ (3)
RMSE = /1 Y0, (Gi — GP)? ©)
ME = Maz|G; — GP| (7N
Rsquared = 1 — Sreem ®)

3. Results and Discussion

3.1. Comparative analysis of regression methods

This study compared the performance of three regression
methods—Linear Regression (LR), The KNN, NB, and KNN combined
with Logistic Regression (KNN-LR) in predicting continuous
outcomes. Our results show that LR outperformed KNN and NB in
terms of coefficient of determination (R-squared) and mean squared
error. LR achieved an RAE value of 0.92, compared to 0.75 for KNN
and 0.42 for NB. Additionally, LR had the highest RMSE of 2.09,
indicating better fit and predictive accuracy. The superiority of LR can
be attributed to its ability to handle collinearity and feature selection,

Table 1
A sample of the dataset
Ozone Particular matter = Carbon monoxide Sulfur dioxide Nitrogen dioxide Time stamp Vehicle count
55 38 31 51 82 8 January 2014 6:45 0
55 42 30 54 79 8 January 2014 6:50 0
50 38 29 51 82 8 January 2014 6:55 0
47 36 28 56 80 8 January 2014 7:00 0
42 41 32 54 75 8 January 2014 7:05 0
41 37 27 54 79 8 January 2014 7:10 0
37 42 24 57 81 8 January 2014 7:15 0
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which is critical in high-dimensional data. NB, on the other hand,
showed poor performance due to over-regularization. These findings
suggest that LR is a suitable choice for regression analysis, especially
when dealing with complex data. However, further research is needed
to validate these results and explore the applications of LR in different
domains. To identify the best model for traffic forecasting—that is, a
model that can accurately estimate traffic flow or vehicle count this
section compares the several regression models that were employed in
the experiment. The R-squared (R-SQR) values of the models are used
to assess how well they work. These values show how much of the
response variable’s variation is explained by the regression model. A
perfect match is shown by an ideal R-SQR value of 1, which shows
very little fluctuation between observed and anticipated values. The
KNN model performed better in this investigation, as evidenced by its
greatest R-SQR score.

The use of two widely accepted error measures, MAE and RMSE,
to evaluate the model’s performance about multiple baseline models
is demonstrated in Figure 3. Lower RMSE and MAE values indicate
improved model accuracy. These measures quantify the difference
between expected and actual values. The model performed better than
the other baseline models, as seen in Figure 4, with the lowest error
rates in comparison.

The study’s results were also compared with those of the
foundational paper [14]. Findings indicated that bagging an ensemble
instead of boosting one in the study by Jereb et al. [14], decreased by
more than 30% the mistake rate. The two research are comparable
because they both used the same dataset and focused on related
topics. Most ML initiatives start with comparable data pre-processing
procedures. Jereb et al. [14] employ the KNN and Elastic Net models
instead of ANNs and Decision Trees. Results from the base publication
are included in Figure 4 for reference, making it easier to compare the
effectiveness of the suggested strategy with previous studies.

3.2. Sources of systematic error

This research is currently limited to using data from Lagos City.
It is important to understand that the switch to electric vehicles will not
happen quickly, even though an increase in their presence is predicted
to dramatically lower pollution levels in large cities. The model might
need to adjust to new traffic and pollutant patterns during this phase
of transition. The world is moving towards electric cars due to air
quality issues. For example, starting in 2020, several nations have
set aggressive goals to sell more than seven million electric vehicles
yearly [14]. Because the model used in this study is dependent on
the pollution that conventional cars generate, gradually substituting
electric vehicles for conventional ones might potentially undermine
the model’s long-term viability. Optimizing traffic signal control using

Figure 4
Performance comparison of baseline models with the ensemble
ML model
3
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ML and environmental data holds great promise for improving urban
traffic efficiency and sustainability. However, achieving reliable and
accurate optimization is not without challenges. Systematic errors
recurring biases or inaccuracies in the data or models can undermine
the effectiveness of these systems. This discussion explores key
sources of systematic error that can impact the optimization process
and suggests potential mitigation strategies. ML models are only as
good as the data used to train them. One of the most significant sources
of systematic error is bias in the training data. In the context of traffic
signal optimization, if the historical traffic and environmental data
used to train the model are not representative of all conditions, the
model may make inaccurate predictions. For example, if the training
data predominantly reflects traffic patterns during fair weather, the
model may perform poorly under adverse weather conditions, such as
heavy rain or snow. To mitigate this, it is crucial to ensure that the
training data is diverse and representative of a wide range of scenarios,
including different times of day, days of the week, seasons, weather
conditions, and special events. Data augmentation techniques, such
as artificially generating scenarios or under-sampling overrepresented
cases, can also help balance the dataset. Another common source of
systematic error comes from inaccuracies in the environmental data
used for decision-making. Sensors that monitor air quality, weather,
and emissions may malfunction, degrade over time, or provide readings
with inherent inaccuracies due to calibration issues or environmental
interference. For instance, air quality sensors may provide biased data
due to local sources of pollution (e.g., nearby industrial emissions),
while weather stations may not accurately capture microclimates
within a city. To reduce systematic errors from environmental data
inaccuracies, sensor maintenance and calibration must be prioritized.
Implementing sensor redundancy deploying multiple sensors in critical
areas can help cross-validate data and ensure reliability. Additionally,
using predictive models to interpolate or smooth data from nearby
sensors can mitigate gaps caused by sensor failures or outlier readings.
Temporal misalignment between different data sources can introduce
systematic errors into the optimization process. Traffic signal control
systems often rely on real-time data to adjust timings dynamically.
However, if there is a delay in receiving environmental data (e.g., due
to communication lags or processing times), the system may base its
decisions on outdated or incomplete information. This can result in
suboptimal traffic signal adjustments, particularly in rapidly changing
conditions such as during sudden weather shifts or traffic incidents.
Addressing temporal misalignment requires synchronizing the data
streams from various sources as closely as possible. Implementing
real-time data processing pipelines and reducing latency in data
transmission can help ensure that the traffic control system responds
to the most current conditions. Additionally, ML models can be
trained to account for potential delays by predicting short-term future
states rather than reacting solely to the present. Overfitting occurs
when a ML model becomes too complex and begins to “memorize”
the training data rather than generalizing from it. This can lead to
systematic errors, particularly when the model encounters real-
world scenarios that deviate from the patterns in the training data.
In traffic signal optimization, overfitting could result in a model that
performs well under specific conditions but fails to adapt to unusual
traffic patterns, such as those caused by accidents, construction, or
public events. To prevent overfitting, regularization techniques such
as L1/L2 regularization or dropout can be employed to limit model
complexity. Cross-validation methods can also be used to evaluate
the model’s performance on unseen data, ensuring that it generalizes
well to different scenarios. Furthermore, maintaining a dynamic model
that is periodically retrained on new data can help the system adapt
to evolving traffic patterns and environmental conditions. In real-
world traffic management systems, human operators may occasionally
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override automated decisions made by ML algorithms, particularly
during emergencies or special events. Although human intervention
can be valuable in certain situations, inconsistencies in when and
how these interventions occur can introduce systematic errors into the
optimization process. For example, if operators frequently intervene
in specific types of scenarios, the ML model may not have sufficient
opportunities to learn from these situations, leading to degraded
performance in similar future events. To address this, a clear protocol
for human intervention should be established, with operators logging
the reasons for their actions. This data can then be fed back into the
ML model to improve its decision-making capabilities. Additionally,
providing operators with decision support tools that highlight the
rationale behind the algorithm’s suggestions can reduce unnecessary
interventions and allow the model to operate autonomously more
effectively. Systematic errors in optimizing traffic signal control using
ML and environmental data arise from several sources, including
biases in training data, inaccuracies in environmental data, temporal
misalignment, overfitting, and inconsistent human intervention.
Addressing these issues requires careful attention to data quality,
model robustness, and system integration. By mitigating these sources
of error, traffic signal optimization systems can more reliably improve
traffic flow, reduce emissions, and enhance the sustainability of urban
transportation networks.

3.3. Comparison of models on different dataset sizes

An 85,000-item dataset was used to train and test the bagging
KNN model, which turned out to be the top-performing model. To
determine whether the model’s performance held up with fewer
instances, a random subset of 20,000 instances was chosen from the
dataset. Models were then trained on this smaller dataset. After that,
the model was put to the test, and Figures 5 and 6 show the individual
findings for 85,000 and 20,000 cases, respectively. The results show that
even with a lower dataset, the model continues to function as expected.
The model’s ability to learn new patterns as it processes more data can
be used to explain any little variance in the findings and improve its
overall performance.

3.4. Threat to validity

As of right now, this analysis has only used data from Lagos City.
Even though more cars are being driven, which should significantly
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lower pollution levels in and around large cities, it is important to
understand that the switch to electric vehicles will not happen quickly.
In this phase of transition, the model might adjust to new patterns. Air
pollution concerns are driving a global shift in the usage of electric
vehicles. For example, starting in 2020, certain nations have set high
goals to sell over seven million electric vehicles yearly. Because the
plan outlined in this study depends on the pollution that conventional
vehicles emit, the progressive substitution of electric vehicles for them
may provide a problem for their long-term viability.

4. Conclusions

Accurate traffic flow prediction is a key objective for smart
cities and can significantly enhance drivers’ ability to manage their
trips. This study utilized pollution and traffic data from Aarhus,
Germany, to estimate traffic flow. The dataset was subjected to a
variety of conventional ML techniques to determine the best accurate
model; KNN produced the lowest values of MAE and RMSE. After
assessing the output of conventional models, bagging and stacking
ensemble techniques were used to increase accuracy even more.
Using bootstrapping with replacement, the dataset was separated into
samples, which were subsequently utilized to train several homogenous
models. Combining the results from these models resulted in a robust
bagging ensemble model, with the KNN bagging ensemble being the
most accurate combination. The capacity of KNN can handle nonlinear
data is responsible for its outstanding performance. But if there are too
few nearest neighbors (K) or too many, KNN may underfit or overfit.
The suggested bagging ensemble strategy reduced error rates by thirty
percent when this experimental study was contrasted with earlier
research that employed boosting for traffic flow prediction in smart
cities.
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