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Abstract: Traffic signal control is a critical component of urban transportation management, and optimizing its performance can significantly 
reduce congestion, decrease travel times, and improve air quality. This study proposes a novel approach to optimizing traffic signal control using 
machine learning and environmental data. This work focuses on the interplay between smart city infrastructure and environmental data to provide a 
novel method for traffic pattern prediction. Mitigating traffic congestion is a pressing concern in urbanized societies and emerging smart cities. This 
study explores leveraging publicly available air pollution data as an environmental indicator to enhance urban mobility and predict traffic patterns. 
Taking into account factors including vehicle emissions, weather patterns, and topographical features, the study will look at possible connections 
between air pollution and traffic congestion. The goal of this project is to develop a prediction model that uses real-time air quality data for traffic 
forecasting by utilizing big data analytics and machine learning approaches. According to our research, the K-nearest neighbors (KNN) model 
performs better than any other regression model examined. According to experimental findings, the KNN model considerably lowers the error rate 
in traffic congestion prediction by over 30%.
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1. Introduction
Traffic signal control is a crucial aspect of urban transportation 

management, aiming to minimize congestion, reduce travel times, 
and decrease environmental impact. Traditional traffic signal control 
systems rely on fixed timers or simple sensor-based approaches, which 
often lead to inefficient traffic flow and increased emissions. With 
the rapid growth of urban populations and the resulting rise in traffic 
congestion, there is a pressing need for innovative solutions to optimize 
traffic signal control. Traffic congestion is a serious issue with significant 
negative impacts on both the economy and the environment. One of the 
primary contributors to urban traffic congestion is improperly operated 
traffic signals [1]. The diversity and unpredictable nature of traffic have 
surpassed the effectiveness of conventional traffic light systems, which 
depend on predetermined, fixed-time plans for junction control, despite 
major advances in online adaptive traffic signal control. When cars 
are present at a junction, online adaptive signal control can react by 
modifying the signal timings in real-time in response to shifting traffic 
patterns, in contrast to pre-timed fixed signal control, which repeats a 
predetermined regime. However, current adaptive control techniques 
struggle to effectively manage congestion. These methods often rely 

on systems that fail to accurately simulate traffic flow or are based on 
application-specific heuristics, which are inadequate due to the highly 
unpredictable nature of real-world traffic, such as sudden accidents that 
obstruct traffic flow [2, 3]. To improve the effectiveness of the traffic 
light management systems in place today, automated agents with the 
ability to learn, self-configure, and self-optimize must be put into place. 
As global urbanization accelerates, the number of vehicles on the 
road increases, exacerbating traffic congestion. This growth is placing 
unprecedented strain on existing traffic infrastructures, contributing to 
congestion, air pollution, and increased travel times in cities. Traffic 
signal control, a fundamental component of urban traffic management 
systems, plays a vital role in regulating the flow of vehicles. 
Traditionally, traffic signals have been controlled by static or rule-based 
systems, where the timing of signal phases is predetermined based on 
historical traffic patterns [4, 5]. These systems, although effective to 
some degree, are inherently limited in their ability to adapt to real-time 
fluctuations in traffic conditions and environmental factors, leading to 
inefficiencies and contributing to environmental and economic costs. 
The advent of machine learning (ML) technologies offers a promising 
avenue to enhance the efficiency of traffic signal control systems. 
ML algorithms can learn from large volumes of real-time traffic data, 
predict traffic conditions, and dynamically adjust signal timings to 
optimize traffic flow [2, 6]. This capability represents a significant 
departure from conventional systems, as it enables a more responsive 
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and adaptive approach to managing traffic, ultimately helping to reduce 
congestion, improve travel times, and lower emissions. In addition to 
traffic data, incorporating environmental data into traffic signal control 
strategies offers a powerful tool for addressing sustainability challenges 
in urban environments. Environmental data, such as air quality metrics, 
weather conditions, and noise levels, provide crucial context that can 
inform more holistic traffic management strategies [7, 8]. For instance, 
adjusting traffic signals in response to poor air quality or adverse weather 
conditions can mitigate the negative impacts of vehicle emissions and 
enhance the overall livability of urban areas.

With the advent of ML, there is an opportunity to revolutionize 
how traffic signals are managed. By leveraging ML algorithms, traffic 
signals can dynamically adjust based on real-time traffic data, leading to 
more efficient traffic flow [9]. Additionally, incorporating environmental 
data such as weather conditions and air quality can further enhance 
these systems [3]. This data-driven approach can help reduce emissions, 
improve air quality, and create more sustainable urban environments. 
The use of ML as a direct technique to attain adaptive optimum control 
in nonlinear systems has grown in popularity. ML agents carry out tasks 
by using perception to keep an eye on their environment, acting to change 
it, and then analyzing the results to gain knowledge and get better [10, 
11]. Sequential decision-making control issues may now be effectively 
tackled with the help of deep reinforcement learning (DRL) [12, 13]. In 
high-dimensional, dynamic, and complicated settings like Atari games, 
DRL has shown to be incredibly successful [4]. A DRL agent must 
constantly interact with its surroundings to do a task, picking up on 
the qualities that are essential for every assignment. Understanding the 
connection between the agent’s activities and their ultimate effects on 
the environment is a vital component of this interaction.

Medical experts assert that pollution and poor air quality, which 
are primarily caused by traffic congestion, are the primary causes of 
the higher-than-average death rates in metropolitan areas of big cities 
[5]. The 115 biggest cities in the European Union, home to around 40 
million people together, find it difficult to maintain the high criteria for 
air quality. Many cities are putting sensor networks along their highways 
to monitor air pollution levels from traffic and traffic movement to solve 
this problem. An extended period of traffic congestion causes cars to 
use more gasoline, which raises the emissions of hydrocarbons (HC), 
nitrogen dioxide (NO2), carbon dioxide (CO2), and other pollutants 
[14, 15]. Numerous health issues, like as respiratory infections and 
diseases, heart disease, lung cancer, and other ailments, are linked to 
these emissions. What is more worrisome is that if drivers are aware 
of alternate routes or times to avoid traffic, they may reduce traffic 
bottlenecks. This has the potential to improve health outcomes and 
lessen air pollution.

Several studies have explored the use of traffic data analysis 
to predict and simulate air quality [6]. This study mostly used long 
short-term memory (LSTM) methods, which are well-known for 
outperforming many other Deep Learning (DL) models in terms of 
performance. Quantifying important pollutants including O2, CO, NO2, 
and CO2 was made possible in large part by LSTM models [5]. Weather, 
car emissions, pollution levels, and traffic data were among the five 
different combinations of measures and components examined during 
the experiment [16]. It is important to keep in mind that the impacts 
of high traffic volume were not considered in the study. Agrahari et al. 
[17] propose a stochastic adaptive traffic signal control system utilizing 
reinforcement learning to effectively prevent traffic congestion. This 
system enhances the standard intersection model by incorporating real-
world complexities like turning fractions and lane configurations.

The study highlights the importance of traffic awareness 
for travelers’ comfort and reduced stress, emphasizing that traffic 
management systems are an essential component of smart cities [8]. A 
critical aspect of comprehensive traffic management services is the smart 
mobility component. Traffic congestion not only causes inconvenience 

in many large cities but also contributes to various health issues and 
consumes significant amounts of time [5]. The key to minimizing the 
harmful health consequences of traffic-related air pollution is to put well-
managed programs into place to reroute traffic onto less crowded routes 
in addition to lowering air pollution levels. Given the complexity and 
dynamic nature of road networks, accurately and efficiently predicting 
traffic flow is difficult. Urban growth, ease of travel, and mobility are 
all critical components of traffic management in smart cities, and they 
are intimately related to intelligent solutions for reducing congestion. In 
contrast to other research that mostly relied on transport data to predict 
air pollution, this study emphasizes the critical role that air quality data 
plays in predicting traffic intensity, proving that air pollution data might 
be a useful tool for precise road traffic forecasting.

DL is one of the most well-known subfields within ML, which 
comprises multiple subfields. An essential component of artificial 
intelligence (AI) is DL, which makes use of algorithms meant to get 
better over time. At its foundation, DL uses artificial neural networks 
(ANNs), in contrast to standard ML, which is predicated on more 
straightforward ideas [9]. By mimicking cognitive processes seen in the 
human brain, these ANNs replicate human cognition and learning. An 
age of intricate and multipurpose neural networks has been ushered in 
by improvements in processing power and the introduction of Big Data 
technologies. Computers can now recognize patterns, learn from them, 
and solve difficult problems more quickly than humans ever could 
thanks to this ground-breaking advancement [10].

Significant improvements have been achieved in various 
domains, including image classification, language translation, and 
speech recognition, thanks to DL. Without requiring human assistance, 
DL has demonstrated leadership in several disciplines, including speech 
recognition, picture categorization, and pattern detection [18, 19]. Many 
layers, each utilizing the potential of DL, form the basis of an ANN [20, 
21]. Deep neural networks, a subset of neural networks, have layers 
capable of interpreting complex patterns related to image analysis and 
textual data [22, 23]. As the field of ML continues to expand quickly, 
more businesses are utilizing this ground-breaking technology to create 
creative models [24, 25]. 

Optimizing traffic signal control to minimize congestion, reduce 
environmental impact, and improve traffic flow, while considering 
real-time environmental factors such as air quality, weather, and traffic 
volume. The main goal of the study is to assess how well the suggested 
strategy works to reduce traffic congestion and produce the intended 
results. It also aims to assess the effectiveness of the models used in 
this study and their ability to reduce reliance on different types of traffic 
sensors installed on roadways, while the objective of this research is to 
develop an intelligent traffic Signal control system using ML algorithms 
and environmental data to enhance responsiveness to dynamic traffic 
conditions. To run and maintain these sensors, a substantial number 
of resources is needed. A traffic forecasting model that solely uses 
data on air pollution might be developed if it becomes feasible to rely 
mostly on commonly used sensors made for intricate urban traffic 
situations, thereby making the intricate network of traffic sensors 
unnecessary. This research contributes to the development of intelligent 
transportation systems by presenting a novel approach to optimizing 
traffic signal control using ML and environmental data. The proposed 
method integrates real-time environmental data with ML algorithms to 
adapt traffic signal control to current conditions, reducing congestion 
and minimizing environmental impact. The gap in this research lies in 
the integration of environmental data, such as air quality and weather 
conditions, with ML algorithms to optimize traffic signal control. This 
approach differs from existing methods that solely rely on traffic volume 
and timing data, providing a more comprehensive and sustainable 
solution for traffic management. Additionally, the use of ML enables 
real-time adaptation to changing conditions, improving the efficiency 
and effectiveness of traffic signal control.
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This study is organized as follows: Section 2 presents the 
methodology, the schematic framework, sample dataset data 
preprocessing and diagnosis model, parameters, and metrics explained. 
Section 3 presents experimentation results and are discussed. Section 4 
presents the conclusion and future works.

2. Methodology

2.1. Predictive analytics in urban environments
Among the several subfields that make up AI is ML. ML 

approaches comprise a range of models and algorithms that learn from 
and adapt to the data they analyze, imitating human decision-making. 
Based on the data they are trained on these ML models gradually pick 
up new talents and improve their learning capacity. In the context 
of traffic management, the control unit at an isolated junction can 
be viewed as an agent that engages in closed-loop Markov Decision 
Process interaction with the traffic environment, as shown in Figure 1 
[26, 27]. Traffic circumstances (e.g., waiting time, queue length, and 
total delay) are mapped to the control policy to identify the best course 
of action, which may include phase shift, cycle length adjustment, and 
green time extension [28, 29].

On the training set and the testing set, the suggested model 
showed an accuracy of 72.25% and 85.03%, respectively. The data 
had a mean absolute error (MAE) of 0.28 and a root mean square error 
(RMSE) of 0.46. The Naïve Bayes (NB) classifier model’s results 
demonstrate its efficacy in predicting the impact of weather on traffic 
patterns. The objective of this strategy was to create an Advanced 
Traveler Information System and an Advanced Traffic Management 
System for the city of Dhaka. This would allow cars to choose less 
congested routes, therefore reducing traffic congestion.

The approach of supervised learning regression and classification 
issues are addressed by K-nearest neighbors (KNN), which assumes that 
comparable objects are near to one another. Sreejith et al. [11] tackle the 
issue of inflexible model designs that fail to account for interactions 
dependent on time and space. For short-term traffic flow prediction, 
they suggest the Adaptive-STKNN model, which is based on Adaptive 
Space and Time and utilizes KNN methodology. The spatiotemporal 
weights, adaptive spatial neighbors, and time intervals included in this 
model allow it to fully account for spatial variations in urban traffic. 
Cross-correlation and autocorrelation functions were employed to 
determine the optimal spatial and temporal dependencies for each road 
segment, enabling an accurate assessment of traffic impacts. Then, 
to improve the effectiveness of candidate neighbor search strategies, 
distance functions are coupled with adaptive spatiotemporal weights. 

After several potential neighbors and a weighting variable in the 
prediction module, this method produces an adaptive spatiotemporal 
model that incorporates real-time changes in traffic circumstances. In 
Noaeen et al. [12], with an emphasis on time series data about traffic 
conditions on the roads, the Kernel KNN approach is developed. To 
ascertain the dynamic aspects of traffic, the process entails gathering 
data on road traffic flow and using reference sequences. To analyze time 
series data on road traffic conditions, a kernel module is developed that 
compares and matches data sequences from reference and current data, 
with a focus on the use of automobiles for transportation.

2.2. Environmental data sources
Incorporating environmental data into traffic signal control 

optimization is a forward-thinking strategy that aims to balance traffic 
efficiency with environmental sustainability. Various environmental 
data sources provide valuable insights into the external conditions that 
can affect traffic flow and the environmental impact of vehicles. These 
data sources range from air quality measurements and weather data to 
noise pollution levels and even real-time emissions data. Understanding 
these sources and their potential applications is essential to developing 
smarter, more adaptive traffic control systems. Air quality data is one 
of the most critical environmental data sources for optimizing traffic 
signal control in urban areas. Poor air quality is often associated with 
high levels of vehicle emissions, particularly in densely populated 
areas. By monitoring air quality in real-time, traffic management 
systems can adjust signal timings to reduce congestion and emissions 
in areas where air quality is deteriorating. Air quality data is typically 
collected using sensors that measure the concentration of various 
pollutants in the air, such as nitrogen dioxide (NO2), carbon monoxide 
(CO), particulate matter (PM2.5 and PM10), and ground-level ozone 
(O3). These pollutants are primarily generated by vehicle emissions 
and can have severe health impacts on urban populations, particularly 
those with respiratory conditions. Several organizations provide air 
quality data through networks of sensors and monitoring stations. For 
instance, the Environmental Protection Agency in the United States 
operates the Air Quality System, which collects data from thousands 
of monitoring stations across the country. Other countries have similar 
systems in place, such as the European Environment Agency’s Air 
Quality e-Reporting system. By integrating air quality data with traffic 
signal control systems, ML algorithms can be used to prioritize traffic 
flow in ways that minimize emissions. For example, during periods of 
poor air quality, the system could give priority to public transportation 
or low-emission vehicles, while reducing the frequency of signals for 
high-emission vehicles. Alternatively, traffic could be rerouted away 
from areas with particularly poor air quality to minimize exposure to 
harmful pollutants.

Weather conditions have a significant impact on traffic patterns 
and vehicle performance. Rain, snow, fog, and extreme temperatures 
can all affect driver behavior, vehicle speed, and road safety. By 
incorporating weather data into traffic signal control systems, cities 
can improve traffic flow and safety under various weather conditions. 
Weather data is collected from a variety of sources, including weather 
stations, satellites, and radar systems. National meteorological 
agencies, such as the National Weather Service in the United States 
and the European Centre for Medium-Range Weather Forecasts, 
provide real-time weather data and forecasts that can be integrated into 
traffic management systems. ML algorithms can analyze weather data 
in conjunction with traffic data to predict how weather conditions will 
impact traffic flow. For instance, during periods of heavy rain, traffic 
signal timings could be adjusted to allow for longer stopping distances 
and slower speeds. Similarly, during periods of extreme heat, traffic 
signals could be optimized to reduce the amount of time vehicles spend 
idling at intersections, thereby reducing the risk of overheating and 
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improving fuel efficiency. In addition to real-time adjustments, weather 
data can also be used to inform long-term traffic signal planning. For 
example, historical weather data can be analyzed to identify patterns in 
traffic behavior during different seasons, allowing for the development 
of more effective traffic management strategies for specific weather 
conditions.

Noise pollution is another environmental factor that can be 
incorporated into traffic signal control optimization. High levels of noise 
pollution are often associated with heavy traffic and can have negative 
health effects, including stress, sleep disturbances, and cardiovascular 
issues. By monitoring noise levels in real-time, traffic management 
systems can adjust signal timings to reduce noise pollution in sensitive 
areas, such as residential neighborhoods or near schools and hospitals. 
Noise pollution data is typically collected using sensors that measure 
sound levels in decibels (dB). These sensors can be placed at strategic 
locations throughout a city to monitor noise levels in real-time. In some 
cases, noise pollution data may also be available from mobile devices 
or crowd-sourced platforms, where users can report noise levels in 
their area. By integrating noise pollution data with traffic signal control 
systems, cities can develop strategies to reduce noise in high-traffic 
areas. For example, during periods of high noise pollution, traffic signals 
could be adjusted to reduce the speed of vehicles in sensitive areas, or 
traffic could be rerouted away from these areas altogether. Additionally, 
traffic signals could be synchronized to reduce the number of stop-and-
go movements, which are a significant source of vehicle noise.

Real-time emissions data provides insights into the environmental 
impact of vehicles on the road. By monitoring emissions from 
individual vehicles or groups of vehicles, traffic management systems 
can adjust signal timings to reduce overall emissions and improve air 
quality. Emissions data is typically collected using sensors that measure 
the concentration of pollutants in vehicle exhaust. These sensors can be 
placed at strategic locations throughout a city, such as at intersections 
or along major roadways, to monitor emissions in real-time. In some 
cases, emissions data may also be available from vehicles equipped 
with onboard diagnostic systems, which can report emissions directly 
to traffic management systems. By integrating real-time emissions 
data with traffic signal control systems, cities can develop strategies to 
reduce emissions in areas with high levels of pollution. For example, 
during periods of high emissions, traffic signals could be adjusted to 
prioritize the flow of low-emission vehicles, such as electric cars or 
public transportation. Additionally, traffic signals could be synchronized 
to reduce the number of idling vehicles at intersections, which are a 
significant source of emissions.

In recent years, the proliferation of mobile devices and apps 
has opened up new opportunities for collecting environmental data 
through crowd-sourced platforms. Apps that allow users to report traffic 
conditions, air quality, and noise pollution in real-time provide a valuable 
supplement to traditional sensor networks. By leveraging crowd-sourced 
data, traffic management systems can gain a more comprehensive and 
granular understanding of environmental conditions across a city. 
Mobile data can be collected through a variety of apps, including those 
designed specifically for environmental monitoring, as well as more 
general navigation or health apps. For instance, users of navigation apps 
like Waze or Google Maps can report traffic incidents, congestion, and 
other conditions in real-time, providing valuable data that can be used 
to optimize traffic signal control. Additionally, some apps are designed 
to collect environmental data passively, such as air quality monitoring 
apps that use the sensors in smartphones to measure pollutant levels in 
the air. By integrating crowd-sourced and mobile data with traditional 
environmental data sources, traffic management systems can develop 
more responsive and adaptive strategies for optimizing traffic flow 
and reducing environmental impacts. The performance of the model 
is greatly impacted by the vital duties of data processing and gathering 
in any technique. This study made use of a sizable, openly accessible 

dataset that City Pulse in Aarhus, Denmark, gathered in real time. 
Two datasets were primarily used: pollution data and traffic intensity 
data [13]. The city has numerous sensors deployed that gather data 
on passing cars every five minutes. The air dataset includes details on 
pollutants emitted by these vehicles, such as particulate matter, ozone 
(O3), carbon monoxide (CO), and sulfur dioxide (SO2). The statistics 
on traffic, vehicle density, and pollution included 96,000 occurrences 
of data spanning more than a year. Each instance had characteristics 
including O3, CO2, SO2, and NO2 levels, as well as a date indicating 
the arrival of a vehicle and a vehicle count. Because traffic flow and 
pollution were used to predict each other, separate statistics were 
provided for each. By comparing the timestamps of the two databases, 
pollution levels and vehicle traffic data from the Aarhus website were 
merged. This study provided insightful information on the dynamic 
pulse of Aarhus by using real-time data from publicly accessible, open-
source sensor datasets.

In addition to pollution statistics (NO2, CO, SO2, O3, latitude, 
longitude, and information on the distance between two locations), 
the traffic datasets utilized in the investigations contained information 
on traffic intensity. The associations between the dataset’s properties 
were examined using a correlation matrix graph (Figure 2). This graph 
indicates the degree of correlation between the various qualities.

This research does not directly use the vehicle data from the 
traffic dataset. Rather, they were timestamp-based, therefore they were 
incorporated into the pollution dataset. The fact that the sensors utilized 
to collect the data were positioned along the same paths made the 
combining of these datasets conceivable. There is a direct relationship 
between the quantity of pollutants released and the number of cars on 
the road; larger traffic volumes result in higher emissions of CO2, SO2, 
and NO2.
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Rather than focusing on minute details, the study primarily 
uses pollution data to develop a model suited for broader metropolitan 
monitoring, which helps reduce infrastructure costs associated with 
traffic flow evaluation. By relying on pollution data for generalized 
predictions, the approach eliminates the need for specialized sensors, 
offering a financial advantage through reduced sensor requirements. 
Table 1 provides a sample of the dataset, and Figure 2 illustrates the 
ensemble models used for smart city traffic forecasting.

2.3. Ensemble methods for regression modeling
In this stage, a three-step procedure was used to create an 

ensemble model, as shown in Figure 3. The first step involved dividing 
the data into several bootstrap samples, or samples of size “B,” by 
randomly choosing ‘B’ observations from an initial dataset of size “N.” 
Further actions were then done in the following ways:

After using bootstrapping, N independent weak learners were fitted on 
each dataset in the following phase:

After fitting, the outcomes of every N-independent weak model were 
merged using the following formula to produce an ensemble model 
with low variance:

AN was an aggregated result after the ensemble.
To improve prediction accuracy, this work integrated many 

models using a variety of bagging ensemble strategies. The final model 
improved its predictions by incorporating the knowledge from multiple 
inferior models. The following is a summary of this model’s workflow: 
The bootstrap technique was initially used to divide the dataset into 
numerous B-sized samples. Next, many weak models were trained on 
various samples from the original dataset at the same time. Conclusions 
were reached by combining the predictions produced by these weak 
models using techniques such as averaging.

The following three combinations of bagging ensembles were 
used in the study:

1)  KNN ensemble
2)  Random forest ensemble
3)  Multi-layer perceptron ensemble

Because it had the lowest error rate out of all three models, the 
KNN ensemble performed best.

2.4. Evaluation metrics
To evaluate the models, we employed established measures. 

The most often utilized assessment measures that were employed were 
R-squared (R-SQR), MAE, relative absolute error (RAE), and RMSE.

3. Results and Discussion

3.1. Comparative analysis of regression methods
This study compared the performance of three regression 

methods—Linear Regression (LR), The KNN, NB, and KNN combined 
with Logistic Regression (KNN-LR) in predicting continuous 
outcomes. Our results show that LR outperformed KNN and NB in 
terms of coefficient of determination (R-squared) and mean squared 
error. LR achieved an RAE value of 0.92, compared to 0.75 for KNN 
and 0.42 for NB. Additionally, LR had the highest RMSE of 2.09, 
indicating better fit and predictive accuracy. The superiority of LR can 
be attributed to its ability to handle collinearity and feature selection, 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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 Figure 3
Performance comparison between proposed model and other 

baseline model

Ozone Particular matter Carbon monoxide Sulfur dioxide Nitrogen dioxide Time stamp Vehicle count
55 38 31 51 82 8 January 2014 6:45 0
55 42 30 54 79 8 January 2014 6:50 0
50 38 29 51 82 8 January 2014 6:55 0
47 36 28 56 80 8 January 2014 7:00 0
42 41 32 54 75 8 January 2014 7:05 0
41 37 27 54 79 8 January 2014 7:10 0
37 42 24 57 81 8 January 2014 7:15 0

Table 1
A sample of the dataset
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which is critical in high-dimensional data. NB, on the other hand, 
showed poor performance due to over-regularization. These findings 
suggest that LR is a suitable choice for regression analysis, especially 
when dealing with complex data. However, further research is needed 
to validate these results and explore the applications of LR in different 
domains. To identify the best model for traffic forecasting—that is, a 
model that can accurately estimate traffic flow or vehicle count this 
section compares the several regression models that were employed in 
the experiment. The R-squared (R-SQR) values of the models are used 
to assess how well they work. These values show how much of the 
response variable’s variation is explained by the regression model. A 
perfect match is shown by an ideal R-SQR value of 1, which shows 
very little fluctuation between observed and anticipated values. The 
KNN model performed better in this investigation, as evidenced by its 
greatest R-SQR score.

The use of two widely accepted error measures, MAE and RMSE, 
to evaluate the model’s performance about multiple baseline models 
is demonstrated in Figure 3. Lower RMSE and MAE values indicate 
improved model accuracy. These measures quantify the difference 
between expected and actual values. The model performed better than 
the other baseline models, as seen in Figure 4, with the lowest error 
rates in comparison.

The study’s results were also compared with those of the 
foundational paper [14]. Findings indicated that bagging an ensemble 
instead of boosting one in the study by Jereb et al. [14], decreased by 
more than 30% the mistake rate. The two research are comparable 
because they both used the same dataset and focused on related 
topics. Most ML initiatives start with comparable data pre-processing 
procedures. Jereb et al. [14] employ the KNN and Elastic Net models 
instead of ANNs and Decision Trees. Results from the base publication 
are included in Figure 4 for reference, making it easier to compare the 
effectiveness of the suggested strategy with previous studies.

3.2. Sources of systematic error
This research is currently limited to using data from Lagos City. 

It is important to understand that the switch to electric vehicles will not 
happen quickly, even though an increase in their presence is predicted 
to dramatically lower pollution levels in large cities. The model might 
need to adjust to new traffic and pollutant patterns during this phase 
of transition. The world is moving towards electric cars due to air 
quality issues. For example, starting in 2020, several nations have 
set aggressive goals to sell more than seven million electric vehicles 
yearly [14]. Because the model used in this study is dependent on 
the pollution that conventional cars generate, gradually substituting 
electric vehicles for conventional ones might potentially undermine 
the model’s long-term viability. Optimizing traffic signal control using 

ML and environmental data holds great promise for improving urban 
traffic efficiency and sustainability. However, achieving reliable and 
accurate optimization is not without challenges. Systematic errors 
recurring biases or inaccuracies in the data or models can undermine 
the effectiveness of these systems. This discussion explores key 
sources of systematic error that can impact the optimization process 
and suggests potential mitigation strategies. ML models are only as 
good as the data used to train them. One of the most significant sources 
of systematic error is bias in the training data. In the context of traffic 
signal optimization, if the historical traffic and environmental data 
used to train the model are not representative of all conditions, the 
model may make inaccurate predictions. For example, if the training 
data predominantly reflects traffic patterns during fair weather, the 
model may perform poorly under adverse weather conditions, such as 
heavy rain or snow. To mitigate this, it is crucial to ensure that the 
training data is diverse and representative of a wide range of scenarios, 
including different times of day, days of the week, seasons, weather 
conditions, and special events. Data augmentation techniques, such 
as artificially generating scenarios or under-sampling overrepresented 
cases, can also help balance the dataset. Another common source of 
systematic error comes from inaccuracies in the environmental data 
used for decision-making. Sensors that monitor air quality, weather, 
and emissions may malfunction, degrade over time, or provide readings 
with inherent inaccuracies due to calibration issues or environmental 
interference. For instance, air quality sensors may provide biased data 
due to local sources of pollution (e.g., nearby industrial emissions), 
while weather stations may not accurately capture microclimates 
within a city. To reduce systematic errors from environmental data 
inaccuracies, sensor maintenance and calibration must be prioritized. 
Implementing sensor redundancy deploying multiple sensors in critical 
areas can help cross-validate data and ensure reliability. Additionally, 
using predictive models to interpolate or smooth data from nearby 
sensors can mitigate gaps caused by sensor failures or outlier readings. 
Temporal misalignment between different data sources can introduce 
systematic errors into the optimization process. Traffic signal control 
systems often rely on real-time data to adjust timings dynamically. 
However, if there is a delay in receiving environmental data (e.g., due 
to communication lags or processing times), the system may base its 
decisions on outdated or incomplete information. This can result in 
suboptimal traffic signal adjustments, particularly in rapidly changing 
conditions such as during sudden weather shifts or traffic incidents. 
Addressing temporal misalignment requires synchronizing the data 
streams from various sources as closely as possible. Implementing 
real-time data processing pipelines and reducing latency in data 
transmission can help ensure that the traffic control system responds 
to the most current conditions. Additionally, ML models can be 
trained to account for potential delays by predicting short-term future 
states rather than reacting solely to the present. Overfitting occurs 
when a ML model becomes too complex and begins to “memorize” 
the training data rather than generalizing from it. This can lead to 
systematic errors, particularly when the model encounters real-
world scenarios that deviate from the patterns in the training data. 
In traffic signal optimization, overfitting could result in a model that 
performs well under specific conditions but fails to adapt to unusual 
traffic patterns, such as those caused by accidents, construction, or 
public events. To prevent overfitting, regularization techniques such 
as L1/L2 regularization or dropout can be employed to limit model 
complexity. Cross-validation methods can also be used to evaluate 
the model’s performance on unseen data, ensuring that it generalizes 
well to different scenarios. Furthermore, maintaining a dynamic model 
that is periodically retrained on new data can help the system adapt 
to evolving traffic patterns and environmental conditions. In real-
world traffic management systems, human operators may occasionally 
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Performance comparison of baseline models with the ensemble 

ML model 
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override automated decisions made by ML algorithms, particularly 
during emergencies or special events. Although human intervention 
can be valuable in certain situations, inconsistencies in when and 
how these interventions occur can introduce systematic errors into the 
optimization process. For example, if operators frequently intervene 
in specific types of scenarios, the ML model may not have sufficient 
opportunities to learn from these situations, leading to degraded 
performance in similar future events. To address this, a clear protocol 
for human intervention should be established, with operators logging 
the reasons for their actions. This data can then be fed back into the 
ML model to improve its decision-making capabilities. Additionally, 
providing operators with decision support tools that highlight the 
rationale behind the algorithm’s suggestions can reduce unnecessary 
interventions and allow the model to operate autonomously more 
effectively. Systematic errors in optimizing traffic signal control using 
ML and environmental data arise from several sources, including 
biases in training data, inaccuracies in environmental data, temporal 
misalignment, overfitting, and inconsistent human intervention. 
Addressing these issues requires careful attention to data quality, 
model robustness, and system integration. By mitigating these sources 
of error, traffic signal optimization systems can more reliably improve 
traffic flow, reduce emissions, and enhance the sustainability of urban 
transportation networks.

3.3. Comparison of models on different dataset sizes
An 85,000-item dataset was used to train and test the bagging 

KNN model, which turned out to be the top-performing model. To 
determine whether the model’s performance held up with fewer 
instances, a random subset of 20,000 instances was chosen from the 
dataset. Models were then trained on this smaller dataset. After that, 
the model was put to the test, and Figures 5 and 6 show the individual 
findings for 85,000 and 20,000 cases, respectively. The results show that 
even with a lower dataset, the model continues to function as expected. 
The model’s ability to learn new patterns as it processes more data can 
be used to explain any little variance in the findings and improve its 
overall performance. 

3.4. Threat to validity
As of right now, this analysis has only used data from Lagos City. 

Even though more cars are being driven, which should significantly 

lower pollution levels in and around large cities, it is important to 
understand that the switch to electric vehicles will not happen quickly. 
In this phase of transition, the model might adjust to new patterns. Air 
pollution concerns are driving a global shift in the usage of electric 
vehicles. For example, starting in 2020, certain nations have set high 
goals to sell over seven million electric vehicles yearly. Because the 
plan outlined in this study depends on the pollution that conventional 
vehicles emit, the progressive substitution of electric vehicles for them 
may provide a problem for their long-term viability.

4. Conclusions
Accurate traffic flow prediction is a key objective for smart 

cities and can significantly enhance drivers’ ability to manage their 
trips. This study utilized pollution and traffic data from Aarhus, 
Germany, to estimate traffic flow. The dataset was subjected to a 
variety of conventional ML techniques to determine the best accurate 
model; KNN produced the lowest values of MAE and RMSE. After 
assessing the output of conventional models, bagging and stacking 
ensemble techniques were used to increase accuracy even more. 
Using bootstrapping with replacement, the dataset was separated into 
samples, which were subsequently utilized to train several homogenous 
models. Combining the results from these models resulted in a robust 
bagging ensemble model, with the KNN bagging ensemble being the 
most accurate combination. The capacity of KNN can handle nonlinear 
data is responsible for its outstanding performance. But if there are too 
few nearest neighbors (K) or too many, KNN may underfit or overfit. 
The suggested bagging ensemble strategy reduced error rates by thirty 
percent when this experimental study was contrasted with earlier 
research that employed boosting for traffic flow prediction in smart 
cities.
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Comparative of different bagging KNN model of 85,000 instances 
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Comparative of different bagging KNN model of 20,000 instances 
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