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Abstract: Current advancements within the realm of computational neuroscience, combined with the transformative capabilities of artificial
intelligence (AI), have opened new paths for understanding the human brain’s interconnected complexity. This research exploration integrates
electroencephalography (EEG), computational neuroscience, along with AI toward the investigation of complex cognitive mechanisms and
neural activations associated with the various types of mental states. As a non-invasive tool, EEG mainly captures the internal electrical
activity that reveals the interconnected cognitive processes in real time. By leveraging AI techniques—such as deep learning (DL),
machine learning (ML), transfer learning, and convolutional neural networks (CNN)—this investigation deciphers EEG data to identify
various specific neural patterns accompanying various types of cognitive states, memory formation, and especially toward emotional
responses. To further refine these results and findings, this study organizes applications chronologically, presenting a developmental
perspective on the AI-driven EEG advancements and their significance in detecting nuanced brain activity. This research not only
addresses how experimental methods impact cognitive state reliability but also examines the amygdala’s role in EEG during emotional
stimuli, thus expanding our multimodal level for understanding of emotional and memory-related neural signatures. By merging EEG
data with AI-calibrated models, this investigation proposes new perspectives on the neural basis of attention, perception, and cognitive
function, potentially informing early diagnosis of neurological disorders and enhancing brain-computer interfaces. Through this
multidisciplinary lens, the exploration advances clinical applications and cognitive interventions, highlighting the interplay between
EEG, computational neuroscience, and AI as an essential frontier in terms of both science and neurotechnology.
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1. Introduction

The homo sapiens epicenter of cognition retrospect the human
mind, a repository of extraordinary complexity andwith a wide range
of leveling depth, has captivated scholars, scientists, and curious
thinkers for many centuries. This complex organ, which is
responsible for generating thoughts, emotions, memories, and
most importantly human behaviors, shapes human experience and
the uniqueness toward individual identity. However, these levels
of complexities in terms of cognition and the underlying
interconnected neural mechanisms still remain an enigma,
sparking continuous inquiry across the diverse disciplines and
domains alike. Today, as rapid technological advancements
rush, the potential toward the decipher of these anonymities has
reached unprecedented levels of apex expandability. At the
forefront of this investigative exploration is the conjunction of

electroencephalography (EEG), computational neuroscience, and
artificial intelligence (AI)—a very powerful troika promising new
and innovative insights into the neural basis of cognitive
computing and its associated emotional processes [1–3].

EEG, a non-invasive technique for recording the brain’s
electrical activity, provides a dynamic view of neural oscillations
linked to various cognitive states and functions. By capturing real-
time neural signals, EEG enables the examination of cognitive
processes with a temporal resolution unattainable by other
neuroimaging techniques. In the recent years, advancements in
EEG technology have allowed for higher precision and spatial
resolution, paving the way for more nuanced explorations of brain
function [4–6]. This research leverages high-resolution EEG data
to investigate key cognitive domains, including attention, memory
formation, and emotion processing, exploring neural signatures
associated with each state.

AI has transfigured neuroscience by empowering the analysis of
many large, complex datasets. Machine learning (ML) algorithms,
including transfer learning and especially deep learning (DL)
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neural networks, can excerpt very dense intricate insights from EEG
signals that were once truly beyond reach. These AI models identify
delicate neural patterns and provide a very sophisticated analysis of
brain dynamics perspectives, at the same time, detecting diverse
neural signatures across various types of cognitive states [7–9].
Moreover, the usage of transfer learning techniques extends the
AI’s adaptableness by reprocessing learned available knowledge
from many related tasks, increasing the accuracy toward
identifying EEG patterns associated with the specific types of
mental states [10, 11]. This AI-driven approach augments the
analysis of types of EEG data, providing a very powerful
instrument to decode the complex patterns associated within the
EEG signals that associate with individual human cognition,
emotion, and memory.

Simultaneously, the field of computational neuroscience has
made significant progress in mapping the structural and functional
architecture of the brain, revealing its remarkable complexity and
interconnectivity. Foundational research on neural circuits and
brain networks has established a framework for understanding
how thoughts are generated and actions orchestrated [12–14]. The
integration of EEG with AI and neuroscience principles provides
a more comprehensive approach to bridging neural activity
patterns and the underlying neural networks. This interdisciplinary
synergy holds promise for translating complex EEG patterns into
actionable insights that inform both the science of cognition and
its practical applications.

This investigative exploration aims to discourse the primary
fundamental questions that lie at the juncture of EEG, AI, and
computational neuroscience. How do the neural circuits compose
attention and human emotional processing? What type of patterns
govern the memory formations as they are captured by EEG data
signals? How do diverse experimental paradigms actually impact
the reliability of new results and findings within the cognitive
states? Through these examinations, this study advances current
available knowledge by the contribution of new perspectives on
neural activity interconnected with the cognitive and emotional
functions of the human brain. Beyond all the aspects of theoretical
contributions, this exploration has consequences for clinical
neurology, brain-computer interfaces (BCIs), and toward
personalized cognitive interventions, enhancing both the
diagnostic capabilities and also the therapeutic strategies.

The following layers of this investigation feature the
methodologies and experimental analysis employed, results with
the findings obtained, and the associated wider implications of
integrating EEG, AI, and computational neuroscience. This
research represents a groundbreaking step toward extrication of
the interconnected intricacies of the human mind, transcending
outmoded boundaries to further attach the combined power of
EEG data technology, AI methodologies, and the neuroscientific
insights. This attempt invites us to embrace a completely new era
of exploration, one that influences interdisciplinary collaboration
to illuminate the enigmatic processes of the complex human
cognition and consciousness.

2. Methods and Experimental Analysis

Concerning the methodological and experimental framework
for this investigative exploration which mainly employs a
comprehensive and a very multidimensional approach that
participates with EEG, computational neuroscience, and AI to
explore the interconnected complexities of the human cognition.
A diverse regiment of various types of participants was engaged

to ensure the representativeness, with the association for the
recruitment strategies emphasizing for a wider diversity in terms
of age, gender, and cognitive profiles. Ethical guidelines were
strictly followed to, with an informed consent obtained from all
the various types of participants to safeguard their individual
rights and also ensuring for a high standard of well-being. The
EEG data were collected using high-density electrode array
system within a controlled laboratory environments with its
associated device peripherals to maintain the model accuracy,
consistency, and reliability. Following the international 10–20
system concerning the electrode placements, the study also
ensured high-resolution spatial and the temporal recordings of the
neural activity, capturing a very detailed information on brain
dynamics across various cognitive states. For further EEG data
information and visualization for the waveforms which were also
resourced for the investigative exploration is provided and
mentioned within the acknowledgments section.

The study employed a well-established experimental paradigm
to prompt the specific types of the cognitive states, such as attention,
memory, and emotion, which allowed for the embattled neural region
investigations. To maximize data quality, EEG data preprocessing
involved many advanced techniques for the noise reduction,
artifact correction, and signal enhancement. Afterward steps
included the filtering process, independent component analysis,
and spatial filtering for the minimized ocular, muscle, and the
line-noise artifacts. These preprocessing steps ensured that the
EEG data recollect only the required relevant signals, thus
improving the reliability and the interpretability of the associated
subsequent analyses.

Next, the features and functionalities which were extracted from
the EEG data encompassed of multiple dimensions, including
temporal, frequency, and spatial domains, providing a very rich
dataset for the experimental analysis. These extracted features
served as the many inputs for various AI algorithms, with ML
models and DL architectures, such as the convolutional neural
networks (CNNs), specifically personalized for the time series and
spatial data.

Each of the AI model underwent demanding cross-validation to
prevent the overfitting, and parameters were fine-tuned to optimize
model accuracy and generalizability. The integration of these AI
models with principles from computational neuroscience along
with the usage of KNIME Data Analytics enabled the
identification of neural signatures associated with various types of
distinct cognitive processes, facilitating toward a deeper
understanding of EEG feature-cognition relationships. Statistical
analyses were also applied to further evaluate the relationships
between EEG features and cognitive states, employing techniques
such as correlation analysis, multivariate analysis of variance, and
linear discriminant analysis to mainly assess the significance and
reliability of the results and findings. To further validate the
results, permutation testing and bootstrapping were also utilized,
for ensuring a very robust type of inferences across the types of
cognitive domains. This type of analysis framework provided the
critical insights into the specific neural patterns associated with
the interconnected cognitive states, contributing to a more
nuanced understanding of the regions for neural activity.

The results and findings from these investigations were
interpreted for various potential applications across various fields
and systems. In clinical neuroscience, these insights may
contribute to the early detection of neurological disorders by
identifying early biomarkers in terms of the neural activity
patterns. The integration of these perceptions into BCIs could
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facilitate novel types of communication methods between the brain
and device peripheral technology, opening new possibilities for
assisting individuals with communication impairments or
developing neuroadaptive devices. Throughout the exploration,
rigorous ethical protocols were followed to maintain participant
confidentiality, data security, and integrity in terms of the
reporting. This methodology offered a very cohesive framework
for exploring the complex cognitive processes, with significant
implications for both the theoretical understanding and the
practical applications toward computational neuroscience and
neurotechnology.

3. Related Works

3.1. Background research and investigative
explorations for available knowledge

The human brain is a wondrous mystery of curiosity, a complex
and truly astonishing organ, that orchestrates the bodily functions
while at the same time simultaneously processing and integrating
a wide range of sensory information. Structurally in terms of
human biology, the brain consists of the cerebrum, brainstem, and
cerebellum, all protected within the skull. The cerebrum, also
termed as the brain’s largest region, is mainly divided into two
hemispheres, each containing an outer layer of gray matter which
is known as the cerebral cortex and an internal core of white
matter. The cerebral cortex, comprising of the neocortex and
allocortex, is also responsible for the higher interconnected
cognitive functions such as reasoning, language, and decision-
making. The cerebrum is also further divided into the four
primary lobes: the frontal, temporal, parietal, and occipital lobes,
each specializing within the distinct cognitive and sensory tasks.
The frontal lobe is fundamental for executive functions, while the
occipital lobe is dedicated primarily toward visual processing.
Within these lobes, specific cortical regions are specialized for the
sensory, motor, and associative tasks, contributing to a rounded
integration of brain functions across regions [1]. While the
hemispheres have functional similarities, certain abilities, such as
language processing and visual-spatial skills, are lateralized,
meaning they are predominantly managed by one hemisphere over
the other [2, 3]. The brainstem connects the cerebrum to the
spinal cord, supporting essential life functions such as breathing
and heart rate, while the cerebellum plays a crucial role in motor
coordination, ensuring the smooth and balanced movements.
Embedded within the human brain is the ventricular system,
which includes interconnected ventricles that produce and
circulate cerebrospinal fluid, essential for cushioning the brain and
maintaining homeostasis. Beneath the cortex lie the most vital
structures, including the thalamus, hypothalamus, and limbic
system, each integral consists toward maintaining the brain’s
comprehensive functionality. Collectively, the brain comprises
over 86 billion neurons and numerous glial cells, forming intricate
neural circuits that mainly underpin cognition, emotion, and
behavior [4, 5]. The brain is safeguarded by the skull,
cerebrospinal fluid, and the blood-brain barrier, all of which
protect it from physical injuries and infections. Despite these
protections, the brain remains vulnerable to various diseases,
traumatic injuries, strokes, and neurodegenerative conditions, such
as Alzheimer’s and Parkinson’s disease. The anatomical structure
of the brain is studied in neuroanatomy, while its functions are
explored through neuroscience. Researchers in these fields utilize
methods like animal models, neuroimaging techniques, and

detailed analyses of clinical history to uncover brain function.
Concepts like consciousness and cognition have long been
subjects of philosophical inquiry, with contributions from
historical practices, such as phrenology, to modern debates in the
philosophy of mind. The mind, while often considered distinct
from the body, is intimately connected with consciousness,
perception, and emotion. Although the nature of the mind remains
debated, neuroscientific research continues to bridge the gap
between physical brain structures and the phenomenon of
consciousness, aiming to illuminate the complexities of the human
mind from both scientific and philosophical perspectives [6]. The
frontal lobe is exceptionally versatile, performing a wide range of
functions, including reasoning, motor control, emotion regulation,
and language production. Within the frontal lobe, specific regions
play many essential roles: the motor cortex coordinates
movement, the prefrontal cortex manages higher-level reasoning,
and Broca’s area is critical for language production. The motor
system orchestrates movement by transmitting commands from
the brain to muscles via motor neurons. These commands travel
through the corticospinal tract, which directs signals through the
spinal cord, while cranial nerves control facial movements and
other specialized functions. Gross movements, such as walking,
are generated by the motor cortex, which includes the primary
motor cortex, premotor areas, and supplementary motor areas.
Fine motor control, such as hand and mouth movements, is
represented by the motor homunculus, where neural impulses
cross in the medulla before reaching muscles through lower motor
neurons within the spinal cord. The cerebellum and basal ganglia
refine these complex, coordinated movements, enhancing the
precision of motor activities [10–13].

The sensory system is responsible for receiving and processing
sensory information from the environment. This system relies on the
spinal cord, cranial nerves, and specific brain regions that respond to
sensory data. The brain interprets signals from special senses like
vision, smell, hearing, and taste, with the sensory cortex—
adjacent to the motor cortex—converting these signals into nerve
impulses. Pathways like the dorsal column–medial lemniscus
carry fine touch and vibration information, while the
spinothalamic tract transmits pain and temperature signals.

Vision processing begins when light hits the retina, activating
photoreceptors that convert visual stimuli into electrical signals
that travel through the optic nerves to the visual cortex. Similarly,
sound and balance information from the inner ear is processed in
the auditory cortex and transmitted through the vestibulocochlear
nerve. Smell is mediated by the olfactory nerve, while taste
receptors convey signals to the gustatory cortex, contributing to a
complete sensory experience [14–16]. In maintaining homeostasis,
the brain autonomously regulates bodily functions. The vasomotor
center in the medulla manages blood pressure and heart rate
through sympathetic and parasympathetic pathways, while the
respiratory centers in the medulla and pons control breathing rates
in response to sensory inputs. The hypothalamus, a critical
neuroendocrine regulator, influences circadian rhythms, autonomic
functions, fluid and food intake, and body temperature regulation.
It responds to environmental changes by inducing fever or
adjusting metabolic processes. Various regions within the
hypothalamus oversee functions like appetite and arousal, while
the anterior hypothalamus synchronizes circadian rhythms,
ensuring that bodily functions adapt seamlessly to environmental
conditions. Figure 1 (a) and (b) provide conceptual overviews of
these complex processes, highlighting the intricate interactions
that underlie brain function and adaptability.
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Emotions are complex experiences involving both
physiological and psychological components, such as appraisal,
expression, autonomic responses, and action tendencies, activating
a network of brain regions. While the exact localization of
emotions remains debated, the amygdala, orbitofrontal cortex,
anterior insula, and lateral prefrontal cortex are consistently
implicated in emotional processing. These structures contribute
to generating and regulating emotional responses, with other
regions, such as the ventral tegmental area and nucleus

accumbens, involved in incentive salience. Happiness, sadness,
and fear are linked to distinct areas, such as the basal ganglia,
subcallosal cingulate cortex, and amygdala, respectively,
providing insight into the neural basis of emotional experiences.
Cognition, a fundamental aspect of brain function, encompasses
various executive functions, including attentional control,
cognitive inhibition, working memory, and cognitive flexibility.
Higher-order executive functions, such as planning, foresight, and
abstract reasoning, require coordination across multiple brain areas.

Figure 1
An overview of the human brain. (a) Visualization for anatomy perspectives and the cross-sectional illustration.

(b) Visualization for structure orientations and their associated functional areas of activations

(a)

(b)
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The prefrontal cortex serves as the central hub for mediating these
executive processes. Planning, for example, engages the
dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex,
and right prefrontal cortex, while working memory operations
involve the DLPFC, inferior frontal gyrus, and parietal regions.
Inhibitory control relies on interactions between the prefrontal
cortex, caudate nucleus, and subthalamic nucleus. This intricate
network enables individuals to perform complex cognitive tasks,
make decisions, and adapt to changing environments, showcasing
the brain’s remarkable capacity for thought and adaptation [16–18].
This exploration aims to bridge the gap between the brain’s
physical structure and the spectacle of consciousness, providing
insights toward the profound complexities which define human
cognition, emotion, and consciousness.

The concept of the mind encompasses a broad spectrum of
psychological phenomena, including sensation, perception,
thought, reasoning, memory, belief, desire, emotion, and
motivation. Traditionally, the mind has been contrasted with the
physical body and the material world, especially within the natural
sciences. This distinction is rooted in the intuition that the mind
possesses qualities fundamentally distinct from the physical world.
René Descartes’ classical perspective famously positioned
the mind as an independent, thinking substance, distinct from the
physical. However, contemporary perspectives often regard
the mind as a set of properties or capacities inherent to humans and
certain other animals, viewing it as a complex system with both
conscious and unconscious processes [19, 20]. In philosophy,
debates around the nature of the mind have led to diverse,
sometimes competing perspectives. Philosophers strive to define a
“mark of the mental”—a core feature shared exclusively by
mental states. Epistemic theories emphasize a subject’s unique
access to their own mental states, hypothesizing that this
knowledge is non-inferential and distinct from external evidence.
Such perspectives view mental states as private and separate from
public facts. While the notion of infallible knowledge of one’s
mental state has been debated, epistemic approaches largely focus
on conscious states, which may overlook the influence of
unconscious processes [21, 22].

Consciousness-based approaches assert that conscious mental
states are fundamental to the mind, arguing that unconscious
states derive their significance from conscious counterparts. These
theories encounter challenges in defining perception itself, as the
range of conscious experiences is extensive and not easily
categorized [23–25]. Another approach, intentionality-based
theories, defines the mind by its ability to refer to or be about
objects—a property known as intentionality. This perspective
distinguishes mental states, which represent the world, from
external objects that do not possess representational qualities.
Intentionality-based approaches face challenges, especially when
addressing non-mental entities that also exhibit intentionality, such
as maps [26, 27]. Some theorists argue that the term “mind”
might better represent a loosely connected set of concepts rather
than a unified structure. Accordingly, interpretations of the mind
vary, with some focusing on higher faculties like reasoning and
others adopting broader definitions that include faculties like
sensation and emotion. In everyday language, “mind” often refers
to thought or internal dialogue, emphasizing the difficulty of
accessing another person’s mental state and highlighting its
private nature. Epistemic theories underscore this concept of
privileged knowledge of one’s mental states, viewing them as
fundamentally distinct from external, observable facts [28–30].
Consciousness-based perspectives suggest that conscious mental

states are essential to understanding the mind, with unconscious
states being conceptually dependent on conscious ones. This dual
emphasis complicates definitions, as it suggests that conscious
awareness and unconscious processes are interdependent rather
than entirely distinct categories. Intentionality theories focus on
the mind’s representational quality, setting mental states apart
from physical entities. Issues arise when considering non-mental
entities with representational capabilities, like diagrams or
symbols, which blur the lines between mental and non-mental
representations [31–33]. In contrast, the behaviorist definitions
avoid speculation about the internal mental states by focusing
solely on the observable behavior and responses to the external
stimuli. Functionalism extends this approach by defining mental
states in terms of their roles in terms of causal interactions,
emphasizing the idea of multiple realizability—the notion that
different physical structures can produce identical mental states.

Despite the breadth of theoretical approaches, subjective
aspects of conscious experience, often termed phenomenal
consciousness, remain challenging to explain, particularly within
behaviorist and functionalist frameworks, which can sometimes
overlook the deeply personal, qualitative dimensions of
consciousness [34–36]. The mental faculties of thought, memory,
and imagination represent essential functions of the mind.
Thought enables individuals to interpret the world, facilitating
problem-solving, reasoning, and decision-making processes.
Memory, the capacity to store and retrieve information, plays a
prominent role in both philosophy and cognitive neuroscience,
while imagination allows for the creative generation of new ideas
within the mind. Consciousness, evident in humans and other
mammals, encompasses subjectivity, awareness, and a relational
understanding of oneself within the environment. It remains a
central focus across disciplines, including philosophy, psychology,
neuroscience, and cognitive science, often being divided into
phenomenal consciousness (subjective experience) and access
consciousness (cognitive processing availability) [37–39].

In categorizing mental phenomena, distinctions like sensory
versus non-sensory, qualitative versus propositional, and
conscious versus unconscious are often used. Sensory states,
which depend on sensory inputs, are essential for understanding
the external world, while non-sensory phenomena like beliefs and
thoughts lack sensory input. Qualitative states are those with
subjective qualities, known as qualia, and offer a sense of
personal experience. Propositional attitudes, like beliefs or desires,
are directed toward specific propositions and contribute to
complex mental structures [40, 41]. Beyond these psychological
frameworks, memetics offers a unique analogy to Darwinian
evolution, suggesting that cultural information (memes)
propagates through minds much like genes replicate in biological
organisms. This theory posits that the spread of ideas, beliefs, and
behaviors constitutes a form of cultural evolution, where ideas
undergo selection and adaptation within human societies.

Neuroscience provides a biological basis for the mind by
studying the nervous system’s structure and function and
exploring how neural networks interact to generate reflexes,
sensory integration, emotional responses, learning, and memory.
Epigenetic mechanisms, such as chemical modifications to DNA,
play crucial roles in gene expression, influencing learning and
memory processes. Computational neuroscience attempts to model
brain functions through simulations of structures like the thalamus
and cortex, with ongoing efforts to replicate higher-order brain
functions [42–44]. Cognitive science, a multidisciplinary field,
examines how mental functions such as perception, memory,
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language, and decision-making enable individuals to process
information. Initially dominated by computational theories,
cognitive science has since integrated neurobiological and
intentional models of cognition, emphasizing the interaction
between mind and environment. The theory of embodied
cognition has recently gained prominence, proposing that
cognition is deeply intertwined with physical interactions within
one’s environment. Psychology, which systematically studies
human performance and mental processes, investigates how
factors like perception, emotion, personality, and social
influences shape human behavior. Professionals such as
psychiatrists and neurologists address mental health conditions,
integrating both cognitive and biological understandings of the
mind [45, 46]. Mental health, parallel to physical health,
represents a state of the emotional and psychological well-being.
It also encompasses the ability to manage stress, maintain
relationships, and exhibit resilience. While the World Health
Organization acknowledges that the definitions of mental health
vary across different cultures, it generally refers to the positive
indicators such as competence, capability, and the ability to
flourish. In addition to human cognition, the study of animal
cognition examines mental capabilities across various species,
drawing from fields like comparative psychology, ethology, and
evolutionary psychology to explore intelligence, language
acquisition, and cognitive processes. AI, a field very closely
related to these wide range of disciplines, seeks to develop
machines which are capable of human-like tasks. Foundational
contributions by figures like Alan Turing and John McCarthy
have propelled AI into application systems such as natural
language processing and facial recognition. The recurring
ongoing debate around the mind’s nature—whether as a distinct
entity or a product of the brain functions—bears significant
implications for AI development, especially within the quest to
replicate or simulate features of human cognition [47–49]. EEG
is an essential neuroimaging technique for measuring electrical
brain activity, offering significant insights into brain function.
EEG signals are generated by postsynaptic potentials in the
pyramidal neurons across various brain regions, providing a
view of neuronal activity that is non-invasive and relatively
accessible [42–52]. By positioning electrodes along the scalp—
most commonly using the International 10–20 system or similar
standardized arrangements—EEG captures voltage fluctuations
produced by brain activity. These fluctuations reflect complex
electrical activities that are subject to the orientation and
positioning of the electrodes relative to the brain’s activity
sources. Because of the limitations imposed by intervening
tissues and bones, deeper brain regions contribute minimally to
EEG signals. Nonetheless, EEG’s high temporal resolution
allows it to capture millisecond-level fluctuations critical for
understanding brain function in real time.

Electrocorticography, a more invasive technique, involves the
direct surgical placement of electrodes onto the brain’s surface,
providing higher spatial resolution data than EEG but requiring
surgical intervention. In clinical settings, EEG plays a pivotal role,
especially in diagnosing and monitoring various brain disorders.
For example, it can detect abnormal electrical discharges like
spikes and sharp waves, often associated with epilepsy. EEG
helps pinpoint the onset and evolution of seizures, making it
invaluable in clinical diagnosis and treatment planning. It is also
widely used in assessing sleep disorders, determining anesthesia
depth, and evaluating brain function in cases of brain damage or
dysfunction, including detecting tumors and other abnormalities
[40–60].

Although high-resolution imaging techniques like MRI and CT
have assumed some diagnostic functions that EEG once held, EEG
remains crucial, especially within epilepsy monitoring units, where it
captures seizure events that guide localization and treatment
strategies. The use of ambulatory video EEG, combining EEG
recordings with synchronized video and audio, is beneficial in
cases where routine EEG findings are inconclusive, providing a
comprehensive view of brain activity and seizure events over
extended periods.

EEG plays a very critical role in terms of intensive care units,
helping clinicians to detect non-convulsive seizures and also monitor
the impact of the sedatives and anesthesia on brain function
visualized in Figure 21. This application system is particularly
valuable in predicting outcomes for mainly comatose patients and
making informing decisions during the epilepsy surgery.
Implanting electrodes directly into the brain enhances spatial
resolution, allowing for a very detailed analysis of the regions
which are really crucial for the seizure initiation and its spread,
despite EEG’s limited spatial resolution and due to the diffusing
nature of the signals. EEG derivatives like evoked potentials and
event-related potentials (ERP) are also very instrumental within
cognitive psychology and psychophysiological research, shedding
further light toward the complex cognitive processes.

EEG offers several advantages over alternative neuroimaging
methods, such as functional magnetic resonance imaging (fMRI),
positron emission tomography, and magnetoencephalography
(MEG). Its cost-effectiveness and portability make it accessible
for both research and clinical applications, particularly in studies
requiring high temporal resolution. Unlike fMRI and MEG, EEG
requires minimal equipment, making it relatively mobile and
tolerant of minor subject movement, enabling the study of
auditory responses and other dynamic environments. Its non-
invasive nature and lack of exposure to magnetic fields or
radioligands reduce potential risks for subjects, allowing EEG to
be used safely across a range of populations and life stages,
including studies of adolescent brain maturation. EEG is
particularly suited to ERP studies due to the simplicity of its
experimental paradigms compared to fMRI, which often requires
more complex designs. While EEG’s spatial resolution is limited
and cannot match the precision of fMRI in localizing brain
activity, it is frequently combined with other neuroimaging
techniques like fMRI and MEG to obtain a more holistic
understanding of brain function [51–60].

Despite its strengths, EEG has limitations. The spatial
resolution is comparatively low, complicating the precise
localization of brain activity. EEG’s sensitivity is limited to
activity near the scalp, making it difficult to detect signals from
deeper brain structures.

The “inverse problem”—determining the specific source of
EEG signals—can lead to inaccuracies in source localization.
EEG recording is a time-intensive process, often requiring precise
electrode placement and the use of conductive gels or pastes to
ensure adequate contact with the scalp. The signal-to-noise ratio is
typically low, necessitating sophisticated data analysis techniques
and large sample sizes for meaningful results. Nonetheless, EEG
remains a valuable tool in neuroscience, and combining it with
other neuroimaging methods can help mitigate its spatial
resolution limitations. EEG can capture a broad range of
brainwave frequencies associated with different mental states and
physiological processes. Delta waves (up to 4 Hz), for example,

1https://nl.mathworks.com/matlabcentral/fileexchange/57372-easy-plot-eeg-brain-
network-matlab
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are the slowest but have high amplitude, appearing primarily during
deep sleep-in adults and in infants. Theta waves (4–7 Hz) often occur
in young children, during drowsiness, or in meditative states, while
alpha waves (8–12 Hz) dominate relaxed wakefulness and are
frequently used to classify sleep stages in polysomnography. Beta
waves (13–30 Hz) are associated with mental activity, cognition,
and alertness, while gamma waves (30–100 Hz) are thought to
facilitate communication between brain regions during cognitive
and motor tasks.

Artifacts within EEG recordings—such as ocular, muscular,
cardiac, and environmental artifacts—are managed through
various types of advanced algorithms like regression and blind
source separation, ensuring that of the accuracy of EEG
interpretations. Abnormal EEG activity can also signify various
conditions, with epileptiform discharges indicating cortical
irritability and non-epileptiform patterns suggesting a focal
damage or generalized brain disturbances. EEG has harvested
attention for its diagnostic value in traumatic brain injuries and
conditions like ADHD, PTSD. Quantitative EEG analysis, using
algorithms to translate EEG data into identifiable patterns,
supports diagnosing and treating diverse neurological conditions.
Despite its technical challenges, EEG remains an essential tool in
terms of brain activity studies, offering clinicians critical insights

into the brain health and aiding in managing neurological
disorders. Figure 32 provides further technical insights into EEG
data processing and visualization, which plays a very crucial role
toward interpreting complex EEG data.

Advancements within AI, and DL, and ML are significantly
transforming computational neuroscience, especially by enhancing
our perspective understanding of the human cognitive processes
through EEG technology. These innovations are widely
applicable, from improving marketing insights and individual user
experiences toward increasing cognitive efficiency within
individuals.

A leading example of this would be EMOTIV, a pioneering
company specializing within EEG-based brain research.
Leveraging AI, ML, and DL models, EMOTIV has made brain
research more accessible and cost-effective, automating the entire
processes of data collection and its associated analysis. This
approach further expands EEG’s usability across a wide diversity
for various fields, including consumer research and education, by

Figure 2
A visual representation of computational neuroscience

2https://physionet.org/content/?csrfmiddlewaretoken=MBaya0jY6eCFvMIZSnlms
25Whmhk584W8nDrYu6nYh0kxazc6hYUYe6ilTlxUFMe&topic=EEG&csrfmiddle
waretoken=MBaya0jY6eCFvMIZSnlms25Whmhk584W8nDrYu6nYh0kxazc6hYUY
e6ilTlxUFMe&orderby=relevance-desc&csrfmiddlewaretoken=MBaya0jY6eCFvMI
ZSnlms25Whmhk584W8nDrYu6nYh0kxazc6hYUYe6ilTlxUFMe&types=0
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providing valuable insights for individuals and many types of
organizations. The integration of ML and DL into computational
neuroscience, particularly EEG, holds tremendous potential for
applications within the BCIs and human emotional recognition,
pushing the field into new accelerated and innovative directions.

Understanding the complex roles of AI, ML, and DL within
EEG data analysis requires clarifying these key terminologies.
Although often used very interchangeably, AI is a broad field that
encompasses various features, techniques, including ML and DL.
ML involves training algorithms to recognize patterns and make
probabilistic predictions, while DL, a subset of ML, automates
complex learning tasks, minimizing human intervention.

Analyzing the EEG data has historically presented many
challenges due to the brain’s intricate neural networks. Although
EEG technology is very much affordable and non-invasive,
extracting actual meaningful information from its noisy data
requires a rundown of complex preprocessing steps, limiting its
efficiency in terms of applications like emotion recognition. To
address these challenges, EEG classification frameworks have
been developed and are still being further updated, consisting of
data preprocessing, classification, prediction, and evaluation
phases. While EEG still remains cost-effective, its application was
previously constrained by issues such as data reliability and
mainly the processing speed. Today, ML and DL methods are
redefining all these limitations, making EEG data more
interpretable and valuable for various real-world applications.

Concerning the domain of BCIs, the use ofML andDLmethods
have driven much significant advancements, particularly within
EEG-based systems and device peripheral applications. ML in
BCIs primarily involves classification tasks and individual-
adaptive algorithms. Preprocessing and feature extraction are very
crucial initial steps, involving data acquisition, cleaning, and

pattern extraction for an optimum analysis visualized in
Figure 4 [61].

Within various types of classification tasks, supervised and
unsupervised learning are commonly applied; supervised learning
relies mainly on labeled datasets, while unsupervised learning
operates without the labels. Transfer learning, a technique
enabling classifiers to adapt across various types of different users
and tasks, is especially useful in terms of EEG applications where
consistent feature spaces and distributions may not be guaranteed.
Reinforcement learning (RL) is a highly relevant toward BCIs, as
it allows the associated and interconnected devices to adapt in
response to the user actions through a reward-based learning. RL
also supports interactive applications where the brain regions’
activity can control computers or other devices, providing
adaptable solutions for users and individuals in real time.

The incorporation of AI into neuroscience has presented
powerful tools for analyzing complex neural data patterns,
opening new avenues toward the understanding of cognitive
functions. AI’s capacity to recognize underlying patterns within
intricate neural signals makes it invaluable for brain function
analysis. For instance, IBM has applied AI to simulate large-scale
neural networks, allowing neuroscientists to develop hypotheses
and evaluate them before engaging in an extensive animal study.
AI is also crucial in the BCI domain as well, where it enables
direct communication between the human brain and its associated
and interconnected external devices, empowering individuals with
neuromuscular impairments to control digital interfaces using the
brain signals alone.

AI-powered classifiers in BCIs also facilitate communication
with computers, and technologies like BrainGate have employed
AI to interpret brain signals for cursor control, thereby assisting
within motor functions. AI plays an essential role in controlling

Figure 3
A visual representation of EEG and the human mind
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prosthetics, enhancing the quality of life for certain individuals who
are unfortunate with disabilities by enabling them to regain mobility
through brain-controlled devices.

AI’s contributions extend further to genetic-level research, where
it hugely helps analyze gene expression in neurons and build
simulation models of impulse propagation, advancing our current
understanding of cellular mechanisms in neurodegenerative diseases
visualized in Figure 53. AI is also very instrumental in the study of
connectomes—complex neural connections within the human brain
—using advanced algorithms to process network-structured data.

This application system mainly aids in the early diagnosis of
neurodevelopmental and neurodegenerative disorders, including
autism and motor delays, by detecting the abnormalities within
neural connectivity. In neuroimaging, AI has significantly
improved data interpretation, including image reconstruction,
registration, noise reduction, and enhancement tasks. AI-enhanced
imaging technologies can also optimize MRI data, increasing
signal clarity and reducing radiation exposure during scans. AI
enables the synthesis of CT images from MRI data, improving the
patient positioning and dose of calculations in medical imaging.

AI’s role in aging research is highly demonstrated through its
capacity to estimate the biological age from structural MRI data
using CNN. By sidentifying the key features associated with brain
aging, AI aids in early detection of neurodegenerative risks.

The integration of AI into computational neuroscience has
revolutionized the field, enabling more sophisticated analysis of
neural data, enhancing BCIs, advancing genetic studies,
improving neuroimaging, and providing new insights into aging.
As AI continues to accelerate and evolve, its computational and
pattern-recognition strengths are expected to drive further
breakthroughs, helping researchers and scientists unravel the

brain’s complexities and advancing our understanding of human
cognition.

3.2. AI within EEG integrations: A case study
analysis

A recent study has highlighted the remarkable potential of deep
neural networks in accurately predicting the brain age of different
types of healthy individuals, utilizing electroencephalogram
(EEG) data collected during overnight sleep studies. By analyzing
these EEG recordings, the model demonstrated a groundbreaking
ability to calculate an individual’s brain age with an impressive
mean absolute error of only 4.6 years. This innovative approach
has much broader implications as it established that EEG-
predicted brain age indices vary notably among populations
affected by various types of health conditions. These findings
offer a promising avenue for exploring how specific physiological
and neurological conditions might influence an individual’s brain
age relative to their chronological age, which may serve as a
crucial marker for brain health in the near future. One of the
study’s most significant discoveries was the identification of a
strong, statistically significant association between the Absolute
Brain Age Index and several health conditions, particularly those
affecting the neurological and sleep-related functions. Key health
conditions that linked to deviations in brain age included epilepsy,
seizure disorders, and stroke.

The study also found notable connections between brain age
indices and markers of sleep-disordered breathing, such as apnea-
hypopnea index, arousal index, and lower sleep efficiency. Certain
conditions, including diabetes, depression, severe excessive
daytime sleepiness, hypertension, and issues with memory or
concentration, were associated with elevated Brain Age Indices
compared to a control group of different types of healthy
individuals. This deviation suggests a potential link between these

Figure 4
The concept of the brain-AI closed-loop system (BACLoS) and images of wearable electroencephalography (EEG) devices composed

of tattoo-like electronics and a wireless EEG earbud device (e-EEGd)

3https://ww2.mathworks.cn/solutions/automotive/electric-vehicle.html
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health factors and accelerated brain aging or an increased brain age
relative to an individual’s chronological age. The study’s results are
also particularly valuable as they suggest the possibility of using an
individual’s Brain Age Index as a diagnostic indicator, helping
clinicians identify and monitor the progression of various health
conditions.

The precision of the AI model, according to Yoav Nygate, the
lead author and senior AI engineer at EnsoData, is crucial in
uncovering clinical phenotypes detectable through physiological
signals. These AI model deviations may reveal early indicators of
disease or health deterioration, providing a powerful non-invasive
assessment tool. The model’s accuracy not only demonstrates the
potential for advanced neural networks to interpret complex EEG
data but also underscores the feasibility of identifying specific
health conditions and related comorbidities through EEG analysis.

The model was mainly developed by training a deep neural
network on an extensive dataset of raw EEG signals recorded
during clinical sleep studies. The training dataset included
126,241 individual sleep studies, with validation performed on
6,638 studies, and a final test conducted on a holdout set of 1,172
studies. To calculate brain age, researchers utilized an Absolute
Brain Age Index, defined by subtracting an individual’s
chronological age from their EEG-predicted brain age.

This index provides a quantitative measure that could
eventually be further standardized to assess brain health. The
researchers carefully controlled for variables such as sex and body
mass index to refine the model’s predictive accuracy and address
potential confounding factors. This rigorous approach ensures that
the findings are robust and reliable across diverse population
groups, strengthening the case for using AI in clinical settings.

Nygate emphasized the study’s importance in offering
preliminary evidence for the role of AI’s potential as a diagnostic
tool in brain health assessment. The Brain Age Index, with further
research and clinical validation, may one day serve as a widely
recognized biomarker for neurological health—similar to how
blood pressure is used to predict cardiovascular risk. This AI-
driven approach could provide a very proactive way to assess and
manage brain health, especially for individuals at risk for
neurological and psychological conditions.

The study’s abstract has been published in the journal Sleep’s
online supplement and was presented as a poster at the Virtual
SLEEP 2021 event, hosted by the Associated Professional Sleep
Societies, a joint effort between the American Academy of Sleep
Medicine and the Sleep Research Society. This research marks an
important step toward integrating AI and DL into clinical
neuroscience, offering the potential for significant advances in
personalized brain health monitoring and management.

4. Results and Findings

This research exploration investigation presents a
systematic and rigorous approach for selecting and analyzing
EEG seizure detection and prediction datasets. By following
the Preferred Reporting Items for the Systematic Examination
and Meta-Analysis guidelines, the exploration aimed to ensure
a thorough, unbiased dataset selection process. This process
involved exploring both available knowledge and modern data
repositories to create a dataset pool that is diverse, relevant,
and is of high quality. The final selection balances toward a
well-cited coverage of studies with publicly accessible EEG
seizure datasets, providing a robust foundation for further
investigation and analysis within seizure prediction and
detection. The dataset selection methodology and the
experimental analysis was processed and implemented within
several key stages.

4.1. Background investigation and dataset selection

The initial phase involved an extensive search through
academic databases like Scopus and Web of Science. The authors
used targeted keywords such as “seizure prediction” and “seizure
detection” and applied filters to focus on various studies with high
citation counts. This initial search identified a broad range of
studies, which were then refined by eliminating duplicates and
applying exclusion criteria to include only studies that directly
investigated EEG signals, multimodal signals, or spike detection.
In addition to academic databases, the authors utilized modern
data search platforms, including Google Dataset Search, Kaggle,
and PhysioNet, to identify publicly accessible datasets. This dual
approach ensured a comprehensive selection that included recent,
high-quality datasets suitable for seizure prediction and detection
research.

4.2. Dataset categorization and preprocessing

Once selected, the datasets were organized based on primary
characteristics and structural properties to inform the ML
techniques best suited to each dataset. This categorization
highlighted distinctions, such as whether a dataset contained
continuous or segmented data, which informed the preprocessing
steps. The University of Bonn dataset underwent visual inspection
to remove artifacts, while the Hauz Khas dataset applied band
filtering between 0.5 and 70 Hz. Tailoring preprocessing strategies
to each dataset helped optimize data quality and relevance for ML
applications.

Figure 5
The AI processing pipeline and system applications toward computational neuroscience
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4.3. Selection for seizure detection and prediction

The authors also evaluated the suitability of each dataset for
either seizure detection or prediction. This was determined by
analyzing whether datasets contained ictal, preictal, or interictal
segments. For instance, datasets like those from the University of
Bonn and certain Kaggle sources were deemed more appropriate
for detection tasks, as they predominantly contained ictal data
without preictal segments. Conversely, datasets like Hauz Khas,
which include interictal, preictal, and ictal segments, were
considered versatile, making them suitable for both detection and
prediction tasks. This systematic differentiation enables a focused
application of datasets according to their inherent strengths in
addressing specific research objectives.

4.4. Analysis of intracranial EEG (iEEG) datasets

The investigative exploration extended to analyzing iEEG
datasets, such as those from St. Anne’s University Hospital and
the Mayo Clinic, which are critical for understanding epilepsy and
supporting robust algorithm development for iEEG data analysis.
These iEEG datasets offer high-quality, clinically relevant data
that enhance the potential for effective seizure prediction models.
This aspect of the study emphasizes the value of iEEG data in
developing reliable, high-performance algorithms.

4.5. Performance evaluation of DL architectures

The authors also tested several DL architectures on prominent
datasets, such as the Temple University Hospital (TUH) and the
Neurology and Movement Therapy (NMT) datasets, assessing
each model’s generalization capabilities. They identified many
influential factors affecting toward the model performance, such
as differences in data distributions and demographic
characteristics between datasets. While the CNN-based
architectures, including a hybrid model, showed strong
performance on the context of the TUH dataset, a slight
performance decline was observed on for the NMT dataset. This
discrepancy suggests that the data composition and demographics
can impact the overall effectiveness of DL models and further
highlights that the need for models to be robust across varied
datasets is a very crucial factor.

4.6. Generalization and transfer learning

The exploration underscored the complex position of training
and testing DL models across various types of diverse datasets to
enhance their generalization. This approach was particularly
notable toward introducing the NMT dataset, sourced from the
Pak-Emirates Military Hospital, which serves as a valuable
resource for advancing EEG-based diagnostic tools, particularly
investigated for the underrepresented populations.

The incorporation of a wide variety of diverse datasets within
training processes promotes the adaptability of models, supporting
many broader applications of EEG-based seizure detection and
prediction models within the global healthcare settings.

This exploration also provides critical insights into how the
structural and compositional aspects of datasets can further shape
the selection of ML strategies, aiding researchers and clinicians in
optimizing their model selection and improving the overall

accuracy in seizure detection and prediction. Figures 6, 7, 8, and
9 toward the investigations offer visual overviews of these
exploration findings and document the archived implementations,
further supporting the study’s systematic and methodological
experimental analysis approach. This comprehensive analysis
positions the study as a valuable contribution toward the field,
paving the way for more accurate and further effective seizure
prediction tools grounded within EEG data science.

5. Discussions and Conclusions

This chronicle investigation provides a very comprehensive
analysis of the types of publicly available EEG seizure datasets,
emphasizing their distinctive features and the insights they can
truly offer. By focusing on the main unique issues which are
relevant toward seizure prediction and detection, this investigation
offers clinicians, researchers, and engineers an essential
framework for making proper informed choices when selecting
DL, ML algorithms tailored to their individual research methods
and associated objectives. Unlike many other types of studies that
primarily emphasize the novelty of ML advancements, this
exploration places a critical spotlight on leveraging the dataset
attributes to drive a more meaningful advancements within seizure
detection and especially prediction within epilepsy research.

Through this innovative approach, the investigation also
underscores the overall collected importance of understanding
types of dataset characteristics to optimize the overall
effectiveness of DL and ML algorithms and highlights the desired
need for a much more in-depth analysis of how various studies
and experiments will mainly use these types of resourceful
datasets. This analysis includes examining many of the
assumptions and methodologies adopted to address the most
common dataset challenges, such as noise reduction, class
imbalance, and segment variability. This examination also
suggests toward that future research could greatly contribute and
also benefit from the development of a formalized characterization
model. Such a model would be able to incorporate various
dimensions of both dataset properties and both DL and ML
techniques, providing a better-structured approach in terms of
dataset evaluation. By enhancing dataset assessment through this
model, researchers could better determine the suitability of a
dataset for specific DL and ML applications, helping them to
select datasets and algorithms that align more closely within their
research goals and scopes. In addition to its main focus on seizure
datasets, the investigation introduces a novel deep network
designed for EEG-based emotion recognition. The proposed
model, also a type of hybrid architecture combining CNN with
Stacked Autoencoders (SAE), was also evaluated on widely
recognized datasets such as DEAP and SEED.

While the primary emphasis was mainly on the performance of
this network, the authors still acknowledged that other approaches,
such as end-to-end training, could also harvest much better strong
performance. Future directions for this work include the
incorporation of label information during feature extraction and
the exploration of different types of autoencoder-based
architectures specifically for emotion recognition tasks. The
results of the proposed network demonstrated a well-rounded
superior performance compared to the traditional CNN models,
achieving a very high recognition accuracies: 89.49% for valence

Artificial Intelligence and Applications Vol. 3 Iss. 2 2025

155



and 92.86% for arousal in the DEAP dataset, and also an impressive
96.77% accuracy on the SEED dataset using Pearson’s correlation
coefficient-based features. These results and findings underscore
the network’s potential for advancing EEG-based emotion
classification, suggesting that future studies could explore further
while integrating SAE with other classifiers to further enhance the
overall classification performance. This research introduced the
NMT dataset, a significant addition to the booming field that

provides an extensive collection of EEG recordings categorized as
normal and abnormal. This dataset serves as a valuable foundation
for training DL and ML models geared toward pre-diagnostic of
the datasets for EEG screening, offering researchers access to a
resource that supports the refinement of algorithms for clinical
applications. In evaluating DL architectures on the NMT dataset,
the analysis generated critical insights into the adaptability and
robustness of all these types of models. The research findings
highlighted that many current DL models can truly exhibit a
very strong performance when trained and tested within the
same dataset. However, this performance often hugely declines
considerably when the models are exposed to new and
unfamiliar datasets, accentuating the need for other types of
models that can generalize well across various types of data
sources and can adapt to differences in terms of both acquisition
settings and equipment.

The initial exploration into fine-tuning strategies has revealed
promising results for improving cross-dataset performance,
pointing to a critical key area for future investigation. This
research emphasizes the need for further examination of fine-
tuning methods and generalization techniques to strengthen DL
models applied toward EEG data. Such types of explorations are
greatly expected to significantly impact the technological field,
particularly as the focus not only shifts toward enhancing the
adaptability and robustness but toward ML algorithms in varied
and real-world clinical environments. This investigation sets a
well-rounded strong foundation for advancing further EEG
research through well-informed dataset selection and targeted DL
and ML development, aiming to bridge down the gap in between
many types of laboratory research and also practical clinical
applications.

Figure 6
An overview visualization of the research findings 1 (accuracy

comparison for CNN-based vs Hybrid)

Figure 7
An overview visualization of the research findings 2 (comparison of TUH and NMT datasets)
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