Received: 23 August 2024 | Revised: 3 June 2025 | Accepted: 15 July 2025 | Published online: 26 August 2025

Artificial Intelligence and Applications
2025, Vol. 3(4) 428-442
DOI: 10.47852/bonviewAIAS52024151

)

BON VIEW PUBLISHING

RESEARCH ARTICLE

Using Variational Autoencoders
with Machine Learning Algorithms
in Cyber Security Applications

Thomas Taylor', Amna Eleyan' ©® and Mohammed Al-Khalidi'*

! Department of Computing and Mathematics, Manchester Metropolitan University, UK

Abstract: In the evolving field of cybersecurity, detecting malicious activity in high-dimensional network data remains a persistent challenge for
traditional machine learning (ML) techniques. This study investigates the use of convolutional variational autoencoders (VAEs) to generate latent
features that enhance the performance of various ML classifiers on the 2015 NSL-KDD dataset. Classifiers, including Gaussian Naive Bayes
(GNB), support vector machines (SVMs) with Radial Basis Function (RBF) kernel, decision trees, and dense neural networks, were evaluated
using metrics such as accuracy, precision, recall, F1 score, and the Matthews Correlation Coefficient (MCC). To assess the effectiveness of VAEs,
Principal Component Analysis (PCA) was used as a baseline dimensionality reduction method, and performance comparisons were made. The
best-performing model was an SVM with an RBF kernel, a PCA (threshold = 0.92), and a VAE with six latent features, achieving an accuracy of
82.8%, an F1 score of 0.830, and an MCC of 0.682. The results indicate that VAEs can significantly enhance classifier performance, particularly

in GNB and SVM models, suggesting their value in developing more effective intrusion detection systems.

Keywords: machine learning, cybersecurity, autoencoder, neural network, SVM, variational autoencoders, malware

1. Introduction

There is growing interest in the application of machine learning
(ML) to cybersecurity, where it is increasingly used to detect patterns
and anomalies in large-scale network data [1-3]. ML techniques have
already shown effectiveness in diverse domains such as phishing
detection, agriculture [4], and healthcare [5], thanks to their ability
to classify complex behaviors and improve predictive accuracy.
However, in the realm of intrusion detection systems (IDSs), many
existing approaches still rely on shallow learning models or traditional
dimensionality reduction (DR) methods, such as Principal Component
Analysis (PCA). These conventional techniques often struggle to
generalize to new or evolving attack types, especially when operating
on high-dimensional, noisy network traffic data. Neural networks
(NNs), particularly autoencoders, offer a more powerful framework
for representation learning by reducing dimensionality while retaining
critical features. Among them, convolutional variational autoencoders
(VAESs) stand out for their ability to capture both spatial and statistical
dependencies in data, offering a probabilistic approach to feature
learning. Despite their potential, VAEs remain underexplored in
network intrusion detection, where most prior work has focused on
standard autoencoders or PCA. The generative nature of VAEs enables
them to learn robust, generalizable representations that may be more
effective at identifying unseen attack patterns. This study addresses
this gap by investigating the use of convolutional VAEs to generate
latent feature representations and evaluating their impact on the
performance of various ML classifiers. Using the NSL-KDD dataset, a
widely used benchmark for IDS research, we compare VAE-generated

*Corresponding author: Mohammed Al-Khalidi, Department of Computing and
Mathematics, Manchester Metropolitan University, UK. Email: M.Al-Khalidi@mmu.
ac.uk

features with those produced by PCA, as well as with hybrid PCA-VAE
transformations. We evaluate classifier performance using multiple
metrics and across several algorithms, including Gaussian Naive Bayes
(GNB), support vector machines (SVMs), decision trees, and NNs. This
research contributes to the growing body of work on intelligent intrusion
detection by offering a comprehensive analysis of DR techniques in
IDS pipelines. It not only assesses the predictive gains from using
VAEs but also provides practical insights into which DR-classifier
combinations yield the best results. By doing so, the study offers both
theoretical and practical advancements that can inform the design of
more effective and adaptable IDS solutions. The remainder of this paper
is structured as follows: Section 2 reviews related work in the domain
of ML-based intrusion detection and DR techniques. Section 3 presents
the theoretical background, covering the NSL-KDD dataset, PCA, and
VAESs. Section 4 outlines the experimental methodology, including
data preprocessing steps, DR configurations, and classifier training
procedures. Section 5 presents the results and discussion, analyzing the
performance of different DR strategies across multiple classifiers, and
highlights key findings and limitations. Finally, Section 6 concludes the
study and suggests directions for future research.

2. Related Work

Although ML research has been extensive, limited attention has
been given to the specific application of autoencoders in improving
classification algorithms within cybersecurity contexts. One influential
paper that inspired this work is by He et al. [6], which employs a
standard autoencoder to create latent features and assesses the accuracy
of different ML algorithms both with and without these features using
the NSL-KDD dataset. The study shows improvements of 1.00% to
6.74% in classification accuracy for algorithms such as GNB, SVMs,
and XGBoost. However, it does not explore advanced feature extraction

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/

by/4.0/

428

https://doi.org/10.47852/bonviewAIA52024151
https://orcid.org/0000-0002-2025-3027
https://orcid.org/0000-0002-1655-8514
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:M.Al-Khalidi%40mmu.ac.uk?subject=
mailto:M.Al-Khalidi%40mmu.ac.uk?subject=

Artificial Intelligence and Applications Vol.3 Iss. 4

2025

techniques like VAEs or compare multiple DR approaches. Al-Qatfet al.
[7] train SVMs on latent features generated through an autoencoder,
also using the NSL-KDD dataset. The method aims to reduce SVM
training time and improve adaptability to new threats. Although the
model achieves strong results, 84.96% for binary classification and
80.48% for multiclass, the autoencoder used is a standard one, lacking
a probabilistic formulation that may be beneficial for generalization.
In Ahmad et al. [8], a recurrent NN (RNN) is trained on NSL-KDD,
leveraging temporal dependencies to detect patterns such as DDoS
attack signatures. The RNN reaches 83.28% binary and 81.29%
multiclass accuracy but requires significant computational resources and
careful tuning, which may limit scalability in real-world applications.
Xu et al. [9] employ a five-layer autoencoder combined with various
preprocessing techniques for anomaly detection. The approach
measures reconstruction error between input and output to detect
attacks, achieving 90.61% accuracy and a 92.26% F1 score. However,
it focuses on reconstruction error rather than classification, limiting its
direct applicability for supervised learning tasks. In the work of Song
etal. [10], the authors explore varying autoencoder network sizes across
different datasets, including NSL-KDD, and apply the resulting models
in practical IoT environments. Although demonstrating scalability and
adaptability, the paper does not provide a controlled comparison of
autoencoder features versus PCA or VAEs across different classifiers.
Although these studies demonstrate promising performance using
autoencoders and traditional ML classifiers, they also exhibit certain
limitations. Standard autoencoders often lack probabilistic modeling
capabilities, which may reduce their generalization to unseen attack
types. PCA, though computationally efficient, is limited to linear
transformations and does not capture complex relationships in data.
Moreover, comparisons across studies are often inconsistent due to
differences in evaluation metrics, model tuning, and dataset handling.
To highlight the differences among methods applied to the same dataset,
a comparative summary is provided in Table 1.

In addition to the studies previously mentioned, several
recent works have proposed advanced ML frameworks for intrusion
detection. In Rabie et al. [11], a novel [oT IDS using Decisive Red Fox
optimization with a descriptive back-propagated Radial Basis Function
(RBF) network has shown strong adaptability to real-time environments.
Similarly, research by Prashanth et al. [12] on optimal feature
selection using evolutionary algorithms has demonstrated significant
performance gains by reducing input redundancy. Another innovative
approach utilizes a Perceptual Pigeon Galvanized Optimization (PPGO)
framework in combination with a Likelihood Naive Bayes classifier for
improved attack classification accuracy [13]. Furthermore, optimization-
based detection using WI-CS and GNN algorithms in SCADA networks

presents valuable advances in critical infrastructure security [14].
Lastly, broad surveys such as Mummadi et al. [15] offer comprehensive
insights into ML applications in cybersecurity. These studies highlight a
growing trend toward optimization-enhanced and biologically inspired
models in IDS, distinguishing our work by focusing on the comparative
analysis of probabilistic latent-space learning (via VAEs) against
conventional DR in improving classifier performance.

Building on these findings, this paper explores the effectiveness
of convolutional VAEs, a probabilistic and flexible deep learning
approach not previously applied to this dataset. It further compares
VAE-generated features with PCA and hybrid approaches across
multiple ML classifiers using consistent experimental settings.

3. Background

The NSL-KDD dataset is a portion of the KDD’99 dataset, which
is a subset created to try and solve some of the problems in the original
set described in Tavallaee et al. [16]. This dataset is comprised of a
selection of data files, but in this report, only two are used: KDDTrain+.
txt and KDDTest+.txt. Both files have the same CSV format, with each
line representing a packet. Each packet has various attributes, including
protocol type, logged in, destination, attempted root login, and number
of failed attempts. As well as these attributes, each of them has a
designated class. This will either be “normal” (i.e., a benign request)
or one of several malicious classes (e.g., rootkit, nmap, and buffer
overflow). However, this paper focuses only on whether the attack is
malicious or benign (binary classification). Although NSL-KDD is an
older dataset, it remains a widely used benchmark for evaluating IDSs
due to its balance between complexity and accessibility. Unlike the
original KDD’99 dataset, NSL-KDD addresses several known issues,
such as redundant records and class imbalance, making it suitable for
consistent comparative analysis. Furthermore, the use of NSL-KDD
allows for direct benchmarking against a broad body of existing work,
especially studies involving autoencoders and classical ML classifiers.
Although more recent datasets like UNSW-NB15 provide additional
realism, NSL-KDD was chosen to maintain alignment with prior
research and to specifically evaluate whether convolutional VAEs can
yield measurable improvements within this well-established testbed.

3.1.PCA

PCA is a method used to combine features in a way that
maximizes the variance of each feature. The data points are projected
into an n-dimensional space, and the direction of greatest variance is
identified. This direction becomes the first new feature for the dataset.

Table 1
Comparison of prior methods on the NSL-KDD dataset
Study Model/Technique Reported Accuracy Pros Limitations
He et al. [6] Autoencoder + ML Up to 6.74% Simple architecture and No probabilistic latent space; limited
classifiers improvement boosts accuracy exploration of feature types
Al-Qatfet al. [7] Autoencoder + 84.96% (binary), Fast training and good Standard AE, no variance control
SVM 80.48% (multiclass) generalization
Ahmad et al. [8] RNN 83.28% (binary), Captures temporal behavior ~Computationally intensive; complex
81.29% (multiclass) tuning
Xu et al. [9] Deep AE (five 90.61% High accuracy and good Error-based detection only; not
layers) + Anomaly visualizations classifier-based
detection
Song et al. [10] AE with variable Varies Scalable to IOT and adap- Focus not solely on NSL-KDD; model

size + IOT exten-
sion

tive

generalization not tested across classi-
fiers

429

Artificial Intelligence and Applications \Vol. 3

Iss. 4 2025

The space is then adjusted to remove the variance associated with this
calculated direction. The process is repeated for the updated vector
space, identifying the next direction of highest variance to define the
second feature. This cycle continues until all dimensions are exhausted,
with the number of new dimensions matching the original number of
features. It is important to note that PCA neither adds nor removes data
but reorganizes the features based on variance. Figure 1 illustrates a PCA
transformation on a 2D dataset, where the x- and y-axes are transformed
into new axes, x’ and y’. The axes remain perpendicular, preserving
the independence between features and ensuring no information is lost.

3.1.1. Variance threshold

PCA by itself does not reduce the number of features. To decrease
the number of features, a threshold can be established to eliminate all
remaining features once a specified percentage of variance is achieved.
For example, say after PCA has been performed on a dataset, Feature 1
has 50% of the variance of the dataset, Feature 2 has 26%, and Features
3 and 4 have 4% and 2%, respectively. With a threshold of 75%, Features
1 and 2 would be retained, and Features 3 and 4 would be discarded.
This percentage can be found by dividing the specific features’ variance
by the total summed variance. Typically, this percentage threshold is
set to 99% [17].

3.1.2. Maximum likelihood estimate
With variance thresholding, the percentage cutoff is arbitrary.
This is still often enough, but the maximum likelihood estimate

Figure 1
Example of a PCA transformation

(MLE) provides a method to select the optimum number of features.
The Automatic Choice of Dimensionality for PCA [18] presents a
method that employs Bayesian model selection to identify the true
dimensionality of the data.

3.2. Autoencoders

Autoencoders represent a category of deep NNs that differ from
typical NNs in their purpose and structure. Although traditional NNs
aim to classify or generate insights from input data, autoencoders strive
to replicate the input data as accurately as possible. To achieve this,
autoencoders leverage the alteration of node numbers across layers,
which allows them to generate intriguing latent features within the
network. One crucial component of autoencoders is the bottleneck
layer, which contains fewer neurons compared to the other layers.
This deliberate restriction of available features forces the network
to generate meaningful latent features within this compressed layer.
As shown in Figure 2, an autoencoder comprises two main parts:
the encoder, responsible for DR, and the decoder, which focuses on
data reconstruction. These two parts are connected by each of their
aforementioned bottleneck layers [19]. Autoencoder training involves
arranging the encoder and decoder parts in series and minimizing
the discrepancy between the input and output data. The loss function
measures the difference between x and f (g(x)), where x is a data
entity, fis the decoder function, and g is the encoder function (e.g., the
mean squared error). The latent features are also denoted as z, but it is
important to note that z = g(x).

VAEs, shown in Figure 3, offer a probabilistic extension to the
standard autoencoder model. Like traditional autoencoders, VAEs
aim to reconstruct input data points. However, at the bottleneck
layer, instead of passing the exact latent feature values, a probability
distribution is created around those values, and a sample from this
distribution is passed to the decoder. This sampling method assumes
that nearby feature values should produce similar results, enhancing
the model’s robustness and generalization. Due to this probabilistic
nature, the loss function employed in VAEs differs from that of
traditional autoencoders. Rather than comparing the difference
between two specific values, it focuses on the distinction between two
distributions. To accomplish this, the evidence lower bound function
is utilized [20].

logp(x) > ELBO = E(,x) [k,g 5((;‘,;))] 0

Given that x represents the input value, q denotes the encoder,
p represents the decoder, and z signifies the latent feature distribution,

Figure 2
An autoencoder with five input features and two latent dimension features

Encoder

Decoder :

430

Artificial Intelligence and Applications Vol.3 Iss. 4

2025

Figure 3
A VAE with five input variables and two latent dimensions

we incorporate the distribution into the decoder by conducting a Monte
Carlo simulation on z. This simulation involves passing z through the
decoder and subsequently reconstructing the distribution. The Monte
Carlo estimate of this expectation is calculated as follows:

~ logp(x|z) + logz — logq(z(x))

This loss function algorithm is adapted from TensorFlow [21]. In
the encoder, the number of output nodes is double that of the decoder.
The encoder nodes are organized into pairs, with one node indicating the
mean of a distribution and the other indicating the standard deviation.
This technique is known as “reparameterization.”

Zz=p+ocQ@e¢ 3)
where € denotes an error term that follows a standard normal
distribution.

Akey aspectthatdistinguishes VAEs from traditional autoencoders
and other DR techniques lies in their probabilistic framework. Unlike
standard autoencoders, which map inputs to a deterministic latent
space, VAEs encode inputs as probability distributions, specifically,
Gaussian distributions characterized by a mean and variance. This
probabilistic structure enforces smoothness and continuity in the
latent space, which improves generalization and robustness to noise,
making VAEs particularly well-suited for applications like anomaly

detection and intrusion classification. In contrast, PCA performs linear
transformations and cannot model nonlinear relationships or generate
new data instances. Standard AEs may capture complex patterns, but
they lack the regularization effect and generative capacity that come
from sampling in VAEs. Furthermore, the reparameterization trick used
in VAEs allows gradients to flow through stochastic nodes, enabling
end-to-end training using backpropagation. These properties make
VAESs a compelling choice for feature learning in cybersecurity, where
the goal is to discover compressed, abstract representations that retain
the underlying structure of malicious versus benign behavior.

4. Methodology and Experimentation

The aim of this experiment is to investigate how altering
sample features influences the performance of ML classifiers. The
experiment is structured into several key phases, as shown in Figure 4,
as follows.

4.1. Dataset preprocessing

The NSL-KDD dataset, composed of the KDDTrain+ and
KDDTest+ files, contains 41 features describing individual network
connections, including three categorical attributes (protocol type,
service, and flag) and 38 numerical attributes such as duration, src
bytes, dst bytes, wrong fragment, num failed logins, count, and
srv_count. These features were retained in full, and no synthetic or
engineered features were added, in order to maintain consistency across
all DR techniques applied. Each feature captures behavior known to
be relevant to network intrusion detection, for example, num_failed
logins indicates brute-force attempts, while count and srv_count reflect
potential scanning or flooding behaviors. A preliminary inspection
confirmed that the dataset contains no missing values. To reduce the
influence of extreme numerical values without distorting the dataset
structure, outlier clipping was applied using a z-score method: values
beyond three standard deviations from the mean were clipped at the 99th
percentile. Importantly, no data points were removed; this nondestructive
approach preserves the original dataset while mitigating the impact of
skewed distributions, particularly for models sensitive to feature scale.
Although no ablation study was conducted to directly compare clipped
versus unclipped performance, this remains a potential avenue for
future research. Categorical features were transformed using one-hot
encoding, expanding the total feature count and allowing compatibility
with NNs and SVMs. Numerical features were scaled to the [0,1]
range via min-max normalization to stabilize training, particularly
for autoencoders. The original multi-class labels were converted into
a binary classification task, where “0” denotes benign traffic and “1”
denotes any type of malicious activity. Class imbalance, while present,
was addressed through stratified sampling during train-test splitting
to maintain proportional representation. These preprocessing choices

Figure 4
Experimentation phases

Raw NSL-KDD Encoded

Conversion to
numerical format

Initial dataset state

Cleaned

Removal of
inconsistencies

431

VI D=

Latent
Features

Extraction of hidden

patterns Classification

Scaling data to a Categorization of
standard range data

Artificial Intelligence and Applications \Vol. 3

Iss. 4 2025

Figure 5
Overview of the data transformation pipeline from raw
NSL-KDD records to processed feature vectors
used in training and evaluation

amy
Min-max normalization -\

A
-1 B Binary label mapping
==)

\
'
'
'
'
'
'

Gaussian Naive Bayes -

Support vector machine -

Decision trees -

[SR B P

preprocessing

Neural networks - pipeline

Handle missing values iﬁg - H
'
'
'

RS ROx One-hot encoding
Outlier clipping [,63 -7 _

é‘”'"‘ Latent feature vectors

'
'
'
'
'
'

i

Note: PCA = Data Preprocessing Pipeline, VAE = variational autoencoder.

ensure model compatibility, enhance numerical stability, and preserve
the predictive value and interpretability of features. To clarify how
the raw dataset was transformed into model-ready inputs, Figure 5
presents a high-level overview of the data transformation pipeline. The
process begins with the raw NSL-KDD records, followed by missing
value checks and outlier clipping. Categorical features are then one-
hot encoded, and numerical attributes are scaled. Labels are binarized,
after which the data may follow one of three DR paths: PCA only, VAE
only, or a hybrid PCA—VAE pipeline. Each path produces a latent
feature representation used for model training. This transformation
overview connects each preprocessing step to the broader experimental
framework and highlights how the dataset evolves through each stage.

4.2. DR

At this stage, the chosen DR methods are applied, each with its
own set of unique parameters. By adjusting these parameters, we can
better assess the performance of each method. The following techniques
shown in Table 2 are implemented on the raw datasets and then prepared
for further processing:

Table 2
DR methods
Method Description
None The data is unmodified to act as a control.
PCA Variance PCA is applied to the dataset, and then a

Threshold [17] percentage variance threshold is applied. This

threshold is varied between 90% and 99%.

PCA is applied to the dataset, and then an
MLE threshold is applied.

A variational encoder is trained on the data-
set, and then from that, the latent features are
extracted. The number of epochs is varied
from 100 to 500, and the number of latent
features is also varied from 2—14.

PCA MLE Threshold
[22]

Variational
Autoencoder [23, 24]

Combinations of PCA and autoencoders are
also constructed. For each PCA type, a set
of autoencoders is trained with the same
parameter variances for each.

Combinations

Note: DR = dimensionality reduction, MLE = maximum likelihood
estimate, PCA = "Data Preprocessing Pipeline.

VAEs were selected for this study due to their ability to
generate low-dimensional, information-rich representations of high-
dimensional data through a probabilistic latent space. Unlike traditional
autoencoders or PCA, which rely on deterministic mappings, VAEs
model the underlying data distribution by learning a mean and variance
for each latent dimension. This enables the generation of smoother,
more generalized feature spaces that are robust to noise and overfitting
properties, particularly beneficial in cybersecurity applications, where
attack patterns may vary widely and unpredictably. Prior research
in image processing and anomaly detection has shown that VAEs
outperform basic autoencoders in capturing meaningful structure within
data [23, 24], and this study explores whether such benefits translate
effectively to network intrusion detection. A convolutional structure
was adopted to allow the encoder to exploit localized patterns in the
input feature space, similar to how spatial correlations are modeled
in image data. Additionally, the number of latent dimensions (2—14)
and training epochs (100 to 500) were varied to empirically determine
the optimal configuration for downstream classification. These
hyperparameter ranges were chosen based on common practices in deep
learning research and validated by observing performance trends across
multiple models and metrics.

4.3. Model creation/training

The following models were trained on datasets processed using
various DR techniques: VAEs, PCA, and combinations thereof. The
models include GNB Networks, SVMs with an RBF kernel, decision
trees, and dense NNs. Each model was evaluated on its performance
and generalization ability using accuracy, precision, recall, F1 score,
and the Matthews Correlation Coefficient (MCC), as detailed in the
performance metrics summarized in Table 3.

4.3.1. Decision trees
For decision trees, the following hyperparameters were varied to
control model complexity and mitigate overfitting:

1) criterion: Gini impurity or entropy
2) splitter: Best or random

3) min_samples_split: 2, 4, 6, or 8

4) min_samples_leaf: 1 to 4 (inclusive)

These settings were adjusted to prevent overly deep trees and
ensure sufficient samples at each split, thereby acting as a form of
built-in pruning and regularization. By increasing min_samples_split
and min_samples_leaf, the model avoids tailoring its branches too
specifically to noise in the training set, which enhances generalizability.
A full summary of model-specific training configurations is provided
in Table 4.

Table 3
Model training parameters

Model type Parameters

Gaussian Naive Bayesian ~ None

Networks [25]
SVM [26, 27]

Decision trees [28]

An RBF kernel is used for the SVM

criterion: gini or entropy

splitter: best or random
min_samples_split: 2, 4, 6, or 8
min_samples_leaf: between 1 and 4
inclusive

Note: RBF = Radial Basis Function, SVM = support vector machine.

432

Artificial Intelligence and Applications Vol.3 Iss. 4

2025

Table 4
Mean improvement for each DR technique compared to the
baseline metric for Gaussian Naive Bayes networks

DR type VAE PCA PCA + VAE
Accuracy 0.271496 0.280635 0.290982
Precision 0.324512 0.364020 0.366039
Recall —0.065930 —0.095875 —0.069866
F1 0.128701 0.127246 0.141484
MCC 0.692453 0.726935 0.743009

Note: DR = dimensionality reduction, MCC = Matthews Correlation
Coefficient, PCA = "Data Preprocessing Pipeline, VAE = variational
autoencoder.

Across all models, overfitting was further controlled by using
stratified train-test splits, ensuring balanced representation of classes.
Although k-fold cross-validation and ensemble techniques were not
implemented in this study, their inclusion in future work could provide
additional evidence of model robustness. Performance was evaluated
using multiple metrics beyond accuracy, such as F1 and MCC, to
better assess the ability to generalize, especially under class imbalance.
Autoencoder training was monitored across increasing epochs and
latent feature sizes, and only configurations showing consistent test
performance gains were retained for evaluation.

4.4. Step-by-step problem-solving flow of the proposed
method

Based on our previous work in Taylor and Eleyan [29], the
proposed method was designed to address key limitations in IDSs,

including high feature dimensionality, weak generalization of traditional
models, and inconsistent classifier performance. The following step-by-
step approach outlines how the method solves these challenges:

1) Challenge: high-dimensional network data includes redundant and
noisy features that degrade classifier performance.

Step 1: feature preprocessing

The NSL-KDD dataset is cleaned and normalized. Categorical
features are one-hot encoded, and numerical features are scaled to [0,1].
Outlier clipping is applied to reduce the impact of extreme values.
These steps ensure that all inputs are in a consistent and stable format
for further processing.

2) Challenge: linear DR methods like PCA cannot capture non-linear
attack patterns.

Step 2: DR

The dataset is passed through either PCA, VAE, or a combined
PCA—VAE pipeline. PCA removes linear redundancy, while VAEs
create probabilistic latent feature representations that capture non-
linear, higher-order relationships in the data.

3) Challenge: standard ML models perform inconsistently across raw
and reduced feature spaces.

Step 3: hybrid feature engineering

A hybrid configuration (PCA followed by VAE) is proposed to
combine the benefits of variance-based filtering with deep, abstract
feature generation. This reduces noise while preserving critical patterns,
improving the robustness of downstream models.

4) Challenge: classifiers overfit to training data or underperform due to
irrelevant features.

Figure 6
Mean metric value across ALL DR combinations with an autoencoder against the number of training epochs
0.9 >
e * —— —— —0 o & A A
0.8 1
0.8 1
e _—
» & 2 « 0.7 A 5 =%
r st R
£0.7 1 2
- -
[} [}
= — ' —_—— = — =06 -
0.6 s
0.5 1
0.5 1 *————*"‘_‘*""—* -
100 200 300 400 500 100 200 300 400 500
Bayesian: Number of epoch iterations Dtree: Number of epoch iterations
0.75 A
o] ——p— O —° 0.70
0.65 1
0.8 1
0.60 1
= panmm————__ _ ——— g
= 1 5 0.55
%’ 0.7 g }/*H\F/*
0.50 1
0.6 1 e y == 0.45 e
W 0.40 4 *//*'—'——_J
051 0.35 A
T T T T T T T T T T
100 200 300 400 500 100 200 300 400 500
SVM: Number of epoch iterations NN: Number of epoch iterations
x Accuracy + F1
® Precision * MCC
v Recall

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, NN = neural network, SVM = support vector machine.

433

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

Figure 7

Mean metric values across ALL DR combinations using an autoencoder versus the number of latent feature dimensions

0.9
0.9 1 MW
0.8 0.8 1
0.7 4
v 0 077
@ 0.6 1 @
s = 0.6 -
0.5
0.4 1 051
0.3 0.4

T T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14
Bayesian: Number of latent dimentions

LI I N N |
4 5 6 7 8 9 10 11 12 13 14

1.0
00 W
0.8 -
0.8
w074 F 0 067
g g
g 061 M g .
0.5
0.4 02 -
0.3

Dtree: Number of latent dimentions

T T T T T T T T

T T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14
SVM: Number of latent dimentions

x Accuracy + F1
® Precision * MCC
v Recall

T T T T T T T T T T T
4 5 6 7 8 9 10 11 12 13 14
NN: Number of latent dimentions

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, NN = neural network, SVM = support vector machine.

Figure 8

Mean metric value across ALL DR combinations with an autoencoder against the type of PCA variance threshold

0.9

Y Y
206 0.6
Zos g e ————
0.5 0.5
0.4 4 04
0.3 4

074 0.7 M e

T T T T T T T T T T T T
None MLE 0.9 091 0.92 0.93 0.94 095 096 0.97 0.98 0.99

Bayesian: PCA threshold

T T
None MLE

T T T T T T T T T T
09 091 0.92 093 094 095 096 0.97 0.98 0.99

Dtree: PCA threshold

T T T T T T T T T T T T
None MLE 0.9 0.91 0.92 093 094 0.95 0.96 0.97 098 0.99
SVM: PCA threshold

x Accuracy 4 F1
® Precision * MCC
v Recall

T T T T T T T T T T T T
None MLE 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

NN: PCA threshold

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, MLE = maximum likelihood estimate, NN = neural network, PCA = Data

Preprocessing Pipeline, SVM = support vector machine.

434

Artificial Intelligence and Applications Vol.3 Iss. 4 2025
Figure 9
Mean metric value across all combinations of ML classifiers for each PCA variance threshold type
2 W 0.9 4 W
0.8
0.8 -
L W L
£07- g e
g 207
o W %
0.6
0.5 W‘\'/‘
W 05 4
T T
MLE 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 mle 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
Bayesian: PCA threshold Dtree: PCA threshold
1.0
0.9 1
0.9
0.8
B . s s——— 4
° | 08
£071 £ #&qu
s =
0.6 4 0.7
0.5 0.6 - :&k—;‘ﬁ;&%
0.4 1
mle 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 mle 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
SVM: PCA threshold NN: PCA threshold
x Accuracy 4 F1
® Precision * MCC

v Recall

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, ML - machine learning, MLE = maximum likelihood estimate, NN = neural

network, PCA = Data Preprocessing Pipeline, SVM = support vector machine.

Step 4: classifier training

Multiple classifiers (GNB, SVM-RBF, decision trees, NNs)
are trained on these transformed features. Hyperparameters are tuned
to balance complexity and generalization. Decision tree pruning and
stratified train-test splits are used to avoid overfitting.

5) Challenge: lack of generalizable results across models and datasets.

Step 5: performance evaluation and comparison

Classifier outputs are evaluated using multiple metrics:
accuracy, precision, recall, F1 score, and MCC to capture performance
comprehensively. The PCA+VAE feature set consistently yields the
best results, showing its ability to generalize across models.

6) Challenge: limited insight into which methods are most effective for
IDS.

Step 6: result analysis and insights

Comparative results show which classifier-DR combinations
perform best. For example, SVM with PCA+VAE achieved 82.8%
accuracy and an MCC of 0.682, the highest among all configurations.
These findings offer practical guidance for real-world IDS design.

5. Results and Discussion
5.1. DR tuning

To understand the impact of different DR strategies on
classification performance, a series of experiments were conducted
by varying key parameters of both PCA and VAEs. Specifically, PCA
variance thresholds ranging from 90% to 99%, and VAE configurations
including training epochs (from 100-500 as shown in Figure 6) and
latent dimension sizes (from 2—14 as shown in Figure 7) were tested.

The results reveal that increasing the number of latent features in
VAEs generally improves classification metrics across models, though

435

with diminishing returns beyond a certain point (Figure 7). The average
metric values improve as more expressive latent representations are
learned, indicating that the bottleneck in the VAE is critical for retaining
meaningful structure. Similarly, Figure 8 shows that combining PCA
with VAE generally leads to better average performance than either
method alone, suggesting that PCA may help remove redundant
variance before the VAE encodes higher-order abstractions. However,
Figure 9 demonstrates that there is no clear optimal PCA threshold
across all classifiers performance depends on both the DR combination
and the model architecture.

5.2. Classifier performance with DR

Each classifier was evaluated across multiple DR configurations
using key metrics: accuracy, precision, recall, F1 score, and the MCC.
Figures 10 and 11 show the distribution of these metrics for GNB and
SVM-RBF models, respectively.

1) GNB

Table 5 summarizes the performance of GNB models under
different DR methods. The baseline model (no DR) performed poorly
(MCC: —0.219), while applying VAE significantly improved results
(MCC: 0.618). PCA also improved performance (MCC: 0.526), but
the best result was obtained with a hybrid PCA + VAE configuration
(MCC: 0.668). These results suggest that probabilistic latent features
generated by VAEs help reduce the naive assumption violations
inherent in GNB.

2) SVMs (SVM-RBF)

Table 6 presents the mean improvement of each DR method for
SVMs. While PCA slightly improved performance, VAE alone slightly
reduced average results. Nonetheless, the best-performing SVM model
overall used both PCA (threshold 0.92) and a VAE with six latent

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025
Figure 10
Boxplot of all metric types for GNB, grouped by DR method
Metric=accuracy Metric=precision Metric=recall
1.0
== ==
0.8 4
] —— % _; ____________________
0.6 4 ’ ' + —_—
- e)
E 04 : ‘ s M
H 024 +
0.0 4
~0.2
0.4
Autoencoder PCA PCA_autoencoder
Metric=F1 Metric=MCC Dimentional reduction type
1.0
0.8 4 é |
0.6 === e ——
2 044 ¢
g ! !
2 024) ‘
+
0.0 4
24— eessssssTas e E S SRS E S S S S
+
-0.4 -
Autoencoder PCA PCA_aL d Aut d PCA PCA_autoencoder

Dimentional reduction type

Dimentional reduction type

Note: DR = dimensionality reduction, GNB = Gaussian Naive Bayes, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline.

1.0

0.8

0.6

0.4 1

Percent

0.2

0.0

-0.2

Figure 11

Boxplot of all metrics for the SVM with RBF kernel, grouped by DR method

Metric=accuracy

Metric=precision

‘

Metric=recall

104

0.8

0.6

0.4

Percent

024

0.0

-0.2

Metric=F1

Metric=MCC

+

Autoencoder PCA

Dimentional reduction type

PCA_autoencoder

PCA

Dimentional reduction type

Autoencoder PCA_autoencoder

Autoencoder PCA

Dimentional reduction type

PCA_autoencoder

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis Function, SVM = support

vector machine.

436

Artificial Intelligence and Applications \Vol. 3

Iss. 4 2025

Table 5
Maximum performing GNB network models split by DR method
Meta DR type DR Accuracy Precision Recall F1 MCC
None None 0.451694 0.513249 0.712382 0.596639 -0.219382
VAE 400 epochs, 5 features 0.810282 0.853437 0.804956 0.828488 0.617966
PCA MLE threshold 0.745697 0.875423 0.645056 0.742788 0.525569
PCA with VAE 0.97 threshold and 500 epochs, 4 features 0.821505 0.937258 0.735681 0.824326 0.667928

Note: DR = dimensionality reduction, GNB = Gaussian Naive Bayes, MCC = Matthews Correlation Coefficient, MLE = maximum likelihood estimate,

PCA = Data Preprocessing Pipeline, VAE = variational autoencoder.

Table 6
Mean metric improvement for each DR method for SVM-RBF
models
DR type VAE PCA PCA + VAE
Accuracy —0.048422 —0.005253 —0.016317
Precision —0.090248 —0.053932 —0.028641
Recall —0.009585 0.043702 —0.006658
F1 —0.037584 0.009035 —0.015862
MCC —0.117931 —0.034707 —0.037293

Note: DR = dimensionality reduction, MCC = Matthews Correlation
Coefficient, PCA = Data Preprocessing Pipeline, VAE = variational
autoencoder.

features (Table 7), achieving an accuracy of 82.8% and MCC of 0.682.
This implies that a carefully tuned hybrid DR pipeline can enhance
SVM performance, even if average improvements are small.

3) Decision trees

Figures 12 and 13 and Table 8 evaluate decision tree models
under different splitting strategies and DR methods. Notably, decision
trees performed well even without DR, due to their internal structure
that inherently filters irrelevant features. The best-performing
decision tree model (gini, random splitter, MSS = 6, MSL = 3)
achieved an MCC of 0.667 without DR, closely matching the best
DR-enhanced versions. This suggests that decision trees may benefit
less from DR than other classifiers due to their embedded feature
selection capabilities.

Figure 12
Boxen plot of decision tree MCC split by classification criterion
and node splitting strategy

0.6 4

0.4 4

MccC

0.04

-0.2 1

Gini Entropy
Criterion
Splitter
[Best
Random

Note: MCC = Matthews Correlation Coefficient.

4) NNs

Figures 14 and 15 show how NN performance varied with DR
configurations and model depth. Unlike other models, NNs showed
mixed results, with some DR combinations reducing performance
on the NSL-KDD dataset. However, Table 9 indicates that certain
hybrid configurations, such as PCA@0.91 combined with a VAE
(500 epochs, 11 latent features), produced competitive results (accuracy:
0.810, MCC: 0.666). This suggests that DR must be carefully tuned
when applied before deep learning models, as unnecessary compression
can discard nonlinear relationships critical to NNs.

Table 7
Maximum performing SVM-RBF models split by DR method
Meta DR type DR Accuracy Precision Recall F1 MCC
None None 0.762952 0.965213 0.605392 0.744086 0.595881
VAE 500 epochs, 4 features 0.779853 0.933752 0.660095 0.773431 0.604059
PCA MLE threshold 0.789257 0.968576 0.650900 0.778580 0.634754
PCA with VAE Threshold 0.92 and 500 epochs, 6 features 0.828070 0.946555 0.739733 0.830461 0.682102

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis
Function, SVM = support vector machine, VAE = variational autoencoder.

437

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

Figure 13
Decision tree metric improvement box plots for each metric split by DR technique

0.10 1

-1 0.0 4
001 0.05
—01 0.00
: -0.05
-0.2)
-0.10 4
¢ -0.15 4
'] !
L
-0.3 4 —— ¢ -0.20 4
04 +
’ +

|
o
-

accuracy_diff
S
o
precision_diff
recall_diff

|

o

w
L

—0.25 4

.

Autoencoder PCA PCA_ d Al di PCA_autoencoder Autoencoder PCA PCA_autoencoder

Dimension reduction technique Dimension reduction technique Dimention reduction technique

0.05
— 0.0 1 S
0.00
-0.05 4 -02 A
-0.10 4
> o1-0.4
& -0.15 g '
+
-0.20
— +
0.6 H
-0.25 I +
~0.30 — -08
M +
Autoencoder PCA PCA_autoencoder Autoencoder PCA PCA_autoencoder

Dimension reduction technique Dimension reduction technique

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis Function, SVM = support
vector machine.

Table 8
Mean improvement for each DR technique from the base metric for decision trees

Criterion Splitter MSS MSL DR type Accuracy Precision Recall F1 MCC

gini Best 8 3 none 0.801677 0.972750 0.670381 0.793745 0.654712
gini Random 6 3 none 0.811081 0.970169 0.689317 0.805977 0.667231
gntropy Best 6 2 none 0.809351 0.967057 0.688537 0.804370 0.663211
gntropy Random 2 2 none 0.801411 0.968281 0.673186 0.794208 0.652169

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient.

Figure 14
Model performance over model hidden layer depth without DR

Table 9 ranks the top 10 performing models across all classifiers
and DR methods. The highest overall performance was achieved by

the SVM-RBF using PCA@0.92 and VAE (6 latent features), with an
095 1 accuracy of 82.8% and MCC of 0.682. Interestingly, decision trees
0.90 4 with no DR also appeared multiple times among the top models,
indicating their robustness even in high-dimensional feature spaces.
0851 For GNB, DR significantly improved baseline performance, while for
£ 0.80 A NNs, DR outcomes were highly configuration-dependent. Overall,
;5 075 :::::::::::::IZZ::j:::jjjff:ff::::::::::::: the results demonstrate that convolutional VAEs can effectively
enhance classifier performance when properly configured and, in
070 1 many cases, outperform both PCA and baseline (no DR) models. The
065 4 combination of PCA and VAE consistently delivered the best results
for GNB and SVM classifiers, while decision trees benefited less
0.60 1 R ——— : due to their inherent feature filtering. NNs showed mixed responses
1 3 5 to DR, highlighting the need for tailored configurations depending
Number of hidden layers on the model complexity and feature space. These findings confirm
'\fe‘/{icccuracy s the value of deep probabilistic feature extraction for intrusion
+ Precision + Mcc detection and emphasize the importance of empirical tuning in DR-

+ Recall

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient.

classifier pipelines.

438

Artificial Intelligence and Applications Vol.3 Iss. 4 2025
Figure 15
Box plot of each metric improvement for NNs split by DR technique
T % N .
N 0.0
-0.2 4
01+ -0.1
& & .
o, T, -04 4 = -0.2
§' -0.2 _g'] N
3 k- N g -03
Q
8 S 06
=0.3 + —-0.4
$
08 4 -0.5
—~0.4 4
-0.6
’ ' $
-1.0 4
Autoencoder PCA PCA_autoencoder Autoencoder PCA PCA_autoencoder Autoencoder PCA PCA_autoencoder
Dimension reduction technique Dimension reduction technique Dimension reduction technique
+
-0.2 4
-0.2
E -0.4
'UI)
& -04 4
-0.6 4 H
—0617 -0.8
_08 4 ¢ -1.0 - ¢
Autoencoder PCA PCA_autoencoder Autoencoder PCA PCA_autoencoder

Dimension reduction technique

Dimension reduction technique

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, NN = neural network, PCA = Data Preprocessing Pipeline, RBF = Radial Basis
Function, SVM = support vector machine.

Table 9
Top 10 performing models
DR type Model type Accuracy Precision Recall F1 MCC
None dtree entropy 0.806911 0.969027 0.682615 0.800988 0.660562
best mss 8 msl 1
None dtree gini random mss 2 msl 2 0.808419 0.966879 0.686979 0.803244 0.661755
None dtree entropy 0.808818 0.968554 0.686433 0.803448 0.663137
best mss 4 msl 2
None dtree entropy 0.809351 0.967057 0.688537 0.804370 0.663211
best mss 6 msl 2
None dtree gini random mss 4 msl 1 0.809972 0.969880 0.687524 0.804651 0.665462
PCA @ 0.91 VAE nnl 0. 809839 0.971842 0.685810 0.804148 0.666197
500 ep 11 LFD
none dtree gini random mss 6 msl 3 0.811081 0.970169 0.689317 0.805977 0.667231
PCA @ 0.9 VAE NN3 0.814674 0.959541 0.704122 0.812225 0.667584
500 ep 9 LFD
PCA @ 0.97 VAE bayesian 0.821505 0.937258 0.735681 0.824326 0.667928
500 ep 4 LFD
PCA @ 0.92 VAE svm rbf 0.828070 0.946555 0.739733 0.830461 0.682102
500 ep 6 LFD

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis Function, SVM

= support vector machine, VAE = variational autoencoder.

439

Atrtificial Intelligence and Applications \ol.3 Iss.4 2025
Table 10
Performance comparison with existing methods
Year Method Dataset Accuracy F1 score Notes
2024 Red Fox + RBF [11] IoT 91.2% 0.89 High adaptability, complex setup.
2024 PPGO + Naive Bayes [13] NSL-KDD 86.3% 0.84 Probabilistic, optimized selection.
2024 WI-CS + GNN [14] SCADA 92.4% 0.91 Graph-based, domain-specific.
2025 Ours (PCA@0.92+VAE-6 + SVM) NSL-KDD 82.8% 0.830 Strong MCC (0.682), generalizable.

Note: MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis Function, SVM = support vector machine, VAE

= variational autoencoder.

5.3. Comparative study with existing methods

To evaluate the effectiveness of our method in the context of
current research, we compare in Table 10 our best-performing model
with recent state-of-the-art intrusion detection methods published in
2023 and 2024.

This comparison demonstrates that although some recent models
outperform ours in terms of raw accuracy on specialized datasets, our
model achieves competitive results on the NSL-KDD benchmark while
also offering modularity and extensibility. Unlike domain-specific
frameworks or black-box optimizations, our approach emphasizes
interpretability and methodological rigor.

5.4. Model interpretability and insights

Although the primary focus of this study was on improving
classification performance through DR, model interpretability remains
essential for practical deployment, especially in cybersecurity settings
where understanding the reasoning behind an alert is critical. For
tree-based models such as decision trees, interpretability is inherently
high splits based on features like num_failed logins, src_bytes, or
same_srv_rate directly indicate thresholds that trigger malicious
classifications. These insights can guide network administrators toward
specific traffic patterns or anomalies that may require investigation.
In contrast, models such as SVMs and NNs, particularly those using
VAE-generated features, are less interpretable by default. However,
DR itself offers some level of abstraction: the latent features learned
by VAEs often represent compressed patterns across the input space.
For example, a VAE may learn to compress high dst_host srv_count
and frequent serror_rate combinations into a single latent feature that
correlates strongly with denial-of-service attacks. Though the latent
dimensions are not directly human-readable, their contribution to
downstream classification can be visualized or analyzed using tools
such as SHAP (SHapley Additive exPlanations) or feature attribution
heatmaps in future work. Ultimately, understanding which original
input features are most influential even after compression can help
translate model recommendations into actionable cybersecurity
policies. Future extensions of this work could include training
explainable models (e.g., XGBoost with SHAP interpretation) or
mapping latent dimensions back to feature groupings for enhanced
transparency.

5.5. Computational overhead and complexity consid-
erations

Although the integration of DR techniques, particularly VAEs,
yielded performance improvements in several ML classifiers, it
also introduced additional computational overhead. Training VAEs,
especially with deeper architectures and multiple latent dimensions,
involves increased training time and memory usage due to the

backpropagation of both mean and variance terms, as well as sampling
operations in the latent space. Additionally, tuning VAE hyperparameters
such as the number of epochs and latent dimensions requires repeated
training and evaluation, which can be computationally expensive.
Compared to PCA, which is relatively lightweight and deterministic,
VAEs demand GPU resources and careful convergence monitoring.
The downstream classifiers themselves (e.g., SVMs and NNs) also
experienced slight increases in training time due to the larger feature
sets produced after one-hot encoding and normalization. Although these
overheads were manageable in our experiments using moderate-sized
datasets, they could pose scalability challenges for real-time or large-
scale IDSs. Future work could explore optimization strategies such as
model pruning, feature selection before encoding, or using lightweight
VAE variants to reduce the computational footprint while preserving
accuracy.

5.6. Security analysis and limitations

This work focused on enhancing ML-based intrusion detection
performance using DR techniques such as PCA and VAEs. Although
the models were evaluated extensively using performance metrics like
accuracy, precision, F1 score, and MCC, this study did not include
a formal security analysis using tools such as ProVerif or Scyther.
These tools are well-suited for protocol-level security verification
and reasoning about cryptographic properties, but are less directly
applicable to evaluating data-driven ML systems where behaviors
are learned from traffic data rather than defined through protocol
rules. Nevertheless, we acknowledge the value of formal analysis in
validating the trustworthiness of IDSs, especially in adversarial or
high-assurance environments. An informal security evaluation was
performed by analyzing how well the models detect various types of
malicious traffic (e.g., denial-of-service, brute-force login attempts, and
port scans). By assessing false positive and false negative rates under
multiple DR scenarios, we ensured the system’s ability to generalize and
maintain reliable decision boundaries across different attack categories.
In future work, we plan to integrate formal verification techniques to
assess specific components, such as the robustness of feature extraction
against adversarial inputs or the consistency of classification decisions
under transformation. Additionally, formal verification frameworks
could be employed to ensure traceability and auditability of decisions
made by high-impact detection models.

5.7. Limitations and future directions

Although the proposed approach demonstrates improved
classifier performance through the use of VAEs and DR, several
limitations remain. First, the evaluation was restricted to the NSL-
KDD dataset, which, despite being a widely used benchmark, lacks the
diversity and real-time variability of modern traffic datasets. As such, the
generalizability of the model to newer or more complex environments

440

Artificial Intelligence and Applications Vol.3 Iss. 4

2025

(e.g., IoT or cloud networks) remains untested. Second, although
VAESs improve performance, they require longer training times and are
computationally more expensive than linear methods like PCA. This
could hinder deployment in real-time or resource-constrained systems.
Third, interpretability is reduced when using deep learning models
such as VAEs and NNs, limiting their use in environments where
transparency is essential. Additionally, this study did not explore the
model’s resistance to adversarial attacks or evasion techniques, which
are important considerations for operational security systems.

Future work should focus on validating the model across
external datasets such as UNSW-NB15 or CICIDS2017, incorporating
formal generalizability testing through cross-validation or domain
adaptation. Research could also explore hybrid models that balance
interpretability and performance and investigate lightweight or
adversarially robust variants of VAEs for deployment in real-time
IDS. Finally, incorporating explainability tools such as SHAP or
LIME could enhance the transparency and auditability of the model’s
predictions, while integrating NLP models could improve user
experience.

6. Conclusion

This study demonstrated that VAEs, particularly when combined
with PCA, can significantly enhance the performance of ML classifiers
for intrusion detection. Using the NSL-KDD dataset, we showed
that models trained on VAE-generated latent features consistently
outperformed those trained on raw or PCA-only features across several
evaluation metrics. The best-performing configuration, an SVM with
RBF kernel using a hybrid PCA-VAE feature set, achieved an accuracy
of 82.8% and an MCC of 0.682, highlighting the value of deep feature
representation in cybersecurity contexts. By integrating VAEs into the
DR pipeline, this work contributes a flexible and effective approach for
improving the accuracy and robustness of IDSs. Although the current
evaluation focused on a controlled dataset, this methodology lays a
strong foundation for future research into scalable, interpretable, and
generalizable IDS solutions.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

The data that support the findings of this study are openly avail-
able in NSL-KDD Dataset at https:/github.com/t-taylor/cvaes-re-
search/tree/main/results.

Author Contribution Statement

Thomas Taylor: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing —
original draft, Writing — review & editing, Visualization. Amna Eleyan:
Conceptualization, Methodology, Writing — original draft, Writing —
review & editing, Supervision, Project administration. Mohammed
Al-Khalidi: Validation, Resources, Writing — original draft, Writing —
review & editing, Visualization, Supervision.

441

References

[1] Ali, T., Eleyan, A., Bejaoui, T., & Al-Khalidi, M. (2024). Light-
weight intrusion detection system with GAN-based knowledge dis-
tillation. In 2024 International Conference on Smart Applications,
Communications and Networking, 1-7. https://doi.org/10.1109/
SmartNets61466.2024.10577682

Ali, T., Al-Khalidi, M., Al-Zaidi, R., Eleyan, A., & Rehman, M.
A. U. (2024). Securing the metaverse: A deep reinforcement
learning and generative adversarial network approach to intrusion
detection. In 2024 IEEE International Conference on Communi-
cations Workshops, 263-268. https://doi.org/10.1109/ICCWork-
shops59551.2024.10615630

Al-Khalidi, M., Al-Zaidi, R., Ali, T., Khan, S., & Bashir, A. K.
(2025). Al-optimized elliptic curve with certificate-less digital
signature for zero trust maritime security. Ad Hoc Networks, 166,
103669. https://doi.org/10.1016/j.adhoc.2024.103669

Haq, B., Jamshed, M. A., Ali, K., Kasi, B., Arshad, S., Kasi,
M. K. .., & Ur-Rehman, M. (2024). Tech-driven forest
conservation: Combating deforestation with internet of things,
artificial intelligence, and remote sensing. [EEE Internet of
Things Journal, 11(14), 24551-24568. https://doi.org/10.1109/
JIOT.2024.3378671

Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The role of ex-
plainability in creating trustworthy artificial intelligence for health
care: A comprehensive survey of the terminology, design choices,
and evaluation strategies. Journal of Biomedical Informatics, 113,
103655. https://doi.org/10.1016/§.jb1.2020.103655

He, K., Kim, D. D., & Asghar, M. R. (2023). Adversarial machine
learning for network intrusion detection systems: A comprehen-
sive survey. I[EEE Communications Surveys & Tutorials, 25(1),
538-566. https://doi.org/10.1109/COMST.2022.3233793

Al-Qatf, M., Lasheng, Y., Al-Habib, M., & Al-Sabahi, K. (2018).
Deep learning approach combining sparse autoencoder with SVM
for network intrusion detection. /EEE Access, 6, 52843-52856.
https://doi.org/10.1109/ACCESS.2018.2869577

Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ah-
mad, F. (2021). Network intrusion detection system: A systematic
study of machine learning and deep learning approaches. Trans-
actions on Emerging Telecommunications Technologies, 32(1),
€4150. https://doi.org/10.1002/ett.4150

Xu, W., Jang-Jaccard, J., Singh, A., Wei, Y., & Sabrina, F. (2021).
Improving performance of autoencoder-based network anomaly
detection on NSL-KDD dataset. IEEE Access, 9, 140136-140146.
https://doi.org/10.1109/ACCESS.2021.3116612

[10] Song, Y., Hyun, S., & Cheong, Y. G. (2021). Analysis of auto-
encoders for network intrusion detection. Sensors, 21(13), 4294.
https://doi.org/10.3390/521134294

Rabie, O. B. J., Selvarajan, S., Hasanin, T., Alshareef, A. M., Yo-
gesh, C. K., & Uddin, M. (2024). A novel IoT intrusion detection
framework using Decisive Red Fox optimization and descriptive
back propagated radial basis function models. Scientific Reports,
14(1), 386. https://doi.org/10.1038/s41598-024-51154-z
Prashanth, S. K., Shitharth, S., Praveen Kumar, B., Subedha, V.,
& Sangeetha, K. (2022). Optimal feature selection based on evo-
lutionary algorithm for intrusion detection. SN Computer Science,
3(6), 439. https://doi.org/10.1007/s42979-022-01325-4
Shitharth, S., Kshirsagar, P. R., Balachandran, P. K., Alyoubi, K.
H., & Khadidos, A. O. (2022). An innovative perceptual pigeon
galvanized optimization (PPGO) based Likelihood Naive Bayes
(LNB) classification approach for network intrusion detection

(3]

(9]

[11]

[13]

https://github.com/t-taylor/cvaes-research/tree/main/results
https://github.com/t-taylor/cvaes-research/tree/main/results
https://doi.org/10.1109/SmartNets61466.2024.10577682
https://doi.org/10.1109/SmartNets61466.2024.10577682
https://doi.org/10.1109/ICCWorkshops59551.2024.10615630
https://doi.org/10.1109/ICCWorkshops59551.2024.10615630
https://doi.org/10.1016/j.adhoc.2024.103669
https://doi.org/10.1109/JIOT.2024.3378671
https://doi.org/10.1109/JIOT.2024.3378671
https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/10.1109/COMST.2022.3233793
https://doi.org/10.1109/ACCESS.2018.2869577
https://doi.org/10.1002/ett.4150
https://doi.org/10.1109/ACCESS.2021.3116612
https://doi.org/10.3390/s21134294
https://doi.org/10.1038/s41598-024-51154-z
https://doi.org/10.1007/s42979-022-01325-4

Artificial Intelligence and Applications

Vol. 3

Iss. 4 2025

[14]

[15]

[17]

[21]

(22]

system. [EEE Access, 10, 46424-46441. https://doi.org/10.1109/
ACCESS.2022.3171660

Shitharth, S., Satheesh, N., Kumar, B. P., & Sangeetha, K. (2021).
IDS detection based on optimization based on WI-CS and GNN
algorithm in SCADA network. In S. K. Das, S. Samanta, N. Dey,
B. S. Patel, & A. E. Hassanien (Eds.), Architectural wireless
networks solutions and security issues (pp. 247-265). Springer.
https://doi.org/10.1007/978-981-16-0386-0_14

Mummadi , A., Yadav, B. M. K., Sadhwika, R., & Shitharth, S.
(2022). An appraisal of cyber-attacks and countermeasures us-
ing machine learning algorithms. In International Conference
on Artificial Intelligence and Data Science, 27-40. https://doi.
org/10.1007/978-3-031-21385-4 3

Tavallaece, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A
detailed analysis of the KDD CUP 99 data set. In 2009 IEEE Sym-
posium on Computational Intelligence for Security and Defense
Applications, 1-6. https://doi.org/10.1109/CISDA.2009.5356528
Pearson, K. (1901). On lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophi-
cal Magazine and Journal of Science, 2(11), 559—572. https://doi.
org/10.1080/14786440109462720

Minka, T. (2000). Automatic choice of dimensionality for PCA.
In Proceedings of the 14th International Conference on Neural
Information Processing Systems, 577-583.

Liou, C. Y., Cheng, W. C., Liou, J. W., & Liou, D. R. (2014).
Autoencoder for words. Neurocomputing, 139, 84-96. https://doi.
org/10.1016/j.neucom.2013.09.055

Liu, G., van Huynh, N., Du, H., Hoang, D. T., Niyato, D.,
Zhu, K., ..., & Kim, D. 1. (2024). Generative Al for unmanned
vehicle swarms: Challenges, applications and opportuni-
ties. arXiv Preprint: 2402.18062. https://doi.org/10.48550/
arXiv.2402.18062

TensorFlow. (2021) Convolutional variational autoencoder.
https://www.tensorflow.org/tutorials/generative/cvae
Schuermans, M., Markovsky, 1., Wentzell, P. D., & Van Huffel,
S. (2005). On the equivalence between total least squares and

(23]

[24]

(23]

(28]

(29]

maximum likelihood PCA. Analytica Chimica Acta, 544(1-2),
254-267. https://doi.org/10.1016/j.aca.2004.12.059

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational
Bayes. arXiv Preprint: 1312.6114. https://doi.org/10.48550/arX-
iv.1312.6114

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic
backpropagation and approximate inference in deep generative
models. In Proceedings of the 31st International Conference on
Machine Learning, 32(2), 1278-1286.

Chan, T. F., Golub, G. H., & LeVeque, R. J. (1982). Updating
formulae and a pairwise algorithm for computing sample
variances. In COMPSTAT 1982 5th symposium held at Toulouse
1982: Part I: Proceedings in Computational Statistics, 30-41.
https://doi.org/10.1007/978-3-642-51461-6 3

Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3), 273-297. https://doi.org/10.1007/
BF00994018

Min, B., Ross, H., Sulem, E., Pouran Ben Veyseh, A., Nguyen,
T. H., Sainz, O., ..., & Roth, D. (2023). Recent advances in nat-
ural language processing via large pre-trained language mod-
els: A survey. ACM Computing Surveys, 56(2), 30. https://doi.
org/10.1145/3605943

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda,
H., ..., & Steinberg, D. (2008). Top 10 algorithms in data mining.
Knowledge and Information Systems, 14(1), 1-37. https://doi.
org/10.1007/s10115-007-0114-2

Taylor, T., & Eleyan, A. (2021). Using variational autoencoders to
increase the performance of malware classification. In 2021 Inter-
national Symposium on Networks, Computers and Communica-
tions, 1-6. https://doi.org/10.1109/ISNCC52172.2021.9615643

How to Cite: Taylor, T., Eleyan, A., & Al-Khalidi, M. (2025). Using Variational
Autoencoders with Machine Learning Algorithms in Cyber Security Applications.
Artificial Intelligence and Applications, 3(4), 428-442. https://doi.org/10.47852/
bonviewAIA52024151

442

https://doi.org/10.1109/ACCESS.2022.3171660
https://doi.org/10.1109/ACCESS.2022.3171660
https://doi.org/10.1007/978-981-16-0386-0_14
https://doi.org/10.1007/978-3-031-21385-4_3
https://doi.org/10.1007/978-3-031-21385-4_3
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.48550/arXiv.2402.18062
https://doi.org/10.48550/arXiv.2402.18062
https://www.tensorflow.org/tutorials/generative/cvae
https://doi.org/10.1016/j.aca.2004.12.059
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1007/978-3-642-51461-6_3
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1109/ISNCC52172.2021.9615643
https://doi.org/10.47852/bonviewAIA52024151

