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Abstract: In the evolving field of cybersecurity, detecting malicious activity in high-dimensional network data remains a persistent challenge for 
traditional machine learning (ML) techniques. This study investigates the use of convolutional variational autoencoders (VAEs) to generate latent 
features that enhance the performance of various ML classifiers on the 2015 NSL-KDD dataset. Classifiers, including Gaussian Naïve Bayes 
(GNB), support vector machines (SVMs) with Radial Basis Function (RBF) kernel, decision trees, and dense neural networks, were evaluated 
using metrics such as accuracy, precision, recall, F1 score, and the Matthews Correlation Coefficient (MCC). To assess the effectiveness of VAEs, 
Principal Component Analysis (PCA) was used as a baseline dimensionality reduction method, and performance comparisons were made. The 
best-performing model was an SVM with an RBF kernel, a PCA (threshold = 0.92), and a VAE with six latent features, achieving an accuracy of 
82.8%, an F1 score of 0.830, and an MCC of 0.682. The results indicate that VAEs can significantly enhance classifier performance, particularly 
in GNB and SVM models, suggesting their value in developing more effective intrusion detection systems.
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1. Introduction 
There is growing interest in the application of machine learning 

(ML) to cybersecurity, where it is increasingly used to detect patterns 
and anomalies in large-scale network data [1–3]. ML techniques have 
already shown effectiveness in diverse domains such as phishing 
detection, agriculture [4], and healthcare [5], thanks to their ability 
to classify complex behaviors and improve predictive accuracy. 
However, in the realm of intrusion detection systems (IDSs), many 
existing approaches still rely on shallow learning models or traditional 
dimensionality reduction (DR) methods, such as Principal Component 
Analysis (PCA). These conventional techniques often struggle to 
generalize to new or evolving attack types, especially when operating 
on high-dimensional, noisy network traffic data. Neural networks 
(NNs), particularly autoencoders, offer a more powerful framework 
for representation learning by reducing dimensionality while retaining 
critical features. Among them, convolutional variational autoencoders 
(VAEs) stand out for their ability to capture both spatial and statistical 
dependencies in data, offering a probabilistic approach to feature 
learning. Despite their potential, VAEs remain underexplored in 
network intrusion detection, where most prior work has focused on 
standard autoencoders or PCA. The generative nature of VAEs enables 
them to learn robust, generalizable representations that may be more 
effective at identifying unseen attack patterns. This study addresses 
this gap by investigating the use of convolutional VAEs to generate 
latent feature representations and evaluating their impact on the 
performance of various ML classifiers. Using the NSL-KDD dataset, a 
widely used benchmark for IDS research, we compare VAE-generated 

features with those produced by PCA, as well as with hybrid PCA-VAE 
transformations. We evaluate classifier performance using multiple 
metrics and across several algorithms, including Gaussian Naïve Bayes 
(GNB), support vector machines (SVMs), decision trees, and NNs. This 
research contributes to the growing body of work on intelligent intrusion 
detection by offering a comprehensive analysis of DR techniques in 
IDS pipelines. It not only assesses the predictive gains from using 
VAEs but also provides practical insights into which DR-classifier 
combinations yield the best results. By doing so, the study offers both 
theoretical and practical advancements that can inform the design of 
more effective and adaptable IDS solutions. The remainder of this paper 
is structured as follows: Section 2 reviews related work in the domain 
of ML-based intrusion detection and DR techniques. Section 3 presents 
the theoretical background, covering the NSL-KDD dataset, PCA, and 
VAEs. Section 4 outlines the experimental methodology, including 
data preprocessing steps, DR configurations, and classifier training 
procedures. Section 5 presents the results and discussion, analyzing the 
performance of different DR strategies across multiple classifiers, and 
highlights key findings and limitations. Finally, Section 6 concludes the 
study and suggests directions for future research.

2. Related Work
Although ML research has been extensive, limited attention has 

been given to the specific application of autoencoders in improving 
classification algorithms within cybersecurity contexts. One influential 
paper that inspired this work is by He et al. [6], which employs a 
standard autoencoder to create latent features and assesses the accuracy 
of different ML algorithms both with and without these features using 
the NSL-KDD dataset. The study shows improvements of 1.00% to 
6.74% in classification accuracy for algorithms such as GNB, SVMs, 
and XGBoost. However, it does not explore advanced feature extraction 
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techniques like VAEs or compare multiple DR approaches. Al-Qatf et al. 
[7] train SVMs on latent features generated through an autoencoder, 
also using the NSL-KDD dataset. The method aims to reduce SVM 
training time and improve adaptability to new threats. Although the 
model achieves strong results, 84.96% for binary classification and 
80.48% for multiclass, the autoencoder used is a standard one, lacking 
a probabilistic formulation that may be beneficial for generalization. 
In Ahmad et al. [8], a recurrent NN (RNN) is trained on NSL-KDD, 
leveraging temporal dependencies to detect patterns such as DDoS 
attack signatures. The RNN reaches 83.28% binary and 81.29% 
multiclass accuracy but requires significant computational resources and 
careful tuning, which may limit scalability in real-world applications. 
Xu et al. [9] employ a five-layer autoencoder combined with various 
preprocessing techniques for anomaly detection. The approach 
measures reconstruction error between input and output to detect 
attacks, achieving 90.61% accuracy and a 92.26% F1 score. However, 
it focuses on reconstruction error rather than classification, limiting its 
direct applicability for supervised learning tasks. In the work of Song 
et al. [10], the authors explore varying autoencoder network sizes across 
different datasets, including NSL-KDD, and apply the resulting models 
in practical IoT environments. Although demonstrating scalability and 
adaptability, the paper does not provide a controlled comparison of 
autoencoder features versus PCA or VAEs across different classifiers. 
Although these studies demonstrate promising performance using 
autoencoders and traditional ML classifiers, they also exhibit certain 
limitations. Standard autoencoders often lack probabilistic modeling 
capabilities, which may reduce their generalization to unseen attack 
types. PCA, though computationally efficient, is limited to linear 
transformations and does not capture complex relationships in data. 
Moreover, comparisons across studies are often inconsistent due to 
differences in evaluation metrics, model tuning, and dataset handling. 
To highlight the differences among methods applied to the same dataset, 
a comparative summary is provided in Table 1.

In addition to the studies previously mentioned, several 
recent works have proposed advanced ML frameworks for intrusion 
detection. In Rabie et al. [11], a novel IoT IDS using Decisive Red Fox 
optimization with a descriptive back-propagated Radial Basis Function 
(RBF) network has shown strong adaptability to real-time environments. 
Similarly, research by Prashanth et al. [12] on optimal feature 
selection using evolutionary algorithms has demonstrated significant 
performance gains by reducing input redundancy. Another innovative 
approach utilizes a Perceptual Pigeon Galvanized Optimization (PPGO) 
framework in combination with a Likelihood Naïve Bayes classifier for 
improved attack classification accuracy [13]. Furthermore, optimization-
based detection using WI-CS and GNN algorithms in SCADA networks 

presents valuable advances in critical infrastructure security [14]. 
Lastly, broad surveys such as Mummadi et al. [15] offer comprehensive 
insights into ML applications in cybersecurity. These studies highlight a 
growing trend toward optimization-enhanced and biologically inspired 
models in IDS, distinguishing our work by focusing on the comparative 
analysis of probabilistic latent-space learning (via VAEs) against 
conventional DR in improving classifier performance.

Building on these findings, this paper explores the effectiveness 
of convolutional VAEs, a probabilistic and flexible deep learning 
approach not previously applied to this dataset. It further compares 
VAE-generated features with PCA and hybrid approaches across 
multiple ML classifiers using consistent experimental settings.

3. Background
The NSL-KDD dataset is a portion of the KDD’99 dataset, which 

is a subset created to try and solve some of the problems in the original 
set described in Tavallaee et al. [16]. This dataset is comprised of a 
selection of data files, but in this report, only two are used: KDDTrain+.
txt and KDDTest+.txt. Both files have the same CSV format, with each 
line representing a packet. Each packet has various attributes, including 
protocol type, logged in, destination, attempted root login, and number 
of failed attempts. As well as these attributes, each of them has a 
designated class. This will either be “normal” (i.e., a benign request) 
or one of several malicious classes (e.g., rootkit, nmap, and buffer_
overflow). However, this paper focuses only on whether the attack is 
malicious or benign (binary classification). Although NSL-KDD is an 
older dataset, it remains a widely used benchmark for evaluating IDSs 
due to its balance between complexity and accessibility. Unlike the 
original KDD’99 dataset, NSL-KDD addresses several known issues, 
such as redundant records and class imbalance, making it suitable for 
consistent comparative analysis. Furthermore, the use of NSL-KDD 
allows for direct benchmarking against a broad body of existing work, 
especially studies involving autoencoders and classical ML classifiers. 
Although more recent datasets like UNSW-NB15 provide additional 
realism, NSL-KDD was chosen to maintain alignment with prior 
research and to specifically evaluate whether convolutional VAEs can 
yield measurable improvements within this well-established testbed.

3.1. PCA
PCA is a method used to combine features in a way that 

maximizes the variance of each feature. The data points are projected 
into an n-dimensional space, and the direction of greatest variance is 
identified. This direction becomes the first new feature for the dataset. 
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Table 1
Comparison of prior methods on the NSL-KDD dataset

Study Model/Technique Reported Accuracy Pros Limitations
He et al. [6] Autoencoder + ML 

classifiers
Up to 6.74% 
improvement

Simple architecture and 
boosts accuracy

No probabilistic latent space; limited 
exploration of feature types

Al-Qatf et al. [7] Autoencoder + 
SVM

84.96% (binary), 
80.48% (multiclass)

Fast training and good 
generalization

Standard AE, no variance control

Ahmad et al. [8] RNN 83.28% (binary), 
81.29% (multiclass)

Captures temporal behavior Computationally intensive; complex 
tuning

Xu et al. [9] Deep AE (five 
layers) + Anomaly 
detection

90.61% High accuracy and good 
visualizations

Error-based detection only; not 
classifier-based

Song et al. [10] AE with variable 
size + IOT exten-
sion

Varies Scalable to IOT and adap-
tive

Focus not solely on NSL-KDD; model 
generalization not tested across classi-
fiers
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The space is then adjusted to remove the variance associated with this 
calculated direction. The process is repeated for the updated vector 
space, identifying the next direction of highest variance to define the 
second feature. This cycle continues until all dimensions are exhausted, 
with the number of new dimensions matching the original number of 
features. It is important to note that PCA neither adds nor removes data 
but reorganizes the features based on variance. Figure 1 illustrates a PCA 
transformation on a 2D dataset, where the x- and y-axes are transformed 
into new axes, x′ and y′. The axes remain perpendicular, preserving 
the independence between features and ensuring no information is lost.

3.1.1. Variance threshold
PCA by itself does not reduce the number of features. To decrease 

the number of features, a threshold can be established to eliminate all 
remaining features once a specified percentage of variance is achieved. 
For example, say after PCA has been performed on a dataset, Feature 1 
has 50% of the variance of the dataset, Feature 2 has 26%, and Features 
3 and 4 have 4% and 2%, respectively. With a threshold of 75%, Features 
1 and 2 would be retained, and Features 3 and 4 would be discarded. 
This percentage can be found by dividing the specific features’ variance 
by the total summed variance. Typically, this percentage threshold is 
set to 99% [17].

3.1.2. Maximum likelihood estimate
With variance thresholding, the percentage cutoff is arbitrary. 

This is still often enough, but the maximum likelihood estimate 

(MLE) provides a method to select the optimum number of features. 
The Automatic Choice of Dimensionality for PCA [18] presents a 
method that employs Bayesian model selection to identify the true 
dimensionality of the data.

3.2. Autoencoders
Autoencoders represent a category of deep NNs that differ from 

typical NNs in their purpose and structure. Although traditional NNs 
aim to classify or generate insights from input data, autoencoders strive 
to replicate the input data as accurately as possible. To achieve this, 
autoencoders leverage the alteration of node numbers across layers, 
which allows them to generate intriguing latent features within the 
network. One crucial component of autoencoders is the bottleneck 
layer, which contains fewer neurons compared to the other layers. 
This deliberate restriction of available features forces the network 
to generate meaningful latent features within this compressed layer. 
As shown in Figure 2, an autoencoder comprises two main parts: 
the encoder, responsible for DR, and the decoder, which focuses on 
data reconstruction. These two parts are connected by each of their 
aforementioned bottleneck layers [19]. Autoencoder training involves 
arranging the encoder and decoder parts in series and minimizing 
the discrepancy between the input and output data. The loss function 
measures the difference between x and f (g(x)), where x is a data 
entity, f is the decoder function, and g is the encoder function (e.g., the 
mean squared error). The latent features are also denoted as z, but it is 
important to note that z = g(x).

VAEs, shown in Figure 3, offer a probabilistic extension to the 
standard autoencoder model. Like traditional autoencoders, VAEs 
aim to reconstruct input data points. However, at the bottleneck 
layer, instead of passing the exact latent feature values, a probability 
distribution is created around those values, and a sample from this 
distribution is passed to the decoder. This sampling method assumes 
that nearby feature values should produce similar results, enhancing 
the model’s robustness and generalization. Due to this probabilistic 
nature, the loss function employed in VAEs differs from that of 
traditional autoencoders. Rather than comparing the difference 
between two specific values, it focuses on the distinction between two 
distributions. To accomplish this, the evidence lower bound function 
is utilized [20].

Given that x represents the input value, q denotes the encoder, 
p represents the decoder, and z signifies the latent feature distribution, 

(1)
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 Figure 1
Example of a PCA transformation

 Figure 2
An autoencoder with five input features and two latent dimension features
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we incorporate the distribution into the decoder by conducting a Monte 
Carlo simulation on z. This simulation involves passing z through the 
decoder and subsequently reconstructing the distribution. The Monte 
Carlo estimate of this expectation is calculated as follows:

This loss function algorithm is adapted from TensorFlow [21]. In 
the encoder, the number of output nodes is double that of the decoder. 
The encoder nodes are organized into pairs, with one node indicating the 
mean of a distribution and the other indicating the standard deviation. 
This technique is known as “reparameterization.”

μ σ ϵ

where ϵ denotes an error term that follows a standard normal 
distribution.

A key aspect that distinguishes VAEs from traditional autoencoders 
and other DR techniques lies in their probabilistic framework. Unlike 
standard autoencoders, which map inputs to a deterministic latent 
space, VAEs encode inputs as probability distributions, specifically, 
Gaussian distributions characterized by a mean and variance. This 
probabilistic structure enforces smoothness and continuity in the 
latent space, which improves generalization and robustness to noise, 
making VAEs particularly well-suited for applications like anomaly 

detection and intrusion classification. In contrast, PCA performs linear 
transformations and cannot model nonlinear relationships or generate 
new data instances. Standard AEs may capture complex patterns, but 
they lack the regularization effect and generative capacity that come 
from sampling in VAEs. Furthermore, the reparameterization trick used 
in VAEs allows gradients to flow through stochastic nodes, enabling 
end-to-end training using backpropagation. These properties make 
VAEs a compelling choice for feature learning in cybersecurity, where 
the goal is to discover compressed, abstract representations that retain 
the underlying structure of malicious versus benign behavior.

4. Methodology and Experimentation
The aim of this experiment is to investigate how altering 

sample features influences the performance of ML classifiers. The 
experiment is structured into several key phases, as shown in Figure 4, 
as follows.

4.1. Dataset preprocessing
The NSL-KDD dataset, composed of the KDDTrain+ and 

KDDTest+ files, contains 41 features describing individual network 
connections, including three categorical attributes (protocol_type, 
service, and flag) and 38 numerical attributes such as duration, src_
bytes, dst_bytes, wrong_fragment, num_failed_logins, count, and 
srv_count. These features were retained in full, and no synthetic or 
engineered features were added, in order to maintain consistency across 
all DR techniques applied. Each feature captures behavior known to 
be relevant to network intrusion detection, for example, num_failed_
logins indicates brute-force attempts, while count and srv_count reflect 
potential scanning or flooding behaviors. A preliminary inspection 
confirmed that the dataset contains no missing values. To reduce the 
influence of extreme numerical values without distorting the dataset 
structure, outlier clipping was applied using a z-score method: values 
beyond three standard deviations from the mean were clipped at the 99th 
percentile. Importantly, no data points were removed; this nondestructive 
approach preserves the original dataset while mitigating the impact of 
skewed distributions, particularly for models sensitive to feature scale. 
Although no ablation study was conducted to directly compare clipped 
versus unclipped performance, this remains a potential avenue for 
future research. Categorical features were transformed using one-hot 
encoding, expanding the total feature count and allowing compatibility 
with NNs and SVMs. Numerical features were scaled to the [0,1] 
range via min-max normalization to stabilize training, particularly 
for autoencoders. The original multi-class labels were converted into 
a binary classification task, where “0” denotes benign traffic and “1” 
denotes any type of malicious activity. Class imbalance, while present, 
was addressed through stratified sampling during train-test splitting 
to maintain proportional representation. These preprocessing choices 

(2)

(3)
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 Figure 4
Experimentation phases

 Figure 3
A VAE with five input variables and two latent dimensions
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ensure model compatibility, enhance numerical stability, and preserve 
the predictive value and interpretability of features. To clarify how 
the raw dataset was transformed into model-ready inputs, Figure 5 
presents a high-level overview of the data transformation pipeline. The 
process begins with the raw NSL-KDD records, followed by missing 
value checks and outlier clipping. Categorical features are then one-
hot encoded, and numerical attributes are scaled. Labels are binarized, 
after which the data may follow one of three DR paths: PCA only, VAE 
only, or a hybrid PCA→VAE pipeline. Each path produces a latent 
feature representation used for model training. This transformation 
overview connects each preprocessing step to the broader experimental 
framework and highlights how the dataset evolves through each stage.

4.2. DR
At this stage, the chosen DR methods are applied, each with its 

own set of unique parameters. By adjusting these parameters, we can 
better assess the performance of each method. The following techniques 
shown in Table 2 are implemented on the raw datasets and then prepared 
for further processing:

VAEs were selected for this study due to their ability to 
generate low-dimensional, information-rich representations of high-
dimensional data through a probabilistic latent space. Unlike traditional 
autoencoders or PCA, which rely on deterministic mappings, VAEs 
model the underlying data distribution by learning a mean and variance 
for each latent dimension. This enables the generation of smoother, 
more generalized feature spaces that are robust to noise and overfitting 
properties, particularly beneficial in cybersecurity applications, where 
attack patterns may vary widely and unpredictably. Prior research 
in image processing and anomaly detection has shown that VAEs 
outperform basic autoencoders in capturing meaningful structure within 
data [23, 24], and this study explores whether such benefits translate 
effectively to network intrusion detection. A convolutional structure 
was adopted to allow the encoder to exploit localized patterns in the 
input feature space, similar to how spatial correlations are modeled 
in image data. Additionally, the number of latent dimensions (2–14) 
and training epochs (100 to 500) were varied to empirically determine 
the optimal configuration for downstream classification. These 
hyperparameter ranges were chosen based on common practices in deep 
learning research and validated by observing performance trends across 
multiple models and metrics.

4.3. Model creation/training
The following models were trained on datasets processed using 

various DR techniques: VAEs, PCA, and combinations thereof. The 
models include GNB Networks, SVMs with an RBF kernel, decision 
trees, and dense NNs. Each model was evaluated on its performance 
and generalization ability using accuracy, precision, recall, F1 score, 
and the Matthews Correlation Coefficient (MCC), as detailed in the 
performance metrics summarized in Table 3.

4.3.1. Decision trees
For decision trees, the following hyperparameters were varied to 

control model complexity and mitigate overfitting:

1)  criterion: Gini impurity or entropy
2)  splitter: Best or random
3)  min_samples_split: 2, 4, 6, or 8
4)  min_samples_leaf: 1 to 4 (inclusive)

These settings were adjusted to prevent overly deep trees and 
ensure sufficient samples at each split, thereby acting as a form of 
built-in pruning and regularization. By increasing min_samples_split 
and min_samples_leaf, the model avoids tailoring its branches too 
specifically to noise in the training set, which enhances generalizability. 
A full summary of model-specific training configurations is provided 
in Table 4.
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Table 3
Model training parameters

Model type Parameters
Gaussian Naïve Bayesian 
Networks [25]

None

SVM [26, 27] An RBF kernel is used for the SVM
Decision trees [28] criterion: gini or entropy

splitter: best or random
min_samples_split: 2, 4, 6, or 8
min_samples_leaf: between 1 and 4 
inclusive

Note: RBF = Radial Basis Function, SVM = support vector machine.

Table 2
DR methods

Method Description
None The data is unmodified to act as a control.
PCA Variance 
Threshold [17]

PCA is applied to the dataset, and then a 
percentage variance threshold is applied. This 
threshold is varied between 90% and 99%.

PCA MLE Threshold 
[22]

PCA is applied to the dataset, and then an 
MLE threshold is applied.

Variational 
Autoencoder [23, 24]

A variational encoder is trained on the data-
set, and then from that, the latent features are 
extracted. The number of epochs is varied 
from 100 to 500, and the number of latent 
features is also varied from 2–14.

Combinations Combinations of PCA and autoencoders are 
also constructed. For each PCA type, a set 
of autoencoders is trained with the same 
parameter variances for each.

Note: DR = dimensionality reduction, MLE = maximum likelihood 
estimate, PCA = "Data Preprocessing Pipeline.

 Figure 5
Overview of the data transformation pipeline from raw  

NSL-KDD records to processed feature vectors  
used in training and evaluation

Note: PCA = Data Preprocessing Pipeline, VAE = variational autoencoder.
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Across all models, overfitting was further controlled by using 
stratified train-test splits, ensuring balanced representation of classes. 
Although k-fold cross-validation and ensemble techniques were not 
implemented in this study, their inclusion in future work could provide 
additional evidence of model robustness. Performance was evaluated 
using multiple metrics beyond accuracy, such as F1 and MCC, to 
better assess the ability to generalize, especially under class imbalance. 
Autoencoder training was monitored across increasing epochs and 
latent feature sizes, and only configurations showing consistent test 
performance gains were retained for evaluation.

4.4. Step-by-step problem-solving flow of the proposed 
method

Based on our previous work in Taylor and Eleyan [29], the 
proposed method was designed to address key limitations in IDSs, 

including high feature dimensionality, weak generalization of traditional 
models, and inconsistent classifier performance. The following step-by-
step approach outlines how the method solves these challenges:

1)  Challenge: high-dimensional network data includes redundant and 
noisy features that degrade classifier performance.

Step 1: feature preprocessing
The NSL-KDD dataset is cleaned and normalized. Categorical 

features are one-hot encoded, and numerical features are scaled to [0,1]. 
Outlier clipping is applied to reduce the impact of extreme values. 
These steps ensure that all inputs are in a consistent and stable format 
for further processing.

2)  Challenge: linear DR methods like PCA cannot capture non-linear 
attack patterns.

Step 2: DR
The dataset is passed through either PCA, VAE, or a combined 

PCA→VAE pipeline. PCA removes linear redundancy, while VAEs 
create probabilistic latent feature representations that capture non-
linear, higher-order relationships in the data.

3)  Challenge: standard ML models perform inconsistently across raw 
and reduced feature spaces.

Step 3: hybrid feature engineering
A hybrid configuration (PCA followed by VAE) is proposed to 

combine the benefits of variance-based filtering with deep, abstract 
feature generation. This reduces noise while preserving critical patterns, 
improving the robustness of downstream models.

4)  Challenge: classifiers overfit to training data or underperform due to 
irrelevant features.
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 Figure 6
Mean metric value across ALL DR combinations with an autoencoder against the number of training epochs

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, NN = neural network, SVM = support vector machine.

Table 4
Mean improvement for each DR technique compared to the 

baseline metric for Gaussian Naïve Bayes networks 

DR type VAE PCA PCA + VAE
Accuracy 0.271496 0.280635 0.290982
Precision 0.324512 0.364020 0.366039
Recall −0.065930 −0.095875 −0.069866
F1 0.128701 0.127246 0.141484
MCC 0.692453 0.726935 0.743009

Note: DR = dimensionality reduction, MCC = Matthews Correlation 
Coefficient, PCA = "Data Preprocessing Pipeline, VAE = variational 
autoencoder.
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 Figure 7
Mean metric values across ALL DR combinations using an autoencoder versus the number of latent feature dimensions

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, NN = neural network, SVM = support vector machine.

 Figure 8
Mean metric value across ALL DR combinations with an autoencoder against the type of PCA variance threshold

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, MLE = maximum likelihood estimate, NN = neural network, PCA = Data 
Preprocessing Pipeline, SVM = support vector machine.
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Step 4: classifier training
Multiple classifiers (GNB, SVM-RBF, decision trees, NNs) 

are trained on these transformed features. Hyperparameters are tuned 
to balance complexity and generalization. Decision tree pruning and 
stratified train-test splits are used to avoid overfitting.

5) Challenge: lack of generalizable results across models and datasets.

Step 5: performance evaluation and comparison
Classifier outputs are evaluated using multiple metrics: 

accuracy, precision, recall, F1 score, and MCC to capture performance 
comprehensively. The PCA+VAE feature set consistently yields the 
best results, showing its ability to generalize across models.

6) Challenge: limited insight into which methods are most effective for 
IDS.

Step 6: result analysis and insights
Comparative results show which classifier-DR combinations 

perform best. For example, SVM with PCA+VAE achieved 82.8% 
accuracy and an MCC of 0.682, the highest among all configurations. 
These findings offer practical guidance for real-world IDS design.

5. Results and Discussion
5.1. DR tuning

To understand the impact of different DR strategies on 
classification performance, a series of experiments were conducted 
by varying key parameters of both PCA and VAEs. Specifically, PCA 
variance thresholds ranging from 90% to 99%, and VAE configurations 
including training epochs (from 100–500 as shown in Figure 6) and 
latent dimension sizes (from 2–14 as shown in Figure 7) were tested.

The results reveal that increasing the number of latent features in 
VAEs generally improves classification metrics across models, though 

with diminishing returns beyond a certain point (Figure 7). The average 
metric values improve as more expressive latent representations are 
learned, indicating that the bottleneck in the VAE is critical for retaining 
meaningful structure. Similarly, Figure 8 shows that combining PCA 
with VAE generally leads to better average performance than either 
method alone, suggesting that PCA may help remove redundant 
variance before the VAE encodes higher-order abstractions. However, 
Figure 9 demonstrates that there is no clear optimal PCA threshold 
across all classifiers performance depends on both the DR combination 
and the model architecture.

5.2. Classifier performance with DR
Each classifier was evaluated across multiple DR configurations 

using key metrics: accuracy, precision, recall, F1 score, and the MCC. 
Figures 10 and 11 show the distribution of these metrics for GNB and 
SVM-RBF models, respectively.

1) GNB
Table 5 summarizes the performance of GNB models under 

different DR methods. The baseline model (no DR) performed poorly 
(MCC: −0.219), while applying VAE significantly improved results 
(MCC: 0.618). PCA also improved performance (MCC: 0.526), but 
the best result was obtained with a hybrid PCA + VAE configuration 
(MCC: 0.668). These results suggest that probabilistic latent features 
generated by VAEs help reduce the naïve assumption violations 
inherent in GNB.

2) SVMs (SVM-RBF)
Table 6 presents the mean improvement of each DR method for 

SVMs. While PCA slightly improved performance, VAE alone slightly 
reduced average results. Nonetheless, the best-performing SVM model 
overall used both PCA (threshold 0.92) and a VAE with six latent 
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 Figure 9
Mean metric value across all combinations of ML classifiers for each PCA variance threshold type

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, ML - machine learning, MLE = maximum likelihood estimate, NN = neural 
network, PCA = Data Preprocessing Pipeline, SVM = support vector machine.
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 Figure 10
Boxplot of all metric types for GNB, grouped by DR method

Note: DR = dimensionality reduction, GNB = Gaussian Naïve Bayes, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline.

 Figure 11
Boxplot of all metrics for the SVM with RBF kernel, grouped by DR method

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis Function, SVM = support 
vector machine.
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features (Table 7), achieving an accuracy of 82.8% and MCC of 0.682. 
This implies that a carefully tuned hybrid DR pipeline can enhance 
SVM performance, even if average improvements are small.

3) Decision trees
Figures 12 and 13 and Table 8 evaluate decision tree models 

under different splitting strategies and DR methods. Notably, decision 
trees performed well even without DR, due to their internal structure 
that inherently filters irrelevant features. The best-performing 
decision tree model (gini, random splitter, MSS = 6, MSL = 3) 
achieved an MCC of 0.667 without DR, closely matching the best 
DR-enhanced versions. This suggests that decision trees may benefit 
less from DR than other classifiers due to their embedded feature 
selection capabilities.

4) NNs
Figures 14 and 15 show how NN performance varied with DR 

configurations and model depth. Unlike other models, NNs showed 
mixed results, with some DR combinations reducing performance 
on the NSL-KDD dataset. However, Table 9 indicates that certain 
hybrid configurations, such as PCA@0.91 combined with a VAE 
(500 epochs, 11 latent features), produced competitive results (accuracy: 
0.810, MCC: 0.666). This suggests that DR must be carefully tuned 
when applied before deep learning models, as unnecessary compression 
can discard nonlinear relationships critical to NNs.
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Table 5
Maximum performing GNB network models split by DR method

Meta DR type DR Accuracy Precision Recall F1 MCC
None None 0.451694 0.513249 0.712382 0.596639 -0.219382
VAE 400 epochs, 5 features 0.810282 0.853437 0.804956 0.828488 0.617966
PCA MLE threshold 0.745697 0.875423 0.645056 0.742788 0.525569
PCA with VAE 0.97 threshold and 500 epochs, 4 features 0.821505 0.937258 0.735681 0.824326 0.667928

Note: DR = dimensionality reduction, GNB = Gaussian Naïve Bayes, MCC = Matthews Correlation Coefficient, MLE = maximum likelihood estimate, 
PCA = Data Preprocessing Pipeline, VAE = variational autoencoder.

Table 6
Mean metric improvement for each DR method for SVM-RBF 

models

DR type VAE PCA PCA + VAE
Accuracy −0.048422 −0.005253 −0.016317
Precision −0.090248 −0.053932 −0.028641
Recall −0.009585 0.043702 −0.006658
F1 −0.037584 0.009035 −0.015862
MCC −0.117931 −0.034707 −0.037293

Note: DR = dimensionality reduction, MCC = Matthews Correlation 
Coefficient, PCA = Data Preprocessing Pipeline, VAE = variational 
autoencoder.

Table 7
Maximum performing SVM-RBF models split by DR method

Meta DR type DR Accuracy Precision Recall F1 MCC
None None  0.762952 0.965213 0.605392 0.744086 0.595881
VAE 500 epochs, 4 features 0.779853 0.933752 0.660095 0.773431 0.604059
PCA MLE threshold 0.789257 0.968576 0.650900 0.778580 0.634754
PCA with VAE Threshold 0.92 and 500 epochs, 6 features 0.828070 0.946555 0.739733 0.830461 0.682102

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis 
Function, SVM = support vector machine, VAE = variational autoencoder.

 Figure 12
Boxen plot of decision tree MCC split by classification criterion 

and node splitting strategy 

Note: MCC = Matthews Correlation Coefficient.



Artificial Intelligence and Applications Vol. 3  Iss. 4  2025

Table 9 ranks the top 10 performing models across all classifiers 
and DR methods. The highest overall performance was achieved by 
the SVM-RBF using PCA@0.92 and VAE (6 latent features), with an 
accuracy of 82.8% and MCC of 0.682. Interestingly, decision trees 
with no DR also appeared multiple times among the top models, 
indicating their robustness even in high-dimensional feature spaces. 
For GNB, DR significantly improved baseline performance, while for 
NNs, DR outcomes were highly configuration-dependent. Overall, 
the results demonstrate that convolutional VAEs can effectively 
enhance classifier performance when properly configured and, in 
many cases, outperform both PCA and baseline (no DR) models. The 
combination of PCA and VAE consistently delivered the best results 
for GNB and SVM classifiers, while decision trees benefited less 
due to their inherent feature filtering. NNs showed mixed responses 
to DR, highlighting the need for tailored configurations depending 
on the model complexity and feature space. These findings confirm 
the value of deep probabilistic feature extraction for intrusion 
detection and emphasize the importance of empirical tuning in DR-
classifier pipelines.
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 Figure 13
Decision tree metric improvement box plots for each metric split by DR technique

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis Function, SVM = support 
vector machine.

Table 8
Mean improvement for each DR technique from the base metric for decision trees

Criterion Splitter MSS MSL DR type Accuracy Precision Recall F1 MCC
gini Best 8 3 none 0.801677 0.972750 0.670381 0.793745 0.654712
gini Random 6 3 none 0.811081 0.970169 0.689317 0.805977 0.667231
gntropy Best 6 2 none 0.809351 0.967057 0.688537 0.804370 0.663211
gntropy Random 2 2 none 0.801411 0.968281 0.673186 0.794208 0.652169

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient.

 Figure 14
Model performance over model hidden layer depth without DR 

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient.
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 Figure 15
Box plot of each metric improvement for NNs split by DR technique

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, NN = neural network, PCA = Data Preprocessing Pipeline, RBF = Radial Basis 
Function, SVM = support vector machine.

Table 9
Top 10 performing models

DR type Model type Accuracy Precision Recall F1 MCC
None dtree entropy

best mss 8 msl 1
0.806911 0.969027 0.682615 0.800988 0.660562

None dtree gini random mss 2 msl 2 0.808419 0.966879 0.686979 0.803244 0.661755
None dtree entropy

best mss 4 msl 2
0.808818 0.968554 0.686433 0.803448 0.663137

None dtree entropy
best mss 6 msl 2

0.809351 0.967057 0.688537 0.804370 0.663211

None dtree gini random mss 4 msl 1 0.809972 0.969880 0.687524 0.804651 0.665462
PCA @ 0.91 VAE
500 ep 11 LFD

nn1 0. 809839 0.971842 0.685810 0.804148 0.666197

none dtree gini random mss 6 msl 3 0.811081 0.970169 0.689317 0.805977 0.667231
PCA @ 0.9 VAE
500 ep 9 LFD

NN3 0.814674 0.959541 0.704122 0.812225 0.667584

PCA @ 0.97 VAE
500 ep 4 LFD

bayesian 0.821505 0.937258 0.735681 0.824326 0.667928

PCA @ 0.92 VAE
500 ep 6 LFD

svm rbf 0.828070 0.946555 0.739733 0.830461 0.682102

Note: DR = dimensionality reduction, MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis Function, SVM 
= support vector machine, VAE = variational autoencoder.
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5.3. Comparative study with existing methods
To evaluate the effectiveness of our method in the context of 

current research, we compare in Table 10 our best-performing model 
with recent state-of-the-art intrusion detection methods published in 
2023 and 2024.

This comparison demonstrates that although some recent models 
outperform ours in terms of raw accuracy on specialized datasets, our 
model achieves competitive results on the NSL-KDD benchmark while 
also offering modularity and extensibility. Unlike domain-specific 
frameworks or black-box optimizations, our approach emphasizes 
interpretability and methodological rigor.

5.4. Model interpretability and insights
Although the primary focus of this study was on improving 

classification performance through DR, model interpretability remains 
essential for practical deployment, especially in cybersecurity settings 
where understanding the reasoning behind an alert is critical. For 
tree-based models such as decision trees, interpretability is inherently 
high splits based on features like num_failed_logins, src_bytes, or 
same_srv_rate directly indicate thresholds that trigger malicious 
classifications. These insights can guide network administrators toward 
specific traffic patterns or anomalies that may require investigation. 
In contrast, models such as SVMs and NNs, particularly those using 
VAE-generated features, are less interpretable by default. However, 
DR itself offers some level of abstraction: the latent features learned 
by VAEs often represent compressed patterns across the input space. 
For example, a VAE may learn to compress high dst_host_srv_count 
and frequent serror_rate combinations into a single latent feature that 
correlates strongly with denial-of-service attacks. Though the latent 
dimensions are not directly human-readable, their contribution to 
downstream classification can be visualized or analyzed using tools 
such as SHAP (SHapley Additive exPlanations) or feature attribution 
heatmaps in future work. Ultimately, understanding which original 
input features are most influential even after compression can help 
translate model recommendations into actionable cybersecurity 
policies. Future extensions of this work could include training 
explainable models (e.g., XGBoost with SHAP interpretation) or 
mapping latent dimensions back to feature groupings for enhanced 
transparency.

5.5. Computational overhead and complexity consid-
erations

Although the integration of DR techniques, particularly VAEs, 
yielded performance improvements in several ML classifiers, it 
also introduced additional computational overhead. Training VAEs, 
especially with deeper architectures and multiple latent dimensions, 
involves increased training time and memory usage due to the 

backpropagation of both mean and variance terms, as well as sampling 
operations in the latent space. Additionally, tuning VAE hyperparameters 
such as the number of epochs and latent dimensions requires repeated 
training and evaluation, which can be computationally expensive. 
Compared to PCA, which is relatively lightweight and deterministic, 
VAEs demand GPU resources and careful convergence monitoring. 
The downstream classifiers themselves (e.g., SVMs and NNs) also 
experienced slight increases in training time due to the larger feature 
sets produced after one-hot encoding and normalization. Although these 
overheads were manageable in our experiments using moderate-sized 
datasets, they could pose scalability challenges for real-time or large-
scale IDSs. Future work could explore optimization strategies such as 
model pruning, feature selection before encoding, or using lightweight 
VAE variants to reduce the computational footprint while preserving 
accuracy.

5.6. Security analysis and limitations
This work focused on enhancing ML-based intrusion detection 

performance using DR techniques such as PCA and VAEs. Although 
the models were evaluated extensively using performance metrics like 
accuracy, precision, F1 score, and MCC, this study did not include 
a formal security analysis using tools such as ProVerif or Scyther. 
These tools are well-suited for protocol-level security verification 
and reasoning about cryptographic properties, but are less directly 
applicable to evaluating data-driven ML systems where behaviors 
are learned from traffic data rather than defined through protocol 
rules. Nevertheless, we acknowledge the value of formal analysis in 
validating the trustworthiness of IDSs, especially in adversarial or 
high-assurance environments. An informal security evaluation was 
performed by analyzing how well the models detect various types of 
malicious traffic (e.g., denial-of-service, brute-force login attempts, and 
port scans). By assessing false positive and false negative rates under 
multiple DR scenarios, we ensured the system’s ability to generalize and 
maintain reliable decision boundaries across different attack categories. 
In future work, we plan to integrate formal verification techniques to 
assess specific components, such as the robustness of feature extraction 
against adversarial inputs or the consistency of classification decisions 
under transformation. Additionally, formal verification frameworks 
could be employed to ensure traceability and auditability of decisions 
made by high-impact detection models.

5.7. Limitations and future directions
Although the proposed approach demonstrates improved 

classifier performance through the use of VAEs and DR, several 
limitations remain. First, the evaluation was restricted to the NSL-
KDD dataset, which, despite being a widely used benchmark, lacks the 
diversity and real-time variability of modern traffic datasets. As such, the 
generalizability of the model to newer or more complex environments 
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Table 10
Performance comparison with existing methods

Year Method Dataset Accuracy F1 score Notes
2024 Red Fox + RBF [11] IoT 91.2% 0.89 High adaptability, complex setup.
2024 PPGO + Naïve Bayes [13] NSL-KDD 86.3% 0.84 Probabilistic, optimized selection.
2024 WI-CS + GNN [14] SCADA 92.4% 0.91 Graph-based, domain-specific.
2025 Ours (PCA@0.92+VAE-6 + SVM) NSL-KDD 82.8% 0.830 Strong MCC (0.682), generalizable.

Note: MCC = Matthews Correlation Coefficient, PCA = Data Preprocessing Pipeline, RBF = Radial Basis Function, SVM = support vector machine, VAE 
= variational autoencoder.
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(e.g., IoT or cloud networks) remains untested. Second, although 
VAEs improve performance, they require longer training times and are 
computationally more expensive than linear methods like PCA. This 
could hinder deployment in real-time or resource-constrained systems. 
Third, interpretability is reduced when using deep learning models 
such as VAEs and NNs, limiting their use in environments where 
transparency is essential. Additionally, this study did not explore the 
model’s resistance to adversarial attacks or evasion techniques, which 
are important considerations for operational security systems.

Future work should focus on validating the model across 
external datasets such as UNSW-NB15 or CICIDS2017, incorporating 
formal generalizability testing through cross-validation or domain 
adaptation. Research could also explore hybrid models that balance 
interpretability and performance and investigate lightweight or 
adversarially robust variants of VAEs for deployment in real-time 
IDS. Finally, incorporating explainability tools such as SHAP or 
LIME could enhance the transparency and auditability of the model’s 
predictions, while integrating NLP models could improve user 
experience.

6. Conclusion
This study demonstrated that VAEs, particularly when combined 

with PCA, can significantly enhance the performance of ML classifiers 
for intrusion detection. Using the NSL-KDD dataset, we showed 
that models trained on VAE-generated latent features consistently 
outperformed those trained on raw or PCA-only features across several 
evaluation metrics. The best-performing configuration, an SVM with 
RBF kernel using a hybrid PCA-VAE feature set, achieved an accuracy 
of 82.8% and an MCC of 0.682, highlighting the value of deep feature 
representation in cybersecurity contexts. By integrating VAEs into the 
DR pipeline, this work contributes a flexible and effective approach for 
improving the accuracy and robustness of IDSs. Although the current 
evaluation focused on a controlled dataset, this methodology lays a 
strong foundation for future research into scalable, interpretable, and 
generalizable IDS solutions.
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