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Abstract: The synthetic aperture radar (SAR) is very useful in both military and civilian applications due to its 24/7, all-weather, and high-
resolution capabilities, as well as its ability to recognize camouflage and penetrating cover. In the field of SAR image interpretation, target
recognition is an important research challenge for researchers all over the world.With the application of high-resolution SAR, the imaging area
has been expanding, and different imaging modes have appeared one after another. There are many difficulties with the conventional
understanding of human interpretation. There are issues like slow movement, a lot of labor, and poor judgment. Technology for
intelligent interpretation needs to be developed immediately. Although deep convolutional neural networks (CNNs) have proven
extremely efficient in image recognition, one of the major drawbacks is that they require more parameters as their layers increase. The
cost of convolution operation for all convolutional layers is therefore high, and learning lag results from the inevitable rise in
computation as the size of the image kernel grows. This study proposes a three ways input of SAR images into multi-stream fast Fourier
convolutional neural network (MS-FFCNN). The technique elaborates on the transformation of rudimentary multi-stream CNN into
MS-FFCNN. By utilizing the fast Fourier transformation instead of the standard convolution, it lowers the cost of image convolution in
CNNs, which lowers the overall computational cost. The multiple streams of FFCNN overcome the problem of insufficient sample size
and further improve the long training time while also improving the recognition accuracy. The proposed method yielded good
recognition accuracy of 99.92%.

Keywords: automatic target recognition, convolutional neural network, fast Fourier transform, ground military vehicle, multi-stream,
synthetic aperture radar

1. Introduction

The synthetic aperture radar (SAR) imaging technology has
gradually matured with the development of large-scale integrated
circuits and high-performance electronic devices. Due to its active
sensor nature, SAR imaging is less affected by the effects of
weather, illumination, and other conditions (Jia et al., 2019).
Military and civilian applications both benefit from its all-weather,
high-resolution capabilities, camouflage recognition, and piercing
cover capabilities, among other attributes. Academic researchers all
over the world are grappling with the challenge of SAR target
recognition. This makes SAR image interpretation extremely
important. With the advancement of SAR imaging technologies and
the increasing resolution accuracy of SAR images, understanding
and using these images have become a pressing issue. There are
many difficulties with the conventional understanding of human
interpretation. There are issues like slow movement, a lot of effort,

and poor judgment. The design of intelligent interpretation
technology is essential (Xinyan & Weigang, 2019).

Deep learning has advanced dramatically in recent years, finding
considerable success across a wide range of industries. Deep learning-
based approaches, in contrast to traditional algorithms, frequently use
hierarchical designs, such as deep neural networks (DNNs), to extract
feature representations of raw data for a variety of applications
(LeCun et al., 2015). Through stacks of convolutional and pooling
layers, convolutional neural networks (CNNs) can extract low-
and high-level features from raw images and then use these features to
perform computer vision tasks such as large-scale image recognition,
semantic segmentation, and object detection (Guo et al., 2018; Zhao
et al., 2019).

However, one of the issues with CNN training is that it is quite
expensive to operate all of the convolutional layers. Particularly, an
increase in the image or kernel size unavoidably results in an increase
in computation, which causes a learning lag (Han & Hong, 2021).
Using the Fourier transform to change the domain and build a
CNN in the frequency domain can solve this problem, as
convolution in the spatial domain is the same as pointwise
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multiplication in the Fourier domain. Convolution is more expensive
to compute than point-by-point multiplication in general. Prior
strategies have concentrated on increasing processing speed to
address the time cost problem and improving recognition (Lecun
et al., 1998; Mathieu et al., 2013).

This research suggests a multi-stream fast Fourier convolutional
neural network (MS-FFCNN) to further enhance the recognition
accuracy, overfitting, training time, and computational complexity
of CNN for SAR target detection. In order to extract and combine
multiple levels of features, this work introduced fast Fourier
convolutions (FFCs) to replace the standard classical convolution in
three simultaneous streams of networks. The network’s computation
is then further reduced by using Dropout and max-poolings.
Experiments demonstrate how successful the networkmodel achieved.

Therefore, this work significantly enhanced Zhao et al. (2018)
and Pei et al. (2018; 2021) works by substituting all of the
convolutions in the three streams of the network for FFCs and
converting the input data into a fast Fourier spectrum.

To the best of our knowledge, this is the first application of deep
integrated fast Fourier transformed convolutions in multiple stream
CNNswith multiple inputs for automatic target recognition (ATR) of
SAR images, notably in classification of military ground vehicles.
This approach resolves the issue of a long training time, improves
recognition accuracy, and lowers the computing cost of convolution.

The rest of this research work is divided into the following
section: Section 2 recaps the review of related literature and
Section 3 describes the research methodology adopted in this
study and brief description of the dataset used. Section 4 outlines
the discussion of results obtained from the experiment and the
classification algorithms, which are compared with some other
recent state-of-the-art models. Finally, the conclusion and future
work are expressed in Section 5.

2. Related Works

The use of numerous feature-based SAR ATR algorithms is a
result of the development of machine learning. Feature extraction
and categorization are often the first two stages of feature-based
techniques (Tian et al., 2018). Deep learning, a new machine
learning branch, is what is driving the study of artificial
intelligence (Zhang, 2018). Recently, it has undergone significant
development and seen a growth in applications across numerous
businesses and academic disciplines. To put it simply, deep
learning is a neural network structure with a large number of
hidden layers. The technique of deep learning involves extracting
target features automatically through unsupervised learning and
avoids issues caused by manual selection of features, in contrast to
CNNs (Zhang et al., 2020). Pei et al. (2018) suggested a typical
multi-view deep CNN (DCNN) with many inputs (i.e., SAR
images from different perspectives) and a low requirement for raw
SAR data. The final layer of the network gradually fuses the
features discovered from various points of view, resulting in
classification rates for standard operating condition (SOC) and
experimental operating condition (EOC) of 98% and 93%,
respectively. A parallel DCNN, with many inputs, was introduced
by Pei et al. (2021). An innovative processing framework was
developed for a multi-view SAR ATR pattern, where SAR images
were processed in a different way in each view. A multi-view SAR
image can include features from both the inter- and intra-view,
which are key classification features and have been completely
learned by the multi-view DNN. In a problem involving ten
classes, its recognition rates with three and four views were
99.30% and 99.62%, respectively, under SOC. Furukawa (2018)

suggested a CNN made of an encoder and a decoder called the
verification support network (VersNet). One key characteristic of
the network is that the input SAR picture may be of any size and
comprise numerous targets belonging to various classes.

In addition, Zou et al. (2018) integrated three continuous
azimuth images of the same target as a pseudo-color image input,
which is input into CNN. This was done because SAR images are
particularly sensitive to azimuth angle. A multi-view CNN and
long short-term memory (LSTM) network were created by Wang
et al. (2020) to extract and merge the data from various nearby
azimuth angles. To increase recognition rate, Zhang et al. (2020)
combined CNN with CBAM, an attention mechanism. The deep
semantic knowledge of the target can be extracted using the
deep learning technique. It has a higher recognition rate for SAR
targets than the model-based method since it eliminates the
requirement for human feature extraction. Pei et al. (2016) used
2-D principal component analysis-based 2-D neighborhood virtual
point’s discriminant embedding for SAR ATR to extract SAR
image features. Features and models must, however, be retaught
when fresh samples are received. Low universality and time
requirements characterize this approach. Dang et al. (2018)
employed the incremental non-negative matrix decomposition
method to examine the features online in order to solve this issue
and increase the model’s computational effectiveness and
universality. Different classifiers can be created to categorize
targets in SAR images after feature extraction. Furthermore, He
et al. (2016) achieved a final recognition rate of 99.47% by using
CNN to categorize SAR images; nevertheless, only seven
categories of targets in the moving and stationary target acquisition
and recognition (MSTAR) dataset were recognized. More and more
parameters need to be learned for CNN as the number of layers rises.
In the meanwhile, overfitting happened frequently, which prevents
the network from converging or from converging to the global
optimum. Chen et al. (2016) suggested a SAR image target
recognition approach based on A-ConvNets, which eliminated all
the fully connected (FC) layers and only contained sparse
connection layers in order to reduce the number of the network
parameters. At the network’s end, a softmax activation function
was used to provide the final classification. The MSTAR dataset
was used to verify this method, and it had a 99% recognition rate,
which was higher than the previous method.

Two models were developed by Bentes et al. (2015), with the
classification model being the second. The first model was
DNNs with denoising autoencoder (DNN-DAE). This research
employs DNN-Conv, also known as DNN-DAE-Conv, and uses
convolutional layers (DNN with denoising autoencoder and
convolution). Incorporating a DAE will allow for the learning of
higher-level feature representation. The DNN-unsupervised DAE’s
block receives the noisy SAR input image after it has first been
processed for object detection using a constant false alarm rate,
after which the discovered regions have been removed,
normalized, and used as input. The output of the unsupervised
block then enters the supervised block, where training was carried
out using labeled data from a database that contains targets that
are manually recognized as well as labels produced by automated
identification system). By using only pertinent characteristics, the
DNN-DAE model could then provide labeled data, which it could
then use for classification in the DNN-Conv model. In conclusion,
the stacked autoencoder layers in the unsupervised block allowed
the DNN-DAE-Conv to learn the higher-level representation of
features. The authors proposed that denoising the input image
before recognizing targets may be useful in subsequent research.
Therefore, combining the DNN-DAE with many deeper CNNs to
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create a hybridized model can be worked on experimentally and may
enhance the performance of the network as a whole.

Similar to this, Chen et al. (2016)’s work suggests an all-CNN
called A-ConvNet that focuses on addressing the overfitting and
limited dataset issues when using CNN to classify MSTAR
targets. The A-ConvNet architecture’s originality lies in the
absence of completely linked layers, which restricts the model’s
degrees of freedom, as well as the architecture’s hyper-parameter
settings. Additionally, data augmentation was carried out to
increase the dataset for the A-ConvNet training, and the
classification results of experiments tested under SOC and EOC
revealed improvements but few misclassifications. When applied
to images with just 1% noise, the model’s performance decreased
by about 7%. This demonstrates how poorly A-ConvNet handles
noise. However, an end-to-end experiment was also carried out in
which MSTAR targets detected in a congested environment were
also taken into account before categorization. A-ConvNet was
employed in two steps, with the first stage consisting of a binary
classifier to categorize target and clutter and the second stage
being the A-ConvNet itself. In images with little noise,
results indicate 98% accuracy with few false alarms and
incorrect recognitions. In order to enhance performance and make
A-ConvNet adaptable to noisy images, the researchers
recommended that it can be trained further for noisy images or that
a preprocessing stage may be added to its model. Similar to this,
Wang et al. (2015) propose a CNN that excludes the conventional
FC layers and consists only of sparsely connected levels
(convolutional and pooling layers). By lowering the algorithm’s free
parameters, this technique prevents overfitting brought on by a lack
of training images. Unquestionably, their all-convolutional networks
(A-ConvNets) are among the best SAR ATR methods.

For the purpose of improving speech, Shchekotov et al. (2022)
designed two neural network architecture. Fast Fourier convolutional
autoencoder is the first one, and FFC layers are used in U-Net
architecture for the second one. It was found that in terms of
improving speech quality, phase estimation, and parameter
efficiency, neural network designs based on FFC greatly
outperform conventional convolution-based architectures. The
suggested designs are much smaller than the baselines and
produce state-of-the-art results on speech denoising benchmarks.
Similarly, Sinha et al. (2022) proposed an architecture that learns
both local and global elements and combines them to produce
high-quality images. The architecture subnetwork widens its
receptive area and learns long-range relationships using nonlocal
attention-aided fast Fourier convolutions. Furthermore, the results
demonstrate that these Fourier features implicitly offer faster
convergence on low frequency components but require prior
knowledge for high frequency components that are not detected.
The model adapts effectively to various datasets and further
maximizes the performance improvement in the ablation
investigation, and the author also investigates the effect of
nonlocal attention and the ratio of local and global characteristics.

According to Lu et al. (2020), a novel convolutional operator
known as FFC has the main features of nonlocal receptive fields
and cross-scale fusion. In this model, nonlocal receptive fields are
achieved by harnessing Fourier spectral theory. In the proposed
operator, three types of computations are encapsulated in a single
operation unit to implement cross-scale fusion: a local branch that
performs ordinary small kernel convolution, a semiglobal branch
that process spectrally stacked image patches, and a global branch
that manipulates image-level spectrum. A consistent improvement
in performance has been observed in three comprehensive vision
benchmarks (ImageNet for image recognition, Kinetics for video

action recognition, and MSCOCO for human key point detection)
that are clearly attributed to FFC. It consistently improves
accuracy in all of the aforementioned tasks by sizable margins.

2.1. Convolutional neural networks

CNNs are specialized multilayer perceptron neural networks
designed to recognize two-dimensional shapes with a high level of
invariance to skewing, translation, scaling, and other sorts of
deformation (Wagner, 2016). Although CNNs are a part of deep
learning, they have the advantage of being trained using standard
backpropagation techniques. In order to improve performance,
CNNs are frequently utilized in pattern recognition systems (Chen
et al., 2019). The subject of deep learning, in general, became
well-liked due to the employment of graphics processing units for
calculation and the capacity to initialize the networks via a layer-
by-layer pre-training (Bengio et al., 2013). Max-pooling, batch
normalization, and rectified linear unit (ReLU) are additional
layers present in CNNs. Convolution and fully linked layers are
referred to as weighted layers in CNNs (ReLU). Convolution
layers need a lot of computations because of the sliding window
and a lot of multiplications, whereas fully linked layers need a lot
of memory (Abtahi et al., 2018).

The visual system of the brain serves as the driving force behind
this type of network, which is a branch of deep learning research
(Xueyun et al., 2014). For a long time, CNNs were the only DNN
type that could be trained efficiently using the weight-sharing
approach. The term “receptive field” (the filter defining field)
first appears in the works of Hubel and Wiesel (1959). The
max-pooling layer was first introduced by Fukushima (1980).
In addition to introducing the standard structure of CNN, LeCun
et al. (1998) also coined the phrase “convolutional layer” for the
first time. Ciresan et al. (2012) recently showed the structure of
DNNs and achieved the best performance on six benchmark
image classification databases, including the MNIST (handwritten
digits), NIST SD-19, handwritten Chinese characters, traffic signs,
CIFAR10, and NORB. Traffic signs and MNIST findings
outperform individuals in every way.

Additionally, CNNs can be thought of as supervised feed-forward
networks that performed remarkably well in large-scale object
categorization tasks. The primary visual cortex of the human brain,
which controls how visual information is processed, stimulates the
fundamental structure of CNNs (Bautista et al., 2016). When doing
image classification, CNNs can automatically extract the learnable
visual features from the large-scale dataset input photos from the
classes, as opposed to the old handmade features extraction
approaches. The fact that CNNs employ representations of the
features and the classifier in the same network to break down their
dependencies is one of its key advantages over traditional
classification techniques. Convolution layers, pooling layers, and
linking layers make up the majority of the CNNs’ usual
architecture, which is briefly explored below and seen in Figure 1.

2.2. CNN in Fourier domain

The Fourier convolutional neural network (FCNN) is a technique
where just the Fourier domain is used for training. The effect is a
significant reduction in training time while maintaining efficacy.
The Fourier domain is used to analyze and represent images, and a
convolution mechanism is utilized in a manner similar to that used
in more traditional CNN algorithms (Lendave, 2021).

The most fundamental neural network for computer vision
issues, such as classification, segmentation, and denoising, is
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called a CNN. Additionally, it has been used to extract and learn
visual properties like classification, detection, etc. from DNNs
(Han & Hong, 2021). Additionally, DNNs have been widely
created and successfully used to a variety of tasks employing big
datasets, such as ImageNet, including AlexNet, VGG, DeseNet,
and ResNet (He et al., 2016; Liu & Lu, 2012). However, one of
the issues with CNN training is that it is quite expensive to
operate all of the convolutional layers. In particular, an increase in
the size of the image or kernel unavoidably results in an increase
in computation, which causes a learning lag (Mathieu et al.,
2013). Two solutions have been offered to address this issue:
shifting the domain through Fourier transform and creating a
CNN in the frequency domain. This is because the convolution
operation in the spatial domain is the same as the pointwise
multiplication in the Fourier domain. Convolution is more
computationally expensive to compute than point-by-point
multiplication in general. Prior strategies for handling the time
cost problem concentrated on increasing computing performance
(Heckbert, 1995; Mathieu et al., 2013).

2.3. Fourier transform

A potent mathematical tool that dates to the middle of the 1800s
is the Fourier transform. Its premise states that, regardless of the
complexity of the periodic function, any periodic function can be
written as the sum of sines and cosines of various frequencies,
each one weighted by a different coefficient. If such a function is
not periodic, the decomposition into sines and cosines can still be
used, but from the integral beneath the curves instead. The fast
Fourier transform (FFT) was created with the advent of computing
and technical advancements (Gonzalez & Wood, 2000). There is a
Fourier transform for discrete domains and a Fourier transform for
continuous domains; the latter allows for quick computations and
efficient approximations. The FFT enables a number of
manipulations of digital signals, primarily in pictures, including
the application of several frequency-domain filters (Gonzalez &
Wood, 2000). In essence, the discrete Fourier transform (DFT) is
used to generate a complex array with the same dimension as the
original D-dimensional array in addition to the magnitude (or
module) and phase angle. The DFT, for instance, is defined
mathematically as follows for two dimensions:

F u; vð Þ ¼ R u; vð Þ þ jI u; vð Þ
¼ F u; vð Þj jej∅ u;vð Þ (1)

where u and v stand for the two-dimensional matrix coordinates, R
and I stand for the real and imaginary components, respectively, and

∅ is the phase angle. Equations (2) and (3) specify the input signal’s
amplitude and phase angle, respectively.

F u; vð Þj j ¼ R2 u; vð Þ þ I2 u; vð Þ½ �12 (2)

∅ u; vð Þ ¼ arctan
I u; vð Þ
R u; vð Þ

� �
(3)

2.3.1. Utilization of FFCNN
FCNN approach has the advantage of reducing complexity,

especially in the context of larger images, and thus increasing
network efficiency significantly. The convolution theorem’s basic
notion claims that for two functions k and u, we have

F k � uð Þ ¼ F kð Þ � F uð Þ (4)

where F(.) stands for Fourier transform, * represents convolution,
and the Hadamard pointwise product is shown by ⊙. Convolution
calculations can now be performed more quickly, thanks to FFTs.
Given the effectiveness of the Fourier transform and the fact that
convolution is equivalent to the Hadamard product in the Fourier
domain, this method is substantially quicker and uses a lot fewer
computer processes than the sliding kernel spatial method
(Lendave, 2021).

3. Methodology

This section describes the research methodology adopted in this
work based on existing scholarly frameworks, provides guidelines
for implementing MS-FFCNN, describes some of the principles and
structures used in the model, and provides a brief description of the
dataset used. The experiment used SAR images to categorizemilitary
ground vehicles. However, the MS-FFCNN model was developed
and tested using the open-source Python deep learning framework
with a tensor flow backend. A typical PC with a 20 GB RAM HP
Proliant DL380p Gen8 server served as the platform for all
studies. This work therefore built on the work of Zhao et al.
(2018) and combined various aspects of the methodologies
employed in similar works.

3.1. Description of the used dataset

In contrast to the rapid growth of optical image recognition
research, it is highly challenging to obtain enough publically
accessible datasets in the field of SAR ATR due to the complexity
of target detection methods. One of the few datasets that can
identify ground vehicle targets among them is the MSTAR, which

Figure 1
Typical convolutional neural network architecture
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is publicly accessible in the United States. The Defense Advanced
Research Projects Agency started MSTAR in the middle of the
1990s (Karine et al., 2018). In the former Soviet Union, high-
resolution focused SAR is utilized to gather SAR images of
different military vehicles. To create a reasonably comprehensive
and organized field test database, MSTAR intends to undertake
SAR field testing on ground targets under various scaling
situations, such as target occlusion, camouflage, configuration
modifications, and target obscuration. Up until now, this dataset
has mostly served as the foundation for international research on
SAR ATR. Targets from the following ten categories are included
in the MSTAR dataset: ZSU234, ZIL131, T72, T62, D7, BTR70,
BTR60, BRDM2, BMP2, and 2S1 as shown in Figure 2.

3.2. Multi-stream fast fourier CNN for SAR
ground military vehicle

MS-FFCNN comprises three network streams where each
stream composed of input layer block and subnetwork layer
block. This work implements the multi-stream CNN as found in
Zhao et al (2018) and Pei et al. (2021) but with FFT-based NN.
In comparison to the spatial domain, the distribution of the image
data is different in the Fourier domain.

This enables us to retain more information while reducing the
data size by the same amount as in the spatial domain. The
convolution between the image and the kernel is implemented by
the neural network using the FFT. Figure 3 shows the proposed

architecture. The input image is first transformed into Fourier
spectrum using fast Fourier transformation algorithm.

In this work, a CNN architecture with three streams was
developed, where each CNN stream received the Fourier spectrum
data image as input. A concatenated fusion operation is further
implemented for the three streams. Specifically, fast Fourier
convolutional layers learn the three Fourier spectrum input features.
Features extracted from each stream were flattened separately
before fusion. The choice of concatenation operation is adopted and
not multiplication, max, nor sum because it is more flexible and
allows the streams structure modification. Therefore, it allows the
streams of convolutional layers to have different structures. Then,
the output tensors of the three streams concatenated into vector, and
this vector will be learned by the FC layer.

4. Result and Discussion

This section deals with the implementation process of
MS-FFCNN based on the methodology presented in section 3.
The experimentation is based on the development of multiple
streams of FFCNN in a frequency domain for classification of fast
Fourier transformed SAR image.

4.1. Experimental results analysis

In this work, two experiments were performed in order to
comprehensively assess the recognition performance of the

Figure 2
Ten kinds of items from the MSTAR dataset are represented by optical images and associated SAR images

Source (Wang et al., 2020)

Figure 3
Proposed architecture
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proposed model. The experiments were performed on MSTAR
dataset that comprises ten different types of military ground
vehicles. The first experiment is the traditional multi-stream CNN,
where images were convolved in conventional convolutions
domain and raw SAR images are used as input data, while in the
second experiment, all the images were transformed into a fast
Fourier spectrum and fed as input into the FFCs. That is a
convolution in the frequency domain.

4.1.1. Experiment protocol
Table 1 shows the total number of images used for training and

testing, as well as the number of images for each class of military
vehicle.

4.1.2. Experiment with raw SAR image and normal CNN
The result obtained from the first experiment is shown in Table 1

while Figures 4, 5, and 6 show validation versus training error,
validationversus trainingaccuracy, andconfusionmatrix, respectively.

Table 2 shows that the recognition accuracy is 99.38% with
time step between 143 and 150 ms/step in 32 min and 45 s
training time. The experimental mean square error is 0.205 while
the mean square log error is 0.016. The model floating point
operation (FLOPs) is 5 × 105 and the model parameter is 2.61 × 105.

In order to make sure the model was not overfitted, Figures 4
and 5 compare the validation error against the training error and
the validation accuracy against the training accuracy, respectively.
However, the validation accuracy and training accuracy can be
reasonably inferred from Figure 5.

The proximity suggests that the model was not overfit.
All the correctly and incorrectly classified occurrences are displayed
in Figure 6.

4.1.3. Experiment with transformed SAR image and FFCNN
In this experiment, the SAR images were transformed into fast

Fourier spectrum before input into the three streams of convolutions
in frequency domain. Table 2 shows the result obtained and Table 3
revealed the classification report of the experiment. Figures 7, 8,
and 9 show the validation versus training error, validation versus
training accuracy, and confusion matrix, respectively.

Table 3 shows that the recognition accuracy of 99.92% obtained
in the second experiment is far higher than the accuracy obtained in
Table 2. Furthermore, there is slight difference in training time
obtained compared to training time in Table 2. Therefore, it is
very clear that multi-stream CNN in frequency domain is better
than the traditional multi-stream CNN. It improves the recognition
accuracy as well as model training time.

Table 1
Training and test target class number and variation

S/No Target class Training set Test set

No. of images Depression No. of images Depression No. of images Depression No. of images Depression

1 2S1 299 17o 274 15o 288 30o 288 45o

2 BMP2 233 17o 195 15o

3 BRDM2 298 17o 274 15o 287 30o 287 45o

4 BTR60 256 17o 195 15o

5 BTR70 233 17o 196 15o

6 D7 299 17o 274 15o

7 T62 298 17o 273 15o

8 T72 232 17o 179 15o

9 ZIL131 299 17o 274 15o

10 ZSU234 299 17o 274 15o 288 30o 303 45o

Total 2746 17o 2425 15o

Figure 4
Validation versus training error

Figure 5
Validation versus training accuracy
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Classification report is a performance evaluation metric in
machine learning that shows the precision, recall, F1 score, and
support score of the trained classification model. Table 4 shows
that the average precision for all the ten vehicle images
recognized is 99.93%. Its only 2S1 and ZSU_23_4 have precision
accuracy of 99.64%, while all other vehicles have precision
accuracy of 100%.

Figure 6
Confusion matrix

Table 2
MS-CNN experimental results

MCMS-CNN

Recognition accuracy 99.38%
Training time 00:19:35
Time step 150–143 ms/step
Validation accuracy 99.26%
Mean squared error (MSE) 0.205
Mean squared log error (MSLE) 0.016
Floating point operations (FLOPs) 5 × 10-2 GFLOPS= 5 × 107

Parameters 261,702= 2.61 × 105

Table 3
MS-FFCNN experimental results

MCMS-FFCNN

Recognition accuracy 99.92%
Training time 00:19:21
Time step 220–236 ms/step
Validation accuracy 98.42%
Mean squared error (MSE) 0.00412
Mean squared log error (MSLE) 0.000797
Floating point operations (FLOPs) 0.0449GFLOPS= 4.49 × 107

Parameters 261,702= 2.61 × 105

Figure 7
Validation versus training error

Figure 8
Validation versus training accuracy

Artificial Intelligence and Applications Vol. 00 Iss. 00 2022

07



Figures 7 and 8 show that the model did not overfit nor underfit;
therefore, the model trained and learned well. Figure 10 represents the
validation receiver operating characteristic curve, which is a graph
showing the performance of a classification model at all
classification thresholds. This curve plots two parameters, such as
true positive rate (sensitivity, recall, or probability of detection) and
false positive rate (probability of false alarm and can be calculated
as 1 – specificity). Also Figure 11 represents the precision recall
curve that shows the tradeoff between precision and recall for
different threshold. A high area under the curve represents both
high recall and high precision, where high precision relates to a low
false positive rate, and high recall relates to a low false negative rate.

This MS-FFCNNwith three streams produced a 99.92% accuracy
rate, which is a significant improvement over theMS-CNNproposed by

Zhao et al. (2018), which had an overall accuracy of 99.88%. Based on
Tables 5 and 6, we can see the differences between our model and state-
of-the-art models in terms of model accuracy, number of parameters,
and computational complexity.

Based on FLOPs, parameters, and recognition accuracy, Table6
comparesourMS-FFCNNwithothermethods.The recognition rate is
loosely correlated with the number of parameters in the network. A
lower recognition rate can be attributed to a lack of effective
features from different categories of targets extracted from too few
parameters, resulting in insufficient features and lower recognition
rates. Furukawa (2017)’s ResNet-18 uses millions of parameters

Figure 9
Proposed model confusion matrix

Table 4
Classification report

Precision Recall F1 score Support

2S1 0.9964 1.0000 0.9982 274
BMP2 1.0000 1.0000 1.0000 195
BRDM_2 1.0000 1.0000 1.0000 274
BTR60 1.0000 0.9949 0.9974 195
BTR70 1.0000 1.0000 1.0000 196
D7 1.0000 1.0000 1.0000 274
T62 1.0000 1.0000 1.0000 273
T72 1.0000 1.0000 1.0000 196
ZIL131 1.0000 0.9964 0.9982 274
ZSU_23_4 0.9964 1.0000 0.9982 274
Accuracy 0.9992 2425
Macro avg. 0.9993 0.9991 0.9992 2425
Weighted avg. 0.9992 0.9992 0.9992 2425

Figure 10
Model ROC curve
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and FLOPs that reach ten billion in order to obtain high recognition
rates; however, this results in low efficiency because it needs a lot of
computational power and more time to train and test the network.

In comparison to the other three multi-view approaches, our
MS-FFCNN obtains the highest recognition rates with the least
number of parameters and FLOPs, thanks to a multi-stream
convolutional layer and sensible parameter setting. Based on the
comparison results of recognition rates, FLOPPs, and the quantity
of parameters, it is clear that our proposed MS-FFCNN is superior
in the SOC scenario.

5. Conclusion and Future Work

The MS-FFCNN is a supervised learning-based image features
fusion method that uses the MSTAR dataset and achieves a high
recognition rate at a reduced training time with minimal network
parameters. It can be concluded that the proposed MS-FFCNN is
able to identify and extract more features from multiple streams of

Figure 11
Model precision-recall curve

Table 5
Result comparison with other state-of-the-art algorithms

Author Title Dataset Methodology Results

Pei et al. (2021) Multiview deep feature learning network for
SAR automatic target recognition

MSTAR Multi-view CNN 99.30% – 3 views
99.62% – 4 views

Guo (2022) SAR image classification based on multi-feature
fusion decision convolutional neural network

MSTAR FCNN 99.30%

Ma (2021) Improving SAR target recognition performance
using multiple preprocessing technique

MSTAR CNN 99.02%

Yu et al. (2021) Combination of joint representation and adaptive
weighting for multiple features with application
to SAR target recognition

MSTAR Joint sparse
representation
and adaptive
weighting

99.38%

Zhao et al. (2021) Multi-aspect SAR target recognition based
on prototypical network with a small
number of training samples

MSTAR CNN ResNet18 – 99.84%
VggNet11 – 99.13%
AlexNet – 96.17%

Zhang et al, (2020b) Image target recognition model of multi-channel
structure convolutional neural network training
automatic encoder

MSTAR DCNN 98.5%

Pei et al. (2021b) FEF-Net: A deep learning approach to
multiview SAR image target recognition

MSTAR CNN 2 – views – 98.42%
3 – views – 99.31%
4 – views – 99.34%

Zhao et al. (2018) Multi-stream convolutional neural network
for SAR automatic target recognition

MSTAR MS-CNN 3-views – 99.88%
4- views – 99.92

Proposed Multi-stream fast Fourier convolutional
neural network for automatic target recognition
of ground military vehicle

MSTAR MS-FFCNN 3-streams – 99.92%

Table 6
Comparison of the floating-point operations and number of parameters

Author Method Number of parameters Floating point operations (FLOPs) Accuracy

1 Zhao et al. (2018) MS-CNN (2-view) 2.59 × 105 5.044 × 107 99.84%
2 MS-CNN (3-view) 2.60 × 105 7.566 × 107 99.88%
3 MS-CNN (4-view) 2.61 × 105 1.008 × 108 99.92%
4 Dong et al. (2014) VDCNN (2-view) 2.22 × 106 1.667 × 108 97.81%
5 VDCNN (3-view) 2.38 × 106 2.235 × 108 98.17%

VDCNN (4-view) 2.87 × 106 2.506 × 108 98.52%
6 Furukawa (2017) 2.75 × 106 1.244 × 1010 99.56%

Proposed MS-FFCNN–3-streams 2.60 × 105 4.49 × 107 99.92%
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the networks and able to achieve 99.93% recognition accuracy. The
results of this study show that operating convolutions in frequency
domain reduces training time and improves recognition accuracy.
Moreover, multi-stream techniques significantly reduced
overfitting, which occurs when training data are limited.

For further research on this domain, it may be beneficial to
integrate LSTM into multi-stream to further reduce training times.
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