
Received: 14 August 2024 | Revised: 29 October 2024 | Accepted: 16 December 2024 | Published online: 1 April 2025

RESEARCH ARTICLE

Enhancing Recruiter Outreach: Predicting Job
Ad Quality with Advanced Machine Learning
and NLP Models

Shaida Muhammad1,*

1Department of Computing, National University of Sciences & Technology, Pakistan

Abstract: In today’s competitive recruitment landscape, crafting impactful job outreach messages is essential for attracting top talent. This study
presents a novel machine learning and NLP-driven framework for predicting recruiter message quality on professional platforms like LinkedIn,
aiming to enhance response rates and hiring success. Our approach leverages a multi-label text classification framework that identifies five critical
message attributes: call to action, common ground, credibility, incentives, and personalization. Using a labeled dataset of 97,710 messages
annotated across these five categories, we benchmark various machine learning and deep learning models, including Decision Trees, Linear
SVM, Logistic Regression, Random Forest, LSTM, and customized transformer-based BERT models. The dataset was meticulously curated
to address generalization challenges, with 94,010 samples for training and 3,700 samples in a diversified test set. Model performance was
assessed using accuracy, with the customized BERT model achieving 95.67%. Our findings underscore the potential of this framework to
enhance recruiter outreach strategies, providing actionable insights to refine message quality and improve candidate engagement.

Keywords: text classification, transformers, deep learning algorithms, machine learning algorithms

1. Introduction

Recruiters in companies use social and professional networks to
find candidates for vacant job positions, with LinkedIn serving as the
leading professional network, utilized by over 830 million members
worldwide. Typically, recruiters on LinkedIn reach out to prospects
(potential candidates for the job) through direct messages containing
job advertisements. However, the response to these messages varies
—prospects may respond with interest, decline, or not respond at
all. Ideally, recruiters seek maximum engagement from prospects to
increase interview rates and improve the chances of finding the best
candidates. For messages to be effective in capturing attention, they
need to be strategically crafted with qualities that make them
compelling and relevant.

While previous studies in recruitment outreach have mainly
focused on general features of persuasive language or single-label
classifications, these approaches lack depth in analyzing the
specific, multi-dimensional aspects essential for high-quality
recruitment messages on professional platforms like LinkedIn. To
address this, recruitment experts have identified five key attributes
that significantly influence response rates: call to action, common
ground, credibility, incentives, and personalization.

Call to action draws immediate attention through prompts
like calendar links or phrases like “Let’s connect”. Common
ground builds rapport by emphasizing shared experiences, such
as past employment at the same company or similar educational

backgrounds. Credibility helps establish trust by highlighting
the recruiter’s background or company’s reputation. Incentives
underscore job benefits, attracting interest from prospects.
Finally, personalization makes the message feel relevant and
individualized, often by using the prospect’s name or
referencing their work history. A well-structured message
ideally incorporates all these elements, which has not been
systematically examined in prior research, leaving a gap in
understanding their collective impact on response rates.

This research bridges the gap by treating the problem as a multi-
label classification challenge. It seeks to determine whether a single
message can exhibit multiple persuasive qualities at once. The
approach incorporates various techniques from natural language
processing (NLP) and machine learning, utilizing both
conventional classifiers and advanced deep learning methods,
such as a customized BERT model. These methods evaluate
message quality across five key dimensions. The findings offer
valuable insights for recruiters, helping them refine their strategies
and improve engagement with prospective candidates.

2. Related Work

Message classification is a classification task where the text
is classified into 5 different categories: call to action, common
ground, establish credibility, incentive for connecting, and
personalization. Various machine learning and deep learning-
based approaches are applied to solve text classification
problems in different domains. Machine learning-based text
classification consists of two steps: Feature Extraction and
Classification Algorithm.

*Corresponding author: ShaidaMuhammad, Department of Computing, National
University of Sciences&Technology, Pakistan. Email: smuhammad.mscs19seecs@
seecs.edu.pk

Artificial Intelligence and Applications
2025, Vol. 3(4) 443–458

DOI: 10.47852/bonviewAIA52024083

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

443

mailto:smuhammad.mscs19seecs@seecs.edu.pk
mailto:smuhammad.mscs19seecs@seecs.edu.pk
https://doi.org/10.47852/bonviewAIA52024083
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2.1. Feature extraction

Natural language is highly unstructured. It is therefore
converted to a numerical representation beforehand so that it can
be fed to the algorithm. The numerical representation is known as
a feature vector or word vector. Different techniques are used in
literature for generating feature vectors. The most used are One-
hot encoding, Bag-of-Words (BoW), term frequency-inverse
document frequency (TF-IDF), etc.

One-hot encoding of words into feature vectors is the simplest
approach. A dictionary of sizeV is created for the text dataset where each
word v in the dictionary is mapped to an index number. Feature vectors
of sizeV are created for all words in the vocabulary. Each one-hot vector
contains zeros in all positions except for the index position for the respec-
tive word. The problem with one-hot encoding is that the feature vector
does not carry any meaningful information about the word itself or its
context. The distance between words cannot be calculated to show
the relationship between words. The size of the one-hot vector is directly
proportional to the size of the vocabulary. The one-hot encoding vectors
are very sparse, which makes them memory inefficient.

To address the sparsity issue, researchers developed the word
co-occurrence matrix approach also referred to as BoW. This
method creates a matrix of dimensions Vj j � Vj j (where V represents
vocabulary size) containing word vectors. These vectors are
constructed by examining surrounding words within a defined context
window, tallying the frequency of nearby words, and recording these
values in corresponding matrix positions. The semantic richness of
these feature vectors increases with larger contextwindow sizes.While
these vectors maintain the same dimensionality as one-hot encoded
vectors, various dimensionality reduction techniques can be applied
to compress them, including principal component analysis, singular
value decomposition, linear discriminant analysis (LDA), and t-distrib-
uted stochastic neighbor embedding. A limitation of co-occurrence
matrices is that they capture local contextual relationships but fail to
incorporate global text document information.

Term Frequency–Inverse Document Frequency (TF-IDF) [1]
emerged as an alternative methodology that effectively balances
both local and global contextual information of words. This
technique functions through a two-stage process combining term
frequency (TF) [2] with inverse document frequency (IDF) [3].
The TF component quantifies a word’s occurrence across
documents, generating a matrix with documents as columns and
vocabulary terms as rows. For normalization purposes, the
standard calculation is adjusted to log(1+TF). Meanwhile, the IDF
component is expressed as log(N/df_t), where N represents the
total document count and df_t indicates how many documents
contain term t. This IDF factor emphasizes rare words that
potentially carry greater significance. The final word vector
representation is produced by multiplying these two components
(TF × IDF), creating a comprehensive representation that balances
word frequency with contextual importance

Other deep learning-based approaches like Word2Vec [4],
GloVE [5], Doc2Vec [6], etc., are used for feature extraction.
They are discussed in detail in subsection 2.3.

Different feature extraction systems and algorithms were used
by authors in different domains. Venugopal and Karthikeyan [7]
used different statistical approaches like filter-based, wrapper-
based, embedded feature selection, evolutionary feature selection,
LDA, etc., in the domain in medical field for cardiovascular
disease (CVD) prediction. The MFFS algorithm was used [8] for
selecting important feature in the area of genetic research. MFFS
uses firefly algorithm along with deep learning-based approach to
extract the best feature for predictions.

2.2. Classification algorithms

Classification algorithms take labeled data as input and
train a model on it. Training data are represented by
X ¼ x1; x2; x3; . . . ; xmf g and y ¼ y1; y2; y3; . . . ; ymf g where X is
the set of training examples and y is the corresponding set of labels.
xi is the ith training example, which is an n� dimensional vector,
and yi is the label of the ith training example. The labels belong to
predefined k classes 1; 2; 3; . . . ; kf g. The machine learning algo-
rithm tries to approximate a function f xð Þ which labels new
unseen data.

In text classification, training data are a set of documents
X ¼ d1;d2;d3; . . . ;dmf gwhere each document d consists of lwords,
i.e., d ¼ w1;w2;w3; . . . ;wlf g. The word vectors are obtained by
applying a feature extraction algorithm. The word vectors are
summed or averaged to obtain the document vector. Document-level
vectors can also be obtained by applying document-level feature
extraction algorithms like Doc2Vec. After generating feature vectors
from text documents, a classification algorithm is applied to feature
vectors to predict the class/labels of the text document.

Logistic regression (LR) is one of the simplest classification
algorithms. LR is a modified version of linear regression. Linear
regression hypothesizes that class predictions are the weighted
sum of the components of the feature vector:

cy ið Þ ¼ θ0 þ θ1x
ið Þ
1 þ . . .þ θlx ið Þ (1)

LR uses the logistic function:

logistic ηð Þ ¼ 1
1þ exp �ηð Þ (2)

which is a function of the output of linear regression:

P y ið Þ ¼ 1
� � ¼ 1

1þ exp � θ0 þ θ1x
ið Þ
1 þ . . .þ θlx

ið Þ
l

� �� � (3)

LR gives the probability score for every instance xi. LR is trained by
minimizing the negative log likelihood loss function over training
examples m:

J θð Þ ¼ 1
m

Xm
i¼1

�y ið Þ log hθ x ið Þ� �� �þ 1� y ið Þ� �
log 1� hθ x ið Þ� �� �" #

(4)

LR offers significant advantages in computational efficiency, with
rapid training and inference times. Nevertheless, it faces certain
constraints in practical applications. LR exhibits a tendency to
overfit when feature dimensionality exceeds the available training
examples. Additionally, its linear decision boundaries present a
fundamental limitation when modeling inherently non-linear
real-world data distributions, which typically require more
complex non-linear functions for accurate representation. Despite
these limitations, LR has demonstrated remarkable utility across
diverse text classification challenges. Applications include toxic
comment detection [9], tweet categorization [10] where LR
surpassed alternative methods, comprehensive toxic content
classification [11] with LR outperforming competing algorithms
across all evaluation categories, emotion analysis in text [12],
intent recognition for conversational systems [13], and
hierarchical classification of Pakistani news content [14],
achieving 83% accuracy in this domain.

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

444

Naïve Bayes (NB) is another ML algorithm used for
classification tasks. NB uses Bayes’ Theorem [15], formulated by
Thomas Bayes between 1701 and 1761:

P xjyð Þ ¼ P yjxð ÞP xð Þ
P yð Þ (5)

NB makes the assumption that features are independent of each
other, which makes it simpler and more efficient to train. Given a
document d, the NB classifies the document into a set of classes
C ¼ 1; 2; 3; . . . ; cf g and returns the predicted class bc:

bc ¼ argmax
c2C

P djcð ÞP cð Þ (6)

NB algorithms are used inmany areas of text classification, including
spam email detection [16] with 99% F1-score and thesis topic
classification using the abstract [17] where it achieved 88.69%
accuracy, 89.76% precision, and 90.49% sensitivity.

One of the simplest and well-knownmulti-class non-parametric
classification algorithms is K-Nearest Neighbors (KNN). KNN
assumes that an unseen example x can be classified by looking at
the feature space of training data. The class labels of k nearest data
points in the training data will decide the class label of x. The distance
between x and a training example d can be measured via dot product
Dot x; dð Þ ¼ P

i xidi, cosine similarity Cosine x;dð Þ ¼ x�d
xj j dj j, Euclid-

ean distance
ffiP

n
i¼1 xi � dið Þ2

p
, or any other vector similarity metric:

f xð Þ ¼ argmax
j

Score x;Cj

� �
¼

X
di2KNN

sim x;dið Þy di;Cj

� �
(7)

f xð Þ is used to predict the class label of a new example. KNN requires
no training time as it is a lazy learning algorithm. KNN does not learn
any mapping function during training; the training data are stored in
memory, and computations are performed only at inference time.
New labeled data points can be added to the dataset anytime to improve
accuracy. However, KNN has some limitations. The inference time of
KNN is directly proportional to the size of the dataset (i.e., number of
data points) and the number of dimensions. If the dataset size is large, it
would take a lot of time and computational resources for inference,
making it impractical in real-world scenarios. Feature vectors need
to be scaled to producemore accurate results. KNN is sensitive to noisy
data, so training data must be cleaned before use. Also, selecting the
value of k can be challenging. KNN is used for Bengali article classi-
fication [18] along with count vectorizer, BBC news text classification
[19] where it achieved 92% accuracy, and short text classification [20]
where KNN performed better in average f-1 score in one experiment.

Support vector machine (SVM) [21] is a non-linear binary
classification algorithm that works well when data is high-
dimensional. SVM performs classification by finding a hyperplane
in an n� dimensional feature space. There could be many hyper-
planes between two classes in the feature space. Even though all
hyperplanes can classify training data, SVM chooses the one that
is best suited for unseen data. SVM selects the hyperplane that
has the maximum margin distance. Data points on different sides
of the hyperplane are classified into their respective classes, i.e., 1
or 0. The key aspect of SVM is support vectors. Support vectors
are used to identify the optimal hyperplane by maximizing the
margin distance. SVM uses the hinge loss function:
hingeloss y; f xð Þð Þ ¼ max 0; 1� y � f xð Þð Þ to compute the cost and
optimize the model weights. SVM has been applied in various

domains, including news classification [22], English text classi-
fication [23], sentiment analysis [24], news classification using
headlines [25], and fake news detection [26]. SVM can also be
applied to non-linear data by using a kernel function, which
transforms n� dimensional non-linearly separable data into
m� dimensional linearly separable data.

Decision Tree (DT) [27] is another well-known non-parametric
classification algorithm. DT learns understandable decision rules
from features of the training data by recursively splitting the
features. Unlike SVM, KNN, and LR, DT also works on
categorical features. DT starts constructing the tree by selecting a
feature as the root node and then drawing other nodes from it. DT
can be used for multi-label/multi-output classification problems. DT
does not require feature scaling and is fast to compute. However,
DT can overfit easily, which can be mitigated by using pruning or
selecting the tree depth in advance. DT is also very sensitive to
noisy data. The accuracy of DT can be improved by using the
ensemble technique Random Forest (RF) [28]. RF generates
multiple t random trees in parallel. Each tree predicts a label for x,
and the final label ŷ is decided based on votes. The number of trees
influences the accuracy of the model, and the number of trees is
directly proportional to the inference time. Therefore, the number of
trees should be chosen wisely. DTs have been applied to text data
for classification tasks, including product-review sentiment classifica-
tion [29], Arabic text classification [30], sentiment classification of
Roman-Urdu [31], and restaurant review analysis [32].

A study by Pericherla and Ilavarasan [33] addressed the challenge
of cyberbullying on social media by developing a transformer
network-based approach combined with machine learning-based
algorithm. The method utilized RoBERTa for generating word
embeddings and Light Gradient Boosting Machine as the classifier.
This approach outperformed traditional machine learning
algorithms, such as LR and SVMs. Unlike traditional context-
independent word embeddings, this method focuses solely on text
data, with potential for future extension to multimedia environments
like images, audio, and video.

2.3. Deep learning-based approaches

Machine learning-based text classification approaches were
considered quite successful before the arrival of neural networks.
Feed-forward neural networks were used as feature extractors to
obtain numerical representations of text, where each word in the
text gets a vector representation with these models.

Word2vec [4], introduced in, uses two approaches—CBOW
(Continuous Bag-of-Words) and Skip-gram to calculate word vectors
or embeddings. Word2vec is a two-layer feed-forward neural
network where the input is one-hot encoding of a vocabulary of size
V. In CBOW, given a context window of a pre-defined size, the model
predicts a word inside the context window. For example, with a context
window of size two, the input consists of two past and two future words
Wt�2;Wt�1;Wtþ1;Wtþ2½ �, and the model predicts the center wordWt.
The input to the model is the average of one-hot vectors of context
words. This feed-forward network is trained to maximize the likelihood
of the center word given the context window C:

argmax
θ

P Wcenter=C; θð Þ (8)

In Skip-gram, the model predicts the context words given the center
word Wt. For a context window size of two, the model predicts
Wt�2;Wt�1;Wtþ1;Wtþ2½ �. The softmax function is applied to the
final layer to convert raw scores into probabilities, and a simple loss
function ypred � ytrue is used to compute the loss for each context

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

445

word. The losses are summed to compute the overall cost. The Skip-
gram network is trained to maximize the likelihood of context words
given the center word:

argmax
θ

P C=Wcenter ; θð Þ (9)

As a two-layer neural network, these models have two weight
matrices, W1 and W2. These matrices are concatenated W1 W2½ �
and used as word embeddings. These models generate word embed-
dings such that semantically closer words are closer to each other in
n� dimensional space. Mikolov et al. [4] trained word vectors on
the Google News corpus, which contains about 6 billion tokens, and
evaluated the model on the Semantic-Syntactic Word Relationship
test set. The authors found that accuracy is directly proportional to
the dimensions of word vectors and the size of the dataset.
Higher-dimensional vectors trained on larger datasets tend to
produce better results. Word2vec models outperform previous
word-embedding models trained on the same dataset with 640
dimensions, and they take local statistics into account for training
word embeddings.

The GloVe [5] model incorporates both global and local statistics
to generate word embeddings. The GloVe model was trained on a
massive corpus, including Common Crawl, Wikipedia dump, and
Gigaword5, with a total of 42 billion tokens and a vocabulary size
of 400,000. In GloVe, a co-occurrence matrix X is created with a con-
text window of size 10. GloVe provides two sets of word embeddings
W and eW that are added to get the final word vectors. GloVe with dif-
ferent embedding dimensions [34] was used for classification on Goo-
gle News dataset and word similarity tasks with various datasets and
word-embedding sizes. The performance of GloVe was compared on
named entity recognition (NER) tasks with other models [35], where it
outperformed other models that were not using GloVe embeddings.

These pre-trained word embeddings are used to generate features
for different models. The Deep Average Network (DAN) [36] utilizes
300-dimensional GloVe pre-trained word vectors. DAN performs
sentiment analysis by taking a text document as input, tokenizing it,
averaging the embeddings of all tokens in the text, and then feeding
the average embeddings to a simple feed-forward neural network
with multiple hidden layers for classification. DAN is efficient in
terms of training time per epoch. It achieves comparable accuracy
to other sophisticated models like Neural Bag-of-Words (NBOW),
RecRNN, and Tree-LSTM, which consider the syntactic
information of text and require more training time.

The Doc2vec [6] word-embedding framework was proposed to
learn embeddings at the sentence/document level rather than the
word level. The architecture of Doc2vec is almost identical to
Word2vec, where the model predicts the center word given a
context. Doc2vec takes the entire document or paragraph as input
and generates sentence-level embeddings. Two variations of
Doc2vec were trained: Distributed Memory (PV-DM) and
Distributed Bag-Of-Words (PV-DBOW). The PV-DM model is an
extension of CBOW. PV-DM takes some random words from a
document, treats them as context, and tries to learn the center
word of those random words. The context word vectors are
averaged or concatenated and provided as input to the model,
along with a unique paragraph/document ID vector. The PV-
DBOW model is similar to the Skip-gram model. It uses the
document ID as input and tries to predict randomly selected words
from the paragraph or document. The trained embeddings were
then applied to sentiment analysis classification and information
retrieval tasks. Classification was performed on datasets such as
the single paragraph categorization [37] and IMDB [38].

Recurrent neural networks (RNNs) and long short-term memory
(LSTM) networks were used to account for sequence information and
word dependencies in text classification. Vanilla RNNs suffer from the
vanishing gradient problem, which LSTM addresses by introducing a
memory cell. LSTM also features three gates: input, output, and forget
gates, which regulate the flow of information into and out of the cells.
While LSTM is effective at representing sequential information, it
struggles with syntactic and semantic information. Tree-LSTM [39]
was introduced to maintain syntactic information while performing
classification. It was tested on the Stanford Sentiment Treebank
dataset [40] for sentiment classification and outperformed various
RNN, LSTM, and other models on fine-grained classification tasks,
with comparable accuracy on binary classification.

Despite havingmemory cells, LSTMmodels often perform poorly
on very long texts. Multi-timescale LSTM (MT-LSTM) [41] was
introduced to capture long-term dependencies by grouping hidden
states of LSTM with faster training. MT-LSTM outperformed other
RNN, CNN, and LSTM models on the Stanford Sentiment Treebank
[40], TREC [42], and IMDB datasets [43], with comparable results
on binary classification tasks.

RNNs are effective for sequences where class depends on the
entire sequence (global semantics), while CNNs are effective
where class depends on local semantics. Dynamic convolutional
neural network (DCNN) [44] takes text input embeddings as a
matrix, performs wide convolution, and uses dynamic k-max
pooling to convert variable-length input to a fixed-length feature
map for further processing. Finally, a fully connected layer is used
for classification. DCNN was tested on SST, TREC, and Twitter
sentiment datasets and outperformed baseline models such as
Naive Bayes, SVM, and NBOW.

A simple CNN [45] was used for text classification with various
word-embedding approaches: random, static (word2vec), non-static
(word2vec with training), and multi-channel (two word2vec vectors).
The architecture includes a convolutional layer followed by max-
over-time pooling and a fully connected head for classification with a
softmax function. This model achieved better accuracy than other
models on MR [46], SST-2, CR [47], and MPQA [48] datasets and
comparable accuracy on SST-1, Subj [49], and TREC [42] datasets.

Character-level CNN [50] is a variant where the input is one-hot
encoding of characters in the sequence. The input length is fixed at
1014 characters; sequences longer than 1014 characters are
truncated, and shorter sequences are padded with zero vectors.
Character-level CNN has 6 convolutional layers, pooling layers,
and 3 fully connected layers with dropout layers for text
classification. Models with different sizes of feature maps and
hidden nodes were trained on eight datasets, outperforming
previous machine learning models, LSTM, and word-level CNNs.

Other variations of CNNs are also developed like Multi-GPU-
based CNN [51] for text classification, Gated CNN [52] architecture
for text classification, a hybrid of CNN and LSTM called CNN-
LSTM [53], double channel hybrid model called DC CNN-LSTM
[54] to utilize word level and character level properties for text
classification, and a very deep CNN called modified VDCNN
[55] for Japanese text classification.

While CNNs perform well, they can lose important
spatial information due to pooling operations, leading to
misclassification. Capsule Neural Networks (CapsNets) [56]
address this issue by using activity vectors to represent
attributes of objects. The length of the activity vector
indicates the presence of the object, and the direction
specifies its features. CapsNets preserve information through
layers, minimizing loss. CapsNets for text classification have
been shown to outperform LSTM and CNN models on

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

446

datasets such as MR, Subj, CR, and AG, person text
classification [57], and sentiment classification [58].

MCNN-LSTM [59] was introduced as a novel approach
recently for text classification. MCNN-LSTM combined CNN and
LSTM-based networks into a multi-class framework. This method
addresses the challenges of document categorization, especially
with imbalanced datasets that often hinder traditional classifiers.
CNNs were responsible to extract features from text data while
LSTMs handled the spatial structure of words within the
documents. Authors applied the Tomek-Link algorithm to balance
the dataset. The proposed model achieved an F1-score of 98%
and an accuracy of 99.71%, outperforming existing methods.

TheContext-SensitiveMulti-TierDeepLearning Framework (CS-
MDF) [60] represents an innovative approach to multimodal sentiment
analysis that effectively processes contextual information across text,
visual, and audio channels. This framework implements a distinctive
three-tier architecture with specialized components at each level. The
initial tier utilizes convolutional neural networks for textual analysis,
three-dimensional CNNs for visual processing, and the openSMILE
toolkit for extracting audio features. The second tier incorporates
Bidirectional Gated Recurrent Units to identify and model
relationships between utterances. The framework’s final tier
integrates the multimodal features and employs a BiGRU classifier
for sentiment determination. Comprehensive evaluation across six
diverse real-world datasets demonstrated CS-MDF’s superior
performance compared to ten contemporary models, with notable
improvements in F1 scores, precision, accuracy, and recall metrics.
The researchers further validated their approach through ablation
studies and Gradient-weighted Class Activation Mapping
visualizations, confirming both the framework’s overall effectiveness
and its successful alignment of features across different modalities.

RNNs, LSTMs, and GRUs are designed to capture long-term
dependencies in text sequences but often fail with very long
sequences. The attention mechanism [61] was introduced to address
the long-term dependency problem by allowing the model to focus
on important parts of the input sequence. Originally designed for
sequence-to-sequence problems, the attention mechanism enables the
encoder to capture input information in a context vector, and the
decoder uses this vector to produce the output sequence. The
attention mechanism was used in hierarchical attention networks [62]
for grid classification. This model focuses on long sequences
consisting of multiple sentences, with a word-based and a sequence-
based encoder. The model, which uses bidirectional GRU encoders
and attention scores, performed better than BOW, SVM, CNN, and
LSTM-based models on Yelp reviews, IMDB reviews, Yahoo
answers, and Amazon reviews datasets.

Recurrent networks, including LSTM and GRU, process input
sequences word by word, making the next word dependent on the
information from previous words. This sequential processing
limits parallel computation and results in inefficient use of modern
GPUs. To address this, the Transformer architecture [63] was
introduced, enabling parallel processing by handling the complete
sequence at once. It employs a positional embedding mechanism
to maintain the order of words and introduces a self-attention
mechanism that focuses on the relationships and dependencies
among words in the input sequence. The Transformer model,
designed as an encoder-decoder system, was notably successful in
the WMT-14 machine translation task, surpassing previous state-
of-the-art models in BLEU score.

The BERT architecture [64] represents a significant
advancement in NLP, establishing unprecedented performance
benchmarks across multiple language understanding tasks
including Question Answering, NER, and text classification. This

innovative model is available in two primary configurations:
BERTBASE, featuring 110 million parameters structured across
12 transformer layers with a hidden representation size of 768 and
12 self-attention heads; and the more extensive BERTLARGE
variant, which incorporates 24 transformer layers, expanded
hidden representations of 1024 dimensions, and 16 self-attention
heads for enhanced modeling capacity. BERT’s training
methodology follows a two-stage approach that has proven highly
effective. The initial pretraining phase implements a masked
language modeling objective on large volumes of unsupervised
textual data, allowing the model to develop robust contextual
representations. This is followed by a fine-tuning phase where the
pre-trained parameters are adapted to optimize performance on
specific downstream applications. This transfer learning paradigm
has demonstrated remarkable efficiency in leveraging general
language understanding for specialized tasks. Comparative analyses
have consistently demonstrated BERT’s superior performance
relative to preceding language understanding frameworks such as
Universal Language Model Fine-tuning (ULMFiT) [65]. BERT’s
bidirectional attention mechanism allows it to develop more
comprehensive contextual representations by simultaneously
considering both left and right contexts of each token, unlike earlier
models that processed text directionally. This architectural advantage,
combined with its transformer-based design facilitating parallel
computation, has established BERT as a foundational model for
contemporary NLP research and applications.

XLNet [66], another Transformer-basedmodel, builds on BERT’s
architecture but is trained on a larger dataset of 113GB. This extensive
training enables XLNet to outperform BERT across various tasks,
though it requires significantly more training time and hardware
resources. RoBERTa [67], an extension of BERT, was trained on an
even larger dataset of 160GB and has demonstrated superior
performance over both BERT and XLNet on several tasks.

These models can be fine-tuned for specific datasets. For instance,
BERT, RoBERTa, and DistilBERT were fine-tuned for text
classification on a legal domain dataset, where they outperformed
attention-based LSTM and LSTM-based baseline models [68], with
RoBERTa and DistilBERT achieving higher accuracy than BERT.

CNN-BiLSTM [69] introduced text classification model
designed to address the increasing volume of smart tourism data.
By combining CNN’s feature extraction capabilities and
BiLSTM’s ability to capture long-term dependencies, CNN-
BiLSTM was applied to sentiment analysis of tourist reviews.
Compared with other models like BiLSTM and TextCNN, the
CNN-BiLSTM achieved superior performance across multiple
metrics, including precision (87.9%), recall (88.34%), and
accuracy (85.1%). This study emphasizes the role of deep learning
in enhancing information management in smart tourism by
providing more accurate sentiment classification.

CI-AI [70] framework utilized transformer-based models for
text classification in human-machine interaction tasks. By
augmenting human-generated data with the T5 model through
paraphrasing, the framework significantly expanded its training
dataset. Seven transformer models, including BERT, RoBERTa,
and XLNet, were fine-tuned and tested. It resulted in average
classification accuracy improvement of 4.01% when trained on
augmented data. The RoBERTa model delivered the highest
performance, achieving 98.96% accuracy, which was further
improved to 99.59% using an ensemble of transformer models

Short text classification remains challenging in NLP, with
various models like convolutional and recurrent networks, and
graph neural networks being applied. Karl and Scherp [71]
investigated the performance of different classifiers, including

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

447

Transformers, on benchmark datasets and two real-world datasets,
NICE and STOPS. Their results showed that Transformers
achieved state-of-the-art accuracy, questioning the need for
specialized short text classifiers and positioning the NICE dataset
as a valuable benchmark for future work.

PL-Transformer [72] represents a significant advancement in
transformer architecture design, addressing fundamental limitations of
traditional transformer models through its innovative dual-focused
approach that enhances both linguistic awareness and representation
utilization. Unlike conventional transformer implementations that
primarily process token semantics in isolation from valuable
linguistic structures, the PL-Transformer explicitly incorporates
parts-of-speech information as complementary input, thereby
enriching the model’s understanding of grammatical relationships
and syntactic patterns within textual data. Simultaneously, the
architecture addresses the critical issue of information loss in
standard transformers, which typically discard intermediate
representations by utilizing only the final encoder layer
for classification tasks, through its implementation of a
sophisticated correlation coefficient attention mechanism
(C-Encoder) that dynamically combines outputs from multiple
encoder layers, preserving valuable information that would
otherwise be lost in the encoding process. This comprehensive
enhancement strategy has demonstrated measurable performance
improvements across multiple benchmark datasets, with
particularly notable results observed in the MPQA dataset
evaluation, where the PL-Transformer achieved a substantial
3.95% accuracy improvement compared to baseline transformer
implementations, thus validating the effectiveness of integrating
linguistic knowledge and implementing layer-attentive
mechanisms in transformer-based text classification systems.

R-Transformer_BiLSTM [73] was introduced to improve
multi-label text classification, particularly for tasks with many
labels and fine granularity. Traditional models struggle with
sequence information and semantic depth as text length increases.
The R-Transformer_BiLSTM model addressed these issues by
using label embedding and attention mechanisms. It combined R-
Transformer for capturing text information with part-of-speech
embeddings, and employed BiLSTM+CRF for entity extraction.
Keywords were identified through self-attention, and bidirectional
attention and label embeddings refined the representations. The
model demonstrated significant improvements in efficiency and
accuracy on the RCV1-V2 and AAPD datasets.

A new SMS spam detection model [74] addressed the issue of
spam, which poses risks like credential theft and data loss. This
model used GPT-3 Transformer for advanced text embedding
hence improving detection accuracy. An Ensemble Learning
approach combined four machine learning models into one which
enhanced the performance. Their model achieved 99.1% accuracy
which was better than the previous counterparts.

A recent study by Mayer et al. [75] tried to make AI more
accessible by evaluating prompt-based learning with transformer
models for domain-specific classification. They compared zero-shot
and few-shot methods with a fine-tuned model. The study used
2,088 human-labeled email responses where prompt-based learning
achieved Cohen’s kappa of 0.40, while fine-tuning reached 0.59.
The study found that machine models provided reliability estimates,
suggesting a hybrid approach where machines handle easy
classifications and humans focus on difficult ones.

LongFormer [76] was introduced to handle long input context
problem. Transformer-based models often have an input token limit
of 512 or 1024 tokens per sample. LongFormer used 4096 input
tokens to handle long sequence classification problems.

Other transformer-based models were also recently introduced,
for example, T5 [77] for text classification and other text-related
machine learning tasks, Big Bird [78] trained specifically for
summarization and question answering, DeBERTa [79] with
disentangled attention mechanism and enhanced mask decoder,
Electra [80] with faster training by generator and discriminator
approach upon tokens, and Ernie 2.0 [81] captures lexical,
syntactic and semantic information during pretraining.

Transformer architecture is recently utilized in other than NLP
domains. Swin transformer v2 [82] set benchmarks on image
classification, semantic segmentation, object detection, and video
action classification tasks. Vision Transformer (ViT) [83]
provided the evidence that CNNs are not mandatory for computer
vision and perform state-of-the-art performance on ImageNet,
CIFAR-100, and VTAB dataset for image classification. Pyramid
ViT [84] (PVT) combined CNN and Transformer to achieve
better results than previous models on object detection, semantic,
and instance segmentation tasks. Twins-PCPVT and Twins-SVT
[85] took a simple-to-implement approach and used spatial
attention for dense detection and segmentation. CrossViT [86]
utilized dual-branch ViT that processes images at two different
resolutions. By combining local fine-grained information from
high-resolution patches with global context from low-resolution
patches, CrossViT achieves superior performance in image
classification. This cross-attention mechanism enables the model
to capture a broader range of spatial relationships, making it
effective for classification tasks on various datasets.

In our work, we fine-tune pre-trained BERT, RoBERTa, XLNet,
andDistilBERT formessage classificationwith additional classification
layers at the end, producing baseline results on our dataset.

The attention-based cross-modal (ABCM) [87] transfer learning
framework was introduced to enhance CVD prediction by integrating
diverse data sources including clinical, imaging, and genetic
information with an attention-driven mechanism. The ABCM
framework uses a cross-modal attention system that selectively
emphasizes the most relevant features from each data type, providing
a more nuanced understanding of CVD. Extensive evaluations reveal
that this model surpasses traditional single-source and multi-source
methods in accuracy, precision, recall, and AUC, demonstrating its
capacity to improve early and accurate CVD detection. The
framework also shows resilience against missing data, further
highlighting its robustness in handling complex multimodal datasets.

3. Proposed Methodology

Message classification is a multi-output classification problem
where a text sequence x is assigned zero or more labels from a set of
5 classes y ¼ fcall� to� action; common� ground; establish
�credibility; incentive � for � connecting; personalizati. A mes-
sage having all these five features is considered a high-quality
message. In this work, we experiment with different machine
learning and deep learning-based methods on the message classifica-
tion task and produce baseline results on the message classification
dataset. We have trained our transformer-based models, taking
BERT, roBERTa, and XLNet as encoder part of our model. We then
concatenate a classification layer at the end of the model to predict
classes for messages.

Transformer-based models use transformer blocks as basic
components. Transformer blocks use a self-attention mechanism
to give attention to relevant parts of the sequence (see Figure 1
[88]). Transformer has an encoder and a decoder network. For
classification tasks, we only use the encoder part of the network
as part of our model.

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

448

The first layer of transformer-based models is the Input
Embedding layer that takes the input IDs of the input text from the
vocabulary of the tokenizer. The Input Embedding layer learns the
embeddings for each token in the vocabulary during training.
Unlike recurrent nets, the input text tokens are given in parallel to
the Input Embedding layer, so there is no sequence information in
the input. To keep the sequence information, positional information
is injected into the input. The positional information is calculated by:

PE pos; 2ið Þ ¼ sin
pos

100002i=dmodel

� �
(10)

PE pos; 2iþ 1ð Þ ¼ cos
pos

100002i=dmodel

� �
(11)

The positional vectors have the same dimensions as the token
embeddings. The positional encodings are concatenated with the
target token embeddings. This way, the positional information is
injected with each token. These embeddings are referred to as
positional input embeddings.

After encoding the positional information to each token, the
input matrix X (text as a sequence of tokens with positional informa-
tion) is converted to query, key, and value matrices. Each row in the
query, key, and value matrices corresponds to the tokens in the
sequence. Query, key, and value matrices have their own weight
matrices that are learned during the training process by backpropa-
gation (see Equations (12), (13) and (14)).

query ¼ X � Wquery (12)

key ¼ X � Wkey (13)

value ¼ X � Wvalue (14)

The attention score is calculated by Equation (15) from query, key,
and value matrices:

Zi ¼ softmax
QiK

T
iffiffiffiffiffi

dk
p

� �
Vi (15)

The attention scores describe howmuch attention each token in the text
sequence will give to every other token in the same text sequence.
These scores are fundamental to the transformer architecture as they
enable the model to focus on relevant parts of the input when
generating each element of the output. The attention mechanism
creates a weighted sum of all input tokens, with weights determined
by their relevance to the current token being processed.

The query, key, value matrices, and attention score combined is
called the self-attention mechanism. This mechanism allows each
position in the sequence to attend to all positions in the previous
layer, creating a rich representation that captures contextual
relationships between words regardless of their distance from each
other in the sequence. This is a significant improvement over
RNNs, which struggle with long-range dependencies.

The self-attention mechanism can be converted to multi-head
attention by using more than one query, key, and value matrix and
their own corresponding weight matrices. Each attention head can
focus on different aspects of the input, such as syntactic or semantic
relationships, providing a more comprehensive representation of the
input sequence. Multiple attention heads working in parallel allow
the model to jointly attend to information from different
representation subspaces at different positions.

The output of each head is concatenated to get the output vector,
combining the diverse perspectives captured by each attention head into
a unified representation. This concatenation allows the model to
integrate information across different attention patterns, enriching the
representation with multiple viewpoints on the same input sequence.

A linear layer is applied to the output vector, which helps project
the concatenated outputs back to the original dimensionality and
allows for further transformation of the representation. This
projection layer serves as a way to combine the information from
multiple heads and prepare it for subsequent processing steps.

The linear layer combined with multiple self-attention heads is
calledmulti-head attention. This complete mechanism forms the core
of transformer models’ ability to process sequential data without
recurrence or convolution, relying instead on attention to establish
relationships between tokens in the sequence.

The output vector of multi-head attention is point-wise added to
positional input embeddings to form a Residual Connection. The
Residual Connection helps in faster convergence and tackles
vanishing gradient problems by skipping some layers and feeding
the input directly to the later layers in the network (see Figure 2 [88]).

The output of the residual layer is passed through Layer
Normalization. Layer Normalization takes the output/activations
x i having K dimensions of each individual training example and
normalizes it to mean 0 and standard deviation 1 using the following
equations to convert it to bxi vector with dimensions K:

µi ¼
1
K

XK
k¼1

xi;k (16)

Figure 1
Transformer architecture

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

449

σ2
i ¼

1
K

XK
k¼1

xi;k � µi

� �
2 (17)

cxi;k ¼ xi;k � µiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i þ ε

p (18)

After normalization, the normalized activations are passed through a
linear layer with learnable parameters γ and β (see Equation (19)):

yi ¼ γbxi þ β � LNγ;β xið Þ (19)

Layer Normalization is used to stabilize the training process.
The output of the previous step is passed through a point-wise

feed-forward neural network, which is basically a layer of two
stacked linear layers applied to each position in the sequence. The
output of the first linear layer is also passed through the ReLU
activation function (see Equation (20)):

FFN yið Þ ¼ max 0; yiW1 þ b1ð ÞW2 þ b2 (20)

The point-wise feed-forward component is used to further
process the information. The point-wise feed-forward layers also
use the residual connection and layer normalization to stabilize the
training process and help the model converge quickly.

All these components combined collectivelymake up the encoder
of transformer-based models. Classification heads are attached to the
output of this layer. In our case, 5 heads are attached for each category.
The classification head consists of a dense layer. The complete
architecture of the models is as follows (see Figure 3).

4. Experimental Results

In this section, we present the dataset, experimental setup, and
results of our proposed approach.

4.1. Dataset

The message classification dataset contains 97,710 messages,
sourced from QLU.ai with user’s permission. The data are collected
via LinkedIn through the QLU.ai product. Each message is labeled
with one or more of five classes: call to action, common ground,
establish credibility, incentive for connecting, and personalization.
These labels capture specific elements within recruitment messages,
enabling nuanced classification.

Call to action: The message includes a phrase or sentence
prompting further engagement, such as a meeting venue, a
calendly/pencilit link, or phrases like “let’s connect”.

Common ground: Indicates shared experiences, such as
working at the same company, common educational backgrounds,
hobbies, or interests.

Establish credibility: Describes statements that reinforce the
recruiter’s credibility, the company, or the job role.

Incentive for connecting: Highlights incentives or benefits
associated with the role to encourage the prospect to connect.

Personalization: Reflects how tailored the message is, often
including the recruiter’s name, the prospect’s name, or references
to the prospect’s current or previous company or job.

Figure 2
Simple feed-forward network vs residual

connection feed-forward network

Figure 3
Complete architecture of the model

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

450

The dataset was labeled based on 332 unique sentence fragments
identified within the messages. Labeling was done by QLU.ai’s team,
who manually assigned labels to each fragment according to the
relevant class definitions. If a message included fragments from
multiple categories (e.g., Call to Action, Personalization, and
Incentive), all applicable labels were assigned to that message. An
example labeled message from the dataset is as follows:

“This is (firstname) from (my company), the only data science solutions
provider in the region. I think given your work experience at (their
company name), you should be a part of this revolution. Are you
connected to (my company)? Our company is growing its team each
day, and we would like to add to it even more. How about if I discuss
this role further with you?”

In this example:

Call to action: “How about if I discuss this role further with you?”

Personalization: “(firstname)”, “(my company)”, and “I think
given your work experience at (their company name)”

Establish credibility: “The only data science solutions
provider in the region”

Incentive for connecting: “Our company is growing its team
each day”

The dataset, after tokenization with the gensim tokenizer,
contains 723 unique words. The class distribution was balanced
initially but showed a small number of unique sentence pieces and
vocabulary, resulting in a condensed data distribution. This led to
near-perfect test accuracy, which raised concerns about
generalization. To mitigate this, additional annotated data with
diverse real-world examples was added to the test set, bringing it
to 3,700 samples while leaving 94,010 samples for training.

4.2. Experimental setup

We used Google Colab for all machine learning and deep
learning experiments. Google Colab is a cloud-based platform
provided by Google Research. At the time of this research,
Google provides three different plans for colab: Colab free, Colab
Pro, and Colab Pro+. We used the free version of colab for
training our models. Even though the specification for the free
version of colab changes with time and also depends on the
availability of the GPU. The hard disk space Table 1, memory
information Table 2, CPU information Table 3, and GPU
information are as follows during this research (see Figure 4).

The GPU can be turned on or off in the Colab environment. The
CPU and memory specifications are not affected by the state of the
GPU; however, the disk space specifications change based on
whether the GPU is on or off.

We performed multiple experiments with machine learning and
deep learning algorithms, varying hyperparameters, and logged the
best empirical accuracy scores.

4.3. Results

We trained three models. Three transformer-based models, i.e.,
BERT, RoBERTa, and XLNet, were used in the encoder block of our
model and logged the accuracy in Table 4.

We trained the models for 1 epoch due to the simplicity of the
problem and time constraints posed by colab. Since the message

Table 1
Disk space

Space System occupied Available

On CPU 108GB 39GB 70GB
On GPU 79GB 39GB 40GB

Table 2
Memory (RAM) information

MemFree MemAvailable

∼13.30 GB ∼10.61 ∼12.46

Figure 4
GPU information

Table 3
CPU information

Model name
CPU
MHz

Cache
size

CPU
cores

CPU:
0

Intel(R) Xeon(R)
CPU @
2.20GHz

2200.162 56320 KB 1

CPU:
1

Intel(R) Xeon(R)
CPU @
2.20GHz

2200.162 56320 KB 1

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

451

lengths are shorter, we kept the input token size at 128 or 256 and the
batch size at 8. These networks have millions of parameters, and we
only had 12GB of memory available for our model and data. Initially,
we were assigned the K80 GPU by Colab for training RoBERTa and
BERT models, which was slower than the T4 GPU. When training
XLNet, Google Colab assigned a T4 GPU, making the training
time of XLNet around 4 times shorter than the training time of
BERT and RoBERTa. The accuracies of these models are close to
each other. These models use attention mechanisms to better
capture the context and semantic relationships between words. We
achieved the highest accuracy of 95.67% with the BERT model,
although the training time was slightly higher than that of
RoBERTa. Both were trained on the same K80 GPU. Our best
model, from an accuracy standpoint, is BERT-based model.

5. Comparative Study

We have trained different machine learning and deep learning-
based algorithms to compare with our proposed approach.

5.1. Machine learning algorithms

We have trained 6 famous machine learning algorithms on our
dataset: DT, Linear SVM, LR, Gaussian Naive Bayes, KNN,
and RF and logged the results in Table 5. We have used 300- and
100-dimension GloVe word embeddings. We calculate sentence
embeddings by taking the average/mean of word vectors of the
target sentence.

5.2. Deep learning algorithms

We train simple feed-forward neural networks with different
hyperparameter configuration settings. We experiment with 100 and
300 dimensions of GloVe word embeddings. The sentence
embeddings are calculated as the component-wise mean of word
embeddings in the sentence. The network contains five heads: one
for each classification category. We use the ReLU activation function
(see Figure 5 and Equation (21)) on each layer as empirically it is
proven to work well. ReLU is also the simplest and fastest to
compute in forward and backward passes during backpropagation.

ReLU xð Þ ¼ max 0; xð Þ (21)

The derivative function (see Figure 5 and Equation (22)) of ReLU
is undefined at x ¼ 0. When x ¼ 0, the derivative is considered as 0.

d

dx
ReLU xð Þ ¼ 0 x < 0

1 x > 0

	
(22)

Each classification head in the network is a binary classifier
having a sigmoid function (see Figure 6 and Equation (23)) as the
loss function. The cumulative loss is the sum of the losses at all
classification heads.

Sigmoid xð Þ ¼ 1
1þ e�x (23)

The derivative of the sigmoid function is calculated as:

d

dx
Sigmoid xð Þ ¼ Sigmoid xð Þ 1� Sigmoid xð Þð Þ (24)

We used dropout with a probability of 0.5 on different layers of
the network. Dropout helps in regularizing the network to avoid
overfitting. Dropout simply drops neurons from the network with
the specified probability (see Figure 7). We use the Adam
optimizer to optimize the weights of the network. Adam is a
combination of RMSProp and Momentum algorithms.

We compared our transformer-based models with different
machine learning and deep learning techniques. We present the
comparative study in this section.

Table 4
Transformer-based model results

Model Epochs Input Size Batch_size Accuracy % training time GPU

RoBERTa based 1 128 tokens 8 94.84 3 h 49 m 05 s K80
BERT based 1 256 tokens 8 95.67 4 h 34 m 57 s K80
XLNet based 1 256 tokens 8 95.35 1 h 01 m 51 s T4

Figure 5
ReLU function and ReLU derivativeTable 5

Machine learning-based algorithm results

Input Size Word_embeddings Accuracy %

DecisionTree 300 GloVe 53.05
DecisionTree 100 GloVe 53.35
LinearSVM 100 GloVe 85.19
LinearSVM 300 GloVe 90.92
LogisticRegression 100 GloVe 83.97
LogisticRegression 300 GloVe 89.78
GaussianNB 100 GloVe 28.73
GaussianNB 300 GloVe 29.84
KNN Classifier 300 GloVe 76.59
RandomForest 100 GloVe 71.22

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

452

The results of the LinearSVM are provided in the Table 4.
LinearSVM with 300-dimensional embeddings achieved the best
accuracy of 90.92%.

We performed multiple experiments with feed-forward
networks with different hyperparameters but we also kept some
hyperparameters constant in all experiments (see Table 6).

These hyperparameters are kept fixed as their counterparts
works almost the same. Keeping these hyperparameters also
reduce our search space. We used GloVe embeddings as it
generally gives best results over other embedding algorithms like
Word2vec. Generally, a neural network with large number of
layers results in better performance but the data distribution space
is smaller in our case. We keep the number of layers minimum.

We heuristically select four hidden layers in our network.
Empirically speaking, research shows that ReLU works best as
activation function in hidden layers. Sigmoid loss function is
better option when we have 2 number of classes. Adam optimizer
is the gold standard of all optimization algorithms and learning
rate is selected as 0.001 arbitrarily.

The results for feed-forward neural networks are shown in
Table 7. Larger embedding sizes provide more information, which
is why 300-dimensional embeddings perform better than 100-
dimensional embeddings. Applying dropout on the final layers
increased accuracy and prevented overfitting.

LSTMmodels with different hyperparameters were trained, and
the accuracy was logged in Table 8. Some hyperparameters were
kept constant (see Table 9) as they did not significantly affect the
model’s accuracy.

Different experiments were performed and found that 10 epochs
are enough for our task. Messages in our dataset are trimmed to keep
the input size to 100 tokens to tackle all input sizes. The number of
neurons in hidden layers is selected as 512 since the problem is not
that complex, so we do not need any extra neurons as it would
increase the training time and risk of overfitting. ReLU is used as
the activation function, as research shows that it empirically
converges faster. We also used dropout with a probability of 0.5
to overcome the problem of overfitting. Adam optimizer is chosen
as it helps the model to converge faster and overcome local
minima problems up to a good extent. The learning rate is chosen
as 0.001 arbitrarily. We used gradient clipping because LSTM
models often face the exploding gradient problem due to their
backpropagation through time nature during parameter
optimization. If the gradient size on a neuron exceeds 5, that
gradient value is clipped to 5; otherwise, it remains the same. We
do not use any pre-trained word embeddings in LSTM. The
model learns the embeddings during training itself.

We trained simple LSTM and bidirectional LSTM networks
with different numbers of layers. We used a batch size of 1024
when the network was relatively smaller, but when the number of
parameters increased due to the increasing number of layers or
making the network bidirectional, we used a batch size of 512 due

Figure 6
Sigmoid function and Sigmoid derivative

Figure 7
Standard network vs dropout applied network

Table 6
Feed-forward neural network: fixed hyperparameters

n_layers n_neuron ActFunc
Batch
size

Loss
function Optimizer LR

Glove 4 [32, 64, 128, 256] ReLU 1024 Sigmoid Adam 0.001

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

453

to the limited amount of memory in our experimental environment.
Increasing the number of layers increased the model’s capacity,
thereby improving accuracy. We achieved our best accuracy score
of 94.14% when the number of layers was 4 and the network was
bidirectional. The bidirectional nature of the model allows it to
consider the context from future words in the sentence as well. In
contrast, the simple LSTM only looks at the context and
relationships in the previous words in the sentence.

Finally, we present the comparison of all best models from
different categories with our models in Table 10.

Our proposed model outperforms all other models, even when
compared to their best-achieved results.

6. Conclusion

We worked on a multi-label classification problem in the
domain of recruitment. We trained multiple machine learning and
deep learning models on our dataset and found that the BERT
model achieved better accuracy than all other models. The dataset
consists of messages sent by recruiters to potential job candidates.
Each message is labeled with 5 categories which define the
strength of the message. Recruiters can use our trained models to
assess the strength of the message before sending it to potential
candidates. A strong message is more likely to get a response
from prospects, thus increasing the chances of getting more
candidates interviewed. Interviewing many candidates improves
the chance of recruiting suitable employees for the organization.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by the author.

Conflicts of Interest

The author declares that he has no conflicts of interest to
this work.

Table 7
Feed-forward neural networks

Input Size Accuracy % Dropout

10 100 79.73 No
10 300 85.73 No
30 100 72.22 on layer (1,2,3,4)
30 300 87.13 on layer (1,2,3,4)
30 100 89.03 on layer (2,3,4)
30 300 92.76 on layer (2,3,4)
30 100 89 on layer (3,4)
30 300 92.67 on layer (3,4)
30 100 90.54 on layer (4)
30 300 92.24 on layer (4)

Table 8
LSTM results

num LSTM layers Bi-Direction Batch_size Accuracy %

1 No 1024 89.94
2 No 1024 93.97
3 No 1024 94.03
4 No 1024 93.95
1 Yes 1024 36.21
2 Yes 512 93.08
3 Yes 512 91.59
4 Yes 512 94.14

Table 9
LSTM fixed hyperparameters

Eps Input Size n_neuron ActFunc Loss Function Dropout Optimizer LR Gradient Clipping

10 100 512 ReLU Sigmoid Yes Adam 0.001 Yes [31]

Table 10
Comparing our model with others

Model Accuracy %

RoBERTa based 94.84
BERT based 95.67
XLNet based 95.35
LinearSVM 90.92
FFNN 92.76
LSTM 94.14

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

454

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Author Contribution Statement

Shaida Muhammad: Conceptualization, Methodology,
Software, Validation, Formal analysis, Investigation, Resources,
Data curation, Writing – original draft, Writing – review &
editing, Visualization, Supervision, Project administration.

References

[1] Salton, G., & Buckley, C. (1988). Term-weighting approaches in
automatic text retrieval. Information Processing &Management,
24(5), 513–523. https://doi.org/10.1016/0306-4573(88)90021-0

[2] Luhn, H. P. (1957). A statistical approach to mechanized
encoding and searching of literary information. IBM Journal
of Research and Development, 1(4), 309–317. https://doi.org/
10.1147/rd.14.0309

[3] Sparck Jones, K. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 28(1), 11–21. https://doi.org/10.1108/eb026526

[4] Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013).
Efficient estimation of word representations in vector space.
In International Conference on Learning Representations,
1–12.

[5] Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe:
Global vectors for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, 1532–1543. https://doi.org/10.3115/
v1/D14-1162

[6] Le, Q., & Mikolov, T. (2014). Distributed representations of
sentences and documents. In Proceedings of the 31st
International Conference on Machine Learning, 32(2),
1188–1196.

[7] Venugopal, J. P., & Karthikeyan, N. K. (2021). Enhanced
evolutionary feature selection and ensemble method for
cardiovascular disease prediction. Interdisciplinary Sciences:
Computational Life Sciences, 13(3), 389–412. https://doi.org/
10.1007/s12539-021-00430-x

[8] Subramanian, A. A. V., & Venugopal, J. P. (2022). A modified
firefly deep ensemble for microarray data classification. The
Computer Journal, 65(12), 3265–3274. https://doi.org/10.
1093/comjnl/bxac143

[9] Udhayakumar, S., Silviya Nancy, J., UmaNandhini, D., Ashwin,
P., & Ganesh, R. (2021). Context aware text classification and
recommendation model for toxic comments using logistic
regression. In Intelligence in Big Data Technologies—Beyond
the Hype: Proceedings of ICBDCC 2019, 209–217. https://doi.
org/10.1007/978-981-15-5285-4_20

[10] Aliman, G., Nivera, T. F. S., Olazo, J. C. A., Ramos, D. J. P.,
Sanchez, C. D. B., Amado, T. M., : : : , & Valenzuela, I. C.
(2022). Sentiment analysis using logistic regression. Journal
of Computational Innovations and Engineering Applications,
7(1), 35–40.

[11] Husnain, M., Khalid, A., & Shafi, N. (2021). A novel
preprocessing technique for toxic comment classification.
In 2021 International Conference on Artificial Intelligence,
22–27. https://doi.org/10.1109/ICAI52203.2021.9445252

[12] Sharma, T., Diwakar, M., Singh, P., Lamba, S., Kumar, P., &
Joshi, K. (2021). Emotion analysis for predicting the emotion

labels using machine learning approaches. In 2021 IEEE 8th
Uttar Pradesh Section International Conference on
Electrical, Electronics and Computer Engineering, 1–6.
https://doi.org/10.1109/UPCON52273.2021.9667562

[13] Hefny, A. H., Dafoulas, G. A., & Ismail, M. A. (2020). Intent
classification for a management conversational assistant. In
2020 15th International Conference on Computer Engineering
and Systems, 1–6. https://doi.org/10.1109/ICCES51560.2020.
9334685

[14] Ilyas, A., Obaid, S., & Bawany, N. Z. (2021). Multilevel
classification of Pakistani news using machine learning. In 2021
22nd International Arab Conference on Information Technology,
1–5. https://doi.org/10.1109/ACIT53391.2021.9677431

[15] Pearson, E. S. (1925). Bayes’Theorem, examined in the light of
experimental sampling. Biometrika, 17(3/4), 388–442. https://
doi.org/10.2307/2332088

[16] Zhang, H., & Li, D. (2007). Naïve Bayes text classifier. In 2007
IEEE International Conference on Granular Computing,
708. https://doi.org/10.1109/GrC.2007.40

[17] Hairani, H., Anggrawan, A., Wathan, A. I., Abd Latif, K.,
Marzuki, K., & Zulfikri, M. (2021). The abstract of thesis
classifier by using naive Bayes method. In 2021
International Conference on Software Engineering &
Computer Systems and 4th International Conference on
Computational Science and Information Management,
312–315. https://doi.org/10.1109/ICSECS52883.2021.00063

[18] Akanda, W., & Uddin, A. (2021). Multi-label Bengali
article classification using ML-KNN algorithm and
Neural Network. In 2021 International Conference
on Information and Communication Technology for
Sustainable Development, 466–471. https://doi.org/10.
1109/ICICT4SD50815.2021.9396882

[19] Shah, K., Patel, H., Sanghvi, D., & Shah, M. (2020). A
comparative analysis of logistic regression, random forest
and KNN models for the text classification. Augmented
Human Research, 5(1), 12. https://doi.org/10.1007/s41133-
020-00032-0

[20] Al Sulaimani, S., & Starkey, A. (2021). Short text classification
using contextual analysis. IEEE Access, 9, 149619–149629.
https://doi.org/10.1109/ACCESS.2021.3125768

[21] Vapnik, V. N., & Chervonenkis, A. Y. (1964). Ob odnom klasse
algoritmov obucheniya raspoznavaniyu obrazov [A class of
algorithms for pattern recognition learning]. Avtomatika i
Telemekhanika, 25(6), 937–945.

[22] Saigal, P., & Khanna, V. (2020). Multi-category news
classification using support vector machine based classifiers.
Springer Nature Applied Sciences, 2(3), 458. https://doi.org/
10.1007/s42452-020-2266-6

[23] Luo, X. (2021). Efficient English text classification using
selected machine learning techniques. Alexandria
Engineering Journal, 60(3), 3401–3409. https://doi.org/10.
1016/j.aej.2021.02.009

[24] Sudianto, S., Wahyuningtias, P., Utami, H. W., Raihan, U. A.,
Hanifah, H. N., & Adanson, Y. N. (2022). Perbandingan
metode random forest dan support vector machine pada
analisis sentimen Twitter (Studi kasus: Kaburnya Selegram
Rachel Vennya dari karantina) [Comparison of random forest
and support vector machine methods on Twitter sentiment
analysis (case study: Internet Selegram Rachel Vennya escape
from quarantine)]. Jurnal Teknik Informatika, 3(1), 141–145.

[25] Mukhtar, R., Iqbal, M. J., & Faheem, Z. B. (2021). Pakistani
news classification based on headlines. Pakistan Journal of

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

455

https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1108/eb026526
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1007/s12539-021-00430-x
https://doi.org/10.1007/s12539-021-00430-x
https://doi.org/10.1093/comjnl/bxac143
https://doi.org/10.1093/comjnl/bxac143
https://doi.org/10.1007/978-981-15-5285-4_20
https://doi.org/10.1007/978-981-15-5285-4_20
https://doi.org/10.1109/ICAI52203.2021.9445252
https://doi.org/10.1109/UPCON52273.2021.9667562
https://doi.org/10.1109/ICCES51560.2020.9334685
https://doi.org/10.1109/ICCES51560.2020.9334685
https://doi.org/10.1109/ACIT53391.2021.9677431
https://doi.org/10.2307/2332088
https://doi.org/10.2307/2332088
https://doi.org/10.1109/GrC.2007.40
https://doi.org/10.1109/ICSECS52883.2021.00063
https://doi.org/10.1109/ICICT4SD50815.2021.9396882
https://doi.org/10.1109/ICICT4SD50815.2021.9396882
https://doi.org/10.1007/s41133-020-00032-0
https://doi.org/10.1007/s41133-020-00032-0
https://doi.org/10.1109/ACCESS.2021.3125768
https://doi.org/10.1007/s42452-020-2266-6
https://doi.org/10.1007/s42452-020-2266-6
https://doi.org/10.1016/j.aej.2021.02.009
https://doi.org/10.1016/j.aej.2021.02.009

Engineering and Technology, 4(4), 79–85. https://doi.org/10.
51846/vol4iss4pp79-85

[26] Hussain, M. G., Hasan, M. R., Rahman, M., Protim, J., & Al
Hasan, S. (2020). Detection of Bangla fake news using MNB
and SVM classifier. In 2020 International Conference on
Computing, Electronics & Communications Engineering,
81–85. https://doi.org/10.1109/iCCECE49321.2020.9231167

[27] Magerman, D. M. (1995). Statistical decision-tree models for
parsing. In 33rd Annual Meeting of the Association for
Computational Linguistics, 276–283. https://doi.org/10.3115/
981658.981695

[28] Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd
International Conference onDocument Analysis andRecognition,
1, 278–282. https://doi.org/10.1109/ICDAR.1995.598994

[29] Syamala, M., & Nalini, N. J. (2020). A filter based improved
decision tree sentiment classification model for real-time
amazon product review data. International Journal of
Intelligent Engineering & Systems, 13(1), 191–202. http://
doi.org/10.22266/ijies2020.0229.18

[30] Alzanin, S. M., Azmi, A. M., & Aboalsamh, H. A. (2022). Short
text classification for Arabic social media tweets. Journal of King
Saud University-Computer and Information Sciences, 34(9),
6595–6604. https://doi.org/10.1016/j.jksuci.2022.03.020

[31] Qureshi, M. A., Asif, M., Khan, M. F., Kamal, A., & Shahid, B.
(2023). Roman Urdu sentiment analysis of songs’ reviews.
VFAST Transactions on Software Engineering, 11(1),
101–108. https://doi.org/10.21015/vtse.v11i1.1399

[32] Kumar, D., Choubey, A., & Singh, P. (2020). Restaurant review
classification and analysis. Journal of Engineering Sciences,
11(8), 169–179.

[33] Pericherla, S., & Ilavarasan, E. (2024). Transformer network-
based word embeddings approach for autonomous
cyberbullying detection. International Journal of Intelligent
Unmanned Systems, 12(1), 154–166. https://doi.org/10.1108/
IJIUS-02-2021-0011

[34] Lim, S., Prade, H., & Richard, G. (2021). Classifying and
completing word analogies by machine learning.
International Journal of Approximate Reasoning, 132, 1–25.
https://doi.org/10.1016/j.ijar.2021.02.002

[35] Ning, G., & Bai, Y. (2021). Biomedical named entity
recognition based on Glove-BLSTM-CRF model. Journal of
Computational Methods in Sciences and Engineering, 21(1),
125–133. http://doi.org/10.3233/JCM-204419

[36] Iyyer, M., Manjunatha, V., Boyd-Graber, J., & Daumé, III, H.
(2015). Deep unordered composition rivals syntactic methods
for text classification. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing, 1, 1681–1691. https://doi.org/10.3115/
v1/P15-1162

[37] Haque, M.M., Biswas, N., Roy, N. S., Rafi, A. H., Islam, S. U.,
Lubaba, S. S., : : : , & Rahman, R. M. (2021). Data
mining techniques to categorize single paragraph-formed
self-narrated stories. In ICT Analysis and Applications:
Proceedings of ICT4SD 2020, 2, 701–713. https://doi.org/10.
1007/978-981-15-8354-4_70

[38] Li, G., Lin, Z., Wang, H., & Wei, X. (2020). A discriminative
approach to sentiment classification. Neural Processing Letters,
51(1), 749–758. https://doi.org/10.1007/s11063-019-10108-7

[39] Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved
semantic representations from tree-structured long short-term
memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural
Language Processing, 1, 1556–1566. https://doi.org/10.3115/
v1/P15-1150

[40] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D.,
Ng, A. Y., & Potts, C. (2013). Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, 1631–1642. https://doi.org/
10.18653/v1/d13-1170

[41] Liu, P., Qiu, X., Chen, X., Wu, S., & Huang, X. (2015). Multi-
timescale long short-term memory neural network
for modelling sentences and documents. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, 2326–2335. https://doi.org/10.
18653/v1/D15-1280

[42] Li, X., & Roth, D. (2002). Learning question classifiers.
In Proceedings of the 19th international conference on
Computational linguistics, 1, 1–7. https://doi.org/10.3115/
1072228.1072378

[43] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., &
Potts, C. (2011). Learningword vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies,
1, 142–150.

[44] Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A
convolutional neural network for modelling sentences. In
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, 1, 655–665. https://doi.org/10.3115/
v1/P14-1062

[45] Kim, Y. (2014). Convolutional neural networks for sentence
classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing,
1746–1751. https://doi.org/10.3115/v1/D14-1181

[46] Pang, B., & Lee, L. (2005). Seeing stars: Exploiting class
relationships for sentiment categorization with respect to
rating scales. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics, 115–124.
https://doi.org/10.3115/1219840.1219855

[47] Hu, M., & Liu, B. (2004). Mining and summarizing customer
reviews. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 168–177. https://doi.org/10.1145/1014052.1014073

[48] Wiebe, J., Wilson, T., & Cardie, C. (2005). Annotating
expressions of opinions and emotions in language. Language
Resources and Evaluation, 39(2–3), 165–210. https://doi.org/
10.1007/s10579-005-7880-9

[49] Pang, B., & Lee, L. (2004). A sentimental education:
Sentiment analysis using subjectivity summarization based
on minimum cuts. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics,
271–278. https://doi.org/10.3115/1218955.1218990

[50] Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level
convolutional networks for text classification. Proceedings of
the 29th International Conference on Neural Information
Processing Systems, 1, 28, 649–657.

[51] Ferjani, I., Hidri, M. S., & Frihida, A. (2022).Multi-GPU-based
convolutional neural networks training for text classification. In
Intelligent Systems and Applications: Proceedings of the 2021
Intelligent Systems Conference, 1, 72–84. https://doi.org/10.
1007/978-3-030-82193-7_5

[52] Sun, J., Jin, R., Ma, X., Park, J., Sohn, K., & Chung, T. (2021).
Gated convolutional neural networks for text classification. In
Advances in Computer Science and Ubiquitous Computing:

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

456

https://doi.org/10.51846/vol4iss4pp79-85
https://doi.org/10.51846/vol4iss4pp79-85
https://doi.org/10.1109/iCCECE49321.2020.9231167
https://doi.org/10.3115/981658.981695
https://doi.org/10.3115/981658.981695
https://doi.org/10.1109/ICDAR.1995.598994
http://doi.org/10.22266/ijies2020.0229.18
http://doi.org/10.22266/ijies2020.0229.18
https://doi.org/10.1016/j.jksuci.2022.03.020
https://doi.org/10.21015/vtse.v11i1.1399
https://doi.org/10.1108/IJIUS-02-2021-0011
https://doi.org/10.1108/IJIUS-02-2021-0011
https://doi.org/10.1016/j.ijar.2021.02.002
http://doi.org/10.3233/JCM-204419
https://doi.org/10.3115/v1/P15-1162
https://doi.org/10.3115/v1/P15-1162
https://doi.org/10.1007/978-981-15-8354-4_70
https://doi.org/10.1007/978-981-15-8354-4_70
https://doi.org/10.1007/s11063-019-10108-7
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.18653/v1/d13-1170
https://doi.org/10.18653/v1/d13-1170
https://doi.org/10.18653/v1/D15-1280
https://doi.org/10.18653/v1/D15-1280
https://doi.org/10.3115/1072228.1072378
https://doi.org/10.3115/1072228.1072378
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1007/s10579-005-7880-9
https://doi.org/10.1007/s10579-005-7880-9
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.1007/978-3-030-82193-7_5
https://doi.org/10.1007/978-3-030-82193-7_5

CSA-CUTE 2019, 309–316. https://doi.org/10.1007/978-981-
15-9343-7_43

[53] Mohd, N., Singhdev, H., & Upadhyay, D. (2021). Text
classification using CNN and CNN-LSTM. Webology, 18(4),
2440–2446. http://doi.org/10.29121/WEB/V18I4/149

[54] Liang, S., Zhu, B., Zhang,Y., Cheng, S., & Jin, J. (2020). A double
channel CNN-LSTM model for text classification. In 2020 IEEE
22nd International Conference on High Performance Computing
and Communications; IEEE 18th International Conference on
Smart City; IEEE 6th International Conference on Data Science
and Systems, 1316–1321. https://doi.org/10.1109/HPCC-
SmartCity-DSS50907.2020.00169

[55] Moriya, S., & Shibata, C. (2018). Transfer learning method for
very deep CNN for text classification and methods for its
evaluation. In 2018 IEEE 42nd Annual Computer Software
and Applications Conference, 2, 153–158. https://doi.org/10.
1109/COMPSAC.2018.10220

[56] Goldani, M. H., Momtazi, S., & Safabakhsh, R. (2021). Detecting
fake news with capsule neural networks. Applied Soft Computing,
101, 106991. https://doi.org/10.1016/j.asoc.2020.106991

[57] Kenarang, A., Farahani, M., &Manthouri, M. (2022). BiGRU
attention capsule neural network for Persian text
classification. Journal of Ambient Intelligence and
Humanized Computing, 13(8), 3923–3933. https://doi.org/
10.1007/s12652-022-03742-y

[58] Chen, B., Xu, Z., Wang, X., Xu, L., & Zhang, W. (2020).
Capsule network-based text sentiment classification. IFAC-
PapersOnLine, 53(5), 698–703. https://doi.org/10.1016/j.
ifacol.2021.04.160

[59] Hasib, K.M., Azam, S., Karim, A., AlMarouf, A., Shamrat, F. J.
M., Montaha, S., : : : , & Rokne, J. G. (2023). MCNN-LSTM:
Combining CNN and LSTM to classify multi-class text in
imbalanced news data. IEEE Access, 11, 93048–93063.
https://doi.org/10.1109/ACCESS.2023.3309697

[60] Paul, A., & Nayyar, A. (2024). A context-sensitive multi-tier
deep learning framework for multimodal sentiment analysis.
Multimedia Tools and Applications, 83(18), 54249–54278.
https://doi.org/10.1007/s11042-023-17601-1

[61] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate. In
International Conference on Learning Representations, 1–15.

[62] Zhang, Y., & Rao, Z. (2020). Hierarchical attention networks for
grid text classification. In 2020 IEEE International Conference
on Information Technology, Big Data and Artificial Intelligence,
1, 491–494. https://doi.org/10.1109/ICIBA50161.2020.9277489

[63] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., : : : , & Polosukhin, I. (2017). Attention is all you
need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, 6000–6010.

[64] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, 1, 4171–4186. http://doi.org/10.
18653/v1/N19-1423

[65] Joseph, S., & Joshi, H. (2024). ULMFiT: Universal language
model fine-tuning for text classification. International
Journal of Advanced Medical Sciences and Technology,
4(6), 1–9. https://doi.org/10.54105/ijamst.e3049.04061024

[66] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., &
Le, Q. V. (2019). XLNet: Generalized autoregressive
pretraining for language understanding. In Proceedings of

the 33rd International Conference on Neural Information
Processing Systems, 517.

[67] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., : : : , &
Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT
pretraining approach. In International Conference on Learning
Representations 2020 Conference, 1–15.

[68] Shaheen, Z., Wohlgenannt, G., & Filtz, E. (2020). Large scale
legal text classification using transformer models. arXiv
Preprint: 2010.12871. https://doi.org/10.48550/arXiv.2010.
12871

[69] Meng, L. (2024). The convolutional neural network text
classification algorithm in the information management of
smart tourism based on Internet of Things. IEEE Access,
12, 3570–3580. https://doi.org/10.1109/ACCESS.2024.
3349386

[70] Bird, J. J., Ekárt, A., & Faria, D. R. (2023). Chatbot
Interaction with Artificial Intelligence: Human data
augmentation with T5 and language transformer ensemble
for text classification. Journal of Ambient Intelligence
and Humanized Computing, 14(4), 3129–3144. https://
doi.org/10.1007/s12652-021-03439-8

[71] Karl, F., & Scherp, A. (2023). Transformers are short-text
classifiers. In International Cross-Domain Conference for
Machine Learning and Knowledge Extraction, 103–122.
https://doi.org/10.1007/978-3-031-40837-3_7

[72] Shi, Y., Zhang, X., & Yu, N. (2023). PL-Transformer: A POS-
aware and layer ensemble transformer for text classification.
Neural Computing and Applications, 35(2), 1971–1982.
https://doi.org/10.1007/s00521-022-07872-4

[73] Yan, Y., Liu, F. A., Zhuang, X., & Ju, J. (2023). An R-
Transformer_BiLSTM model based on attention for multi-
label text classification. Neural Processing Letters, 55(2),
1293–1316. https://doi.org/10.1007/s11063-022-10938-y

[74] Ghourabi, A., & Alohaly, M. (2023). Enhancing spammessage
classification and detection using transformer-based
embedding and ensemble learning. Sensors, 23(8), 3861.
https://doi.org/10.3390/s23083861

[75] Mayer, C. W. F., Ludwig, S., & Brandt, S. (2023). Prompt text
classifications with transformer models! An exemplary
introduction to prompt-based learning with large language
models. Journal of Research on Technology in Education,
55(1), 125–141. https://doi.org/10.1080/15391523.2022.
2142872

[76] Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer:
The long-document transformer. arXiv Preprint:2004.05150.
https://doi.org/10.48550/arXiv.2004.05150

[77] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., : : : , & Liu, P. J. (2020). Exploring the limits of
transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140), 1–67.

[78] Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti,
C., Ontanon, S., : : : , & Ahmed, A. (2020). Big bird:
Transformers for longer sequences. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, 1450.

[79] He, P., Liu, X., Gao, J., & Chen, W. (2020). DeBERTa:
Decoding-enhanced BERT with disentangled attention.
In International Conference on Learning Representations,
1–21.

[80] Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2019).
ELECTRA: Pre-training text encoders as discriminators rather
than generators. In International Conference on Learning
Representations 2020 Conference, 1–18.

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

457

https://doi.org/10.1007/978-981-15-9343-7_43
https://doi.org/10.1007/978-981-15-9343-7_43
http://doi.org/10.29121/WEB/V18I4/149
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00169
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00169
https://doi.org/10.1109/COMPSAC.2018.10220
https://doi.org/10.1109/COMPSAC.2018.10220
https://doi.org/10.1016/j.asoc.2020.106991
https://doi.org/10.1007/s12652-022-03742-y
https://doi.org/10.1007/s12652-022-03742-y
https://doi.org/10.1016/j.ifacol.2021.04.160
https://doi.org/10.1016/j.ifacol.2021.04.160
https://doi.org/10.1109/ACCESS.2023.3309697
https://doi.org/10.1007/s11042-023-17601-1
https://doi.org/10.1109/ICIBA50161.2020.9277489
http://doi.org/10.18653/v1/N19-1423
http://doi.org/10.18653/v1/N19-1423
https://doi.org/10.54105/ijamst.e3049.04061024
https://doi.org/10.48550/arXiv.2010.12871
https://doi.org/10.48550/arXiv.2010.12871
https://doi.org/10.1109/ACCESS.2024.3349386
https://doi.org/10.1109/ACCESS.2024.3349386
https://doi.org/10.1007/s12652-021-03439-8
https://doi.org/10.1007/s12652-021-03439-8
https://doi.org/10.1007/978-3-031-40837-3_7
https://doi.org/10.1007/s00521-022-07872-4
https://doi.org/10.1007/s11063-022-10938-y
https://doi.org/10.3390/s23083861
https://doi.org/10.1080/15391523.2022.2142872
https://doi.org/10.1080/15391523.2022.2142872
https://doi.org/10.48550/arXiv.2004.05150

[81] Sun, Y., Wang, S., Li, Y., Feng, S., Tian, H., Wu, H., &Wang,
H. (2020). ERNIE 2.0: A continual pre-training framework for
language understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence, 34(5), 8968–8975.
https://doi.org/10.1609/aaai.v34i05.6428

[82] Liu, Z., Hu,H., Lin, Y., Yao, Z., Xie, Z.,Wei, Y., : : : , &Guo, B.
(2022). Swin transformerV2: Scaling up capacity and resolution.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 12009–12019. https://doi.org/
10.1109/CVPR52688.2022.01170

[83] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D.,
Zhai, X., Unterthiner, T., : : : , & Houlsby, N. (2021). An
image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning
Representations, 1–21.

[84] Wang, W., Xie, E., Li, X., Fan, D. P., Song, K., Liang, D., : : : ,
& Shao, L. (2021). Pyramid vision transformer: A versatile
backbone for dense prediction without convolutions. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 548–558. https://doi.org/10.1109/
ICCV48922.2021.00061

[85] Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., : : : ,
& Shen, C. (2021). Twins: Revisiting the design of spatial
attention in vision transformers. In Proceedings of the 35th
International Conference on Neural Information Processing
Systems, 716.

[86] Chen, C. F. R., Fan, Q., & Panda, R. (2021). CrossViT: Cross-
attention multi-scale vision transformer for image
classification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 347–356. https://doi.org/10.
1109/ICCV48922.2021.00041

[87] Venugopal, J. P., Subramanian, A. A. V., Pugalendhi, G. K., &
Karthikeyan, N. K. (2024). A novel attention-based cross-modal
transfer learning framework for predicting cardiovascular
disease. Computers in Biology and Medicine, 170, 107977.
https://doi.org/10.1016/j.compbiomed.2024.107977

[88] Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2024). Dive
into deep learning. UK: Cambridge University Press.

How to Cite: Muhammad, S. (2025). Enhancing Recruiter Outreach: Predicting Job
Ad Quality with Advanced Machine Learning and NLP Models. Artificial Intelligence
and Applications, 3(4), 443–458. https://doi.org/10.47852/bonviewAIA52024083

Artificial Intelligence and Applications Vol. 3 Iss. 4 2025

458

https://doi.org/10.1609/aaai.v34i05.6428
https://doi.org/10.1109/CVPR52688.2022.01170
https://doi.org/10.1109/CVPR52688.2022.01170
https://doi.org/10.1109/ICCV48922.2021.00061
https://doi.org/10.1109/ICCV48922.2021.00061
https://doi.org/10.1109/ICCV48922.2021.00041
https://doi.org/10.1109/ICCV48922.2021.00041
https://doi.org/10.1016/j.compbiomed.2024.107977
https://doi.org/10.47852/bonviewAIA52024083

	Enhancing Recruiter Outreach: Predicting Job Ad Quality with Advanced Machine Learning and NLP Models
	1. Introduction
	2. Related Work
	2.1. Feature extraction
	2.2. Classification algorithms
	2.3. Deep learning-based approaches

	3. Proposed Methodology
	4. Experimental Results
	4.1. Dataset
	4.2. Experimental setup
	4.3. Results

	5. Comparative Study
	5.1. Machine learning algorithms
	5.2. Deep learning algorithms

	6. Conclusion
	Ethical Statement
	Conflicts of Interest
	Data Availability Statement
	Author Contribution Statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

