
Received: 15 July 2024 | Revised: 9 April 2025 | Accepted: 29 April 2025 | Published online: 23 May 2025

RESEARCH ARTICLE

SNERC: Enhancing Knowledge Management
with Named Entity Recognition and Document
Classification for Apply Gaming

Philippe Tamla1,* , Florian Freund1 and Matthias Hemmje1

1Faculty of Multimedia and Computer Science, Hagen University, Germany

Abstract: In this article, we present Stanford Named Entity Recognition and Classification (SNERC), an intelligent system designed to
enhance knowledge management through named entity recognition (NER) and document classification (DC) in the field of Applied
Gaming. In this domain, the effective application of NER and DC is essential for addressing information overload (IO), enabling
software developers to efficiently search, filter, and retrieve large volumes of textual data from web sources. SNERC streamlines the
management and deployment of machine learning (ML)-based NER models, supporting the accurate extraction of named entities (NEs)
and the classification of heterogeneous textual documents. The system tackles key challenges in NER, such as the impact of language
and domain specificity on model performance, domain adaptation, and the complexity of handling diverse NE types. We demonstrate
SNERC’s capabilities through real-world use cases, highlighting improvements in DC and information retrieval (IR) within applied
gaming scenarios. The system provides core functionalities for training, evaluating, and managing NER models using the Stanford
CoreNLP framework. Additionally, SNERC integrates with a rule-based expert system (RBES) to enable the automatic categorization of
documents into predefined taxonomies within a knowledge management system. We present results from comprehensive qualitative and
quantitative evaluations—measured through precision, recall, and F-score—to assess the system’s effectiveness and identify areas for
further optimization, supporting seamless integration into real-world operational environments.

Keywords: named entity recognition, document classification, rule-based expert system, social network, knowledge management system

1. Introduction

This paper addresses the persistent challenge of information
overload (IO) encountered by software developers when accessing
vast and unstructured textual resources on the Web. The goal is to
facilitate structured and meaningful access to these documents
using named entity recognition (NER) [1] and document
classification (DC) [2], thereby improving the efficiency and
effectiveness of information retrieval (IR). IO in the semantic web
context impedes comprehension and decision-making due to the
excessive availability of information. IR techniques such as
searching and browsing help manage this overload, but their
effectiveness can be significantly enhanced by incorporating NER
and DC. NER, a key subfield of natural language processing
(NLP), identifies named entities (NEs) in textual data, supporting
semantic analysis, IR, and information discovery (ID). With
advances in machine learning (ML), NER techniques have
become more robust and are now widely used across domains
such as software engineering, social media, and medical
research. DC, another fundamental IR approach, organizes text
documents into content-based categories. Automatic DC—using
ML algorithms or rule-based expert systems (RBESs)—has
become essential for managing the growing volume of digital

documents. This research is motivated by two Research and
Development (R&D) projects: “Realising an Applied Gaming
Ecosystem” (RAGE) and the DFG-funded “Recommendation
Rationalisation” (RecomRatio) project [3]. RAGE supports
Serious Games Development (SGD) by providing reusable
software components via the portal gamecomponent.eu, which
remains in active use. These components support analytics, avatar
systems, emotion detection, gamification, NLP, and
personalization. Serious Games (SGs), also referred to as Applied
Games [4], are developed not only for entertainment but also for
educational, training, and motivational purposes [5]. Their usage
has expanded in education, industry, and research over the last
decade [6, 7]. Corporations increasingly invest in SGs to enhance
business functions [8], as evidenced by IBM’s endorsement of
their potential for collaborative problem-solving, real-time
modeling, and process improvement [9]. However, SGD remains
complex, involving game design, software architecture, content
creation, and testing [3]. Its success depends on high-quality
gamification platforms and reusable software assets [10]. To
support these developments, the RAGE portal integrates the
Knowledge Management-Ecosystem Portal (KM-EP), developed
by the Chair of Multimedia and Internet Applications at the
University of Hagen and FTK e.V. [11]. KM-EP supports
knowledge management across domains [3] and has been
employed in H2020 projects such as Metaplat, SenseCare, and
RecomRatio. Through a taxonomy management system (TMS),

*Corresponding author: Philippe Tamla, Faculty of Multimedia and Computer
Science, Hagen University, Germany. Email: philippe.tamla@fernuni-hagen.de

Artificial Intelligence and Applications
2025, Vol. 00(00) 1–16

DOI: 10.47852/bonviewAIA52023841

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0000-0002-0786-4253
https://orcid.org/0000-0002-7344-6869
https://orcid.org/0000-0001-8293-2802
mailto:philippe.tamla@fernuni-hagen.de
https://doi.org/10.47852/bonviewAIA52023841
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

KM-EP enables hierarchical classification of textual content.
Moreover, the portal integrates with social and collaborative
platforms like Stack Overflow and GitHub, allowing developers to
import and classify user-generated content via a REST API [3].
Faceted search capabilities assist in navigating large document
repositories. However, manual classification remains inefficient,
indicating a clear need for automated NER and DC. Similarly,
RecomRatio targets evidence extraction from medical texts,
emphasizing the handling of emerging named entities for medical
decision support [3]. This paper presents the development of
SNERC (Stanford Named Entity Recognition and Classification),
a system that supports both novice and expert users in applying
NER and DC to enhance IR within knowledge management
systems (KMS) such as KM-EP.

The study is guided by three Research Questions (RQs). RQ1
investigates how a NER and DC system can be developed to
support novice developers in accessing textual resources. This
involves reviewing core IR concepts, analyzing existing NER/DC
systems, and identifying optimal ML-based solutions that integrate
NLP for effective classification and retrieval. RQ2 focuses on how
to design a scalable model for NE extraction and DC. It entails
studying unstructured web content accessed by users, training ML
models for domain-specific text, and enabling seamless integration
of extracted NEs into external systems such as the RAGE portal.
RQ3 explores how the system can support faceted search and
browsing within a KMS. This question addresses leveraging
extracted NEs and taxonomy hierarchies to enable intelligent
document navigation, requiring a review of semantic analysis,
indexing, and content reasoning technologies.

The research is framed using Nunamaker’s research
methodology [12], which offers a structured approach
encompassing observation, theory building, system development,
and experimentation. This methodology ensures a rigorous
evaluation of the proposed system in real-world scenarios.
Accordingly, the research objectives include reviewing literature on
IO, IR, NER, and DC; analyzing SGD-relevant content from social
platforms; designing and developing a robust NER and DC model;
investigating integration technologies within KM-EP; and
implementing and evaluating the system’s usability and feasibility.
The structure of the paper is as follows: the introduction outlines
the motivation, RQs, methodology, and objectives; the second
chapter reviews the state of the art; the third chapter models our
system; the fourth chapter details system implementation; the fifth
presents evaluation results of SNERC; and the final chapter
concludes with insights and future directions. This introduction sets
the foundation for exploring the technical, methodological, and
practical challenges of enhancing IR through NER and DC in
complex, information-rich domains such as SGs andmedical research.

2. State of the Art and Related Work

2.1. RAGE

As previously noted, the RAGE social platform supports the
integration of diverse web-based textual resources, such as Stack
Exchange discussions, into its knowledge management ecosystem.
These documents typically include a title, description, and metadata
—such as tags and keywords—allowing for structured organization.
A key component of RAGE is its integrated TMS, which enables
the classification of documents into hierarchical taxonomies within a
KMS. KMSs are specialized systems for managing and leveraging
organizational knowledge assets [13]. Among them, the KM-EP is a
versatile and cross-domain solution built as a PHP-based web portal,

providing researchers with a flexible framework to deploy their
work without implementing foundational services like data
persistence or user management [14]. Taxonomy, the science of
classification [15], is leveraged in RAGE to support faceted
browsing, enabling users to refine search results and improve IR
efficiency. However, the manual classification of documents into
multiple hierarchical taxonomies presents significant challenges,
particularly due to the risk of confusion between taxonomies and the
cognitive effort required to analyze and classify each document [14].
This process becomes increasingly time-consuming when scaling to
large datasets. To address these limitations, the integration of a NER
system into the RAGE platform is proposed. Such a system would
automate the extraction of NEs from imported content and, when
coupled with an RBES, enable intelligent reasoning over-extracted
entities and their alignment with existing taxonomies, streamlining
the classification process.

2.2. NER

Early research categorizes NER techniques broadly into rule-based
and ML-based approaches [1]. Among the ML-based techniques,
Conditional Random Fields (CRFs) are prominent for their
effectiveness in sequence labeling tasks such as part-of-speech
(POS) tagging, sentence segmentation, and NER [16–18]. NER
system performance is commonly assessed using precision, recall,
and F1-score [19]. Precision represents the ratio of correctly identified
NEs to all identified NEs, while recall reflects the ratio of correctly
identified NEs to all relevant NEs in the dataset. The F1-score
balances both metrics and is widely used to evaluate NER systems. In
our previous review [14], we identified six pertinent challenges—
referred to as Remaining Challenges (RCs)—in the development of
effective NER systems. RC1 relates to the high sensitivity of NER
performance to the language and domain in which the system is
applied. This is due to early systems being rule-based and language-
specific, limiting their portability and generalizability [1]. RC2
concerns domain adaptation in ML-based approaches. Applying a
model trained in one domain (e.g., clinical) to another (e.g.,
bioinformatics) often results in performance degradation [1]. To
address this, researchers have focused on designing domain- and
language-independent features to reduce training effort and improve
transferability [1, 20]. RC3 highlights the challenge of recognizing
complex NE types. While simple patterns may capture numeric dates,
more nuanced entities—such as relative dates or domain-specific
expressions—require sophisticated extraction strategies and external
resources like gazetteers [1, 21]. RC4 addresses the complexity of
feature selection in ML-based systems. As noted by Benajiba et al.
[20], choosing an optimal set of features remains one of the most
challenging aspects of NLP. Effective NER often requires combining
local features (e.g., orthographic cues, lemmas) with broader
contextual features (e.g., POS tags, n-grams, external knowledge
bases) [22]. RC5 refers to the scarcity of domain-specific, gold-
standard annotated datasets. Creating such resources is labor-intensive
and demands both linguistic and subject-matter expertise—particularly
in interdisciplinary areas like medicine [3]. RC6 focuses on
preprocessing stages like tokenization, lemmatization, stemming, and
annotation. If poorly executed, these steps can compromise model
performance. Visualization tools are recommended to ensure quality
control throughout the pipeline [3, 22]. In the context of SGD,
implementing NER requires processing documents from Question-
Answering Systems and Collaborative Development Environments,
which often contain domain-specific NEs. Our formative study on
NER in SGs [14] showed that systems in this space must handle
naming variations, synonyms, and frequent misspellings. When

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

02

evaluating available NER toolkits [14], we prioritized criteria such as
domain independence, advanced NLP features (e.g., POS tagging,
sentiment analysis, dependency parsing), open-source availability, and
active community support. Based on this evaluation, Stanford
CoreNLP was selected as the most suitable platform for implementing
our prototype.

2.3. DC

DC refers to the task of assigning one or more categories to a
document based on its semantic content [23]. Alongside NER, DC
plays a pivotal role in enhancing IR by supporting both search
and browsing functionalities [24]. In platforms such as KM-EP,
DC facilitates the automatic organization of documents into
topical categories, improving accessibility and knowledge
management [3]. A major challenge in DC is identifying a
document’s subject matter—a task central to automatic content
analysis [25]. While human understanding relies on contextual
reasoning, computational systems must derive meaning through
semantic and statistical techniques. Luhn [26] proposed that the
frequency and co-occurrence of terms (e.g., “science,”
“mathematics,” “learning”) can signal a document’s thematic
focus. Sebastiani [27] identifies two principal approaches to DC:
ML-based and rule-based classification. ML-based methods are
typically implemented through supervised learning, where labeled
training data are used to develop a classifier that maps document
features to categories [23, 28]. Unsupervised learning, in contrast,
clusters documents into groups based on textual patterns without
the need for labeled data [29]. Although widely adopted, ML-
based DC continues to face challenges in real-world applications,
particularly the lack of high-quality, domain-specific training data
and the limited generalizability of classifiers across different
domains and languages [30–32]. As Kim et al. [30] observed,
“classification by machine learning may not keep the same
performance because the knowledge generated from the training
set may not be appropriate for certain types of web information.”
To address these limitations, rule-based and hybrid classification
approaches are increasingly used [30, 33, 34]. Rule-based systems
rely on manually crafted rules informed by syntactic and semantic
cues. These rules are often developed using NLP techniques such
as Syntactic Pattern Matching (SPM), POS tagging, and
dependency parsing [35]. For example, Biswas et al. [33] applied
rule-based NLP and SPM techniques to classify large web-based
corpora. POS tagging plays a fundamental role in linguistic analysis
and is widely applied in various NLP applications, including
syntactic and semantic parsing, as well as machine translation [16]. It
assigns syntactic labels—such as nouns, verbs, and adjectives—to
words, helping extract sentence components like subject, predicate,
and object [36, 37]. This grammatical structure supports the
formulation of semantic classification rules based on sentence mood,
polarity, and composition. Linguistic and grammatical analysis
complements NLP by encoding textual data into structured formats
that capture keyword relationships and semantic roles [38]. For
instance, in POS-tagged text, the presence of particular NEs like
“Java” or “C#” can indicate that the document belongs to a
“Programming Language” category. Based on these insights, we
identify three critical RCs for implementing rule-based DC. RC7
pertains to identifying recurring linguistic patterns and terms, which
is often achieved using Regular Expressions (REs), a technique
widely applied in modern IR systems. RC8 concerns the recognition
of domain-specific NEs and their semantic relationships. These can
be identified and disambiguated more effectively by integrating NER
and POS tagging systems. RC9 addresses the complexity of

extracting well-formed natural language sentences and understanding
their grammatical structure, which can be supported by visualization
tools that highlight syntactic and semantic components (e.g., subject–
predicate–object relationships). Since NEs often encode domain-
specific knowledge, analyzing their interrelationships with
surrounding text provides strong cues for classification.

To build an effective rule-based DC system, it is necessary to
integrate REs, NER, POS tagging, and visualization tools to
facilitate semantic analysis. These technologies enable the
formulation of classification rules that reflect the reasoning
patterns of human experts. A common implementation approach is
the use of an RBES, which provides a human-readable interface
for defining logical rules capable of achieving expert-level
classification accuracy [34, 39]. The following section discusses
RBES technologies and their architectural components.

2.3.1. RBESs
RBESs are increasingly adopting Artificial Intelligence (AI)

technologies that simulate expert-level reasoning by encoding
domain-specific knowledge in the form of logical rules. They are
widely used in domains such as healthcare, science, engineering,
and business [40–42]. An RBES represents knowledge acquired
from human experts in a structured format—typically as symbolic
or numerical rules—within a computer program [43]. According to
Talukdar et al. [39], rules offer an expressive, straightforward, and
flexible mechanism to represent and apply such knowledge.
Negnevitsky [44] emphasizes that experts possess deep, experience-
based knowledge which, when formalized, becomes a powerful
basis for computational reasoning. A typical rule in an RBES
consists of two parts: the antecedent, also known as the condition
or premise, and the consequent, which specifies the action
or conclusion. This logical relationship is expressed in a
WHEN : : :THEN format, as illustrated in Listing 1:

Listing 1
Example rule with WHEN : : :THEN statements

A rule “fires” when the conditions in the antecedent block are
satisfied. Rules may contain multiple antecedents connected
using logical operators such as AND or OR, enabling complex
reasoning chains. This is demonstrated in Listing 2, where
multiple conditions are combined:

Listing 2
Example rule with antecedents

Each antecedent typically includes a linguistic object and a
value, connected by an operator. Operators may be logical (e.g.,
is, is not) or mathematical (e.g., <, >), depending on whether
symbolic or numeric values are being assigned. As shown in

1 WHEN <antecedent>
2 THEN <consequent>

6 WHEN
7 <antecedent 1> WHEN <antecedent 1>
8 AND
9 <antecedent 2> OR <antecedent 2>
10 AND
11 <antecedent n> OR <antecedent n>
12 THEN
13 <consequent> THEN <consequent>

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

03

Listing 3, mathematical constraints can define object properties to
determine rule outcomes:

Listing 3
Example rule with mathematical operators

The core processing in an RBES is performed by the inference
engine, which compares the rules stored in the knowledge base with
the facts held in the working memory. When the antecedent of a rule
matches the current facts, the rule fires, and its corresponding action
is executed. This may result in new facts being added to the working
memory, extending the reasoning process through what is known as
an inference chain [39]. Two main inference strategies are used:
forward chaining and backward chaining. Listing 3 illustrates an
example of a forward-chaining rule, where conditions are applied
to factual data (e.g., an object’s height and classification) to derive
a new fact—in this case, identifying the object as a person if
certain height constraints are met and it is not an animal. Forward
chaining follows a data-driven approach, where reasoning begins
with known facts and applies rules to derive new knowledge. For
example, the system Dendral uses forward chaining to determine
molecular structures of unknown soil samples [45]. In contrast,
backward chaining is goal-driven. It begins with a hypothesis or
desired conclusion and works backward to verify whether existing
rules and facts support it. The expert system MYCIN, which
diagnoses infectious blood diseases, is a classical implementation
of this technique [46].

This reasoning process is supported by a modular architecture,
as depicted in Figure 1: Architecture of an RBES [47]. The
knowledge base stores domain knowledge in the form of rules

(i.e., WHEN : : :THEN structures). The working memory (fact
base) maintains the dynamic set of facts during runtime, which are
compared against rule conditions. The inference engine evaluates
the rules and determines whether they fire based on the facts
available. The explanation system enhances transparency by
justifying the system’s reasoning and outputs to the user. The user
interface facilitates interaction between the system and the user,
while the knowledge base editor allows for the creation,
modification, and management of rules within the system. This
separation between the knowledge base and inference engine is
one of the major benefits of RBESs, as it allows updates to the
rule logic without affecting the reasoning engine. RBESs are also
capable of handling incomplete or uncertain knowledge by
assigning confidence levels or certainty factors to rules [48, 49],
further improving their adaptability and robustness. To select an
appropriate RBES tool for DC, we apply the same evaluation
criteria used in our earlier comparison of NER frameworks [14].
The system must be open source to support academic and
collaborative development. It must support both forward and
backward chaining and allow the knowledge base to remain
independent from the reasoning engine, ideally supporting object-
oriented programming environments such as Java. Additionally,
the system should demonstrate maturity and robustness—
evidenced by active development, strong documentation, and wide
adoption in academic or industrial contexts. Finally, the system
must support DC tasks with manageable complexity, allowing
users to define classification rules through a low learning curve
while still enabling expert-level reasoning accuracy. The
following section presents a comparative analysis of RBES
implementations based on these criteria.

2.3.2. Comparison of RBES
One of the earliest examples of an RBES is MYCIN, a

backward-chaining prototype developed in the 1970s to assist in
diagnosing and recommending treatment for serious infections [50].
Its primary aimwas to make the reasoning process transparent during
consultations by displaying the rules under consideration at each
step. MYCIN demonstrated the potential of encoding intelligent
behavior in expert systems and contributed significantly to early

1 WHEN
2 a.height > “5cm”

3 AND
4 a.height < “3m”

5 AND
6 a is not Animal
7 THEN
8 a = person

Figure 1
Architecture of an RBES

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

04

AI research. However, like many AI programs of that era, its
development was gradual and sometimes stagnant, ultimately
preventing it from evolving into a robust and widely adopted
RBES [46]. In contrast, the C Language Integrated Production
System (CLIPS), developed by NASA in 1985, quickly gained
popularity due to its efficiency and portability [51]. CLIPS
supports forward chaining and was initially implemented in C,
with a syntax similar to Lisp. It later integrated COOL (CLIPS
Object-Oriented Language), enabling developers to combine
procedural, object-oriented, and logical programming styles.
While CLIPS offers a clear separation between the knowledge base
and the inference engine, its syntax is comparatively more complex
and less intuitive than newer systems. Since 1996, CLIPS has been
available as public domain software; however, community support
is limited, and its documentation lacks comprehensive updates [51].
Ten years after CLIPS, the Java Expert System Shell (JESS) was
introduced by Ernest Friedman-Hill at Sandia National Laboratories
[52]. JESS is a Java-based reimplementation of CLIPS, designed for
tighter integration with Java applications. It retains compatibility with
CLIPS’ rule language but also supports JessML, a declarative XML-
based syntax for rule specification. Although JESS is freely available
for educational and governmental purposes, it is not open-source, and
its source code is not publicly accessible under any license. A more
recent and widely adopted system is Drools, an open-source RBES
initially developed by Bob McWhirter in 2001 and later maintained
by the JBoss community [53]. Written in Java, Drools uses
WHEN : : :THEN rule syntax that is significantly easier to
understand and more readable than that of CLIPS or JESS. Rule
definitions in Drools can also be expressed in native XML format,
offering additional flexibility. The system’s inference engine is
based on an extended version of the Rete algorithm, optimized for
object-oriented programming environments. Drools is distributed
under the Apache open-source license and is platform-independent,
making it suitable for integration with Java-based systems. Its
simplicity, flexibility, and extensibility have contributed to its
adoption across diverse domains. A comparison of these RBESs is
summarized in Table 1. Among the evaluated systems, Drools
emerges as the most robust, with strong community support, wide
adoption, and compatibility with both backward and forward
chaining. Its low learning curve, readable syntax, and seamless
integration with Java make it particularly well-suited for our
context. Since Java is already used in the KM-EP platform and was
selected for the development of our NER subsystem, Drools
provides the ideal environment for implementing our DC
subsystem. Its adoption ensures efficient integration with KM-EP

and full compatibility with the sub-modules developed throughout
this research.

2.4. SGs-related taxonomies

Taxonomies in SGs span multiple dimensions, each reflecting
different aspects of game development and analysis. For the purposes
of this research, the most relevant taxonomies are those related to (1)
game genre, (2) programming languages, (3) video game tools, (4)
machine learning algorithms, and (5) video game specification and
implementation bugs. Numerous researchers have proposed
hierarchical taxonomies in the SG domain with the primary objective
of identifying key characteristics of popular SGs and offering
structured frameworks for future research on their development and
impact [54]. The first taxonomy adopted in our classification work is
based on game genre [GEN], one of the foundational classification
schemes for SGs [55]. A SG may be categorized according to its
target market [GEN/MAR]—such as education, healthcare, or military
—its game type [GEN/TYPE], including board games, card games,
simulations, role-playing games, and toys, or by its deployment
platform [GEN/PLA], such as browser, mobile, console, or PC [55].
These categories are frequently used in discussions on platforms like
Stack Overflow, where developers use tags such as “education,”
“simulation,” or “console.” We therefore focus on classifying SG-
related discussions according to this game genre taxonomy. The
second taxonomy addresses programming languages [LANG], which
is highly relevant given that SG developers often discuss the
implementation of features using specific programming or scripting
languages. This dimension is informed by Van Roy [56], who
proposes classifying languages according to their programming
paradigms, such as object-oriented, functional, or logic-based
paradigms. This classification enables a systematic approach to
analyzing SG-related technical discussions centered around language-
specific development concerns. Third, the tools and environments
used in SG development represent another key dimension. Modern
SGs often rely on well-established game engines and integrated
development environments (IDEs). Toftedahl and Engström [57]
propose a lightweight taxonomy that categorizes common game
development tools into subcategories such as development
environments [TOOL/IDE] and game engines [TOOL/ENG]. This
taxonomy provides a standardized way to classify Stack Overflow
posts that mention specific tools like Unity, Unreal Engine, or Visual
Studio. Fourth, we consider the integration of ML, a fast-growing
area in SG development. ML plays an increasingly central role in
intelligent game systems and adaptive learning components,

Table 1
Comparison of RBESs

MYCIN CLIPS JESS Drools

License Supporting Features GPL Public-Domain Public-Domain ASL
backward chaining yes no no yes
forward chaining no yes yes yes
Separates Knowledge Base from Inference Logic yes yes yes yes
Object-oriented Programming
Robustness and Maturity

no yes no yes

Community Support very weak active active very active
Documentation Quality bad good good good
Supported Programming Languages LIPS C Java Java
Community Size very small medium medium large
User-friendly Rule Formulation No medium Medium yes
Learning Curve steep low low very low

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

05

particularly within reusable software modules [3]. For example,
pedagogical systems now use observational gameplay data to improve
adaptivity rather than relying on predefined theoretical models [58].
This trend justifies the inclusion of a ML taxonomy dimension in our
classification model, enabling us to capture ML-related development
concerns and innovations in SGs. The fifth and final dimension
focuses on video game bugs [BUG], a recurring challenge for SG
developers. Like traditional software engineers, SG developers
frequently engage in troubleshooting and debugging tasks. Truelove
et al. [59] propose a taxonomy that distinguishes between
specification bugs [BUG/SPEC] and implementation bugs [BUG/
IMP]. Specification bugs typically originate from flawed or
incomplete design documents, including missing requirements,
conflicting statements, or misinterpretations of user needs. In contrast,
implementation bugs arise from assets—such as source code, art, or
level design—produced to execute the specification. These bugs result
in discrepancies between the intended and actual game behavior
[59, 60]. By adopting these five taxonomies—game genre,
programming languages, development tools, ML, and bugs—we
establish a multidimensional framework for classifying SG-related
discussions and artifacts. This framework supports more granular
indexing, retrieval, and analysis of SG knowledge across platforms
like Stack Overflow and contributes to the ongoing formalization of
SG development practices.

2.5. Evaluation methodology

Variousmethods exist to evaluatewhether research objectives have
been met. Automated and formal techniques, such as testing systems
against formal specifications using computer programs, are well-
established [61]. However, due to their complexity, they are not
applied in this study. Previously, we employed an informal evaluation
method—Cognitive Walkthrough—which leverages the evaluators’
experience and domain knowledge to identify usability issues [14, 62].
In this work, we shift toward empirical evaluation approaches, aiming to
involve a broader range of users. Empirical methods are particularly
effective in evaluating user interfaces, often producing high-quality
results [63]. Among these, Focus Group Interviews enable early-stage
feedback by conducting task-specific group discussions during the
design phase [64]. The Thinking Aloud Method allows users to
verbalize their thoughts and emotions while interacting with the
system, providing insight into usability issues and optimization
opportunities [65]. For quantifying system effectiveness and
efficiency, Controlled Experiments are valuable. These require clearly
defined tasks and goals, and the outcomes are evaluated using
standard metrics such as Precision, Recall, and F1-Score [66].
Precision measures the accuracy of retrieved information, Recall
assesses completeness, and F1 balances the two. To gather user
feedback, surveys and questionnaires are widely used and have been
recently applied in evaluating web-based KMSs [67]. For usability
evaluation, standardized tools like UMUX (Usability Metric for User
Experience) assess ease of use on a 7-point scale [68], while the USE
Questionnaire measures usability, usefulness, satisfaction, and ease of
learning [69]. To assess documentation quality, we apply the
“Münsteraner Fragebogen zur Evaluation—Zusatzmodul Basistexte”
[70]. Following a review of state-of-the-art methods and tools for
NER and DC, the next section presents the design of our proposed
system, based on the identified RCs.

3. The Proposed Methodology

The preceding chapter introduced key concepts and technologies
that underpin our system’s architecture for NER and DC. These

components are part of the observation phase in our research
methodology and serve to identify the central RCs in our work. In
this chapter, we adopt the User-Centered Design (UCD) approach for
system development. The term UCD was originally introduced by
Wallach [71] and later formalized by Donald A. Norman and Stephen
W. Draper [72] at the University of California, San Diego. UCD has
been widely recognized for improving the usability and utility of
software systems [73]. The process involves four iterative phases: (1)
defining the use context (target users and their goals); (2) identifying
user and business requirements; (3) generating design solutions; and
(4) evaluating designs through usability testing and user feedback.
For system modeling, we employ the unified modeling language, a
standardized framework for documenting, specifying, and
constructing software systems [74].

3.1. Use context

The user requirements for the NER component are grounded in
the previously identified NER-related RCs (RC1–RC6) and our
preparatory studies [14]. These highlight the need to develop
functionalities enabling users—regardless of programming or ML
expertise—to define and execute essential steps in a NER
pipeline. These include selecting a domain-specific corpus,
performing automatic annotation with custom NE labels, adjusting
CRF parameters, and training/testing models. This addresses RC1,
RC2, RC4, and RC5. The studies further emphasize that IR
systems in dynamic environments like the Web must efficiently
access SG-related resources—such as patterns, programs, or tools
—through methods like NER and DC. To improve the gold
standard for training data, features must also support defining
synonyms and variations of a NE (RC3, RC5), as well as allow
experts to revise automatically annotated data to mitigate
overfitting during model training [75]. Since the quality of earlier
NER steps significantly influences model performance (RC6), the
system must include visualization features to display intermediate
results and logs. These include metrics such as Precision, Recall,
and F1, as well as NE labels, relationships between NEs, and their
associated POS tags. For DC, the requirements stem from
DC-related RCs (RC7–RC9). The system must support semantic
rule-based classification via NER, POS tagging, and SPM. Users
must be able to select document-level features—such as domain-
specific NEs, POS tags, sentence structure, sentiment, and
grammatical components—for rule formulation. The integration of
a RBES allows for intuitive rule creation using WHEN : : :THEN
constructs. Furthermore, to support context-aware filtering in IR
systems [76], the DC component must enable rule-based
classification using existing NER models and taxonomies within
KM-EP. Visualization of semantic structures—including NEs,
POSs, sentence forms, and document sentiment—is essential for
identifying and refining rules and ensuring classification accuracy.

3.2. Use cases

Our use cases are designed in accordance with our research
motivation (Section 1), the identified RCs (RC1–RC9), and the
preparatory studies. The system must empower both novice and
expert users to train new NER models and use them for extracting
NEs from documents. These extracted entities serve as the basis
for generating semantic rules, which are then used to classify
documents into taxonomy categories in KM-EP.

The first use case, shown in Figure 2, supports NER
within the KM-EP environment. Users can define parameters
and configurations—collectively referred to as a NER model

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

06

definition—to execute all pipeline stages for training a NERmodel.
For instance, users may upload a domain-specific data dump and
perform data cleaning, followed by automatic annotation using
Beginning, Inside, Outside (BIO) tagging format [22]. NE
definitions include the original term (e.g., “JavaScript”), its
synonyms (e.g., “js” and “Javascript”), and the corresponding
domain-specific label. These annotations are used to generate
training and testing sets. Given that supervised ML techniques
demand extensive labeled datasets [21], this feature simplifies
the process for domain experts while maintaining annotation
quality. To prevent overfitting, users can revise annotations prior
to training [75]. The system also supports CRF customization
using the Stanford CoreNLP framework, allowing configuration
of local/global features and the use of gazetteers. Users can also
define REs to detect complex NEs. These configurations support
flexible, iterative training and testing of NER models, even with
minimal datasets. The training process is fully traceable through
step-by-step logs. Once trained, model performance can be
evaluated using Precision, Recall, and F1 scores. Additionally,
users can visually inspect domain-specific NEs within sample
documents, verify their correct labeling, and explore
relationships with other NEs and POS tags. These visualizations
are essential for building user trust in both the NER and DC
subsystems, especially in the semantic rule formulation phase.

Our second use case diagram (Figure 3) focuses on DC. In this
scenario, users can classify text documents within KM-EP by
formulating handcrafted rules using our RBES approach. The
system supports rule definition in a human-readable syntax,
employing WHEN : : :ELSE statements to enhance usability and
clarity. Users begin by selecting a relevant taxonomy within
KM-EP to define the target classification categories for their
documents. Rules can be constructed using domain-specific NEs
—including their original names, synonyms, and associated labels
—extracted from previously trained NER models. To link the
rules with semantic context, users assign the appropriate domain
NER models, ensuring alignment between classification logic and
NER. In addition to NEs, users can incorporate a range of
linguistic features, such as POS tags, sentence structure (including
components, mood, and form), and document sentiment, allowing
for more granular semantic analysis. REs may also be used to
define complex rule conditions. The system enables automatic
classification of imported documents. After documents and
taxonomies are selected using KM-EP functionalities, the system
applies predefined rules to assign taxonomy categories based on
document content. Throughout this process, users are supported
by rich visualization tools that display POS tags, NEs, their
semantic relationships, and overall document sentiment. These
visual aids help users understand a document’s semantic structure

Figure 2
Unified modeling language use case diagram for NER

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

07

and facilitate the identification of relevant features for rule
construction and refinement.

3.3. Implementation of SNERC

This chapter outlines the prototypical implementation of SNERC,
which provides comprehensive support for NER and DC within the
KM-EP ecosystem. The implementation addresses all previously
identified RC1–RC9 and is designed to offer users a flexible
environment to build, customize, and evaluate ML-based NER
models. In addition, SNERC integrates rule-based DC capabilities
through an RBES, enhanced with standard NLP techniques, NER,
and SPM, enabling effective semantic processing within KM-EP.

3.3.1. Development environment and tools
The SNERC prototype was developed using a hybrid technology

stack that includes two RESTful services and multiple components
designed to integrate seamlessly with the core infrastructure of KM-
EP. The development team, consisting of two software engineers
and one DevOps specialist collaborating remotely, employed
modern software engineering tools and practices to ensure efficient
development, testing, and deployment workflows. To enable a
modular and isolated development environment, all SNERC
components were containerized using Docker1, which facilitated
automated deployment and eliminated dependency conflicts across
services. The project utilized GitLab2 as a DevOps lifecycle
platform, supporting source code versioning, continuous integration/
continuous deployment (CI/CD) pipelines, and native integration
with Docker. For managing reproducible virtual environments,

Vagrant3 was used, allowing consistent development setups across
the team. Dedicated Docker containers were created for each
SNERC module. The KM-EP system itself runs in a PHP-based
Docker container using the Symfony framework. Separate
containers were set up for MariaDB, used for relational data
storage, and Apache Solr, used for indexing and search
functionalities required by KM-EP. The SNERC RESTful services
—namely the NER Model Trainer Service and the NER Classify
Server—were implemented in Java and deployed using an
OpenJDK container image. All containers were obtained from
Docker Hub, with detailed information on container setup and
orchestration included as part of the system documentation.

The SNERC components were implemented using a
combination of Java for backend RESTful services, PHP,
Symfony, and AngularJS for frontend and integration within KM-
EP, and MySQL for managing NER model definitions and
classification parameters. This combination of technologies
ensured compatibility with KM-EP’s existing architecture while
supporting scalable and efficient model development. SNERC
derives its name from its foundational reliance on the Stanford
CoreNLP framework, which serves as the backbone for training
and executing ML-based NER models, as detailed in Section 2.2.
The system architecture follows the Model-View-Controller
(MVC) design pattern, ensuring clear separation of concerns
between the data model, business logic, and user interface
components. Figure 4 illustrates the complete architecture of
SNERC, showing the integration of all components related to
NER and DC within the KM-EP platform and highlighting how

Figure 3
Unified modeling language use case diagram for DC

1https://www.docker.com
2https://www.gitlab.com 3https://www.vagrantup.com

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

08

https://www.docker.com
https://www.gitlab.com
https://www.vagrantup.com

these components interact to support the system’s end-to-end
functionality.

3.3.2. SNERC components for NER
This section describes the implementation of the SNERC

components supporting NER. Central to this functionality is the
NER Model Definition Manager, which enables users to manage
NER model definitions by configuring and customizing the
preliminary steps required for model training. These steps include
corpus upload, data cleanup, automatic annotation, dataset
splitting, model training, and feature fine-tuning. The component
leverages the Stanford CoreNLP API, which offers support for
training and testing CRF-based NER models. Users can provide
essential metadata, upload domain-specific corpora, define text-
cleaning options, and annotate text using the BIO tagging format.
Further configuration includes specifying domain-specific NEs,
uploading gazetteers, defining CoreNLP-compatible REs, and

customizing CRF parameters. Once configured, users may
preview and initiate model training. The component is
implemented using a split architecture: the frontend, built with
AngularJS, collects user input and transmits it to the backend,
implemented in Symfony, Java, and REST services. The backend
delegates execution to the NER Model Trainer REST service,
which conducts the model training and stores the results as JSON
objects in the KM-EP database. The NER Model Manager
component is responsible for maintaining trained NER models. It
allows users to modify training and testing data, edit generated
RE rules, retrain models, or remove outdated ones. It also
supports uploading external models that have been trained using
other CoreNLP-based systems. This component follows the same
frontend-backend separation. The frontend provides a visual list of
available models, along with key performance metrics—Precision,
Recall, and F1-Score. The NER Model Trainer REST service
encapsulates the entire model preparation and training pipeline.

Figure 4
Integration architecture of SNERC and KM-EP

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

09

Preparation involves automatic annotation of the uploaded corpus,
splitting the annotated corpus into training and testing datasets,
and generating REs for NE identification. The training phase then
operates on the prepared data to build a CoreNLP-compliant NER
model. Upon completion, the REST service returns a JSON object
containing execution status, training logs, a Universally Unique
Identifier, model and token URLs, generated REs, and evaluation
metrics. The service exposes methods for preparing, training,
updating, deleting, and uploading training and testing data sets.

3.3.3. SNERC components for DC
The SNERC architecture for DC consists of several core

components. The “Classification Parameter Definition Manager”
allows users to define semantic rules for classifying documents into
taxonomies within KM-EP. It integrates with the “NER Model
Manager” to connect trained NER models to these rules, enabling
the use of domain-specific NEs, categories, and synonyms. This
component is also linked to the KM-EP’s “Content Editor and
Taxonomy Editor,” utilizing Simple Knowledge Organization
System identifiers for taxonomy categories [77]. The NER Classify
Server is an external REST service responsible for the automatic
classification of documents into KM-EP taxonomies. Its architecture
includes several functional modules. The Document module stores
metadata and classification rules. The Linguistic Analyzer performs
semantic analysis on documents, extracting NEs, NE categories,
synonyms, POS tags, sentence structure (components, mood, and
form), sentiment, and applying SPM. The NER Model module
references trained models used in classification. Finally, the Drools
Rules Helper applies Drools-based semantic rules on the server to
execute DC.

3.3.4. System server specification and integration
To integrate SNERC seamlessly into KM-EP, the system’s two

REST services—NERModel Trainer andNERClassify Server—were
implemented as external modules. This decoupled architecture ensures
that NER and NLP features are accessible and maintainable without
affecting KM-EP’s core functionality. All communication between
SNERC and KM-EP follows REST principles using the HTTP
protocol. Two adapters were developed to facilitate communication.
The NER Model Trainer Adapter invokes the REST service for
model preparation and training, while the NER Classify Server
Adapter retrieves domain-specific NE and NLP features to support
rule construction in the DC process. Data exchange between
KM-EP and the external services is encoded in JSON and
represented internally using Plain Old Java Objects (POJOs) [78].
POJOs are simple Java classes with no framework dependencies
and are used for structuring and transferring data. KM-EP is built
on the PHP Symfony framework, which implements the MVC
design pattern. In this architecture, the Model layer defines and
manages application data; changes are propagated to the View
layer, which renders the interface for the user. The Controller
orchestrates application logic and data flow betweenModel and View.

The integration architecture of SNERCwith KM-EP (illustrated
in Figure 4) extends the MVC pattern with the following layers: the
External Service layer, which hosts the two REST services for NER
and DC; the Service layer, which includes the Symfony adapters that
connect KM-EP with these services; the Model layer, which
comprises Symfony classes responsible for persisting data and
transferring it between systems; the Controller layer, which
manages business logic for SNERC sub-modules; and the View
layer, which presents NER model definitions and rule parameters
in the frontend interface (as shown in Figure 5).

4. Experiment Results

This section presents the experimental setup, proof of concept,
and evaluation results for validating the SNERC prototype. The
experiments demonstrate how discussions on Stack Overflow
related to SG can be automatically classified within the RAGE
platform using SNERC components. The evaluation focuses on
the effectiveness of the system in supporting both NER and DC.

4.1. Proof of concept: Classification workflow

The proof of concept begins with the use of an existing NER
model integrated into the system. Through the Classification
Parameter Definition Manager, users can define classification
parameters that associate extracted entities from discussion texts
with relevant taxonomies maintained in KM-EP.

To illustrate the process, consider a Stack Overflow post with
the title “bug in my game loop,” keywords such as “cocoa-touch”
and “nstimer,” and a description stating, “I am making a game on
Xcode 5. I am using a nstimer in C# and there may be a bug in
my game loop. Can you help me please. All help is great.
<code> : : :</code>.” Based on this content, and using the rule-
based classification approach implemented with Drools, the
document can be automatically classified under two taxonomies:
Video Game Bug and Programming Language. The classification
process starts by creating a Classification Parameter Definition, in
which users select the appropriate taxonomy and associate it with
trained NER models for entity extraction. Following this step,
classification rules are authored using the WHEN : : :THEN
syntax supported by the Drools rule engine. These rules refer to
detected NEs, such as C# labeled as a programming language
(LANG) and cocoa-touch labeled as a tool (TOOL), and apply
additional techniques including linguistic analysis, web mining,
and syntactic pattern matching. Figure 6 illustrates examples of
such rules. In Rule 1, WordNet is used to detect the presence of
the term “bug” or its synonyms within the post title (line 6–7),
and a check is performed to determine whether the description
contains a code snippet (line 8–9). If both conditions are met, the
post is classified under the Implementation Bug category within
the Video Game Bug taxonomy. Rule 2 evaluates whether a NE
of type LANG, such as C#, appears after a preposition in the
description. If this condition holds, the post is classified under the
C# category in the Programming Language taxonomy. This
workflow demonstrates how SNERC enables structured and

Figure 5
General life cycle of an MVC-based application

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

10

reproducible DC by combining NE extraction with domain-specific
taxonomy mapping.

To support testing and validation, an interactive user interface
was developed. This interface allows users to input free text, apply
the defined classification rules, and review the results through a
detailed Classification Report. The report visualizes both annotation
and classification outcomes and showcases various NLP features
extracted using Stanford CoreNLP. These include recognized
categories, sentence segmentation, part-of-speech tagging, NER,
syntactic dependencies, and sentiment analysis. For greater
transparency and flexibility, the complete CoreNLP output is also
accessible in JSON format through the interface. The integration of
classification, visualization, and NLP inspection capabilities within
a single interface underscores the practical usability of the SNERC
prototype for both research and operational purposes.

4.2. Qualitative evaluation: NER and annotation tasks

The qualitative evaluation assessed the ability of both beginners
(newbies) and experts to perform critical NER tasks, namely data
cleanup and data annotation. Participants were provided with

tutorials, usage guidelines, and a domain-specific corpus
consisting of Stack Overflow discussions related to programming
languages. These texts included a range of NEs, such as official
names, synonyms, and variations of programming languages. In
Task 1.1, participants were asked to clean the corpus by removing
irrelevant elements like HTML tags and URLs while preserving
meaningful textual content. The results revealed that beginners
achieved a higher Recall of 100% but slightly lower Precision
(86.61%), whereas experts demonstrated perfect Precision (100%)
but lower Recall (79.17%). Notably, some beginners
outperformed experts, with one beginner achieving both 100%
Precision and Recall. In Task 1.2, participants manually annotated
tokens using the BIO tagging format. While both groups
performed well, experts achieved a higher average F1-score of
95% compared to beginners, who reached an average F1-score of
85.77%. Some beginners struggled with the detailed annotation
process, which slightly impacted their overall performance. These
findings, summarized in Table 2, indicate that SNERC enables
users with limited experience to achieve strong outcomes in key
NER tasks, providing a robust foundation for training high-quality
NER models.

Figure 6
Selected categories and their rules

Table 2
Precision, recall and F1 for task 1.1 and task 1.2

Participant

Task 1.1 Task 1.2

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

Newbie1 85.71 100.00 92.31 100.00 100.00 100.00
Newbie2 75.00 100.00 85.71 83.33 55.56 66.67
Newbie3 100.00 100.00 100.00 100.00 77.78 87.50
Newbie4 85.71 100.00 92.31 88.89 88.89 88.89
Expert1 100.00 83.33 90.91 72.73 88.89 80.00
Expert2 100.00 66.67 80.00 100.00 100.00 100.00
Expert3 100.00 83.33 90.91 100.00 100.00 100.00
Expert4 100.00 83.33 90.91 100.00 100.00 100.00

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

11

4.3. Quantitative evaluation: Usability, usefulness,
and interface assessment

To further evaluate the SNERC prototype, a quantitative
walkthrough experiment was conducted involving participants with
backgrounds in software engineering, ML, and data science. The
experiment involved ten user accounts, including eight participants
and two administrators. Participants performed tasks related to
system configuration, NER model training, and DC, after which
their feedback was collected through standardized questionnaires,
including UMUX and USE, along with open-ended questions.

The usability evaluation, shown in Table 3, revealed that 62.5%
of participants disagreed with the statement that using SNERC was
frustrating, and 50% agreed that the tool was easy to use. Although
some beginners required more time to familiarize themselves with
the system interface, overall feedback was positive.

The usefulness evaluation, summarized in Table 4, demonstrated
that most participants found SNERC helpful in enhancing productivity
and supporting task completion. However, some beginners rated the
system lower in aspects such as flexibility and customization,
indicating areas for future improvement.

Regarding the user interface, feedback was overwhelmingly
positive. As shown in Table 5, participants appreciated the speed
of SNERC components, the clarity of the information presented,
and the visual quality of the interface. In particular, 37.5% of
participants strongly agreed that the components operated quickly,
and a similar proportion praised the intuitive layout and clear
presentation of explanations.

Evaluation of the NER feature set indicated that 37.5% of users
found the NERModel DefinitionManager effective for guidingmodel
training, while 50% valued the Preview feature for verifying results
before finalization. Although most participants expressed
satisfaction with the available documentation and support, feedback
also highlighted a desire for greater customization options and
additional tutorial resources.

In summary, the experiments presented in this section
demonstrate that SNERC provides an effective and practical
solution for NER and DC in the context of Stack Overflow
discussions related to SGs. Through the integration of NER
models, rule-based classification with Drools, and domain-
specific taxonomy mapping within KM-EP, SNERC enables
structured, transparent, and reproducible classification processes.
The developed interface supports intuitive user interaction,
detailed visualization of NLP features, and transparent reporting
of classification outcomes. Evaluation results confirmed that
both beginners and experts could successfully complete essential
NER tasks, with some beginners achieving outstanding Recall
and Precision in data cleanup. Quantitative results further
validated the system’s usability and usefulness, while
highlighting directions for future enhancements such as broader
format support, additional NLP framework integration, and
improved customization options. Overall, the SNERC prototype
effectively addresses key challenges in NER and DC,
demonstrating strong potential for broader application within
knowledge management environments like RAGE and KM-EP.

Table 3
Responses (%) for the usability questionnaire

Scale
This tool’s capabilities

meet my requirements. (%)
Using this tool is a

frustrating experience. (%)
This tool is

easy to use. (%)

I have to spend too
much time correcting

things with this tool. (%)

Strongly agree 12.5 0.0 0.0 0.0
Agree 25.0 0.0 25.0 0.0
Somewhat agree 25.0 0.0 50.0 25.0
Neither agree nor disagree 12.5 12.5 12.5 12.5
Somewhat disagree 12.5 12.5 0.0 50.0
Disagree 12.5 62.5 12.5 12.5
Strongly disagree 0.0 12.5 0.0 12.5

Table 4
Responses (%) for the usefulness questionnaire

Scale

It helps
me be
more

effective.

It helps
me be
more

productive.
It is

useful.

It gives me
more control

over the activities
in my work.

It makes
the things
I want to
accomplish
easier to
get done.

It saves
me time

when I use it.
It meets
my needs.

It does
everything

I would expect
it to do.

Strongly agree 12.5 12.5 37.5 0.0 25.0 37.5 12.5 25.0
Agree 37.5 25.0 50.0 25.0 0.0 12.5 12.5 37.5
Somewhat agree 12.5 25.0 0.0 25.0 62.5 37.5 37.5 25.0
Neither agree
nor disagree

25.0 25.0 0.0 25.0 0.0 0.0 25.0 0.0

Somewhat
disagree

0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0

Disagree 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
Strongly
disagree

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

12

5. Conclusion and Future Work

The growing challenge of organizing and accessing relevant
textual information, particularly within domain-specific communities,
can be effectively addressed through the combined application of
NER and DC. Although NER enables semantic enrichment of texts
and DC supports structured categorization, both techniques often
present usability barriers for users without programming or ML
expertise. This study introduced SNERC, a system specifically
designed to bridge this gap by providing an intuitive and effective
environment for supporting NER and rule-based DC, catering to
both novice and expert users alike. By integrating SNERC within a
KMS such as KM-EP, we enable enhanced IR, faceted browsing,
and taxonomy-based organization of unstructured discussion content.
The work involved a conceptual and technical design of the system,
leveraging Stanford CoreNLP for NLP feature extraction and
Drools for flexible, rule-based DC. A comprehensive evaluation
combining proof-of-concept demonstrations, qualitative user studies,
and quantitative usability assessments confirmed that effective
implementation of NER and DC relies on seamless integration with
the technological infrastructure of the host platform. SNERC
achieves this by enabling domain-specific NER model training,
transparent rule authoring, and dynamic classification parameter
management, thus facilitating scalable information extraction and
document organization within KM-EP.

Looking forward, future work will focus on expanding SNERC’s
capabilities by incorporating support for multiple NLP frameworks,
thereby enabling users to leverage and compare diverse NER
approaches for improved domain adaptability. Enhancing the system’s
ability to manage various ML model formats will further strengthen
interoperability and user workflow flexibility. To reduce entry barriers
for non-technical users, future iterations should also integrate
intelligent support tools, such as rule definition wizards with auto-
completion features based on recognized entities and syntactic
patterns. Finally, conducting large-scale evaluations with domain
experts, particularly in fields like healthcare where information
extraction from specialized texts such as Clinical Practice Guidelines
is critical, will be essential to further validate SNERC’s applicability
and impact in real-world, high-stakes environments.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Author Contribution Statement

Philippe Tamla: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing – original draft, Writing – review & editing, Visualization.
Florian Freund: Methodology, Software, Validation, Resources,
Data curation, Writing – original draft, Writing – review & editing,
Visualization. Matthias Hemmje: Conceptualization, Validation,
Supervision, Project administration, Funding acquisition.

References

[1] Jehangir, B., Radhakrishnan, S., & Agarwal, R. (2023). A
survey on named entity recognition—Datasets, tools, and
methodologies. Natural Language Processing Journal, 3,
100017. https://doi.org/10.1016/j.nlp.2023.100017

[2] Wagh, V., Khandve, S., Joshi, I., Wani, A., Kale, G., & Joshi, R.
(2021). Comparative study of long document classification. In
TENCON 2021–2021 IEEE Region 10 Conference, 732–737.
https://doi.org/10.1109/TENCON54134.2021.9707465

[3] Nawroth, C., Engel, F., & Hemmje, M. L. (2020). Emerging
named entity recognition in a medical knowledge
management ecosystem. In 12th International Conference on
Knowledge Engineering and Ontology Development, 29–41.
https://doi.org/10.5220/0010061200290041

[4] Schmidt, R., Emmerich, K., & Schmidt, B. (2015). Applied
games–in search of a new definition. In K. Chorianopoulos,
M. Divitini, J. B. Hauge, L. Jaccheri, & R. Malaka (Eds.),
Entertainment computing-ICEC 2015: 14th international
conference (pp. 100–111). Cham: Springer. https://doi.org/10.
1007/978-3-319-24589-8_8

[5] Michael, D. R., & Chen, S. L. (2005). Serious games: Games that
educate, train, and inform. USA:Muska&Lipman/Premier-Trade.

[6] Goli, A., Teymournia, F., Naemabadi, M., & Garmaroodi,
A. A. (2022). Architectural design game: A serious game
approach to promote teaching and learning using multimodal
interfaces. Education and Information Technologies, 27(8),
11467–11498. https://doi.org/10.1007/s10639-022-11062-z

[7] Hammady, R., & Arnab, S. (2022). Serious gaming for
behaviour change: A systematic review. Information, 13(3),
142. https://doi.org/10.3390/info13030142

[8] Vasudevamurt, V. B., & Uskov, A. (2015). Serious
game engines: Analysis and applications. In 2015 IEEE

Table 5
Responses (%) for the user interface questionnaire

Scale

All SNERC
components
work fast

The user interface
feels good

Buttons, images, and
texts are in the
right position

Enough information
and explanations
are presented

The images and
icons look good

Strongly agree 37.5 12.5 25.0 0.0 37.5
Agree 37.5 62.5 37.5 37.5 37.5
Somewhat agree 12.5 25.0 12.5 62.5 25.0
Neither agree nor disagree 12.5 0.0 25.0 0.0 0.0
Somewhat disagree 0.0 0.0 0.0 0.0 0.0
Disagree 0.0 0.0 0.0 0.0 0.0
Strongly disagree 0.0 0.0 0.0 0.0 0.0

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

13

https://doi.org/10.1016/j.nlp.2023.100017
https://doi.org/10.1109/TENCON54134.2021.9707465
https://doi.org/10.5220/0010061200290041
https://doi.org/10.1007/978-3-319-24589-8_8
https://doi.org/10.1007/978-3-319-24589-8_8
https://doi.org/10.1007/s10639-022-11062-z
https://doi.org/10.3390/info13030142

International Conference on Electro/Information Technology,
440–445. https://doi.org/10.1109/EIT.2015.7293381

[9] Ullah, M., Amin, S. U., Munsif, M., Yamin, M. M., Safaev,
U., Khan, H., : : : , & Ullah, H. (2022). Serious games in
science education: A systematic literature. Virtual Reality &
Intelligent Hardware, 4(3), 189–209. https://doi.org/10.
1016/j.vrih.2022.02.001

[10] Barianos, A. K., Papadakis, A., &Vidakis, N. (2022). Content
manager for serious games: Theoretical framework and
digital platform. Advances in Mobile Learning Educational
Research, 2(1), 251–262. https://doi.org/10.25082/AMLER.
2022.01.009

[11] FTK. (2025).FTKe.V. Research Institute for Telecommunications
and Cooperation. Retrieved from: http://www.ftk.de

[12] Nunamaker Jr, J. F., Chen, M., & Purdin, T. D. (1990). Systems
development in information systems research. Journal of
Management Information Systems, 7(3), 89–106. https://doi.
org/10.1080/07421222.1990.11517898

[13] Choi, H. J., Ahn, J. C., Jung, S. H., & Kim, J. H. (2020).
Communities of practice and knowledge management
systems: Effects on knowledge management activities
and innovation performance. Knowledge Management
Research & Practice, 18(1), 53–68. https://doi.org/10.1080/
14778238.2019.1598578

[14] Tamla, P., Freund, F., Hemmje, M., & Mc Kevitt, P. M. (2022).
Evaluation of a system for named entity recognition in a
knowledge management ecosystem. In 14th International Joint
Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management, 2, 19–31. https://doi.org/10.5220/
0011374000003335

[15] Witeck, G. R., Alves, A. C., &Bernardo,M. H. (2021). Bloom
taxonomy, serious games and lean learning: What do these
topics have in common? In D. J. Powell, E. Alfnes, M. D.
Q. Holmemo, & E. Reke (Eds.), Learning in the digital
(pp. 308–316). Switzerland: Springer. https://doi.org/10.
1007/978-3-030-92934-3_31

[16] Chiche, A., & Yitagesu, B. (2022). Part of speech tagging: A
systematic review of deep learning and machine learning
approaches. Journal of Big Data, 9, 1–25. https://doi.org/10.
1186/s40537-022-00561-y

[17] Geng, B. (2022). Text segmentation for patent claim
simplification via bidirectional long-short term memory and
conditional random field. Computational Intelligence, 38(1),
205–215. https://doi.org/10.1111/coin.12455

[18] Patil, N., Patil, A., & Pawar, B. V. (2020). Named entity
recognition using conditional random fields. Procedia
Computer Science, 167, 1181–1188. https://doi.org/10.1016/
j.procs.2020.03.431

[19] Shelar, H., Kaur, G., Heda, N., & Agrawal, P. (2020). Named
entity recognition approaches and their comparison for custom
NER model. Science & Technology Libraries, 39(3), 324–337.
https://doi.org/10.1080/0194262X.2020.1759479

[20] Benajiba, Y., Diab, M., & Rosso, P. (2009). Using language
independent and language specific features to enhance
Arabic named entity recognition. The International Arab
Journal of Information Technology, 6(5), 464–473.

[21] Nasar, Z., Jaffry, S. W., & Malik, M. K. (2021). Named entity
recognition and relation extraction: State-of-the-art. ACM
Computing Surveys, 54(1), 1–39. https://doi.org/10.1145/3445965

[22] Alshammari, N., & Alanazi, S. (2021). The impact of using
different annotation schemes on named entity recognition.
Egyptian Informatics Journal, 22(3), 295–302. https://doi.
org/10.1016/j.eij.2020.10.004

[23] Ranjan, N. M., & Prasad, R. S. (2023). A brief survey of text
document classification algorithms and processes. Journal of
Data Mining and Management, 8(1), 6–11. https://doi.org/
10.46610/JoDMM.2023.v08i01.002

[24] Sreekumar,A.,Reshma,R.,&Athira,B. (2023).Comparative study
of deep learning models for document classification. In 2023 9th
International Conference on Smart Computing and
Communications, 512–517. https://doi.org/10.1109/ICSCC59169.
2023.10335027

[25] Hase, V. (2022). Automated content analysis. In F. Oehmer-
Pedrazzi, S. H. Kessler, E. Humprecht, K. Sommer, &
L. Castro (Eds.), Standardisierte Inhaltsanalyse in der
Kommunikationswissenschaft – Standardized content analysis
in communication research: Ein Handbuch-A handbook
(pp. 23–36). Springer VS. https://doi.org/10.1007/978-3-658-
36179-2_3

[26] Luhn, H. P. (1957). A statistical approach to mechanized
encoding and searching of literary information. IBM Journal
of Research and Development, 1(4), 309–317. https://doi.org/
10.1147/rd.14.0309

[27] Sebastiani, F. (2002). Machine learning in automated text
categorization. ACM Computing Surveys, 34(1), 1–47.
https://doi.org/10.1145/505282.505283

[28] Mohammed, S. M., Jacksi, K., & Zeebaree, S. R. M. (2021). A
state-of-the-art survey on semantic similarity for document
clustering using GloVe and density-based algorithms.
Indonesian Journal of Electrical Engineering and Computer
Science, 22(1), 552–562. http://doi.org/10.11591/ijeecs.v22.i1.
pp552-562

[29] Thielmann, A., Weisser, C., Krenz, A., & Säfken, B. (2023).
Unsupervised document classification integrating web
scraping, one-class SVM and LDA topic modelling. Journal
of Applied Statistics, 50(3), 574–591. https://doi.org/10.1080/
02664763.2021.1919063

[30] Kim, Y. S., Park, S. S., Deards, E., & Kang, B. H. (2004).
Adaptive web document classification with MCRDR. In
International Conference on Information Technology:
Coding and Computing, 1, 476–480. https://doi.org/10.1109/
ITCC.2004.1286502

[31] Olsson, J. S., Oard, D. W., & Hajič, J. (2005). Cross-language
text classification. In Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 645–646. https://doi.
org/10.1145/1076034.1076170

[32] Shen, D., Wu, J., Cao, B., Sun, J. T., Yang, Q., Chen, Z., & Li,
Y. (2009). Exploiting term relationship to boost text
classification. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management, 1637–1640.
https://doi.org/10.1145/1645953.1646192

[33] Biswas, P., Sharan, A., & Kumar, R. (2014). Question
classification using syntactic and rule based approach. In
2014 International Conference on Advances in Computing,
Communications and Informatics, 1033–1038. https://doi.
org/10.1109/ICACCI.2014.6968434

[34] Villena Román, J., Collada Pérez, S., Lana Serrano, S., &
González Cristóbal, J. C. (2011). Hybrid approach
combining machine learning and a rule-based expert system
for text categorization. In Proceedings of the Twenty-Fourth
International Florida Artificial Intelligence Research Society
Conference, 323–328.

[35] Maynard, D., Bontcheva, K., & Augenstein, I. (2016). Natural
language processing for the semantic web. Switzerland:
Springer Cham. https://doi.org/10.1007/978-3-031-79474-2

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

14

https://doi.org/10.1109/EIT.2015.7293381
https://doi.org/10.1016/j.vrih.2022.02.001
https://doi.org/10.1016/j.vrih.2022.02.001
https://doi.org/10.25082/AMLER.2022.01.009
https://doi.org/10.25082/AMLER.2022.01.009
http://www.ftk.de
https://doi.org/10.1080/07421222.1990.11517898
https://doi.org/10.1080/07421222.1990.11517898
https://doi.org/10.1080/14778238.2019.1598578
https://doi.org/10.1080/14778238.2019.1598578
https://doi.org/10.5220/0011374000003335
https://doi.org/10.5220/0011374000003335
https://doi.org/10.1007/978-3-030-92934-3_31
https://doi.org/10.1007/978-3-030-92934-3_31
https://doi.org/10.1186/s40537-022-00561-y
https://doi.org/10.1186/s40537-022-00561-y
https://doi.org/10.1111/coin.12455
https://doi.org/10.1016/j.procs.2020.03.431
https://doi.org/10.1016/j.procs.2020.03.431
https://doi.org/10.1080/0194262X.2020.1759479
https://doi.org/10.1145/3445965
https://doi.org/10.1016/j.eij.2020.10.004
https://doi.org/10.1016/j.eij.2020.10.004
https://doi.org/10.46610/JoDMM.2023.v08i01.002
https://doi.org/10.46610/JoDMM.2023.v08i01.002
https://doi.org/10.1109/ICSCC59169.2023.10335027
https://doi.org/10.1109/ICSCC59169.2023.10335027
https://doi.org/10.1007/978-3-658-36179-2_3
https://doi.org/10.1007/978-3-658-36179-2_3
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1145/505282.505283
http://doi.org/10.11591/ijeecs.v22.i1.pp552-562
http://doi.org/10.11591/ijeecs.v22.i1.pp552-562
https://doi.org/10.1080/02664763.2021.1919063
https://doi.org/10.1080/02664763.2021.1919063
https://doi.org/10.1109/ITCC.2004.1286502
https://doi.org/10.1109/ITCC.2004.1286502
https://doi.org/10.1145/1076034.1076170
https://doi.org/10.1145/1076034.1076170
https://doi.org/10.1145/1645953.1646192
https://doi.org/10.1109/ICACCI.2014.6968434
https://doi.org/10.1109/ICACCI.2014.6968434
https://doi.org/10.1007/978-3-031-79474-2

[36] Liu, M., Peng, X., Jiang, Q., Marcus, A., Yang, J., & Zhao, W.
(2018). Searching stackoverflow questions with multi-faceted
categorization. In Proceedings of the 10th Asia-Pacific
Symposium on Internetware, 1–10. https://doi.org/10.1145/
3275219.3275227

[37] Purohit, A., & Patheja, P. S. (2023). Product review opinion based
on sentiment analysis. Journal of Intelligent & Fuzzy Systems:
Applications in Engineering and Technology, 44(2), 3153–3169.
https://doi.org/10.3233/JIFS-213296

[38] Serafini, F., & Reid, S. F. (2023). Multimodal content analysis:
Expanding analytical approaches to content analysis. Visual
Communication, 22(4), 623–649. https://doi.org/10.1177/
1470357219864133

[39] Talukdar, J., Singh, T. P., & Barman, B. (2023). Artificial
intelligence in healthcare industry. Singapore: Springer.
https://doi.org/10.1007/978-981-99-3157-6

[40] Abueleiwa, M. H. S., Harara, F. E. S., Al-Ghoul, M. M. K.,
Okasha, S. M., & Abu-Naser, S. S. (2022). Rule based
system for diagnosing bean diseases and treatment.
International Journal of Engineering and Information
Systems, 6(5), 67–74.

[41] Dandea, V., & Grigoras, G. (2023). Expert system integrating
rule-based reasoning to voltage control in photovoltaic-
systems-rich low voltage electric distribution networks: A
review and results of a case study. Applied Sciences, 13(10),
6158. https://doi.org/10.3390/app13106158

[42] Shishehchi, S., & Banihashem, S. Y. (2021). A rule based expert
system based on ontology for diagnosis of ITP disease. Smart
Health, 21, 100192. https://doi.org/10.1016/j.smhl.2021.100192

[43] Reddy, B., & Fields, R. (2022). From past to present: A
comprehensive technical review of rule-based expert systems
from 1980–2021. In Proceedings of the 2022 ACM Southeast
Conference, 167–172. https://doi.org/10.1145/3476883.3520211

[44] Negnevitsky, M. (2005). Artificial intelligence: A guide to
intelligent systems. USA: Addison-Wesley.

[45] Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., &Lederberg,
J. (1993). DENDRAL: A case study of the first expert system for
scientific hypothesis formation. Artificial Intelligence, 61(2),
209–261. https://doi.org/10.1016/0004-3702(93)90068-M

[46] Swartout, W. R. (1984). Rule-based expert systems: The mycin
experiments of the stanford heuristic programming project.
Artificial Intelligence, 26(3), 364–366. https://doi.org/10.
1016/0004-3702(85)90067-0

[47] Soe, S.M.M.,&Zaw,M. P. P. (2008). Design and implementation
of rule-based expert system for fault management.World Academy
of Science, Engineering and Technology, 2(12), 4022–4027.
https://doi.org/10.5281/zenodo.1083855

[48] Julianti, M. R., Nurmaesah, N., & Prayogo, W. (2022). Expert
system for diagnosing early symptoms of COVID-19 using the
certainty factor method. Jurnal Sisfotek Gloval, 12(1), 24–31.
https://doi.org/10.38101/sisfotek.v12i1.475

[49] Nagaraj, P., & Deepalakshmi, P. (2022). An intelligent fuzzy
inference rule-based expert recommendation system for
predictive diabetes diagnosis. International Journal of
Imaging Systems and Technology, 32(4), 1373–1396. https://
doi.org/10.1002/ima.22710

[50] Van Melle, W. (1978). MYCIN: A knowledge-based
consultation program for infectious disease diagnosis.
International Journal of Man-Machine Studies, 10(3),
313–322. https://doi.org/10.1016/S0020-7373(78)80049-2

[51] Alkahlout, M. A., Alsaqqa, A. H., Abu-Jamie, T. N., &
Abu-Naser, S. S. (2021). An expert system diagnosing

facial-swelling using CLIPS. International Journal of
Academic Information Systems Research, 5(5), 29–36.

[52] Friedman-Hill, E. J. (1997). Jess, the java expert system shell
(No. SAND-98-8206). Sandia National Laboratories. https://
www.osti.gov/servlets/purl/565603

[53] Alnattah, A., Jajroudi, M., & Eslami, S. (2024). Exploring rules
engines as an artificial intelligence application in medicine: A
scoping review. Preprint. https://doi.org/10.21203/rs.3.rs-
3839314/v1

[54] Ratan, R. A., & Ritterfeld, U. (2009). Classifying serious
games. In U. Ritterfeld, M. Cody, & P. Vorderer (Eds.),
Serious games (pp. 10–24). Routledge.

[55] Dankov, Y., & Bontchev, B. (2020). Towards a taxonomy of
instruments for facilitated design and evaluation of video
games for education. In Proceedings of the 21st International
Conference on Computer Systems and Technologies, 285–292.
https://doi.org/10.1145/3407982.3408010

[56] Van Roy, P. (2009). Programming paradigms for dummies:
What every programmer should know. New Computational
Paradigms for Computer Music, 104, 616–621.

[57] Toftedahl, M., & Engström, H. (2019). A taxonomy of game
engines and the tools that drive the industry. In Proceedings
of DiGRA 2019 Conference: Game, Play and the Emerging
Ludo-Mix. https://doi.org/10.26503/dl.v2019i1.1077

[58] Melo, F. S., Mascarenhas, S., & Paiva, A. (2018). A tutorial on
machine learning for interactive pedagogical systems.
International Journal of Serious Games, 5(3), 79–112.
https://doi.org/10.17083/ijsg.v5i3.256

[59] Truelove, A., de Almeida, E. S., & Ahmed, I. (2021). We’ll fix it in
post: What do bug fixes in video game update notes tell us? In 2021
IEEE/ACM43rd International Conference on Software Engineering,
736–747. https://doi.org/10.1109/ICSE43902.2021.00073

[60] Varvaressos, S., Lavoie, K., Gaboury, S., & Hallé, S. (2017).
Automated bug finding in video games: A case study for
runtime monitoring. Computers in Entertainment, 15(1),
1–28. https://doi.org/10.1145/2700529

[61] Emond, B. (2021). Formal methods in human-computer
interaction and adaptive instructional systems. In R. A.
Sottilare & J. Schwarz (Eds.), Adaptive instructional systems.
Design and evaluation (pp. 183–198). Springer Cham.
https://doi.org/10.1007/978-3-030-77857-6_12

[62] Mahatody, T., Sagar, M., & Kolski, C. (2010). State of the art on
the cognitive walkthrough method, its variants and evolutions.
International Journal of Human–Computer Interaction, 26(8),
741–785. https://doi.org/10.1080/10447311003781409

[63] Nielsen, J. (1994). Usability inspection methods. In Conference
Companion on Human Factors in Computing Systems, 413–414.

[64] Akyıldız, S. T., & Ahmed, K. H. (2021). An overview of
qualitative research and focus group discussion. International
Journal of Academic Research in Education, 7(1), 1–15.
https://doi.org/10.17985/ijare.866762

[65] Noushad, B., Van Gerven, P. W. M., & De Bruin, A. B. H.
(2024). Twelve tips for applying the think-aloud method to
capture cognitive processes. Medical Teacher, 46(7),
892–897. https://doi.org/10.1080/0142159X.2023.2289847

[66] Yacouby, R., & Axman, D. (2020). Probabilistic extension of
precision, recall, and F1 score for more thorough evaluation of
classification models. In Proceedings of the First Workshop on
Evaluation and Comparison of NLP Systems, 79–91. https://
doi.org/10.18653/v1/2020.eval4nlp-1.9

[67] Ramachandran, S., Nor, R. N. H., & Jusoh, Y. Y. (2019).
Usability assessment for the enhancement of quality of a

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

15

https://doi.org/10.1145/3275219.3275227
https://doi.org/10.1145/3275219.3275227
https://doi.org/10.3233/JIFS-213296
https://doi.org/10.1177/1470357219864133
https://doi.org/10.1177/1470357219864133
https://doi.org/10.1007/978-981-99-3157-6
https://doi.org/10.3390/app13106158
https://doi.org/10.1016/j.smhl.2021.100192
https://doi.org/10.1145/3476883.3520211
https://doi.org/10.1016/0004-3702(93)90068-M
https://doi.org/10.1016/0004-3702(85)90067-0
https://doi.org/10.1016/0004-3702(85)90067-0
https://doi.org/10.5281/zenodo.1083855
https://doi.org/10.38101/sisfotek.v12i1.475
https://doi.org/10.1002/ima.22710
https://doi.org/10.1002/ima.22710
https://doi.org/10.1016/S0020-7373(78)80049-2
https://www.osti.gov/servlets/purl/565603
https://www.osti.gov/servlets/purl/565603
https://doi.org/10.21203/rs.3.rs-3839314/v1
https://doi.org/10.21203/rs.3.rs-3839314/v1
https://doi.org/10.1145/3407982.3408010
https://doi.org/10.26503/dl.v2019i1.1077
https://doi.org/10.17083/ijsg.v5i3.256
https://doi.org/10.1109/ICSE43902.2021.00073
https://doi.org/10.1145/2700529
https://doi.org/10.1007/978-3-030-77857-6_12
https://doi.org/10.1080/10447311003781409
https://doi.org/10.17985/ijare.866762
https://doi.org/10.1080/0142159X.2023.2289847
https://doi.org/10.18653/v1/2020.eval4nlp-1.9
https://doi.org/10.18653/v1/2020.eval4nlp-1.9

web portal interface. International Journal of Engineering and
Advanced Technology, 9(1), 1636–1640. https://doi.org/10.
35940/ijeat.A2635.109119

[68] Ntoa, S. (2025). Usability and user experience evaluation in
intelligent environments: A review and reappraisal.
International Journal of Human–Computer Interaction, 41(5),
2829–2858. https://doi.org/10.1080/10447318.2024.2394724

[69] Moulaei, K.,Moulaei, R., &Bahaadinbeigy, K. (2024). Themost
used questionnaires for evaluating the usability of robots and
smart wearables: A scoping review. Digital Health, 10, 1–22.
https://doi.org/10.1177/20552076241237384

[70] Thielsch,M. T., & Stegemöller, I. (2014). Münsteraner fragebogen
zur evaluation-zusatzmodul diskussion. Zusammenstellung
sozialwissenschaftlicher Items und Skalen. https://doi.org/10.
6102/zis98

[71] Wallach, D., & Scholz, S. C. (2012). User-centered design: Why
and how to put users first in software development. In A.
Maedche, A. Botzenhardt, & L. Neer (Eds.), Software for
People: Fundamentals, Trends and Best Practices (pp. 11–38).
Springer Berlin. https://doi.org/10.1007/978-3-642-31371-4_2

[72] Norman, D. A., & Draper, S. W. (1988). User centered system
design: New perspectives on human-computer interaction. The
American Journal of Psychology, 101(1), 148–151. https://doi.
org/10.2307/1422802

[73] Vredenburg, K., Mao, J. Y., Smith, P. W., & Carey, T. (2002).
A survey of user-centered design practice. InProceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
471–478. https://doi.org/10.1145/503376.503460

[74] Rumbaugh, J., Jacobson, I., & Booch, G. (2021). The unified
modeling language reference manual. USA: Addison-Wesley.

[75] Géron, A. (2022). Hands-on machine learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, tools, and
techniques to build intelligent systems. USA: O’Reilly Media.

[76] Aubaid, A. M., & Mishra, A. (2020). A rule-based approach to
embedding techniques for text document classification. Applied
Sciences, 10(11), 4009. https://doi.org/10.3390/app10114009

[77] Smith, A. (2022). Simple knowledge organization system
(skos). Ko Knowledge Organization, 49(5), 371–384. https://
doi.org/10.5771/0943-7444-2022-5-371

[78] Rojas, J., Fragoso, O., Santaolaya, R., & Soto, J. (2020).
Generation of POJOs and DAOs classes from metadata
database. IEEE Latin America Transactions, 18(9),
1547–1554. https://doi.org/10.1109/TLA.2020.9381796

How to Cite: Tamla, P., Freund, F., & Hemmje, M. (2025). SNERC: Enhancing
Knowledge Management with Named Entity Recognition and Document
Classification for Apply Gaming. Artificial Intelligence and Applications. https://
doi.org/10.47852/bonviewAIA52023841

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

16

https://doi.org/10.35940/ijeat.A2635.109119
https://doi.org/10.35940/ijeat.A2635.109119
https://doi.org/10.1080/10447318.2024.2394724
https://doi.org/10.1177/20552076241237384
https://doi.org/10.6102/zis98
https://doi.org/10.6102/zis98
https://doi.org/10.1007/978-3-642-31371-4_2
https://doi.org/10.2307/1422802
https://doi.org/10.2307/1422802
https://doi.org/10.1145/503376.503460
https://doi.org/10.3390/app10114009
https://doi.org/10.5771/0943-7444-2022-5-371
https://doi.org/10.5771/0943-7444-2022-5-371
https://doi.org/10.1109/TLA.2020.9381796
https://doi.org/10.47852/bonviewAIA52023841
https://doi.org/10.47852/bonviewAIA52023841

	SNERC: Enhancing Knowledge Management with Named Entity Recognition and Document Classification for Apply Gaming
	1. Introduction
	2. State of the Art and Related Work
	2.1. RAGE
	2.2. NER
	2.3. DC
	2.3.1. RBESs
	2.3.2. Comparison of RBES

	2.4. SGs-related taxonomies
	2.5. Evaluation methodology

	3. The Proposed Methodology
	3.1. Use context
	3.2. Use cases
	3.3. Implementation of SNERC
	3.3.1. Development environment and tools
	3.3.2. SNERC components for NER
	3.3.3. SNERC components for DC
	3.3.4. System server specification and integration

	4. Experiment Results
	4.1. Proof of concept: Classification workflow
	4.2. Qualitative evaluation: NER and annotation tasks
	4.3. Quantitative evaluation: Usability, usefulness, and interface assessment

	5. Conclusion and Future Work
	Ethical Statement
	Conflicts of Interest
	Data Availability Statement
	Author Contribution Statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

