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CNN and Bayesian Optimization
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Abstract: Space debris detection is important to the integrity of space missions and satellites, especially with the increase in the number of
satellites and spacecraft in orbit. This paper addresses this by a new concept innovative approach using hybrid Bi-LSTM-CNN architecture
which is optimized using Bayesian optimization. The study presents an analysis approach based on thewhole combination ofmachine learning
and deep learning, a high-quality space debris detector, that can identify both the kind of object and the size of its RCS. The newmethod goes
beyond what we have done so far and shows better results on a wide range of evaluation parameters, such as accuracy, precision, memory, and
F1 score. Also, the study takes up the pragmatic issue of training time, thereby ensuring performance in real time. Esthetic trials on real datasets
confirm the fit of the hybrid model, sensitivity, and efficacy with 99.16% and 99.98% detection and prediction of space debris types,
respectively. In summary, this paper makes space debris tracking much more robust and mitigates threats associated with spaceflight and
satellite operations, but they can offer a lot of information on threats and mitigation measures. The findings suggest that this hybrid
model could be augmented with current space debris tracking systems, to increase their predictive power and operational effectiveness.

Keywords: Bayesian optimization, deep learning, monitoring system, space debris, Bi-LSTM-CNN

1. Introduction

Space debris—commonly known as space junk—refers to non-
functional, human-made objects that orbit the Earth and are no longer
operational. This classification includes a diverse array of items, such
as discarded rocket stages, inactive satellites, and fragments that
result from collisions or explosions in the space environment [1].
Because the number of satellites and spacecraft being launched
into orbit continues to increase, the likelihood of collisions with
this debris also rises. This situation presents significant risks to
space missions, the functionality of satellites, and even human
safety. Therefore, monitoring space debris is essential for
mitigating these hazards and ensuring the long-term viability of
space endeavors. The primary aim of such monitoring is to
accurately track the position, trajectory, and properties of debris
objects in Earth’s orbit. These data empower space agencies,
satellite operators, and other stakeholders to evaluate collision
risks and implement necessary strategies to avert potential
impacts. However, the complexity of the space environment
makes this task particularly challenging, although technological
advancements are continuously being made to address these
issues. Such strategies may involve altering satellite orbits,
executing collision avoidance maneuvers, or retiring satellites at
the conclusion of their operational lifespan to prevent them from
contributing further to the debris problem [2, 3]. The presence of
space debris poses a significant threat to space infrastructure,

which includes active satellites, space stations, and crewed
spacecraft. Collisions involving debris may lead to significant
damage, resulting in the loss of crucial assets and the interruption
of vital services (such as communication, navigation, and Earth
observation). Moreover, the buildup of debris in certain orbital
zones—especially low Earth orbit (LEO)—increases the
probability of cascading collisions; this phenomenon is referred to
as Kessler syndrome. In such cases, one collision can trigger a
sequence of further collisions, creating a dense cloud of debris
that makes the impacted orbital area unviable for future space
operations. However, efforts to mitigate this issue are ongoing,
because the consequences could be dire for both current and
upcoming missions. The monitoring of space debris has become
increasingly vital for ensuring the safety and sustainability of
space operations, positioning it as a key focus area for research
and development in artificial intelligence (AI) aimed at social
good. Researchers are employing AI methodologies, including
machine learning (ML) and deep learning (DL), to improve the
precision and effectiveness of space debris monitoring systems
[4]. Recent developments in AI have revealed considerable
promise in addressing intricate challenges, such as those
associated with space debris surveillance. Current research trends
highlight the application of AI-based strategies, including hybrid
models and optimization algorithms, to process extensive datasets
obtained from ground-based sensors, telescopes, and spaceborne
instruments. These innovative techniques (which have emerged
recently) demonstrate enhanced capabilities in detecting,
classifying, and tracking debris; this development effectively
addresses the shortcomings of traditional monitoring systems.
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Moreover, AI-enhanced monitoring systems facilitate the efficient
analysis of substantial amounts of observational data, allowing for
more effective identification and tracking of debris objects.
Additionally, these AI-driven systems improve operational
efficiency and encourage global collaboration and accountability
in space exploration. By delivering real-time risk assessments and
predictive analytics, they enable satellite operators and space
agencies to proactively manage collision risks, thereby reducing
the likelihood of catastrophic incidents and safeguarding essential
space assets. However, this forward-thinking strategy promotes
international collaboration and fortifies frameworks for space
governance (thus advocating for the peaceful and sustainable
utilization of outer space) for the benefit of all humanity.
Although the integration of AI in monitoring space debris
significantly enhances space situational awareness, it also
improves space traffic management, reflecting a crucial
advancement in this field. This advancement aligns with the
overarching objective of promoting long-term sustainability and
peaceful coexistence among humanity in outer space. However, it
also illustrates the transformative capacity of AI for societal
benefit. Although there are challenges, this progress is essential
because it paves the way for future endeavors. But we must
remain vigilant, as the implications of such technology are
profound [5]. The ability to predict the size of the Radar cross-
section (RCS) plays a crucial role in identifying space debris by
offering valuable insights into its physical attributes and the
potential threats it may pose. Generally, a larger RCS suggests a
greater physical size of the debris, which can increase the risk of
collisions with operational spacecraft or satellites. By accurately
forecasting RCS size, space agencies and satellite operators can
more effectively evaluate collision risks, allowing for the
implementation of suitable mitigation strategies, such as adjusting
satellite trajectories to avoid potential impacts or organizing debris
removal initiatives. Moreover, a thorough comprehension of RCS
size distribution (1) can inform spacecraft design; this is
especially true regarding the integration of advanced shielding to
mitigate the impact of potential collisions with larger debris. The
effective management of substantial challenges related to space
debris monitoring requires the adoption of innovative strategies,
which leverage the capabilities of AI and optimization algorithms.
In this regard, a hybrid model referred to as the Bi-LSTM-CNN
architecture, enhanced through Bayesian optimization, has been
introduced. This model signifies a significant advancement in the
realm of space debris monitoring, as it amalgamates the strengths
of Long Short-Term Memory (LSTM) networks with
convolutional neural networks (CNNs) and Bayesian optimization
techniques. Although the LSTM layers excel at capturing
temporal dependencies, they are particularly adept at handling the
complexities inherent in sequential datasets. Within the domain of
space debris monitoring, this sequential data can encompass time-
series information acquired from a variety of sensors (including
radar and infrared devices), which measure parameters like
velocity, position, and other critical characteristics of debris in
orbit. The LSTM component of this architecture is capable of
analyzing these sequential data streams to discern patterns, trends,
and anomalies that might indicate potential collision threats.
Conversely, the CNN layers excel in extracting spatial features
from multidimensional datasets. Although primarily utilized for
image processing, CNNs can also be effectively employed on
numerical data that possesses a spatial structure—such as grids or
matrices that illustrate spatial relationships. However, the
integration of these techniques remains complex, because each

method has its own intricacies and challenges, yet the potential
for improved monitoring is significant.

In space debris monitoring, this could involve data representing
the spatial distribution of debris objects in different orbital regions or
the layout of sensor networks for monitoring. By integrating LSTM
and CNN layers into the architecture, our proposed Bi-LSTM-CNN
model can effectively analyze the multidimensional numeric data
encountered in space debris monitoring. Furthermore,
incorporating Bayesian optimization allows automatic tuning of
hyperparameters, resulting in improved model performance and
efficiency. Bayesian optimization is particularly well-suited for
optimizing complex, high-dimensional search spaces, making it an
ideal choice for fine-tuning the parameters of the Bi-LSTM-CNN
architecture [6, 7]. One of the key highlights of our approach lies
in integrating a diverse set of ML and DL algorithms to assess the
performance of the proposed model. Therefore, the approach is
twofold: a classification is conducted to identify the type of debris
and simultaneously classify the size of RCS using the same
dataset. The model’s capabilities across different data types and
modalities have been validated by leveraging ML algorithms and
DL architectures. To evaluate the performance of the Bi-LSTM-
CNN model, a range of metrics, including accuracy, precision,
recall, and F1 score, has been employed. These metrics
comprehensively assess the model’s ability to detect and classify
space debris objects accurately. Additionally, training time has
been considered a critical factor, ensuring the model is efficient
and scalable for real-world deployment.

The rest of the paper is organized as follows. Section 2
encompasses materials and methods wherein some related works,
the methodology, and the proposed architecture have been
discussed. The main emphasis is given to the Bi-LSTM-CNN
technique and the Bayesian optimization. Section 3 highlights the
overall results and observations based on the dataset and
experimental analysis. A comparative analysis depicts how the
proposed work contributes to the space debris monitoring
research, followed by overall observations. Section 4 concludes
the study.

2. Materials and Methods

In this section, there is an emphasis on some of the recent related
works concerning space debris monitoring. The study also highlights
the limitations of the existing approaches for identifying space
debris. This is followed by a methodology section focusing on the
proposed architecture and its components. Consequently, the
algorithm and the pseudocode have been analyzed.

2.1. Related works

A study by Jordan et al. [8] introduced a method based on
Particle Swarm Optimization (PSO) to estimate the inertia
parameters of uncooperative satellites involved in space debris
removal. This methodology emphasizes the estimation of the
inertia of a rotating target within a torque-free environment,
utilizing quaternion data derived from attitude observations. The
authors derive the symmetric inertia tensor of the target by
conceptualizing the PSO solution space as a multidimensional
vector that corresponds to the inertia tensor. To generate estimated
measurements, they apply Euler’s equations to propagate the
attitude motion, achieving validation against experimental data
with an error margin of less than 1%. Despite its merits, the
approach is limited by the assumption of a torque-free

Artificial Intelligence and Applications Vol. 3 Iss. 1 2025

44



environment (a condition that may not accurately depict the realities
faced during debris removal operations). It relies solely on
experimental measurements for validation; however, this neglects
potential inaccuracies in those measurements. Further validation
across various conditions is crucial to assess the robustness of this
method. In a separate study, Ryan et al. [9] explored the
application of ML techniques to enhance spacecraft protection
against impacts from micrometeoroids and orbital debris. Their
research highlights the capability of ML to tackle complexities
that surpass those handled by traditional semi-empirical models.
By utilizing artificial neural networks (ANNs), support vector
machines (SVMs), and extreme gradient boosting (XGBoost), the
authors illustrate the effectiveness of ML in this domain, with
XGBoost emerging as the most effective model. However, the
study’s limitations are evident, as it primarily relies on
fundamental ML techniques. Future research, employing advanced
ML methods and comprehensive datasets, could yield deeper
insights into spacecraft risk assessment and protection strategies.
Researchers [10] introduced an unsupervised learning approach—
DBSCAN—to identify clusters of orbital debris. This method
utilizes proper element data obtained from two-line element (TLE)
sets; however, its effectiveness is contingent upon the quality of
the input data. Although promising, the results must be interpreted
cautiously because they represent only a portion of the broader
context in space safety. Proper elements for debris fragments in
LEO are computed using a numerical scheme similar to the
Fourier-series-based method for asteroids. To enhance the
classical DBSCAN’s heuristic nature, neural networks trained on
known families are explored. However, it is important to
acknowledge the study’s limitations, including potential
challenges in accurately representing complex orbital debris
distributions with neural networks. Another study [11] conducted
an analysis of active debris removal (ADR) mission planning,
aiming to generate optimal debris removal plans. They established
a two-layer time-dependent traveling salesman problem
mathematical model to address debris removal sequence and
transfer trajectory planning. Novel ML-based methods were
proposed for ADR mission planning, including a deep neural
network (DNN)-based estimation method for optimal velocity
increments and a reinforcement learning-based method for
optimizing debris removal sequence and rendezvous time.
Simulation results demonstrate higher estimation accuracy
compared to analytical methods. However, the proposed methods
may face challenges in scaling to more complex mission scenarios
and require extensive computational resources for training neural
networks in real-time applications. Some researchers [12]
introduced a ML-driven regression method for estimating the
ballistic coefficient in LEO, covering a broad range of orbital
parameters. They evaluated various ML techniques using
synthetic space catalog data and conducted sensitivity analyses on
training size and measurement frequency factors. Despite the
neural network achieving an 84% success rate, challenges arise in
extrapolating the approach to real-world scenarios due to potential
biases in the synthetic dataset and uncertainties in real data. The
effectiveness of the method may be constrained by its dependence
on precise and extensive training data, particularly in the context
of dynamic and changing space environments. A separate research
team [13] developed a DL model aimed at predicting the re-entry
of uncontrolled objects in Low LEO, utilizing a modified
Sequence-to-Sequence architecture. This model was trained on
average altitude profiles derived from TLE data of more than 400
objects and incorporated innovative input features such as a drag-
like coefficient (B∗), average solar index, and area-to-mass ratio.

Performance evaluations conducted on objects from the Inter-
Agency Space Debris Coordination Committee campaign
indicated that the model performed optimally for objects
exhibiting similar drag-like coefficients and eccentricity
distributions as those in the training dataset. However, its
effectiveness diminished when applied to objects with markedly
different characteristics, underscoring the challenges associated
with generalizing findings to a broader range of space debris. In
addition, a recent study conducted by Guo et al. [14] introduced a
novel methodology for clustering spectral polarization data
derived from space debris. This approach employs a hybrid fuzzy
C-means (FCM) algorithm, which integrates hierarchical
agglomerative clustering (HAC). The validation of this
algorithm’s effectiveness was based on the Kosko subset measure
formula and characteristic parameters acquired from laboratory
tests were utilized to develop a clustering matrix. The parameters
for the algorithm were determined by randomly selecting points
within the external field. However, although this method achieved
an impressive classification accuracy of 96.92% across six sample
types in spectral polarization images, its applicability to more
diverse or complex debris datasets may be constrained.
Additionally, the reliance on laboratory test data may not
adequately reflect the variability found in actual debris
environments, which could adversely affect the algorithm’s
performance in real-world scenarios. Another research group [15]
introduced a Physics Informed Neural Network (PINN) approach
for estimating space debris trajectory post-collision events with
active satellites. The simulation involved 8565 inelastic collisions
using TLE data for 1647 Starlink and 66 LEO Multi-Use Receiver
satellites. Despite comprehensive simulation and proposed
velocity sampling methods, the classical optimization method, the
Lagrange multiplier approach, yielded unsatisfactory state
estimation due to under-determination. Alternative DNN and
PINN-based methods were developed, with PINN-based
approaches demonstrating superior performance in estimating
position, velocity, mass, and coefficient of restitution of space
debris. However, limitations may arise when attempting to
generalize findings to intricate and rapidly changing collision
situations that are not adequately captured in the simulation data.
Furthermore, the effectiveness of the suggested methodologies
may fluctuate based on the accessibility and quality of input data
derived from actual collision occurrences. In their review,
researchers [16] examined DL techniques for identifying space
targets and their components, highlighting their significance in
enhancing space missions. Although the successful detection and
identification of space targets through electro-optical sensors are
vital for the management of spacecraft, current studies reveal
certain limitations. The review systematically covers the principles
and characteristics of these sensors and common synthetic
methods for space target datasets. Despite summarizing recent
research and addressing major issues in space target detection and
segmentation, the applicability of DL methods may be constrained
by challenges such as limited training data and variable
environmental conditions in space. Another study [17] explored
the application of a commercial global flash Light Detection and
Ranging (LiDAR) sensor in ADR operations, emphasizing the
need for precise target positioning and orientation. While relative
navigation devices like cameras or LiDAR sensors are commonly
used for such missions, this study simulated data acquisition and
processing from a commercial LiDAR sensor. The novelty lies in
using multilayer perceptron neural networks to process LiDAR
depth images for estimating the target’s pose. However,
limitations may arise from the complexity of accurately modeling
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real-world debris environments and the potential variability in
LiDAR sensor performance under different conditions.

Historically, a variety of techniques have been employed to
monitor and identify space debris. The literature delves into
numerous methodologies for monitoring and removing this debris.
These approaches include sophisticated algorithms, such as PSO
and ML techniques that aim to estimate debris, assess impact
risks, and facilitate mission planning. Research emphasizes the
use of neural networks and DL frameworks to enhance the
accuracy of debris classification and trajectory prediction.
However, although these methodologies yield promising results,
they encounter persistent challenges, such as difficulties in
managing complex debris distributions, scalability to real-world
applications, and the need for comprehensive validation. This
collective research underscores the urgent necessity for integrating
advanced techniques while addressing practical constraints to
enhance space debris management. Nevertheless, the potential of
AI—particularly in ML and DL—remains significant significantly
underutilized (in various contexts). By harnessing advanced ML
and DL frameworks, this study seeks to rectify the deficiencies of
prior methodologies: consequently, it advocates for the
implementation of the Bi-LSTM-CNN model. Optimized through
Bayesian techniques, this model is anticipated to provide robust
solutions; however, there may be challenges to overcome.
Although the potential exists, the study will also address the
limitations identified in earlier research, because it is essential for
progress in this field.

2.2. Methodology

The initial phase involves a thorough preparation of data
intended to accurately classify space debris and RCS sizes
through various ML methodologies. This stage encompasses the
collection and preprocessing of the dataset; it is crucial for
ensuring completeness and consistency by addressing issues such
as missing values, outliers, and discrepancies. However, feature
engineering is conducted meticulously to extract relevant
information. Following this, a selection process is implemented to
optimize model efficacy. The dataset is then divided into training
and testing subsets, with careful attention to maintaining balanced
class distributions to mitigate bias. Although this process is
complex, it is essential for achieving reliable results. Once the

data are adequately prepared, a variety of ML algorithms, along
with DL and ensemble methods, are implemented. Following this
deployment, the models’ performance is rigorously assessed. Each
algorithm is trained on the training dataset and subsequently
evaluated on the test dataset using a range of performance metrics,
including accuracy, precision, recall, and F1-score. Notably, the
proposed methodology incorporates a Bi-LSTM-CNN framework
enhanced by Bayesian optimization, which synergizes the
advantages of DL with optimization strategies, thereby delivering
robust and efficient classification outcomes. Figure 1 depicts the
overall methodology of the process.

1) Bi-LSTM-CNN architecture

This study presents a hybrid methodology that amalgamates
Bi-LSTM and CNN techniques for the classification of space debris
and RCS sizes. The architecture seamlessly incorporates Bi-LSTM
and CNN components, culminating in a definitive output layer. The
Bi-LSTM layer processes input sequences in both forward and
backward directions; this enables the model to effectively capture
temporal dependencies from past and future time steps. Each
LSTM unit is endowed with a memory cell that retains information
over time, thereby preserving long-term dependencies. The LSTM
units employ gate mechanisms—such as input, forget, and output
gates—to regulate the flow of information throughout the network.
However, some challenges remain in optimizing these interactions,
although the potential for enhanced classification accuracy is
significant, because the integration of these techniques can yield
promising results, which enhances gradient flow and mitigates
issues related to vanishing or exploding gradients. The hidden state
of each LSTM unit reflects the current state of the sequence, which
is then transmitted to subsequent time steps and layers for
additional processing. Meanwhile, the CNN layer employs
convolutional filters on the input numerical data to identify local
patterns or features. These filters traverse the input sequence,
executing element-wise multiplications and summations to generate
feature maps. Following the convolution process, an activation
function is applied to introduce non-linearity to the extracted
features, thereby improving the model’s ability to capture intricate
patterns. Max Pooling can down sample the feature maps, reducing
computational complexity and spatial dimensions while retaining
important features. The output of the CNN layer serves as input to

Figure 1
Space debris classification methodology
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the Bi-LSTM layer, providing it with spatial features extracted from
the numeric data. These features capture spatial patterns and
relationships within the input sequence. The Bi-LSTM layer
processes the spatial features temporally, capturing sequential
patterns and dependencies within the numeric sequences over time.
This integration allows the model to learn both spatial and temporal
representations simultaneously. The output layer typically consists
of one or more fully connected layers, which map the learned
features to the desired output format. An activation function
(softmax) is applied to the output of the fully connected layers to
produce the final predictions or outputs. During training, a loss
function measures the disparity between predicted and true labels/
values, guiding the optimization process. Figure 2 depicts the
overall architecture of the Bi-LSTM-CNN model.

2) Bayesian optimization

Bayesian optimization begins with an initial set of
hyperparameters for the model. These hyperparameters define
the model’s configuration, such as learning rate, batch size,
dropout rate, etc. Bayesian optimization relies on a surrogate
probabilistic model (often a Gaussian Process) to approximate
the objective function, which in our case is the performance
metric of the Bi-LSTM-CNN model (e.g., accuracy, F1-score).
The surrogate model estimates the model’s performance for
different combinations of hyperparameters based on the
evaluations conducted so far. The acquisition function guides the
selection of the next set of hyperparameters to evaluate. It
balances exploration (trying new hyperparameter configurations)
and exploitation (evaluating promising configurations). Common
acquisition functions include Expected Improvement, Probability
of Improvement, and Upper Confidence Bound. The selected set
of hyperparameters is used to train and evaluate the Bi-LSTM-
CNN model on a subset of the training data (validation set). The
model’s performance metric (e.g., accuracy) is computed based
on its performance on the validation set. The performance metric
obtained from evaluating the objective function updates the
surrogate model. The surrogate model is refined based on the
new data point to better approximate the objective function.
Building a surrogate function and acquisition function are
repeated iteratively for a predefined number of iterations or until
convergence criteria are met. At each iteration, the acquisition
function is used to select the next set of hyperparameters to
evaluate, and the process continues until the optimal set of
hyperparameters is found. Figure 3 shows the steps involved in
Bayesian optimization.

2.3. Algorithmic analysis and pseudocode

In this section, the overall algorithm of the classification
process has been analyzed along with the pseudocode. The
following algorithm depicts the pseudocode for deploying
Bi-LSTM-CNN with Bayesian optimization for identifying
Space debris (Figure 4).

The algorithm described here elucidates the methodology for
optimizing the hyperparameters of a Bi-LSTM-CNN model
through the application of Bayesian optimization [18]. The
process begins with the initialization of Bayesian optimization;

Figure 2
Proposed Bi-LSTM-CNN architecture

Figure 3
Bayesian optimization steps
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however, it is subsequently followed by the establishment of the
hyperparameter search space. An objective function evaluates
the model’s performance (based on predetermined metrics). The
algorithm advances through a specific number of iterations,
during which it selects hyperparameters, trains the model,
assesses its performance, and updates the Bayesian optimization
framework as necessary. The optimal hyperparameters are
identified upon the conclusion of the iterations and the final
model is trained to employ these parameters. Following this, the
performance of the trained model is evaluated and the results are
reported. This methodology streamlines the hyperparameter tuning
process, facilitating an efficient exploration of the hyperparameter
space to identify configurations that enhance the model’s
performance. Although the overall process can be articulated in
the following steps, it is important to note that these steps are
not strictly linear.

Step 1: Initializing the Bayesian optimization algorithm.
Step 2:Defining the range of hyperparameters to be optimized.
Step 3: Defining the performance metric (e.g., accuracy, F1-score)

used to evaluate the model.
Step 4: Bayesian Optimization Loop

1) Using the Bayesian optimization algorithm to select the next set
of hyperparameters for evaluation.

2) Training the Bi-LSTM-CNN model using the selected hyper-
parameters.

3) Evaluating the model’s performance on a validation set using the
defined objective function.

4) Updating the Bayesian optimization algorithm with the hyper-
parameters and corresponding model performance.

Step 5: Once the optimization loop is complete, obtaining the
optimal set of hyperparameters.

Step 6: Training the final Bi-LSTM-CNN model using the
optimal hyperparameters obtained from Bayesian
optimization.

Step 7: Evaluate the performance of the final model on a
separate test set.

Step 8: Output the final model performance and any other
relevant results.

3. Results and Observations

This section examines the dataset utilized in the study as well as
the criteria employed to assess the performance of the model.
Subsequently, a comprehensive analysis is conducted employing a
variety of ML and DL algorithms. The overall results are then
compared with findings from prior research to draw meaningful
conclusions.

3.1. Dataset

The dataset “Satellites andDebris in Earth’s Orbit”, sourced from
Kaggle, was obtained through an API provided by space-track.org.
Comprising 14,372 rows and 40 columns, it encompasses attributes
such as object name, ID, country code, and launch date. The target
variable, object type, categorizes entities into payload, debris, rocket
body, and TBA (to be announced). The data will be partitioned into
80% training and 20% test datasets for our experimental analysis. A
significant imbalance in the dataset was noticed during the initial
exploratory analysis. Figure 5 illustrates the overall distribution of
the data. Notably, 58.7% of the data is labeled as debris, while
34.4% corresponds to the payload. Rocket body data accounts for
5.2%, with the remaining unnamed data. To mitigate bias, the study
applies sampling techniques to balance the data before conducting a
comprehensive analysis. Similarly, the RCS size can be classified as
small, large, and medium.

3.2. Evaluation parameters

The subsequent evaluation criteria (parameters) have been
taken into account for assessing the performance of the model.

1) Accuracy: This metric quantifies the ratio of instances that are
correctly classified to the total number of instances, thus
offering a thorough overview of the model’s efficacy across
various categories. A greater accuracy indicates that the model
is making meaningful progress; however, it is essential to
consider other factors as well. Although higher accuracy is
desirable, it does not always reflect the model’s true
performance because nuances in data can lead to misleading
interpretations fewer erroneous predictions.

Figure 4
Algorithm for Bi-LSTM-CNN with Bayesian optimization
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2) Precision: Precision is a metric that evaluates the ratio of true
positive predictions (those accurately identified as positive) to
all instances deemed positive. This measure is particularly
important (because) the consequences of false positives can be
quite significant. Elevated precision suggests that the model is
adept at minimizing the occurrences of false positives.

3) Recall: Recall, often called sensitivity or the true positive rate,
examines the ratio of true positive predictions to all actual
positive instances. This metric reflects the model’s ability to
recognize all relevant instances and is crucial when the stakes
of false negatives are high. A high recall implies that the
model effectively identifies positive instances.

4) F-1 Score: The F-1 score, on the other hand, represents the
harmonic mean of precision and recall, generating a unified
metric that harmonizes both components. This score is
especially useful in contexts with imbalanced class
distributions or when the costs of false positives and negatives
vary. A higher F-1 score typically indicates enhanced overall
performance, effectively balancing precision and recall.
However, it is essential to consider these metrics collectively,
as each serves its purpose depending on the specific context
and requirements of the analysis recall.

5) Time to Run: The time to run (in seconds) is an important
parameter: this indicates the duration necessary for the model
to train on the given dataset and produce predictions. It is
crucial to consider this aspect—especially for extensive
datasets or intricate models—because it significantly influences
the model’s scalability and efficiency. Striving to reduce the
time to run is often advantageous; however, it is essential to
maintain a balance, although achieving this can be challenging
with satisfactory performance metrics.

3.3. Experimental analysis

A diverse set of algorithms, including classical ML techniques,
DL techniques, and ensembles, has been considered for the
experimental analysis. The study deploys logistic regression (LR),
K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB),
Decision Trees (DT), Random Forests (RF), Gradient Boosting
(GB), XGBoost, Light Gradient Boosting (LGB), SVM, ANN,
Feed Forward Neural Networks (FFNN), LSTM, CNN, and

CNN-LSTM models on the dataset for classification. The
performance of the proposed method, bi-LSTM-CNN with
Bayesian optimization, is compared against the diverse set of
algorithms using evaluation metrics. To ensure a fair comparison
across all models, each algorithm was trained with a consistent
number of epochs, set to 100. This uniform training duration was
chosen to standardize the experimental conditions, allowing for an
equitable evaluation of model performance. The consistency in
epochs helps in isolating the effects of algorithmic differences from
those arising due to variations in training duration. The first phase
of our study involves deploying classification models for
identifying object types in the dataset, while the second phase
involves identifying the RCS size (small, medium, large). The use
of 100 epochs provides sufficient training time for each model to
converge and demonstrate its performance characteristics effectively.

Moreover, the hyperparameters for all models are specified as
follows:

1) LR—Regularization strength C = 1.0 C= 1.0, solver =
‘liblinear’.

2) KNN—Number of neighbors κ= 5 k= 5, distance metric =
‘minkowski’.

3) GNB —Default parameters. DT: Maximum depth= 10,
criterion = ‘gini’.

4) RF—Number of trees= 100, maximum depth= 10.
5) GB—Learning rate= 0.1, number of estimators= 100.
6) XGB—Learning rate = 0.1, number of estimators= 100, max

depth= 6.
7) LGB—Learning rate= 0.1, number of estimators= 100, max

depth= 6.
8) SVM—C= 1.0, kernel = ‘rbf’.
9) ANN—Hidden layers = [32,64], activation function = ‘relu’,

optimizer = ‘adam’.
10) FFNN—Hidden layers = [32,64], activation function = ‘relu’,

optimizer = ‘adam’.
11) LSTM—Units= 50, dropout rate = 0.2, optimizer = ‘adam’.
12) CNN—Convolutional layers = [32,64], kernel size = (3,3),

activation function = ‘relu’, optimizer = ‘adam’.
13) CNN-LST-: CNN layers = [32,64], LSTM units= 50, dropout

rate = 0.2, optimizer = ‘adam’.

Figure 5
Data distribution for object type
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14) Bi-LSTM-CNN with Bayesian optimization (Bi-LSTM-CNN-
BO)—The model was optimized using Bayesian optimization
with hyperparameters such as Number of CNN filters = 32,
64; Filter sizes = (3,3), (5,5); LSTM units= 50, 100; Dropout
rate= 0.2, 0.3; Batch size= 32; Learning rate= 0.001;
Optimization algorithm = Adam

Table 1 illustrates the performance evaluation of a
comprehensive array of algorithms utilized in the analysis. The
evaluation criteria include accuracy, precision, recall, F1 score,
and the duration taken for model deployment. Across most
algorithms, satisfactory performance is observed for multiclass
classification. LR, KNN, and GNB exhibit relatively lower
accuracy levels at 87%, 85%, and 84%, respectively. However,
they boast shorter training times of 1.332 s, 0.87 s, and 1.001 s,
respectively. Conversely, neural networks like CNN and CNN-
LSTM demonstrate excellent performance with accuracy rates of
96%, accompanied by longer training times of 20.86 s and 28.446
s, respectively. Bi-LSTM-CNN surpasses others in accuracy with
98% but requires a longer training duration of 24.889 s. Notably,
our proposed model, Bi-LSTM-CNN with Bayesian optimization
(Bi-LSTM-CNN-BO), achieves the highest accuracy of 99.16%,
albeit with a training time of 47.66 s. The rise in training time

may be attributed to several reasons. Bi-LSTM-CNN models
combine the complexities of both Bidirectional Long Short-Term
Memory (Bi-LSTM) and CNNs, requiring substantial
computational resources to train. Bayesian optimization explores a
wide range of hyperparameters to find the optimal configuration
for the model, which involves training and evaluating the model
multiple times, increasing the overall training time. Moreover,
Bayesian optimization may require many iterations before
converging to the optimal set of hyperparameters, prolonging the
training process as it iteratively refines the model configuration.
We observe that the proposed model (Bi-LSTM-CNN-BO),
achieves the highest accuracy of 99.16%, but has a training time
of 47.66 s. The extended training duration is primarily due to the
complexity of the model and the optimization process, and can be
attributed to the following reasons.

1) Complex Model Architecture—The Bi-LSTM-CNN-BO model
is defined by the synthesis of Bi-LSTM and CNN elements.
The Bi-LSTM layer excels at processing sequential data
(because it leverages bidirectional context), whereas the CNN
layer focuses on the extraction of spatial features. However,
the fusion of these two architectures leads to a notable increase
in computational demands when compared to simpler models.

Table 1
Performance of machine learning models for identifying object type

Algorithm Accuracy Precision Recall F-1 score Time (s)

LR 0.8744 0.8109 0.8246 0.81 1.332
KNN 0.8515 0.7568 0.8278 0.78 0.870
GNB 0.8492 0.8002 0.8384 0.81 1.001
DT 0.9132 0.8422 0.8625 0.85 1.114
RF 0.9439 0.8567 0.8897 0.86 1.782
GB 0.9287 0.8018 0.9208 0.86 3.654
XGB 0.9436 0.8824 0.9118 0.89 1.161
LGB 0.9222 0.8505 0.9046 0.87 3.112
SVM 0.9328 0.8646 0.9108 0.88 8.002
ANN 0.9208 0.8104 0.8755 0.84 6.038
FFNN 0.9451 0.9036 0.9228 0.91 14.732
LSTM 0.9344 0.8877 0.9105 0.89 12.343
CNN 0.9678 0.9412 0.9478 0.94 20.861
CNN-LSTM 0.9604 0.9238 0.9558 0.93 28.446
Bi-LSTM-CNN 0.9864 0.9123 0.9766 0.94 24.889
Bi-LSTM-CNN with Bayesian optimization 0.9916 0.9604 0.9824 0.97 47.662

LR 0.8744 0.8109 0.8246 0.81 1.332
KNN 0.8515 0.7568 0.8278 0.78 0.870
GNB 0.8492 0.8002 0.8384 0.81 1.001
DT 0.9132 0.8422 0.8625 0.85 1.114
RF 0.9439 0.8567 0.8897 0.86 1.782
GB 0.9287 0.8018 0.9208 0.86 3.654
XGB 0.9436 0.8824 0.9118 0.89 1.161
LGB 0.9222 0.8505 0.9046 0.87 3.112
SVM 0.9328 0.8646 0.9108 0.88 8.002
ANN 0.9208 0.8104 0.8755 0.84 6.038
FFNN 0.9451 0.9036 0.9228 0.91 14.732
LSTM 0.9344 0.8877 0.9105 0.89 12.343
CNN 0.9678 0.9412 0.9478 0.94 20.861
CNN-LSTM 0.9604 0.9238 0.9558 0.93 28.446
Bi-LSTM-CNN 0.9864 0.9123 0.9766 0.94 24.889
Bi-LSTM-CNN with Bayesian optimization 0.9916 0.9604 0.9824 0.97 47.662
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2) Bayesian optimization—This methodology involves the
investigation of a wide range of hyperparameters to determine
the most effective configuration for the model. Bayesian
optimization employs probabilistic models to forecast the
performance of diverse hyperparameter combinations. This
iterative process requires numerous cycles of training and
evaluation to fine-tune the hyperparameters, thus extending the
overall training time.

3) Computational Resources—The training of a Bi-LSTM-CNN-
BO model requires substantial computational resources—this
is largely due to its complex architecture and the involved
optimization processes. The necessity for significant
computational power (to handle the increased number of
parameters and iterations) is a crucial factor that contributes to
the prolonged training duration.

4) Hyperparameter Search—Bayesian optimization includes the
evaluation of multiple hyperparameter sets to attain convergence
on the optimal configuration. Each iteration during this search
process entails training the model, which cumulatively extends

the overall training time. Figures 6 and 7 indicate that, however,
the Bi-LSTM-CNN-BO model necessitates more computational
time, and it concurrently achieves improved accuracy; this
underscores the inherent trade-off between model performance
and computational efficiency.

Table 2 illustrates the performance evaluation of a
comprehensive array of algorithms utilized in the analysis. The
evaluation criteria include accuracy, precision, recall, F1 score,
and the duration taken for model deployment. Across most
algorithms, satisfactory performance is observed for multiclass
classification. LR, KNN, and GNB exhibit relatively lower
accuracy levels at 93%, 91%, and 89%, respectively. However,
they boast shorter training times of 0.414 s, 0.668 s, and 1.003 s,
respectively. Conversely, neural networks like CNN and CNN-
LSTM demonstrate excellent performance with accuracy rates of
97.99% and 98.04%, accompanied by longer training times of
23.889 s and 38.775 s, respectively. Bi-LSTM-CNN surpasses
others in accuracy with 98.99% but requires a longer training

Figure 6
Performance evaluation for object type (Accuracy)

Figure 7
Performance evaluation for object type (Time)
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duration of 45.222 s. Notably, our proposed model, Bi-LSTM-CNN
with Bayesian optimization (Bi-LSTM-CNN-BO), achieves the
highest accuracy of 99.98%, albeit with a training time of 53.023 s.
Figures 8 and 9 depict the performance evaluation concerning
accuracy and time (seconds) for all the deployed algorithms.

3.4. Comparative analysis

In this segment, a comparative examinationbetween the proposed
approach and several existingmethods for identifying space debris has
been conducted. The comparative analysis has been performed using
the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines, for reporting systematic reviews and
meta-analyses in a transparent and standardized way. Table 3
outlines the results of this comparative analysis.

1) Title
• Comparative Analysis of ProposedWork with Relevant Works

2) Eligibility Criteria
• Studies that focus on space debris monitoring, classification,
and removal.

• Studies employing ML and DL techniques.
• Studies provide performance metrics for accuracy, error rate, or
computational efficiency.

3) Information Sources
• Academic databases such as IEEE Xplore, SpringerLink, and
ScienceDirect.

• Keyword searches include terms such as “space debris”,
“machine learning”, “deep learning”, “PSO”, “SVM”,
“LSTM”, “ANN”, and “clustering”.

Table 2
Performance of machine learning models for identifying RCS size

Algorithm Accuracy Precision Recall F-1 score Time (s)

LR 0.9333 0.9104 0.9040 0.90 0.414
KNN 0.9122 0.8566 0.8778 0.86 0.668
GNB 0.8989 0.8678 0.8944 0.87 1.003
DT 0.9111 0.8222 0.8899 9.85 1.182
RF 0.9389 0.7584 0.7784 0.76 2.324
GB 0.9144 0.8333 0.8541 0.84 2.882
XGB 0.9123 0.8312 0.8717 0.85 2.006
LGB 0.9189 0.8678 0.8802 0.87 2.267
SVM 0.9465 0.8686 0.8993 0.87 7.067
ANN 0.9499 0.9129 0.9118 0.91 5.114
FFNN 0.9312 0.8504 0.8894 0.86 11.998
LSTM 0.9552 0.8436 0.8902 0.86 17.614
CNN 0.9799 0.8211 0.8894 0.85 23.889
CNN-LSTM 0.9804 0.9004 0.9122 0.90 38.775
Bi-LSTM-CNN 0.9899 0.9234 0.9403 0.93 45.222
Bi-LSTM-CNN with Bayesian optimization 0.9998 0.9666 0.9438 0.95 53.023

Figure 8
Performance evaluation for RCS size (Accuracy)
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4) Search Strategy
• Searches were conducted using combinations of keywords
such as “space debris”, “machine learning”, “deep learning”,
“PSO”, “SVM”, “LSTM”, “ANN”, and “clustering”.

• Filters applied for publication year 2023.
5) Study Selection Process

• The initial search yielded a total of ten records. None of the
duplicates were removed. Titles and abstracts of five records
were screened for relevance. Full texts of ten articles were
assessed for eligibility. Five studies were included in the
final analysis.

The comparative analysis highlights the strengths and
weaknesses of various methodologies employed for space debris
monitoring and removal. Jordan et al. [8] demonstrated that a PSO-
based method for estimating inertia parameters of uncooperative
satellites shows less than 1% error, indicating high precision. Ryan
et al. [9] found that XGBoost outperforms ANN and SVM with
97.4% accuracy in orbital debris impact risk assessments. Guo

et al. [14] achieved 96.92% accuracy using a hybrid FCM-HAC
model for clustering spectral polarization data. Qashoa and Lee
[19] reported that LSTM achieves 92% accuracy in classifying
low-orbit space objects. Zhao et al. [20] improved the PSO
algorithm, increasing its speed by 22.8% for task allocation in
debris removal. Our proposed Bi-LSTM-CNN model, optimized
with Bayesian optimization, outperforms these methods with
99.16% accuracy in space debris classification and 99.98% in RCS
size prediction, indicating a substantial improvement in detection
and classification capabilities. It is observed that

1) The Bi-LSTM-CNNmodel presented in this study demonstrates a
notable improvement in performance metrics when juxtaposed
with current methodologies. This finding underscores the
effectiveness of hybrid models that fuse LSTM and CNN
architectures, enhanced by Bayesian optimization, in
addressing the complex challenges associated with monitoring
space debris. However, the implications of this research are

Figure 9
Performance evaluation for RCS size (Time)

Table 3
Comparative analysis of proposed work with relevant works

Author and Year Proposed work Methodology/ Parameters Results

Jordan et al. [8] Space Debris Removal PSO-based method to estimate inertia parameters
for uncooperative satellites

The proposed method exhibits
less than 1% error

Ryan et al. [9] Orbital debris impact risk
assessments

ML algorithms like ANN, SVM, XGBoost, etc., XGBoost shows the best
performance with an accuracy
97.4%

Guo et al. [14] Clustering spectral
polarization data from
space debris

Hybrid fuzzy C-means (FCM) algorithm model
incorporating hierarchical agglomerative
clustering (HAC)

Accuracy of 96.92%

Qashoa and Lee [19] Classifying low-orbit
space objects

Algorithms like SVM, LSTM LSTM exhibits an accuracy of
92%

Zhao et al. [20] Task Allocation for Space
Debris Removal

Improved Particle Swarm optimization (PSO)
Algorithm

Improved PSO is 22.8% faster
than traditional PSO

Our Proposed Work Monitoring and
Classifying Space
Debris

Extensive ML algorithms, proposed
Bi-LSTM-CNN, and Bayesian optimization

The proposed method archives
accuracy of 99.16% and
99.98%
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far-reaching, because they suggest innovative approaches to a
pressing issue. Although the results are promising, further
investigation is needed to fully understand the potential of
these techniques.

2) In addition to attaining elevated levels of accuracy, the suggested
method effectively tackles the significant concern of training
duration—thus ensuring operational efficiency in real-time
scenarios. This positions it as a resilient solution for
implementation in (various contexts); however, challenges may
arise. Although it is promising, the effectiveness might be
influenced by external factors, but the overall framework
remains sound because it incorporates essential principles
space missions.

3) By employing advanced AI techniques, (this) approach tackles
the research shortcomings that are often found in traditional
strategies. The integration of Bi-LSTM and CNN architectures,
combined with Bayesian optimization, creates an innovative
framework that enhances both accuracy and operational
efficiency in systems designed for space debris detection.

4) The improved performance of this method carries significant
implications for managing space debris. It enhances space
situational awareness, optimizes space traffic management, and
supports the long-term sustainability of activities in outer
space. This progressive strategy not only mitigates the risks of
collisions; however, it also fosters international cooperation
and accountability in the domain of space exploration.

3.5. Observations

Several key points have been observed based on the
experimental and comparative analysis.

1) Extensive prior research within the realm of space exploration
(utilizing AI) has predominantly focused on specific
methodologies. This study undertakes a comprehensive
examination that incorporates a variety of algorithms; thus, it
advances the field of space debris analysis.

2) The evaluation of ML algorithms—encompassing classical
methods, ensemble techniques, and neural networks—is
conducted based on essential performance indicators:
precision, accuracy, recall, F1 score, and deployment time.

3) A highly effective Bi-LSTM-CNN model, refined through
Bayesian optimization, stands out as the leading performer
across various analyses, demonstrating its capability in
identifying and classifying space debris.

4) The initial phase of the analysis categorizes debris according to
object type (which includes debris, payloads, and rocket
bodies). However, the subsequent phase emphasizes the
identification of RCS size, a vital element for comprehending
both the characteristics of debris and the associated risks.
Although this study presents significant findings, more
research is necessary to explore additional methodologies.

5) The comparative analysis suggests that this methodology
achieves commendable accuracy in relation to earlier studies;
however, it underscores its proficiency in identifying and
monitoring space debris.

6) Although the results are promising, there are areas that require
further investigation. This is particularly important because the
implications of space debris are significant for future missions.

3.6. Limitations

Some limitations of the study are as follows:

1) The research utilized a specific dataset for its analysis, which may
not fully encompass the entire spectrum of characteristics and
behaviors linked to space debris. This limitation could
significantly affect the degree to which the findings are
generalizable.

2) The study assumes the dataset’s quality and reliability for its
analysis; nevertheless, inconsistencies, missing data, or
inaccuracies within the dataset could introduce biases and
undermine the robustness of the results.

3) The complex nature of the Bi-LSTM-CNN model, combined
with Bayesian optimization, may pose challenges in terms of
interpretability and scalability. Moreover, the computational
requirements needed for training and implementing this
model might limit its practical application in certain
situations.

4) External factors, such as changes in space policy, technological
progress, or unforeseen events, could modify the dynamics of
space debris, potentially making the study’s conclusions
obsolete or less relevant over time.

4. Conclusion

This study presents a comprehensive analysis of the intricate
processes involved in the identification and classification of space
debris, offering substantial insights and proposing potential
avenues for future research. By utilizing a range of ML
algorithms—such as LR, KNN, GNB and advanced neural
networks, including CNN and CNN-LSTM—the study assesses
the efficacy of various models in categorizing types of space
debris and forecasting their RCS sizes. Notably, the introduction
of a sophisticated Bi-LSTM-CNN model, refined through
Bayesian optimization techniques, exhibited remarkable
accuracy in classification tasks; however, this achievement came
at the expense of prolonged training times due to the model’s
inherent complexity. The findings underscore the urgent
necessity for precise identification and monitoring of space
debris, as it poses considerable threats to space missions and
satellite operations.

Although the proposed model demonstrated commendable
performance, it is crucial to acknowledge the limitations that
are inherent in this study. The reliance on a specific dataset may,
in fact, restrict the applicability of the findings; furthermore,
potential issues related to data quality could lead to biases.
Future research should aim to address these limitations by
utilizing larger and more diverse datasets, ensuring the integrity
and reliability of the data, and exploring advanced metho-
dologies to enhance model performance and efficiency. This is
important because there should also be a focus on integrating
real-time monitoring systems and predictive analytics to mitigate
the escalating risks associated with space debris and to safeguard
space infrastructure. In summary, while this study signifies a
substantial advancement in the realm of space debris analysis, it
also highlights the necessity for ongoing innovation and
collaboration within the scientific community; however,
to effectively tackle the challenges posed by space debris and to
promote the sustainability of space exploration initiatives, these
efforts are essential.
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