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Abstract: Credit card defaults are among the most significant risks in the financial world, with the potential to negatively impact the overall
financial health of the entire economy. Enhancing the accuracy of predicting and identifying credit defaults is essential in mitigating credit
losses and minimizing financial risks in credit risk management. This research specifically focuses on the prediction of credit card defaults by
comparing various traditional machine learning models. More importantly, it proposes a novel hybrid framework that integrates convolutional
neural networks, long short-term memory, and attention mechanisms. By incorporating time-series components into our hybrid model, we
achieved a notable improvement in predictive accuracy, outperforming the best traditional model by 16%. This study highlights the significant
benefits of integrating temporal sequences into credit risk models, as it can greatly enhance the precision, reliability, and overall performance
of credit card default predictions, offering important advantages for improving long-term financial stability and reducing associated risks.
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1. Introduction

The significant impact of credit card defaults on financial
institutions and the overall economy is apparent. Forecasting and
identifying potential defaulters in credit cards is a key, almost
gatekeeping, step in the process of credit risk management. If we
allow a forecast and/or a potential defaulter identification to fail, it
will directly translate into a credit loss event to occur. Credit card
lending has been part and parcel of modern life for almost a
century. The extensive credit defaults that were seen during the
1997 Asian Financial Crisis demonstrate the crisis’s far-reaching
worldwide economic effects [1-3]. This case highlights the
worldwide economic instability and individual lenders that are the
fallout from a lending failure.

In the past, projections for credit defaults relied on traditional
scoring systems like FICO, which brought together a number of
indicators that reflected a person’s creditworthiness and credit
history. In recent years, however, we’ve seen the emergence of
big data and machine learning (ML), which have taken this field
to new heights, allowing us to identify more complex, non-linear
patterns within our transaction data. We have seen new and
improved ways to use these patterns to deploy ML models from
the basic Logistic Regression all the way up to advanced
techniques like Neural Networks and ensemble methods such as
Extreme Gradient Boosting (XGBoost) and Light Gradient
Boosting Machine (LightGBM). Studies by researchers such as
Chou and Lo [4] as well as Kim et al. [5] have demonstrated the
effectiveness of these models in improving prediction accuracy.
Recent breakthroughs in hybrid ML techniques for credit default
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forecasts have shown substantial improvement in accuracy and
interpretability. The model known as the Hybrid Algorithms
Multi-Stage combines unsupervised and supervised learning,
resulting in an impressive prediction of loss given default. The
model achieves this improved result across a diverse set of
datasets [6]. Additionally, hybrid quantum neural networks have
emerged, leveraging quantum computing to achieve a remarkable
prediction accuracy [7]. Furthermore, Bayesian networks, which
facilitates casual analysis and what-if scenarios, have been used to
make more informed decision and enhance interpretability in
credit risk predictions [8]. Credit default prediction is evolving,
and it is doing so not just with more standard methods like
Random Forest (RF) and Artificial Neural Networks but also with
hybrid approaches that combine different techniques to get better
results and insights [9, 10].

However, a critical gap remains in the thorough assessment of
model performance across different models, especially when it
comes to the non-linearity and data imbalance problems that are
common in credit default datasets. This is a difficult problem to
solve, and it is a problem we must solve if we are to create
improved predictive models and tools to forecasting credit
defaults [11-14]. Moreover, time-series analysis combined with
ML models has been underexplored to consider account
statements as part of interconnected sequences, which represents
an opportunity to innovate in the field of credit default
prediction [15].

This research addressed this gap by presenting two results. The
first is to compare model performance across conventional ML
models with an in-depth evaluation of hyperparameter tweaking.
The second is to present a novel hybrid LSTM-CNN-Attention
architecture and compare it with the best performer from
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traditional models. We aim to overcome the constraints of past
research and present new insights by providing a comprehensive
evaluation of different models, including our novel hybrid LSTM-
CNN-Attention framework.

The remainder of the paper is organized as follows: Section 2
presents the ML approach developed in this research. Section 3
introduces the datasets to evaluate the performance of the
approach. Section 4 presents and discusses the experimental
results. Section 5 summarizes the new findings of this research.

2. Methodology

2.1. Overview

In our comprehensive analytical framework designed for credit
card default forecasting, our analytical approach follows a
standardized framework developed to assess and compare the
predictive performance of diverse ML models in the context of
credit card default forecasting, as shown in Figure 1. Initial
preprocessing of the dataset is conducted to ensure data relevance
and quality. The dataset is then partitioned into training and
testing subsets to facilitate model development and objective
evaluation. Our feature selection process also diverges from
conventional methods, employing a comparative analysis between
two distinct techniques to identify the most predictive features:
principle component analysis (PCA) [16] and RF [17]. This
precision in feature selection is complemented by hyperparameter
tuning, a critical step in refining model performance, particularly
vital for addressing the challenges posed by imbalanced datasets
prevalent in credit default scenarios.

Building on this basis, we provide a new hybrid ML framework:
the Hybrid CNN-LSTM-Attention Framework. This novel approach
combines the strengths of convolutional neural networks (CNNs)
[18] for feature extraction, long short-term memory networks

Figure 1
Research architecture workflow for traditional machine
learning models
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(LSTMs) [19] for capturing temporal dependencies, and an
Attention mechanism [20] that concentrates especially on
important features of the data. The Attention layer dynamically
prioritizes the most important features, the CNN layers find
noteworthy patterns in the data, and the LSTM components
evaluate these patterns in the context of credit behavior over time.
This ensures that the predictions are accurate and informed [15].
This hybrid model adds multi-dimensional data to predicting
credit defaults while broadening our research. By contrasting
traditional models with our proposed Hybrid CNN-LSTM-
Attention Framework, we assess method efficacy and show that
the predictive accuracy of the models has improved [4]. In
addition, we compared the fundamental methodology of the
proposed hybrid model with a broad spectrum of traditional ML
models, including XGBoost [21], LightGBM [22], Neural
Networks [18], and Logistic Regression [23]. This comprehensive
method highlights the benefits of utilizing the benefit of deep
learning to recognize patterns in the intricate pattern of financial
data, creating a new standard for accuracy and insight in credit
risk evaluation.

2.2. Feature selection

Feature selection is crucial for refining accuracy and
interpretability of ML models, especially related to credit default
predictors [15]. This study includes a comparative analysis of
PCA [16] and a RF-based approach [17], demonstrating their
advantages in handling linear and non-linear data complexities
[3]. The principle behind PCA is a linear transformation. PCA
identifies orthogonal axes in the feature space to maximize
variance and then projects the original data onto these axes.
Alternately, the RF algorithm uses ensemble learning to evaluate
features across many decision trees. This algorithm can handle
both linear and non-linear relationships well and gives a feature
importance ranking as output [4].

2.3. Proposed hybrid ML framework

To provide a thorough study of credit default risk, the
suggested novel hybrid ML technique combines the advantages
of CNNs, LSTMs, and Attention processes. The structural and
conceptual framework of this hybrid model is substantially
different from that of traditional methods. By using time-series
analysis to fully use the sequential character of financial data,
our Hybrid CNN-LSTM-Attention Framework also fills a
significant research gap in the field of credit default prediction.
This novel method sees a customer’s financial history as a linked
sequence, reflecting the temporal evolution of credit activity, in
contrast to existing models that examine individual data points in
isolation [14].

Traditional ML models, such as XGBoost, treat each customer
data—corresponding to individual statements—as isolated, ignoring
the temporal sequence of credit behavior. In contrast, our hybrid
model integrates time-series data to acknowledge the sequential
relationships inherent in financial activities, treating each customer
history as a continuous narrative rather than a disjointed collection
of events. This methodology not only aligns with the inherent
structure of financial datasets but also enhances predictive
accuracy by recognizing the importance of historical context in
forecasting defaults.
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The hybrid model provides a thorough examination of credit
risk by combining CNNs for the extraction of spatial
characteristics, LSTMs for the analysis of temporal sequences,
and a unique Attention mechanism for concentrating on the most
important information [12]. Because of this fusion, the model can
identify subtle patterns and connections in the data that traditional
models can miss due to their lack of temporal attention. Because
it carefully highlights important qualities and situations that have
a substantial influence on a customer’s likelihood of default, the
Attention layer plays a particularly important role in making a
targeted and accurate prediction [14].

This hybrid model is unique because it implements a
comprehensive approach that brings together temporal sequence
analysis and spatial pattern recognition—pattern recognition in
space—augmented by the Attention mechanism’s ability to
provide strategic focus. This type of framework for analysis is
new in the financial modeling for credit risk. Thus, the Hybrid
CNN-LSTM-Attention Framework sets a new benchmark in this
area by providing a novel, more accurate, and interpretable
approach to assessing the risk of credit default that could change
the way risk is managed in the financial services sector.

2.3.1. CNN layer

The CNN layer employs convolution operations to extract high-
level features from the input data [18]. For a given input X, a con-
volution operation applies a filter Wof size k, producing a feature
map F:

F(i) = ReLU (YK X(i+)).W(j) )
where ReLU is the Rectified Linear Unit activation function, enhanc-
ing non-linearity. In the context of our model, the CNN layer ana-
lyzes patterns across features within each timestep, identifying key
indicators that might signify credit default risk.

CNNs therefore are adept at extracting hierarchical
patterns within data through convolutional layers, making them
ideal for identifying salient features within our complex financial
datasets.

2.3.2. LSTM layer

A recurrent neural network, LSTM, is good at capturing
temporal dependencies and sequences. This is crucial when we are
attempting to understand the credit behavior of people over time
—to understand the “little things” that happen in chronological
order that add up to a certain type of credit behavior [19]. LSTMs
take in data one piece at a time and remember the right details for
the right amount of time. The key to the success of LSTM is its
specialized structure, which has several gates to regulate the
information flow. An LSTM unit updates its cell state C; and hidden
state h, at each timestep ¢ using the following formula, where o is the
sigmoid function, and tanh is the hyperbolic tangent function, pro-
viding non-linearity:

1) Forget Gate: Determines which information from the cell state
should be discarded or retained, allowing the model to forget
irrelevant details from the past.

fi=o (Wf heors %] + bf) (2)
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2) Input Gate: Decides which added information from the current
input should be added to the cell state, enabling the model to
update its memory with relevant new observations.

ip =0 (w; [h_1, %] + b)) (3)

C, = tanh(w, - [h_y, %] + be) 4)

3) Cell State Update: Combines the old cell state and added

information to form the current cell state.

C=fixC+i=* G (5)

4) Output Gate: Determines what part of the cell state should

be output at the current timestep, influencing the final
prediction.

Oy =0 (W [he_1,%] + b,) (6)

h, = O, * tanh(c,) (7)

Here, x; is the input at timestep #, h,_; is the previous hidden
state, and c,_; is the previous cell state. The weights W and biases
b are re parameters learned during training, and * denote element-
wise multiplication. This architecture allows LSTMs to mitigate
the vanishing gradient problem common in traditional RNNs, mak-
ing them capable of learning dependencies over many timesteps. In
the context of credit default prediction, the ability of the LSTM to
maintain and update the cell state ¢, over time allows it to remember
significant information and forget the irrelevant, capturing the tem-
poral dependencies in a customer’s credit history [S]. For instance,
patterns of late payments or sudden increases in spending can be cru-
cial indicators of default risk, which the LSTM layer is adept at iden-
tifying and learning from leveraging its sophisticated gating
mechanisms. This capability makes the LSTM layer a core compo-
nent of our hybrid model, enabling a dynamic and temporally aware
analysis of credit behavior that traditional models, which treat each
data point independently, cannot provide.

2.3.3. Attention layer

By concentrating on the most significant characteristics and
time steps, the Attention mechanism improves the interpretability
of this hybrid model [20]. It is an essential element that improves
the CNN-LSTM architecture’s interpretative power. The Attention
mechanism concentrates on particular sequential data segments
that are more imperative to credit default prediction by assessing
the significance of various timesteps in the LSTM output. The
model may devote more computing resources to examining the
critical periods of a customer’s financial history for precise default
prediction because of this selective focus.

Our model utilizes a custom Attention mechanism, which
computes a context vector that captures relevant information
across all timesteps. The unique needs and subtleties of credit
default prediction are what motivate our hybrid model to
incorporate a proprietary Attention mechanism [11]. By creating a
custom Attention layer, we ensure optimal alignment with the
given goal by customizing the focus mechanism to the distinct
temporal and feature-related complexity of the underlying credit
default data. This customization improves the model’s overall
efficacy and interpretability in the context of credit risk
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assessment by making it easier to important events and trends in a
customer’s financial history that generic attention models
might miss.

The attention scores are computed as follows:

e, = tanh(W x h, + b) (8)
exp(e,)

AR A VA 9

‘ S (aphy) ©

c=>"T axh (10)

where W and b are learnable parameters of the attention layer, h;, is
the hidden state from the LSTM at timestep t, e, is the energy asso-
ciated with each timestep, and c is the resulting context vector, focus-
ing the model attention on the most informative parts of the sequence.
This mechanism allows the model to prioritize specific periods in a
customer’s financial history that are more indicative of potential
default, enhancing predictive accuracy.

2.4. Hypermeter tuning

Hyperparameter tuning is a critical step in refining traditional
ML models for credit card default prediction, a domain where
ensemble models like RFs and Gradient Boosting Machines (e.g.,
XGBoost) excel due to their robust predictive capabilities [24].
This process involves adjusting non-learnable model settings, such
as learning rates and tree depths, to optimize performance [11].
Unlike the application of hyperparameter tuning in our hybrid
CNN-LSTM-Attention Framework, where the focus is on
integrating time-series data to capture sequential relationships,
traditional models primarily benefit from this tuning in their
standalone application.

Since hyperparameter adjustment is essential for improving
model accuracy and generalizability, we focus on it in our
research for both traditional and hybrid models. In financial
environments, where decision-making may be greatly impacted by
the accuracy of default projections, this topic is especially
important. Our technique, leveraging on the grid search,
investigates a wide variety of hyperparameters, differentiating our
work from research that could depend on default settings or scant
parameter investigation.

The different combinations of hyperparameters are examined
by a grid search, which extends to the full picture of the
optimization landscape. The method guarantees that each model is
tuned to a finely wrought setting, which in turn guarantees better
predictive power. An in-depth tuning of standard models is a
crucial part of our approach, and it prepares the way for a
comparison with our ensemble hybrid model. The demonstration
of the power of hyperparameter tuning with standard credit risk
models is an original contribution of our research, which tends to
get overlooked in this field [3].

By fine-tuning hyperparameters to make models work better,
we ensure that their forecast performance is evaluated fairly. This
gives us a solid base for comparing these models with our new
hybrid framework. This optimization shows how important it is to
choose the right hyperparameters to get a good model result,
especially in situations where misled estimates could have big
effects.

2.5. Evaluation metrics

The models are evaluated using a set of metrics. These metrics
provide different and complementary views of model performance.
The principal metric we use is Accuracy. In addition, we compute
and consider the following metrics: Precision, Recall, F1-score,
and the area under the precision-recall (PR) curve, and receiver
operating characteristic (ROC) curve [25]. The ROC curve is a
plot of true positive rate (Recall) against the false positive rate at
various threshold settings. A ROC curve offers insight into the
trade-offs between true positives and false positives [26]. PR
curves plot Precision versus Recall and are especially useful for
evaluating models on imbalanced datasets. Unlike the ROC curve,
where we look for a single point corresponding to an optimal
trade-oft between true positive and false positive rates, the PR
curve gives us two dimensions along which we can characterize a
model [27]. AUC (area under the curve) summarizes the ranks,
indicating a model’s ability to identify the positive class in the
first instance and quantifying retrieval and ranking prowess [28].

AP = le(r)dr (19)
0

Ensemble models, especially those with high average precision (AP)
values, represent a more balanced trade-off between PR—something
that is especially crucial for imbalanced dataset. When we apply this
framework to our credit card default prediction problem with the goal
of identifying the “best” model, we’re not only enriching the risk
management strategies of our financial institution but also offering
a more sophisticated means of assessing model effectiveness.
Based on our results, ensemble models seem to have the clearest
handle on minimizing false positives and maximizing the true
detection of credit card defaults.

3. Data Sources

3.1. Overview

This study leverages a dataset that spans 18 months of
anonymized and standardized credit card account information. The
dataset originates from the American Express Default Prediction
challenge on Kaggle [1]. The dataset includes 41,989 unique
customers. Each customer has between 2 and 13 statements, so an
array of credit behavior and statement is our basis for data. Our
records yield over 1 million data points tied to 191 different
features. Each feature of a customer’s credit activity for a given
statement period is at the level of individual entries, providing a
granularity of credit behavior.

3.2. Data exploration

The dataset is divided into five main areas that are directly
connected to how people use credit; this makes the dataset
particularly well suited for predicting credit defaults. The dataset
scale, combined with the array of 191 features and 41,989 data
points, offers a profound, multifaceted view of the consumer
credit dynamics.

1) Delinquency Variables: Reflect late or missed payments, crucial
for assessing the likelihood of future defaults.

2) Spend Variables: Capture spending patterns, signaling financial
behavior that may precede default events.

3) Payment Variables: Indicate payment habits, which evaluates a
customer ability to manage debt.
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4) Balance Variables: Represent indebtedness, serving as direct
indicators of financial health.

5) Risk Variables: Encompass broader risk factors, including
economic conditions that could impact creditworthiness.

In analyzing our dataset, thorough data cleaning and
preparation were crucial to ensure data quality and usability. Out
of 191 features, two were categorical and required transformation
into numerical values to comply with the needs of our ML
algorithms. We tackled missing values by applying mode
imputation for categorical features and median imputation for
numerical ones, thus achieving a consistent dataset without
missing entries. Feature selection was also a pivotal part of our
study, aimed at boosting the model effectiveness and clarity. We
explored two methods: PCA and RF. The PCA, a method for
linear dimensionality reduction, operates by identifying new
orthogonal axes that optimize data variance. Conversely, RF, an
ensemble learning technique, integrates information from several
decision trees to evaluate feature significance [5]. The RF method
has proven useful in identifying variables for credit default
prediction through the utilization of significance scores [1]. These

scores quantify a feature contribution to the accuracy of the model
by measuring its utilization across the ensemble of decision trees.
Analyzing the distribution of feature data is crucial for obtaining
insights into our dataset. A violin plot serves as an effective tool
for this purpose, which offers a composite view that merges the
attributes of a box plot with a kernel density plot. It not only
showcases the median and interquartile ranges of the data but also
the probability density at different values through its
characteristic, mirrored density plots. Such detailed visualization
facilitates a comparative analysis of data distributions across
various categories, providing an informative snapshot of
underlying patterns that may influence credit default outcomes.

As shown in Figure 2, P_2, D_44, B_2, and B_33 were
identified as the top four features with the highest importance.
Their violin plots for features P_2, D_44, B_2, and B_33
demonstrate distinct distribution patterns that have implications
for credit default data. The broader spread of P_2 in category 0
and its concentration in category 1, along with the pronounced
bimodality in B_2, indicate non-linear relationships with credit
default, suggesting that simple linear models may not adequately

Figure 2
Violin plot for top features
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capture these dynamics. D_44 and B_33, with their tight
distributions, especially in category 1, point to potential data
imbalance, where defaults may be less frequent than non-defaults.
Therefore, the key takeaway is that while the varied feature
distributions provide valuable differentiation between our target
categories, predictive modeling must account for non-linearity and
class imbalance. Employing advanced feature engineering, non-
linear models, and strategies to balance the data will be crucial in
developing a robust model for credit default prediction.

4. Result

4.1. Result overview

In our study’s results, we carefully looked at how well standard
ML models and our new hybrid model worked at three different
levels:

1) Feature Selection Results. First, we stress how useful ensemble
methods like RF are for choosing features for large,
complicated financial datasets.

2) Hyperparameter Impact on Traditional Models: We look at how
tweaking hyperparameters affect models like XGBoost,
LightGBM, Neural Networks, and Logistic Regression.
Finding out how hyperparameters affects models like XGBoost
and LightGBM is very important because it helps improve
model performance and gives us ideas on how to make
predictions more accurate in financial datasets.

3) Performance Comparison Among Traditional Models: After we
adjusted the hyperparameters, we can see which of the standard
models shows best performance according to our performance
metrics. Among these traditional models, XGBoost has
presented to be the best performer. Its performance scores are
higher than other models. This finding aligns with the
fundamental algorithm of XGBoost and shows that it is
relatively more sophisticated model to deal with complicated,
high-dimensional datasets that are common in credit default
prediction.

Hybrid Model Versus Traditional Model Performance: We aim
to assess the additional benefit of including time-series analysis via
CNN and LSTM layers, together with the specific emphasis offered
by the Attention mechanism, by comparing the best-performing
conventional model (XGBoost) with our Hybrid CNN-LSTM-

Attention Framework. This comparison will clarify the
effectiveness of the hybrid model in capturing temporal
connections and prioritizing variables, providing improved

forecast accuracy and insights into default risk factors.

4.2. Feature selection results

Our examination reveals that the RF method exhibited superior
accuracy than PCA for credit card default prediction for most results,
as detailed in Table 1. Interestingly, when applying RF for feature
selection, Neural Network models and our advanced Hybrid
CNN-LSTM-Attention framework did not exhibit the same level
of enhanced performance. This discrepancy suggests that while
ensemble methods like RF excel in capturing and evaluating
intricate data patterns, Neural Networks, and hybrid models may
require more nuanced or alternative feature selection approaches
to fully capitalize on their architecture, especially given their

Table 1
PCA vs. random forest comparison of performance metrics
across machine learning models

Model Evaluation metrics PCA RF  Comparison
XGBoost Acct.lrgcy 0.871 0.879 1.0%
Precision 0.847 0.855 0.9%
Recall 0.904 0.914 1.0%
Fl-score 0.875 0.883 1.0%
AP Score 0.932 0.945 1.4%
AUC 0.941 0.950 1.0%
LightGBM Accuracy 0.858 0.866 0.9%
Precision 0.832 0.838 0.8%
Recall 0.898 0.907 1.0%
Fl-score 0.864 0.871 0.9%
AP Score 0.917 0.929 1.3%
AUC 0.929 0.938 1.0%
Neutral Network Accuracy 0.870 0.868 —0.2%
Precision 0.856 0.859 0.3%
Recall 0.888 0.881 —0.8%
Fl-score 0.872 0.870 —0.3%
AP Score 0.929 0.931 0.3%
AUC 0.938 0.940 0.2%
Logistic Accuracy 0.850 0.854 0.4%
Regression Precision 0.840 0.840 0.0%
Recall 0.865 0.874 1.1%
Fl-score 0.852 0.857 0.5%
AP Score 0.910 0.914 0.5%
AUC 0.923 0.927 0.4%
Proposed Accuracy 0.997 0.996 —0.1%
Hybrid Model Precision 0.994 0.998 0.4%
Recall 0.992 0.993 0.1%
Fl-score 0.993 0.997 0.4%
AP Score 0.992 0.994 0.2%
AUC 0.994 0.995 0.1%

capacity to model complex, high-dimensional data and temporal
sequences [13]. Despite this, we continue to utilize RF as our
feature selection method due to its overall superior results and its
effectiveness in providing a clear ranking of feature importance,
which simplifies the model development process by enabling a
focused approach on the most predictive variables.

Our research underscores the use of ensemble methods like RF
in feature selection for complex financial datasets. In our research, by
meticulously selecting the top 47 features from an initial set of 191
based on important scores, we highlight the superiority of the
ensemble method in enhancing model performance and
interpretability over linear techniques like PCA. This approach
reinforces the significance of methodical feature selection and
model evaluation in developing sophisticated credit risk
assessment tools.

4.3. Hypermeter tuning impact

Our analysis reveals that hyperparameter tuning is a significant
factor in improving the predictive performance of conventional ML
models in the area of credit default prediction. The models XGBoost
and LightGBM demonstrate improvement in the performance
metrics we discussed earlie—accuracy, precision, recall, and F1-
score—after we performed a hyperparameter tuning of them,
shown in Table 2. This result shows the benefit of hyperparameter
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Table 2
Before vs. after hyperparameter tuning comparison of
performance metrics across machine learning models

Model Metrics Before After Comparison
XGBoost Accgrgcy 0.879  0.882 0.3%
Precision  0.855  0.856 0.1%
Recall 0914 0919 0.6%
Fl-score 0.883  0.887 0.4%
AP Score 0945  0.949 0.4%
AUC 0.950 0.953 0.3%
LightGBM Accuracy  0.866  0.868 0.2%
Precision  0.838  0.841 0.3%
Recall 0.907  0.907 0.1%
Fl-score  0.871 0.873 0.2%
AP Score  0.929  0.933 0.4%
AUC 0.938  0.940 0.2%
Neutral Network Accuracy  0.868  0.866 —0.2%
Precision  0.859  0.845 —-1.7%
Recall 0.881  0.898 2.0%
Fl-score  0.870 0.871 0.1%
AP Score 0931  0.937 0.7%
AUC 0.940 0.927 —1.4%
Logistic Regression ~ Accuracy  0.854  0.854 0.0%
Precision  0.840  0.840 0.0%
Recall 0.874 0.874 0.0%
Fl-score 0.857  0.857 0.0%
AP Score 0914 0914 0.0%
AUC 0.927  0.927 0.0%
Hybrid Model Accuracy  0.996  0.998 0.2%
Precision  0.998  0.997 -0.1%
Recall 0.993  0.999 0.6%
Fl-score 0.997  0.998 0.1%
AP Score  0.994  0.998 0.4%
AUC 0.995  0.998 0.3%

optimization in enhancing the performance of ensemble models with
complex datasets where imbalanced patterns might skew
prediction [5].

However, the effects of hyperparameter optimization on
Neural Networks show a more complex outcome. The
effectiveness of tuning seems to be contingent on the exact
architecture of the network, its complexity, and the nature of the
credit default data. This uncovers the delicate balance that exists
between model and data, suggesting that a one-size-fits-all
approach to hyperparameter tuning is probably ineffective,
particularly for models like Neural Networks. By contrast,
Logistic Regression, due to its simple structure, shows modest
improvement from hyperparameter tuning. We expect this
outcome because the model provides few options for configuring
adjustments. This highlights that not all models are
equally responsive to performance improvements through
hyperparameter tuning.

These findings are key to selecting and fine-tuning models for
predicting credit defaults. They underscore the necessity of
hyperparameter tuning with a cautious use depending on the
specific model and the nature of the dataset. We therefore will
systematically optimize traditional models and build a framework
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for their comparison with the advanced hybrid framework we
propose in this work.

4.4. Traditional model performance comparison

Based on our assessment, we find that traditional ML models
for predicting credit defaults work better when they’re ensembles
like XGBoost or LightGBM. These two models outperform their
counterparts and appear to be the best methods to use when
dealing with an ensemble of knowledge-based, decision-tree
models. XGBoost, LightGBM, and similar approaches are models
that make use of a multitude of “decision trees” and arrive at
predictions by averaging, or consolidating, the predictions made
by all the trees. The reason these methods work better—apart
from the fact that they use many trees and do not overfit when
they could—is that they employ sharpening procedures to bring
down the bias and pump up the forecast variability.

Figure 3 displays four ROC curves, each representing the
performance of a different ML model: XGBoost, LightGBM,
Neural Network, and Logistic Regression. ROC curves are
graphical plots that illustrate the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. They
plot the true positive rate against the false positive rate at various
threshold settings. The AUC is a measure of the ability of the
classifier to distinguish between classes and is used as a summary
of the ROC curve. The higher the AUC, the better the model is at
predicting Os as Os and 1s as 1s. An AUC of 0.5 suggests no
discrimination, while an AUC of 1.0 indicates perfect
discrimination. In our case, XGBoost has the highest AUC,
indicating it has the best performance among the four in terms of
distinguishing between the positive and negative classes. Logistic
Regression has the lowest AUC, which suggests it is less capable
than the other models, yet still provides a good classification ability.

The superior performance of XGBoost and LightGBM is also
evident in their higher AP at 0.948 and 0.933 individually shown
in Table 3. This metric is crucial in the context of credit default
prediction, where the cost of false positives (incorrectly predicting
a default) can be significant. The higher AP score indicates that
these models are more effective in ranking predictions by
probability, ensuring that the highest-ranked predictions are more
likely to be true defaults. This capability is particularly beneficial
in imbalanced datasets common in credit default scenarios, where
the number of non-default cases significantly outweighs the
default cases.

The reasons why XGBoost and LightGBM work are due to a
few main factors. These include their ability to deal with missing
values, their use of gradient boosting to cut down on forecast
mistakes, and their adaptability in model tuning, which allows
different hyperparameters be optimized to make the model
optimized. These models also use advanced regularization
methods to keep them from overfitting, which makes sure that
they work well with data they haven’t seen before. The ensemble
models, on the other hand, did much better than Neural Networks
and Logistic Regression in our study, though they were still good.
This difference might be because credit default data is naturally
complicated and doesn’t have simple, straight relationships.
Ensemble models are better at capturing and modeling these
relationships accurately.
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Figure 3
ROC curve comparison
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Table 3

Performance matrix comparison for traditional models

Performance metrics XGBoost LightGBM Neural network Logistic regression
Accuracy 0.8824 0.8676 0.8665 0.8538
Precision 0.8562 0.8407 0.8446 0.8402
Recall 0.9192 0.9071 0.8983 0.8739
F1-Score 0.8866 0.8727 0.8706 0.8567
AP Score 0.9489 0.9331 0.9375 0.9144
AUC 0.9529 0.9404 0.9269 0.9269

4.5. Hybrid model versus traditional model
performance

After identifying the XGBoost model as the top performer
among traditional ensemble models, our research uses this as the
baseline and compares it with our Hybrid CNN-LSTM-Attention
Framework. The implementation of the hybrid model
demonstrated outperformed results in both accuracy and precision
scores with a significant increase of 13—16% over the XGBoost
benchmark, as shown in Table 4. This improvement not only
highlights the hybrid model’s efficacy but also underscores the
marginal benefit of incorporating sequential data analysis into
predictive modeling.

Hybrid model makes good use of the fact that financial actions
happen over time by using CNNs to extract spatial features, LSTMs
to capture temporal dependencies, and an Attention method to focus
on important information. Credit risk is more accurately shown when

Table 4
Performance matrix comparison
Performance metrics XGBoost  Hybrid model ~ Comparison
Accuracy 0.8824 0.9981 13%
Precision 0.8562 0.9974 16%
Recall 0.9192 0.9987 9%
F1-Score 0.8866 0.9982 13%
AP Score 0.9489 0.9984 5%
AUC 0.9529 0.9976 5%

the financial history of each customer is learned by model, rather than
as a bunch of separate data pieces. The model’s outperformance
shows how important temporal analysis is for predicting credit
failure, which adds to the novel edge of our hybrid approach for
working with large, complicated financial datasets.
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This hybrid CNN-LSTM-Attention Framework is a big step
forward in predicting credit failure. By looking at financial
records as linked cycles, it not only improves the accuracy of
predictions but also fills in an important research gap. This point
of view is important for giving a more complex picture of credit
risk by leveraging on the creative combination of CNNs, LSTMs,
and Attention mechanisms.

However, the practical implementation of this complex model
needs to consider its computing requirements. The intricacy of the
hybrid model and the extensive sequential data processing
requires significant computer resources, which may not be
available. The selection of a model for practical implementation
must balance predicted accuracy with computing limitations [15].

4.6. Limitations and future research directions

The hybrid framework of CNN-LSTM-attention proposed here
has shown to have superior predictive power, defeating best
performers of traditional models like XGBoost and LightGBM.
Still, it has its drawbacks. Combining CNNs, LSTM networks,
and attention processes, this hybrid model is computationally
complex and calls for considerable power and memory. It is hard
to come by in resource-limited settings, especially for
organizations that can’t access high-performance computing. On
top of that, the model may not handle big data as well as with
financial transactions in real time. Scalability issues like
processing times, throughput, and resource memory leaks could
become potential problems to limit the hybrid’s payback potential.

In the future, researchers could concentrate on discovering
methods to increase the efficiency of the hybrid model and
maintain its accuracy. Filtering out unnecessary parameters is a
job for model pruning. Knowledge distillation takes information
from a large, difficult model and puts it into a smaller, simpler
one. Both of these tasks should reduce the amount of computing
that needs to be done.

Another area for future study could be how well the proposed
hybrid structure works with various types of sequential financial
data. The model could be modified to examine loan payback
records, changes in stock prices, or data from insurance claims—
sequential data that are all connected over time. Investigating the
model’s performance across these different situations could yield
insights into its predictive power for various use cases.

4.7. Implications for research, practice, and society

The proposed hybrid CNN-LSTM-Attention framework
enhances credit risk management by increasing prediction
accuracy compared to traditional ML models. This has many
positive implications for research, practice, and society.

From the research perspective, the hybrid model is a new way to
use sequential data for financial risk forecasts. Its combination of
space and time features makes it a good jumping-off point for
research into more advanced ML models that could be used in
other business scenarios. This study also provides insights into
how to make high-performance, low-complexity hybrid models
work better, which could lead to the development of new model
architectures that maintain high predictive power without straining
computational resources.

Applying this model will yield beneficial effects on our society
too. The model’s enhanced capacity to predict the risk of credit
default will inject new stability into our economy by reducing the
incidence of default and, thereby, ensuring that more individuals
enjoy a fair chance at obtaining the credit they need. When
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financial institutions issue loans these days, they do so with an
optimistic bias and some suboptimal estimates of risk. Even
though the hybrid model achieves impressive precision, its
computational intensity can limit its immediate applicability in
some situations. We propose the use of modern technologies such
as cloud computing, which provides scalable resources for dealing
with massive amounts of calculations, to remedy this
shortcoming. In addition, settings with high data volume might
consider using distributed computing systems for an effective real-
time deployment of the model.

4.8. Real-world financial implications

The hybrid CNN-LSTM-Attention architecture substantially
improves prediction accuracy, but the financial costs of prediction
results should be considered, especially when it comes to false
positives. Financial firms may miss out on opportunities when a
false positive occurs—erroneously classifying a trustworthy
consumer as a defaulter—in the context of predicting whether
someone will default on their credit card. Such errors could result
in a loss of credit for many who can and would pay. It puts the
financial institution at risk of lowering satisfaction with the credit
experience, of lowering customer loyalty, and of lowering the
revenues associated with much of the financial operations that
firms engage in. The hybrid model has boosted predictive
accuracy, with a 16% increase over conventional benchmarks,
which may reduce the concerns linked to false positives.
Providing more precise classifications allows financial institutions
to optimize their decision-making processes regarding risk and
return. We should remember, nonetheless, that misclassifications
can and do happen, even with more precision, and when they
happen, they have effects. Future studies might encompass
learning methods that account for the economic fallout of
incorrect positives and negatives during model training. Moreover,
modeling methods that ascribe to the appearance of profit, and
which may favor business-specific aims over generic measures of
accuracy, could show more usable results for the specific
applications we are concerned with. By these means, we could
link model performance to their practical uses, with the added
assurance that whatever framework we suggest aligns with the
operational goals and economic implication of the financial
institutions.

5. Conclusion

The hybrid CNN-LSTM-Attention framework we developed is
novel to the field of credit default prediction. It achieved an improved
prediction accuracy of 0.9981, outperforming traditional models like
XGBoost (0.8824). This improvement emphasized that the hybrid
model incorporates temporal dynamics into the credit risk
modeling process leading to a benefit in model performance. In
this study, we also examined the impact of hyperparameter tuning
on the conventional ML as part of the study and then did a
thorough comparative study that highlighted the importance of
tuning for achieving precision in model building.

By investigating the effect of hyperparameter tuning on
traditional ML models, we demonstrate that it impacts different
models in diverse ways, thus highlighting the potential risk of
applying a one-size-fits-all method across different types of
models. In our view, hyperparameter tuning would be most
beneficial for ensemble models. The hybrid model utilizes time-
series data to identify intricate patterns in credit behavior, leading
to a notable 16% enhancement in predictive accuracy relative to
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conventional models. The improved precision of the hybrid model
might lead to more reliable credit risk evaluations, decreasing
default rates and refining credit distribution system. Moreover, its
capacity to evaluate sequential data could help real-time credit
monitoring and adaptive risk management, which is aligned with
the evolving requirements of contemporary financial systems. This
study illustrates how hybrid models may transform financial
decision-making processes by integrating advanced ML
techniques with practical applications.

However, we acknowledge that the complexity of the hybrid
CNN-LSTM-Attention framework poses potential challenges for
scalability and real-world application. While current computing
resources are often sufficient, practical adoption may still require
more consideration of computational resources. To address these
concerns, future work could explore strategies to simplify the
hybrid model without compromising accuracy. We aim to
ensure that this framework could deliver its full potential in
real-world credit risk management applications by balancing
model complexity with operational constraints. In the future,
we will explore proprietary or industry-specific datasets from
financial institutions to confirm the robustness and
applicability of the proposed framework to a wide range of
contexts.
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