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Abstract: Research has shown that certain simple, yet valuable gait and posture diagnostic tests can be conducted without the involvement of
human experts using optical detection software employing Artificial Intelligence (AI), either on par with some physicians or, in some cases,
even better in terms of availability, productivity, ease, and cost. The purpose of the current paper is to propose a methodology that uses
dedicated AI models for partial body frames instead of full-body pose trackers. To achieve this, we obtain training dataset (photos/
videos) using a biomimetic rig instead of humans. In this research, we also study existing applications using already available AI pose
trackers, their methodology, limitations regarding partial body views, and limitations in detecting mechanical devices and systems.
Finally, to support our study, we present stand2squatAI_biorig software as an example of an AI-automated, diagnostic, real-time test that
does not require physicians to complete the examination. We developed this software as a proof-of-concept to illustrate the proposed
methodology and confirm our findings. Software applications developed in this manner can be used to study and diagnose various
human conditions. The value of the proposed approach, which includes a biomimetic rig, is that it increases precision, reduces costs, and
increases human safety; for example, during the application of mechanical aids while ensuring personal data privacy and overcoming
ethical issues.

Keywords: diagnostic applications, gait and posture analysis, biomimetic rig, AI markerless motion capture, exoskeletons, prosthetics,
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1. Introduction

Gait and posture analysis may offer invaluable diagnoses in
numerous cases, ranging from congenital motorial problems
to stroke rehabilitation assessments. Unfortunately, it is neither
feasible, practical, nor viable to obtain laboratory-based
measurements at the required frequency, especially for older
adults, the unemployed, people lacking healthcare, rural, nomadic,
and other significant portions of the population. However,
technological progress has led to the miniaturization of electronics
and the widespread availability of powerful processors, camera-
equipped Internet-accessing smartphones and tablets. Specialized
and potent artificial intelligence (AI) software tools based on
computer-emulated deep neural networks may provide almost
human perception to these smart devices, enabling them to
optically detect human bodies, faces, and gestures. They may also

recognize animals, flowers, or what else they are trained to do.
These tools may rely on AI environments, frameworks, and
ecosystems, such as TensorFlow [1], keras [2], Pytorch [3],
H20.AI [4], OpenVino [5], Caffe [6], MXNet [7], PaddlePaddle
[8], and ONNX [9]. Training is performed by presenting samples
(e.g., photos, sketches, and videos) that are properly tagged or
organized into enumerated sets. Beyond detection, AI tools may
infer various properties such as the distance of a person from the
camera, their age, even dimensions, volume, and location of
their limbs.

AI pose tracking software, such as OpenPose [10], AlphaPose
[11], Detectron [12], MediaPipe BlazePose [13], YOLOv7 [14],
DeepLabCut [15], process photographs or video streams with one
person or a crowd and produce lists with the 3D coordinates of
human joints in each video frame. This capacity surpasses most
common people’s abilities and undoubtedly marks the era of
nonhuman experts. Researchers have used this process to develop
automatic gait and posture analysis tools such as Chen’s sitting
posture assessment [16], quantitative movement analysis
[17], occupational posture evaluation [18], and Stanford’s

*Corresponding author: Christos Kampouris, Department of Product and
Systems Design Engineering, University of the Aegean and Department of
Informatics and Computer Engineering, University of West Attica, Greece.
Email: cab@aegean.gr

Artificial Intelligence and Applications
2025, Vol. 3(1) 10–30

DOI: 10.47852/bonviewAIA42023630

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

10

https://orcid.org/0000-0003-1743-6292
https://orcid.org/0000-0002-8687-5777
mailto:cab@aegean.gr
https://doi.org/10.47852/bonviewAIA42023630
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Sit2Stand [19]. Such tools are promising and guarantee that in the
following years, health coverage will increase substantially while
the related costs will diminish. The following paragraphs discuss
existing diagnostic exercises, human pose trackers, and their
limitations while roughly outlining the standard methodology used
in the previously mentioned tools. Moreover, we focused on the
precision, variance, anonymization, and ethical issues.

The main contribution of this study is the development of an
alternative methodology that can be used to accelerate the
progress of automated diagnostic tests, reduce associated costs,
produce real-time diagnostic tools available to all, and further
expand the applicability of AI optical tools in the study of
mechanical joints, prosthetics, orthoses, exoskeletons, and rigs. As
an example of applying this methodology, the sample software
tool stand2squatAI_biorig was developed and presented. It works
even with partial frames rather than full-body poses, surpassing
the problems of latency, missing joints, and erroneous joint
coordinate reporting, which are common in most pose trackers.

In the field of gait and posture analysis, diagnostic exercises
play a significant role. One of the most common tests used by
physicians to examine patients is the 5XSST (five repetitions sit-
to-stand) test. Using a stopwatch, a physician measures the time it
takes for the subject to stand up, from sitting on a 17″ height
chair that normally rests against the wall, and sit down again, as
quickly as possible, for 5 consecutive repetitions. The measured
time is indicative of the person’s fitness and is related to age,
health (mental and motorial), medications, and other factors, such
as body type, weight, and occupation. A variation is the 30
seconds-sit-to-stand (30CST) test, in which a physician measures
the number of sit-to-stand repetitions achieved within 30 s.

Depending on the condition, numerous other tests may be
suitable, including the Functional Reach Test [20], 6-min walk
test [21], four square step test [22], timed up-and-go [23], sit-and-
reach [24], passive-knee-extension-test, active/passive straight-leg-
raise [25], or combined elevation test.

Physical tests of a similar philosophy are widely used, for
example, from determining the most appropriate sports for young
athletes, deciding whether a person has suffered a mild stroke, or
judging if a driver is drunk, at least before the adoption of
specialized breath-analyzing devices. The same or adapted tests
may be applied to robots to assess their speed, dexterity, stamina,

endurance, or fitness for use in a particular task. In fact, the more
advanced and anthropomorphic a robot is, the better it is expected
to score. Therefore, there are easy-to-perform motion tests that
offer significant conclusions for patients, based on simple time
measurements between certain poses. One of the targets of the
current research is a methodology for developing such tests,
employing AI for these simple time-measuring tasks that can be
performed with a smartphone without the luxury of a physician.
The structure of the paper is focused on the presentation of the
proposed methodology: after the Introduction section, we present
the Related Work (Section 2), analyze our Proposed Methodo-
logy (Section 3), and back our exegesis in the Experimental
Results (Section 4). After the parathesis of Comparative Study
(Section 5), Conclusions (Section 6) are drawn at the end.

2. Related Work

The most popular pose trackers or pose-estimators (as
mentioned previously) employ computer-emulated neural
networks to produce lists of 2D/3D joint coordinates from
photographs or videos (Figure 2(a)), offering markerless motion
capture [26]. They differ in speed, single/multi-person capability,
number of reported keypoints including joints and features such
as eyes and nose, locations of keypoints, detection precision
[27, 28], ease of use, complexity of integration in other
applications, and being proprietary or open. Some may perform
better than others under specific applications, sports, or lighting
conditions. Through further training, some may become more
specialized in certain fields, such as crowded spaces, underwater
activities, or yoga exercises. However, a few of the popular pose
tracker issues (PTI) associated with the quality of measurements
(Figures 2 and 3) are presented in Figure 1, which compares a
typical AI pose tracker such as the popular OpenPose vs an
alternative approach (stand2squatAI_biorig) which will be
discussed in following sections.

Issues such as missed joints (PTI.b) and erroneous coordinates
(PTI.c) are reasonable to expect and perhaps beyond the tracker
creator’s scope of intention. Experimentation and practice suggest
that avoiding complicated multi-person scenes and close-up
scenes significantly reduces missed joints and coordinates. Thus,
whole-body frames are preferable for trackers to achieve a better

Figure 1
Popular pose tracker issues
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performance. However, this has major consequences, as will be
discussed in the following paragraph.

OpenPose excels at human posture recognition (Figure 2(a)).
Nevertheless, it can be fooled by objects (see the yellow detail in
Figure 2(a)). Using only partial frames results to erroneous
coordinates (e.g., hip misplaced at knee in Figure 2(b)). Passive
limb models on the rig are not recognized; instead, “background
noise” from different objects results to false identification
(Figure 2(c)). Figure 2(d) demonstrates that a clothed, upper-body
mannequin and the “right perspective” (view angle) push
OpenPose to identify a full human body, although it misplaces
knees and ankles.

2.1. Shortfalls associated with full-body
frames (FBFS)

1) FBFS.1: Loss of subject’s anonymity during early training stage.
The term “subject” refers to human volunteers that are used for
the formation of a training dataset

Datasets for the AI training stage, such as photographs or videos
of human subjects, cannot be secured. These data are necessary for
the AI system to adjust the proper “synapse weights” that will enable
the identification of features within the specific limits of each “class”.
The more the classes, synapses, and network depth, the more
instances that can be identified by the AI, and the more data
required for training. Preprocessing anonymizing methods may be
applied, such as video editing to cover the eyes and other
identification marks. Such solutions increase effort, time, and cost,
but cannot secure neither the early data collection nor the storage
stages.

Our proposal to infuse a biomimetic rig to mimic human stances
during the training of the AI system, resolves all such issues, because
no human subjects are involved in the training stage. All poses can be
performed countless times by the rig for photo or video capture, for as
long as the AI needs to mature.

2) FBFS.2: Loss of user’s anonymity during tracking (usage) stage.
The term “user” refers to a patient that would use the application
for medical diagnosis reasons

If theAI system requires full-body coverage during video recording,
then the patient’s identity cannot be protected unless the subject wears a
mask, covers birthmarks, tattoos, scars, and other characteristics. It can be
argued that the tracking stage corresponds to the examinationprocedure in
a doctor’s office. However, a doctor is not necessary for an automated test
because the test is intended to be initiated and performed by the human
subject (the “application user”). Hence, all relevant privacy measures
should be applied unless the participant is asked to disclose personal
information voluntarily, which would reduce the test’s adoption
percentage in the patients’ community.

Our proposed methodology, by focusing only on the joints
under study, thus not exposing the entire human subject, resolves
the anonymity issues compared to existing posers that require full-
body coverage.

3) FBFS.3: Need for committees and supervision

To alleviate the previous (FBFS.1) and (FBFS.2), ethics
committees must ensure that all measures are taken, to avoid
mishandling of personal data; these measures are both costly and
time consuming, in addition to the cost of assembling each
committee. Unfortunately, various of the proposed
countermeasures have failed, even in the best institutions, to
public dismay [29–31]. It is an almost common belief that digital
data cannot be protected if they become target of interest.

Therefore, our proposal does not record, store, or transfer to
cloud/centralized mainframes any data. It conducts the developed
test locally on the human’s personal phone/computer and gives
him the authority to further examine the results in any way that is
convenient to him.

4) FBFS.4: Reduced resolution

Choosing whole-body frames over close-ups greatly reduces
the available camera resolution, because the smaller the area under
study, the smaller the useful resolution. This mishap occurs due to
the inability of popular posers to identify certain features unless a
full body is included. Furthermore, wide area homogenous
lighting and “clear backgrounds” are difficult to achieve outside
studios. Such factors affect the image quality, and hence, the
locally effective resolution.

Figure 2
Examples of issues encountered with OpenPose under challenging circumstances
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Thus, close-ups can be easier for users and are favorable for
cameras and AI models.

5) FBFS.5: Reduced potential processing speed

Owing to increasedneural network complexity, the larger the area
and the greater the number of limbs and anatomical features to detect,
the heavier the processing burden to deal with. Consequently, low-cost
systemscannot achieve real-timeoperation.For example, a noncutting-
edge desktop computer without GPUsmay require approximately 20 s
per frame to run OpenPose.

Our proof-of-concept software stand2squatAI_biorig, runs
practically in real time, producing immediate results.

2.2. Addressing the full-body frames and other
obstacles

To address the issue of commonpose trackers versus partial human
images, one approach would be to train AI to extrapolate the missing
information [32], or to combine it with Bayesian inferencing, or to
use Generative Adversarial Networks to produce plausible fill-ins
[33], or even to compose a whole-body image by adding a photo of
the missing parts as in S. Dvir’s Partial-openpose. This photo may
belong to the same or another human or be computer-generated. In
general, it will need proper scaling, cropping, positioning, and
blending to fit smoothly. Otherwise, the accuracy of the actual joints’
coordinate estimation might be reduced. This approach would yield
the best results for simple exercises without body turns. It could cure
(FBFS.1), (FBFS.2), and (FBFS.3), but not (FBFS.4), because the
actual partial image must be scaled down to occupy its normal area
in the composed whole-body image.

Issue (PTI.d), the inability to identify mechanical systems, as
illustrated in Figure 2(c) and (d) is clearly a matter of AI training.
In Figure 3, note that although the background is purposely full of
artificial structures and mechanical parts, OpenPose excludes all
such “noise” and detects only human-like presence.

As seen in Figure 3(a), OpenPose recognizes the torso (side
view) and hands of the mannequin, but not the artificial lower
limbs. Putting tracksuit bottoms at the mechanical limbs
(Figure 3(b)) helps identify thighs (femurs) but not tibia, or
ankles. Placing shoes near the limbs (Figure 3(c)) helps identify
ankles in the partial frame, but erroneously. A full-body frame,
with clothes, enables OpenPose to identify all joints, as in
Figure 3(d).

This weakness is important when it comes to detecting artificial
limbs attached to patients or biomimetic rigs. It is feasible to further
educate human-focused AI tools to include, e.g., mannequins and
anthropomorphic robots, and this has been done to some extent,
but with consequences:

1) Themorewe ask anAImodel to perceive, themore its complexity
increases, requiring faster and more powerful computers, more
training dataset, and more storage space, thus multiplying the
effects of consequences (FBFS.4) and (FBFS.5).

2) There are no limitations regarding the design of artificial
structures or choice of components, including the type and
number of joints. Thus, a considerable effort to keep general
use pose trackers constantly up to date would be required, and
in vain.

3) Mechanical systems are typically developed by using a bottom-
to-top approach. In other words, subsystems are designed,
fabricated, tested, and improved until proper integration. This
necessitates the availability of partial frame-focused evaluation
systems because the full-body (e.g., a robot) is neither
assembled nor operational until the latest project stages.

2.3. AI-automated diagnostic tools

Some diagnostic tests have been automated using AI and a
smartphone or camera-equipped computer to capture the subject’s
motion and extract results without physician’s intervention.
Amazon’s Halo Movement application [34] asks the subject to
place a smartphone on the floor in front of them and execute 5
tests: single-leg stance, forward lunge, overhead squat, overhead
reach, and feet-together squat. The application assesses mobility,
stability, and posture, and reports “movement health scores” from
0 to 100. The app seized to function as of Aug. 1st, 2023, and
uploaded data were deleted according to Amazon’s announcement.

Stanford developed an automatic diagnostic tool for the 5XSST
test [19], among others. An untrained individual is asked to record
the subject performing 5 sit-to-stand repetitions from a 45o angle
and upload the video to the cloud. OpenPose [10] is used to
extract joints’ coordinates. Using these coordinates, Stanford’s
algorithm identifies the standing stances and calculates motion
durations and kinematic parameters, such as trunk angle, speed,
and acceleration. It then generates a scientific report that, until
recently, a specialized physician would be able to compile only
with expensive motion capture equipment and dedicated software.

Figure 3
Using mannequins to force identification of mechanical limbs
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The test results could be used to assess for example the subject’s
osteoarthritis status or mental health depending on underlying
conditions. To use this tool in a nation-wide study, Stanford obtained
digital informed consent from all 493 participants used in the tests.

2.4. Ethics

Whenever humans are involved, especially patients, ethics are
of utmost importance. The following are three examples of good
practice:

1) The Stanford University Institutional Review Board approved
and oversaw the 5XSST [19] study protocol.

2) All nation-wide participants were asked for their consent.
3) To publish a human subject’s photo in the paper by Boswell et al.

[19], Stanford did not use a study participant or a student, but an
actor who gave consent, even though the photograph is small,
low-resolution, with superimposed joints’ dots and connecting lines.

In general, training datasets may be generated by recording
consenting human volunteers. Datasets from young and healthy
individuals have been quite straightforward to obtain this way.
However, diagnostic tests must be trained for the elderly and
patients too, to be of substantial value. Besides ethical issues,
practical problems are also significant. In addition, the advent of
ChatGPT, Midjourney, and other text and art generating/
processing AI tools which have been trained with “public” data
from social media and corporate webpages, films, news
broadcasts, to library and museum collections available on the
internet, has had some serious effects: it raised the public
awareness regarding AI training and laid the ground for litigations
concerning intellectual property rights and privacy infringement.

AI is not to blame solely. In our age of information, data
privacy, personal information leakage, and identity theft have
been the subject of heated discussions and legislative actions
worldwide. Unfortunately, as mentioned earlier, digital data are
unprotected. Consequently, new automated diagnostic tools
should gain the public’s trust, to be widely used.

2.5. Common methodology

So far, the common methodology to automate a gait and posture
analysis test usingpose trackers canbe roughly summarized as follows:

1) Choose the diagnostic test to automate.
2) Through initial trials, confirm that the task is feasible; that is,

confirm that:

2-1) the sequence can be video recorded from a fixed distance and
angle,
2-2) without occlusions that would cause unavailability of critical
joint coordinates,
2-3) with enough precision to extract meaningful results, etc.

3) Employ a pose tracker software to generate joint coordinates from
the subjects’ videos.

4) Write dedicated software to process the joints’ coordinates lists.
5) Generate useful metrics for diagnosis or develop another

dedicated AI model for this job.
6) Prepare some instructions for the subjects to follow.

Opportunities:

1) Smartphones and tablets are widely available.
2) Marker-less motion capture offers great ease plus user

friendliness and foregoes the need for an expert to place markers.

3) Pose tracking software is available.
4) Universities and research institutions have ample manpower with

software engineering skills to implement the dedicated joint
coordinates processing and diagnosis inferencing.

5) The global population can greatly benefit from automated
diagnostic tests.

Hence, the previous methodology will certainly produce
remarkable results. Yet, there are some issues associated with the
toolchain and, most notably, frame capture and processing. On
one hand, optical detection tools endanger privacy. On the other
hand, pose trackers have been optimized for producing coordinate
lists, but this feature is still computationally intensive and may not
be the only solution to a specific test’s requirements. Our
proposed methodology offers an alternative, as explained later.

2.6. The era of publicly available AI tools

Recently, several AI model-building environments and
customizable AI tools have become publicly available, either free
or with subscriptions, or other financial arrangements. For
example, Google provides Teachable machine [35], based on the
tensorflow.js library for machine learning, freely. It is an easy-to-
use straightforward tool which can be trained to detect and
classify images or sounds. The Teachable machine AI
environment is based on deep learning on convolutional neural
networks and relies on labeled data for training and making
predictions [36]. It uses the “transfer learning” technique. With
this approach, a MobileNet model has been pretrained with a vast
amount of data and is now used in a more specific task, by
replacing a minor part of it with a top layer based on the new
data. This technique requires a smaller dataset and has less
processing burden.

In this context, classification works as follows:

1) During model preparation, AI is presented with at least two
classes (sets, collections) of photos. For example, one
collection with photos of cats and another one of dogs. Each
class has a number or tag.

2) Next, AI is asked to automatically train how to discern between
classes.

3) From then on, when AI is shown an image, it will identify in
which class it would fit best, reporting match scores. For
example, if presented with a photo of a sheep, it might reply to
cat:30% and dog:70%. The sum will always be 100%
(Figure 4), and the image will always get classified (even if it
is a lunchbox) because that is what the AI is asked to do.
Naturally, neural networks cannot be 100% correct, especially
if not trained adequately, or if, for example, the lighting
conditions or viewing angles differ significantly from those in
the training sets. In our case, Figure 4(a)–(d) demonstrate AI
classification results for different squat depths, when asked to
classify either standing (class 1) or shallow squats (class 2).

The trained model can be uploaded to a webpage accessible to
everyone. Furthermore, it can be exported to programming
environments such as TensorFlow [1], TensorFlow Lite, or p5js
[37]. There it can be incorporated with the dedicated code which
will use the AI classification results.

3. Proposed Methodology

A great role in the proposed methodology is held by the
programmable Biomimetic Rig with four independent linear
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motion axes. It can emulate walking cycles or other sequences, e.g.,
stand & walk, jog & run, squats, sitting & standing repetitive cycles,
offering major advantages versus human subjects: memory,
repeatability, stamina, adaptability, and controlled variability. The
attached passive limbs are interchangeable and length adjustable
in order to match different physiologies. Each has three rotating
joints: hip, knee, angle, and can be mounted on the rig at various
orientations [38]. As previous research has demonstrated, such a
biomimetic rig [39], may be used for a multitude of tasks in
studies mainly focusing on the lower extremities, such as:

1) Replicating human stances and gait cycles, in a precise manner,
without intra-trial/inter-trial variance.

2) Studying and evaluating passive and active prosthetics and
exoskeletons.

3) Adjusting dimensions/tuning parameters/assessing performance
details of a rehabilitation device (e.g., a robotic walking
assistant) according to a particular human patient’s body and
condition as emulated by the rig (before the rehabilitation
device is attached to the patient).

Cases (1) – (3) take advantage of the fact that a human motion
sequence recorded once, for example in a gait clinic, may be
emulated by the biomimetic rig for numerous experiments under
various circumstances and different instrumentation sets. In the
scope of the general population, there are public datasets with
joint coordinates obtained in labs with “golden standard” motion
capture equipment [40], and datasets with kinematic data from
wearable sensors [41], from force plates [42], etc. Thus, the
datasets may be partial, containing precise information for some
body segments, but not sufficient enough to interpolate for the
whole body.

As discussed previously, common pose trackers:

1) Do not recognize mechanical systems, and these include the rig,
too,

2) Do not work well with partial frames, and currently the rig does
not include a full skeleton structure.

Hence, diagnostic tools using common pose trackers cannot be
used with a rig. The rig may be fitted with clothes, to “disguise” its
mechanical structure as in Figure 3, and an upper-body mannequin

may be added on top. However, from a scientific perspective, adding
a non-driven mannequin to achieve whole-body frames would just
reduce the diagnostic tool resolution available for the lower
extremities of interest. Consequently, another toolchain featuring a
dedicated AI model should be built to apply diagnostic tools on
rig-emulated ailments and orthotic setups. Prior to serving as an
AI diagnosis subject, the rig can assist in the development and
testing of the toolchain and the specific AI model by providing
datasets (photos and video or kinematic data).

Therefore, employing a biomimetic rig to act as a training
platform (Figure 5(b)) could minimize such issues. Using the rig
to generate the training data is simple:

1) Put clothes on the rig (if the training dataset is for diagnostic tools
also applicable to humans),

2) Instruct the rig to adopt certain stances (from public datasets or
previously anonymized lab data),

3) Take a few photos or short videos.

Note that Figure 5 presents two alternative setups. Figure 5(a)
shows the setup for partial human observation for the diagnostic test
5 x stand-to-shallow squat, described in Section 4. Figure 5(b) shows
the biomimetic rig [38] and camera setup for emulating humans, in
order to collect both training and testing datasets.

Steps (2) and (3) can be automated by connecting several static,
remotely operated cameras to the rig or by connecting a single
moving camera on a free axis of the rig (which will be
programmed to move the camera at different spots) or with a
camera on a robotic arm or a drone, even with a static camera and
actuated mirrors (such as “galvo” optical heads). If the dataset
requires videos of certain sequences, then, likewise, the rig can be
instructed to perform and repeat the same sequence, while video
is recorded as many times as necessary, with different clothes,
shoes, lights, etc. To train the AI against clothing artifacts such as
wrinkles, textures, and shading variances, clothes are necessary. In
general, the effects of clothing are important for markerless
motion capture. As for gait research institutes and clinics with
“golden standard” equipment, markers are most often placed on
the skin. Leggings and tights are not recommended because
fabrics may slide over the skin as the limbs move. Clothes may
not be used if training data are required for diagnostic tools that

Figure 4
Images from our AI setup (described in Section 4.3). Subject: Female, 170 cm. View: Sagittal plane, left knee. Full frame
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are only applicable to the rig, or for tools running on radiology
(X-ray) images, or other types of sensors. For every stance of
interest, a few photos from slightly different angles and slightly
different distances are necessary to train the AI model effectively.
Too few photos may mislead the AI tool in detecting, for
example, a certain fabric texture or shade rather than an
anatomical feature. Even if the initial AI training proves
inadequate, this is not an issue for the biomimetic rig: some poses
or stances can be repeated, for example, with different garments,
since the same data feed reproduces the exact same pose.

3.1. The proposed methodology for diagnostic tool
automation

If full-body frames are not necessary for diagnosis purposes, an
alternative approach can be followed with a dedicated AI model
instead of a pose tracker. However, even if whole-body frames are
necessary, it might still be beneficial to develop a dedicated AI
model focusing, for example, on particular anatomical features
instead of joint coordinates that could be provided by a pose
tracker. Figure 6 compares the common “full-body + available
pose tracker” methodology (left column) of paragraph 2.5, against
the proposed “partial frame + dedicated AI model” methodology
(right column). Similarities are extensive. Green color marks new
stages; yellow differentiated ones; blue stages are identical.

Restrictions (2.1) – (2.3) are common in both cases. If a full-
body frame setup satisfies them, the partial frame setup will also
succeed if (2.0) holds. In general, it would be quite difficult to
prepare an AI model that would outperform any of the available
pose trackers unless willing to spend significant effort, time, and
resources. However, for the case-by-case scenario, with a single
diagnostic test examined each time, simple AI models may prove
quite adequate. In (3.2), the terms quantitative and qualitative
refer to AI deliverables. Qualitative results are, e.g., the labels
“standing”/“squat” employed in our example (paragraph 8), or the

labels “good posture”/“bad posture” [16]. A quantitative result
could be “knee flexion= 63o”, i.e., a numeric value for a certain
variable. The term “better” in (3.3) refers to the personal
information privacy aspect, as well as precision and partial data
availability issues. In certain cases, it would even be possible to
omit the dedicated software to process the AI model’s
classification results of step (4):

1) If the required diagnosis is qualitative and rather “intuitive” (e.g.,
sitting posture assessment), the AI model could generate it
directly.

2) If the requireddiagnosismetrics are rather simple (e.g.,minimumor
maximum knee flexion angles), the AI model could infer them
directly.

Alternatively, a posture assessment can be dealt for
example, with:

1) a pose tracker + dedicated code, or
2) pose tracker + secondary AI model [17], or
3) pose tracker + dedicated code on dedicated hardware [43], or
4) special RGB-D camera (color and depth with included pose

tracker) plus dedicated software [44]. Nevertheless, by omitting
the pose tracker and adopting a partial frame approach, it would
not be necessary to photograph the subject’s head or face.

4. Experimental Results

To illustrate the proposed methodology, while showcasing the
power of binary classification, we chose our diagnostic test called
“5 x stand-to-shallow squat” for automation and developed the
“stand2squatAI_biorig” software as a sample of a diagnostic tool.
Conventionally, a physician would ask the subject to perform five
consecutive shallow squats, measure the total exercise duration,
and calculate the average cycle duration. This test can be
automated, that is, performed by the purposely developed software

Figure 5
Observation setups
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which incorporates anAImodel to process the camera feed in real time
and then calculate and report each cycle’s estimated duration, average,
minimum, maximum, and standard deviation. The AI model is trained
and tested using close-up photos of the biomimetic rig performing the
exercise, so that no human datum is used. The rest of this section
discusses the “stand2squatAI_biorig”, development process,
according to the proposed methodology stages.

1) Methodology stage 1: We choose to automate 5 x stand-to-
shallow squat diagnostic test

Test description:Measure the duration of five repetitions from
standing straight to a shallow squat and back. The squat is shallow
(knee flexion angle nomore than about 90o), with a relatively straight
back, so that the elderly can perform it. During exercise, the hands are
folded on the chest, or touching the waist, provided that the knee is
not occluded. The feet should be parallel and steady, always in
contact with the ground without moving. The exercise is relatively
mild. People who find it difficult or painful (e.g., osteoarthritis
patients) may benefit from sliding their back on the wall or a
suitable smooth surface. Alternatively, they could rest against a
purposely built vertical sled, which could also limit the range of
motion and prevent falls. Elderly patients and patients with
kyphosis do not need to stand with their backs completely

straight. The term “standing straight” refers more to the legs
(knees), to the extent possible for each subject.

Necessary test tools: A physician would use a stopwatch to
measure the total time and a calculator to divide the average cycle
duration by 5.

Stance definitions (Figure 7): When standing with fully
extended knees, the knee flexion angle is 0o (included angle=
180o). A range of +5o (under-extension) to −5o (hyper-extension)
is considered normal. At a shallow squat stance, knee flexion is
approximately 90o or less.

2) Methodology stage 2: Confirmation of feasibility through initial
trials

Stage 2.0: Partial frame adequacy
Only a knee close-up is necessary to measure the knee angle, or

alternatively to detect whether the subject is standing or performing a
squat. Partial frames are also desirable, as the system benefits from
them over full-body frames.

Stage 2.1: Fixed distance and angle observability
A sagittal view with the camera at knee height, approximately

47 cm away for a subject approximately 170 cm tall, is adequate. The

Figure 6
The differences between the common and our proposed methodology (on the right)
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camera distance is chosen so that one knee and legs are visible inside
the frame both during squats and while standing, without having to
move the camera. The feet, waist, torso, hands, and head need not be
visible. In fact, the fewer parts visible, the easier it is for the AI tool to
classify knees. The general objective is to constantly maintain the
feature under detection inside the observation frame.

Stage 2.2: Occlusions check
The knee is not occluded from the selected viewpoint, provided

that the subject does not wear long blouses. A pair of blue or black
jeans or other comfortable trousers against a white or light-colored
wall for increased contrast would be ideal.

Stage 2.3: Precision check
Initial trials confirm that precision is sufficient to extract

meaningful results. In any case, the precision is expected to be
approximately double that of a full-body frame arrangement due
to the dimensions of the captured images.

Consequently, the task seems feasible.

3) Methodology stage 3: Preparation of the AI model for optical
processing of the camera live feed

Stage 3.1: Diagnostic requirements
AI needs to detect either the knee flexion angle or the included

angle in each video frame and relay the result to the algorithm that
will measure cycle durations and extract the minimum, maximum,
and average. However, to identify each exercise cycle, an increased
knee angle resolution is not necessary. The algorithm used to
measure the cycle duration could work with a resolution of 1o,
10o, or even 45o. The issue is analogous to the perception of a
gray-scale image: nature affords countless shade variations; on
screen, 256 steps from black to white seem quite smooth, yet a
picture can be converted to 16 shades and remain fairly
recognizable. Furthermore, a picture can be converted to black-
and-white (two shades) and still be of significant value if there
are image areas with sufficient contrast. For timing the exercise
in the stand-to-squat test, it is necessary to discern 2 stances
only. Therefore, AI needs to discern between the two classes
corresponding to the two stances. Alternatively, if it was
required, e.g., to continuously track the knee angle during the
exercise, a 2-stance solution would be inappropriate. Naturally,
the fewer the required training classes, the easier the AI’s task,
and the fewer the erroneous classifications to handle during/after
frame capturing.

Stage 3.2: AI deliverables
Consequently, the AI model is required to label each video

frame, either as “Class 1” or as “Class 2”, with the latter one
referring to the shallow squat.

Stage 3.3: Training dataset collection
Two photograph collections could be generated with the help of the

rigor aconsentingvolunteer.Onephotopercollection is the least absolute.
Three or four photos per collection could be sufficient for similar types of
clothes. More photos per class do improve the outcome. In our example,
approximately 20 photographs were used per class.

Stage 3.4: AI training
After uploading the photos in each class, training Teachable

machine is automated, requiring only one action (Figure 8).

Stage 3.5: AI testing
Testing is immediate, with the help of a camera observing the

rig movement or by uploading other rig photos that have or have not
been used during training (Figure 9).

It should be emphasized that the training dataset was created
with the use of the rig. The rig setup focused on knee flexion/
extension angle (between femur and tibia) measurements. We
photographed it at various stances, at various conditions, e.g., bare
mechanism, clothed mechanism, from various viewpoints. Instead
of relying on a publicly available but uncontrolled set of pictures,
we chose to build our own dataset with the same camera setup
and the same quality of data received. This way we achieved a
dataset that is clear and correctly labeled right from the beginning.
Secondly, we tried to have the two classes balanced, that is of the
same magnitude of information for both. Finally, through a
process of selection and omission, we reduced the dataset to be of
high performance but of small size. This way the AI would
perform in a real-time manner. Finally, class 1 includes 19
“standing stance” and class 2 includes 22 “shallow squat stance”
color photos of 4160 × 3120 pixels resolution in jpg format. Note
that Teachable machine downsamples the photographs internally.

4) Methodology stage 4: Creation of dedicated software to process
the AI results and generate useful metrics to help diagnosis. To
calculate the exercise cycle durations, some coding is
necessary. The completed AI model was uploaded directly
from Teachable machine [35], into the p5js editor [37], and the
analysis algorithm was embedded in its sample (reference) code.

5) Methodology stage 5: Preparation of instructions for human
subjects, or corresponding directives for the involved
technicians, if the test is conducted on artificial structures. In
our case, instructions have been included in the program’s
initial screen. Only 1 icon is required for operation (the “start/
stop test”). The remaining icons regard the filtering parameter
(Section 4.3, Classification filtering) and offer pseudo-data for
experimentation if a camera is not available on the computer.

Closing on the application of the proposed methodology, we
note the following: Due to the partial frame approach and close
camera distance, self-recording is possible. Since the
stand2squatAI_biorig measures the time between two clearly
distinguished stances, we only need two classes to timestamp our
tests to produce measurable results. The combined merits
(Figure 10) of the partial frames and the few-class approach (i.e.,
2-stance detection implementation) are numerous. Among these,
we can emphasize on the following:

Figure 7
(a) Hyper-extension −5deg, (b) straight standing stance 0deg, (c)

under-extension +5deg, and (d) shallow squat ∼90deg

Artificial Intelligence and Applications Vol. 3 Iss. 1 2025

18



Figure 8
(a) Preparing the two class AI model on Teachable machine. (b) Testing the classification results for class 1 “standing stance” with

photos that were not used during training stage. (c) Testing class 2 “shallow squat stance” classification
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1) camera distance is not critical (Figure 10(a) and (b)), and a rigid
fixture is not obligatory,

2) horizontal and vertical viewing angles (camera pan and tilt) are
not critical (Figure 10(b)),

3) lens and perspective distortions are not critical, i.e., do not
compromise accuracy significantly,

4) least possible training and testing dataset, minimizing cost, time,
perplexity, and non-scientific complications,

5) lightest possible neural network for the AI tool, which may be
particularly important if it is to be embedded in hardware or in
a microcontroller (e.g., by using TensorFlow light).

The disadvantages, on the other hand, include the following:

1) Vulnerability to “jitter”. This necessitates filtering, as explained
in Section 4.3, Classification filtering,

2) Limitations in the extractable metrics. While two (2) stance
detection is sufficient enough for timing an exercise, if it was
required, for example, to calculate and graph velocities or
accelerations against time, then knee angles or joints’
coordinates with sufficient resolution would be required.

Concluding, the presented AI setup managed to identify artificial
structures such as the biomimetic rig (Figure 8 preview), a goniometer
(Figure 9), andworked exemplary accurately on detecting human subjects
(males and females) at various observation angles and poses (Figures 9
and 10), even without training on human pictures. Instead, during the
training stage of the AI, only photos taken from various poses of the
biomimetic rig were used, with and without clothing on the mechanical
limbs. Furthermore, human personal data are safeguarded during the
“examination” procedure since camera tracking requires only partial
images.

Regarding our trained-on-partial-frames AI, the recognition
success rates are:

1) for the specified camera arrangement (sagittal view at knee level,
approximately 50 cm away), the certainty levels reported by the
AI model for standing and shallow squat stances exceed 95%.
(See class percentages in Figures 9, 10 and 11).

2) for other camera arrangements (e.g., full-body view and non-
trained AI), the certainty level is lower, as expected, for
example, approximately 75%, as displayed in Figure 4.

However, the binary classification implementation will work
while the certainty is above 51%. This translates to highly
increased tolerance levels. Note that Figure 9(a) and (b) present
the classification results for human subjects with clothes which
differ in color, texture, and details. These clothes have not been
used for training the AI. Figure 9(c) shows a goniometer which
has not been used in training, either.

Regarding the “jitter” portion attributable to image capturing,
and especially for partial frames, the AI model’s efficiency may
benefit from simple image improvement techniques (such as
despeckling, converting to gray scale, contrast enhancing) and
other more advanced (such as background removal, frame
stabilization), according to each diagnostic test’s specificities.
These can be automatically applied before the classification
procedure. The same or corresponding transformations might
have to be applied to the training dataset, too. Conversely, AI
training may benefit from “degrading” the dataset (e.g., by adding
noise, lighting variations and artifacts, shadows), in an attempt
to “ruggedize” the AI model against expected real-world
conditions.

Figure 8
(Continue)
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In the following paragraphs, we introduce stand2squat
AI_biorig. Basic information such as functions, calculations,
and other details about the sample software are presented in
Sections (4.1–4.3). The p5js environment offers ease of use and
free universal access through any browser. That is why
stand2squatAI_biorig has been developed with p5js, by building
on the Teachable machine sample code (Figure 11) that
accompanied the AI model.

4.1. Basic software functions

Figure 11 presents a screenshot of the application. The real-time
camera input is shown on the top left corner. Underneath is the real-
time classification result, the control buttons (icons), and the plots.
The diagnostic test results appear on the right column. While the
diagnostic tool runs, the embedded AI model classifies each
camera frame, reporting the labels “Class 1” or “Class 2”. These
are transformed into “one” (standing) or “zero” (shallow squat)
tags. While the test is being executed, that is, after the “start/stop
diagnostic test” icon has been pressed, the 1 and 0 tags are stored
in an array. Another array holds a millisecond timestamp for each
corresponding frame. When the test has been completed, a
filtering stage is required on the classification results to remove
jitter. A detection stage follows, using a single pass “for” loop, to
distinguish the transitions between stances as changes from 1 to 0,

or from 0 to 1. When a transition is detected, a third array is filled
with the duration of each stance. In this context, “jitter” is used as
a general term, including numerous factors such as actual subject
tremor, camera motion (especially when self-recording), camera
autofocus, frame changes as the subject moves, lighting
fluctuations, and AI false classifications.

Figure 12 presents an example of the stand-to-shallow squat test
consisting of five repetitions. A simplified plot of the knee flexion
angle appears in purple. The blue ribbon shows the AI tool
classification results before the filtering stage. Notice the multiple
erroneous transitions as thin bars. The blue columns show the
estimated stances, correctly identified and timed after filtering.
The gray columns show the exercise cycles, timed using the
standing stances midpoints.

Two sequential stance transitions, that is, stand-to-squat plus
squat-to-stand, which translate as 1 → 0 → 1, constitute a full
cycle. If the test begins and ends with the same stance, then:

number of cycles ¼ number of stances � 1
2

for odd number of stances

(1)

Example: In Figure 11, the app has detected 7 terminal stances,
which correspond to (7-1)/2= 3 cycles.

Figure 9
Classification results for various subjects, including a goniometer
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However, if the test begins and ends with different stances, the
last cycle is considered to be incomplete. The last stance is then
discarded, and:

number of cycles ¼ number of stances � 2
2

for even number of stances

(2)

Example: If the app detected 8 terminal stances, the eighth would be
omitted, giving (8-2)/2= 3 cycles as well.

Three sequential stances (A,B, andC) are involved in each cycle
(e.g.,A: stand,B: squat, C: stand). Except for the first and last exercise
cycles, each intermediate cycle is supposed to include the second half
of stance A, the whole B, and the first half of C (Figure 12):

intermediate cycle duration ¼ stance A
2

þ stance B þ stance C
2
(3)

Example: In Figure 11, the app has detected 3 cycles (first,
intermediate, and last). The intermediate cycle includes the second
half of stance 3 (1073 ms), the whole stance 4 (1163 ms), and the
first half of stance 5 (966.5 ms). Intermediate cycle duration would
be 1073/2+ 1163+ 966/2= 536.5+ 1163+ 483.25= 2182.75 ms,
as displayed in Figure 11 No 2 cycle.

The first cycle usually seems longer because the first stance
includes the lag from pressing the “start” button to the start of the
exercise. This lag may be significant, particularly for self-recording.

Figure 10
Classification success with or without clothes, at various views and distances

Figure 11
Screenshot: Stand2squatAI_biorig in p5js.org editor
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In other words, the absolute first stance duration may be misleading.
Therefore, to improve the estimation for the first cycle, stance C is
used twice instead of stance A as follows:

first cycle duration ¼ stance C
2

þ stance B þ stance C
2

¼ stance Bþ stance C

(4)

Example: In Figure 11, the estimated first cycle includes the second
half of stance 3 (1073 ms), the whole stance 2 (1099.5 ms), and
the first half of stance 3 (1073 ms). Estimated first cycle duration
would be 1073/2+ 1099.5+ 1073/2= 1099.5+ 1073= 2172.75 ms,
as displayed in Figure 11 No 1 cycle. Without the correction, the first
cycle duration would be 1132/2+ 1099.5+ 1073/2= 566+ 1099.5+
536.5= 2202 ms.

Similarly, the last valid stance of the last cycle includes the lag
after stopping the exercise until the stop button is pressed. Therefore:

last cycle duration ¼ stance A
2

þ stance B þ stance A
2

¼ stance Aþ stance B

(5)

Example: In Figure 11, the estimated last cycle includes the second
half of stance 5 (966.5 ms), the whole stance 6 (1033 ms), and
the first half of stance 5 (966.5 ms). Estimated first cycle duration
would be 966.5/2+ 1033+ 966.5/2= 966.5+ 1033= 1999.5 ms, as

displayed in Figure 11 No 3 cycle. Without the correction, the last
cycle duration would be 966.5/2+ 1033+ 1482/2= 483.25+ 1033+
741= 2257.25 ms.

An array is filled with the duration of each cycle, and themetrics
are then calculated and printed on the screen (Figure 11).

4.2. Metrics calculation

Stand2squatAI_biorig reports metrics as soon as the “start/stop”
button is pressed for the second time, indicating the end of the
observation stage of the diagnostic test.

total exercise duration ¼ P
cycle durations (6)

Average cycle duration ¼ avrg ¼ total exercise duration
number of cycles (7)

Mincycleduration ¼ minimum of allcycles0durationsð Þ (8)

Maxcycleduration ¼ maximum of allcycles0durationsð Þ (9)

cycle duration sample standard deviation ¼ s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x�avrgð Þ2
n�1

q
(10)

Where:

n = number of cycles,
avrg = average cycle duration,
x denotes each cycle duration

Figure 12
Example of the five-repetition stand-to-shallow squat test
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The total exercise duration is usually less than the “Observation
duration, ”as shown in the first lineof the results, becauseofdiscarding:

1) The last stance of the last incomplete cycle (if such exists).
2) Excess duration of the absolute first stance (compared to the third

stance). The third stance is used to improve cycle duration
estimation.

3) The excess duration of the last of the valid stances is similar to that
in (b).

Conversely, if user presses the “start test” button after starting to
move, the first stance may be smaller than the third, and the total
reported exercise duration may appear longer than the
“Observation duration”. Likewise, if user presses the “stop test”
button before finishing their motion!

Notes

1) Timing results are expressed in milliseconds (ms) and
seconds (s).

2) If a subject performs more than five or fewer repetitions, the
results would still be correct. Of course, the greater the number
of repetitions, the better (regarding the average cycle duration
precision).

3) If a subject performs the exercise starting with a squat, the results
would again be correct. That is, cycle 0 → 1 → 0 is also valid.

4) Frame rate affects precision; more in the case of young and
athletic subjects who can move fast and less in the case of
elders and patients. Usually, low-cost cameras and systems
offer approximately 30 frames per second, which implies a
nonconstant time lag of approximately 33 ms. The average
frame rate and time lag are shown at the beginning of the
results, below the “Observation duration” (Figure 11).

4.3. Classification filtering

A common problem in electronics is “zero-cross detection”,
which is required in order, for example, to synchronize the firing of
power switches at the instance when the sinusoidal mains voltage
(or current, in other cases) crosses the value of 0 V (or 0 A). The
problems arise from the superimposed noise. The error (zero signal
value minus superimposed noise) however small becomes
significant when compared to nothing. Thus, a “naive” circuit may
detect multiple zero crosses, before and after the “ideal” instance.
The 2-class detection implementation presents similar “switching”
issues. While minimum (standing) and maximum (shallow squat)
knee flexion angles are safely detected, the middle values may fall
into one class or the other. The AI tool will classify a subject’s
highest posture as “standing” even if the flexion angle is 10° instead
of 0° because it differs significantly from a squat. Subtracting the
certainties of the two classes (match scores) yields a large positive
value. However, at the transition between stances, certainties
become equal. Their difference is zero, causing vulnerability to
noise and “switching” issues. These are expressed as “spikes” (very
narrow stances, as if one jumped from squat-to-stand within
milliseconds). These spikes would cause an overestimation of the
number of stances and cycles and an underestimation of the average
cycle duration. This would also ruin the reported minimum cycle
duration, which, in this case, would be the duration of the narrowest
spike, not corresponding to an actual cycle.

This issue can be addressed in several ways. Among them, by:

1) Increasing the number of classes. For example, a model with 3
classes: High (standing straight), Middle, Low (shallow squat).

Then “spikes” will occur in the transitions H <-> M and
M <-> L and can be easily grouped with the corresponding H
or L class. H <-> L transitions are not expected, unless the
frame rate is rather slow, or the AI tool inadequately trained.

2) Limiting the minimum acceptable stance duration. An
unacceptably short duration can be grouped with the previous
one or with the largest of its 2 neighbors, etc. In real-world
situations, this easily applicable approach may require human
intervention to select the most appropriate minimum limit,
according to the equipment (camera frame rate, steady/
handheld camera, lightning conditions, etc.,), the subject (fast/
slow moving, with/without tremor) and other factors (clothes,
background, etc.,).

3) Filtering. Practice shows that some sort of filtering is
unavoidable. Simple filters will work satisfactorily, until noise
levels become high.

stand2squatAI_biorig uses a centered, fixed-length, running-
window, majority filter. That is, to determine the filtered value of
a specific frame’s stance (1/0), the algorithm sums the values of
this frame with the values of w previous and w following frames.
Thus:

window length ¼ wþ 1þ w ¼ 2wþ 1 (11)

fwindow length is always oddg

Where:
w may be defined by the user

If the sum is>w (i.e., higher than 50%), then the result is 1; else, it is
0. The window is “mirrored” at the video edges: for the starting
frames without w predecessors, the corresponding subsequent
frames are used instead; likewise, for the ending frames. Small
window lengths (e.g., 5) work very well for 0 or low “jitter”. For
significant jitter, the length must be increased (up to 99999),
without approaching the total number of observed frames (it is
automatically limited to 1/4 of the total number of frames).
However, a large window is not a perfect solution, since it may,
e.g., “trim” real cycles down to inexistence. User can select the
window length, by defining w. When changing value, the results
are extracted and presented again. This is feasible, because the
arrays with the classifications of the last test are not altered until
the next is observed. If the “plot zones” checkbox is ticked, each
frame’s classification is plotted at the bottom of the screen, before
filtering (yellow ribbon) and after filtering (white ribbon). The
2-class certainties are plotted in pink and purple (Figure 11). So,
the user may realize the effect of filtering and choose an appropriate
value (Figures 13, 14 and 15). Figure 14 provides an example of
successful filtering with w= 2 (window length= 2 * w+ 1= 5). On
the contrary, Figure 15 demonstrates that an oversized filter (w= 4,
window length= 9) results in missing a stance and an exercise
cycle. The 4rth stance is lost because its duration is 4, i.e., small
compared to the window length. In both Figures 14 and 15, IN
denotes input in blue color. RW denotes the centered, fixed-length,
running window, mirrored edges, and majority filter. OUT denotes
the output stances in orange color.

5. Comparative Study

After automating a diagnostic test through the proposedmethodo-
logy, a fast accuracy check may be executed with the help of
the biomimetic rig. In the example of stand2squatAI_biorig
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Figure 13
Three examples of our single-camera diagnostic test performed on human subject

Figure 14
Example of successful filtering with w= 2

Figure 15
Too wide filter (w= 4, window length= 9) results to missing a stance and an exercise cycle
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application, we programmed the rig to execute shallow squats, dressed
it upwith track pants (Figure 16) which had not been photographed for
the trainingdataset. Thenwepurposely run the app on a typical Intel i7-
4770 cpu @ 3.40 GHz pc, equipped with Nvidia GeForce GT620
graphics adapter and an off-the-shelf Foscam W21 FDH-1080p usb
camera, to record 15 tests. Each test included 5 repetitions of
standing to shallow squatting cycles. Some of the reported data are
presented in Figure 17, with their order sorted according to observed
exercise duration. Note that “zone Hi” corresponds to standing
stance, while “zone Low” corresponds to shallow squat stance.

Figure 18 shows the observed vs estimated duration of each test.
As previously noted, the observed duration depends upon the user’s
reaction timewhen starting and stopping the app. This uncontrollable
jitter, which in this set of tests causes a variation of 16013–
12192= 3821 ms ∼3.8 s, is rather high for a 11 s estimated
overall time test. However, Equations (4) and (5) can handle such
jitter. Thus, the estimated duration is quite consistent among tests

as shown in Figure 18. Indeed, the remaining variation is 11098–
10923= 175 ms only, which represents 175/3821= 4.6% of the
observed duration variation.

As previously noted, the achieved frame rate is significant for
the tests’ accuracy. As shown in Figure 17 the average frame rate is
not consistent among tests, with frame lag varying from 51 to 61 ms
(19.6∼16.4 fps). This depends on the system configuration.
Figure 19 shows the effect of a slow and inconsistent frame rate.
Here the estimated average varies from 2184.6 to 2219.6 ms= 35
ms or 35/2184.6= 1.6%. Note that a high-performance system
would easily reach 60 fps. Then the variation between the
reported average, min, max cycle duration would be much
smaller. Ideally, it should be average = min = max, because all
exercises have been performed by the robotic rig executing the
same motion pattern. Yet, the rig was dressed, and the cloth is
expected to add variation [38] to the measurements.

Figure 16
Snapshot after the rig executed test No 1

Figure 17
Reports produced by stand2squatAI_biorig from 15 tests on the rig. Columns sorted by observation duration

Figure 18
Observed vs estimated exercise durations
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Nevertheless, as seen in Figure 20, the stances jitter is quite
uniform, and thus does not alter the appearance of the motion
pattern. So, a diagnosis for the specific “patient” could be
exported with a good confidence factor. The advantage of this
quick accuracy assessment method is that it offers a benchmark
for the expected results with the employed system configuration.
Hence, it can be decided whether it is suitable for performing
certain tests according to the required accuracy for diagnosing a
specific ailment.

With the proposed methodology certain advantages arise:

1) Partial frame optical AI diagnostic tools can be developed quite
fast and inexpensively.

2) Optical AI diagnostic tools can be used in humans, rigs,
exoskeletons, prosthetics, orthotics.

3) Optical diagnostic tools can be run on recorded partial human
motion data using a rig for emulation (with the human absent,
without video available from the actual subject).

4) Affordable, precise, and consistent training and testing. For
example, a rig facilitates multiple photos of various clothes,
backgrounds, and perspectives at the same constant knee
angle. Achieving this with a human subject would require

motion capture systems with markers/stereotactic equipment/
special setups with ultrasonic, X-ray, or short-wave sensors/
tedious post-processing.

5) Human volunteers are not necessary for training the AI.
Employing the biomimetic rig solves these ethical issues.

6) Similarly, volunteers are not required to test the AI and/or the
finished diagnostic tool. In addition to ethics, the rig achieves
reductions in costs and development time.

7) Processing speed. For example, running OpenPose on a
noncutting-edge computer without GPUs requires several
seconds per video frame. Hence, the exercise must be
recorded first and the video processed later. On the other
hand, a light, partial frame, dedicated AI model, like the
presented, achieves “real-time” classification (certainly within
milliseconds).

8) Diagnosis speed. The results appear on screen as soon as the test
is completed (when the user presses the “stop test” icon).

9) Personal data privacy. No internet connection is necessary.
10) Ease of use. Users can see whether their stance is properly

classified immediately prior to executing the test.
11) Simplicity. As illustrated, few-class models may perform

adequately for certain diagnostic tests.

On the other hand, the disadvantages of few-class models
include the following:

1) Vulnerability to “jitter”. This necessitates filtering, as explained
in Section 4.3 (classification filtering).

2) Limitationsof extractablemetrics. For example, two stancesmaybe
sufficient for timing an exercise but not for accurately calculating
and graphing joint velocities or accelerations against time.

In the future, as processors become faster, the processing speed
issue may lose importance, unless:

1) Fast cameras are necessary, according to the requirements of
certain tests.

2) Multiple cameras are necessary (e.g., for joined frontal/sagittal
plane studies, or for multiple close-up frames at various
angles/regions or for multiple spectral imaging of the same area).

Figure 20
Apparent jitter in stance duration estimation after pinning the data series at first squat stance

Figure 19
Variation (error magnitude) in cycle duration estimates
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3) Processor and computer shortages continue to plague the
supply chain.

The proposed methodology and automated tools developed
with its help can facilitate the assessment and fine-tuning of
exoskeletons, prosthetics, and mechanical or medical aids. They
can assist in the testing and evaluation of the combined human
plus device system performance. Their significant advantage is the
option to substitute the human subject with a biomimetic rig if
original data from the subject are available from previous
recordings. Future work will focus on these matters.

6. Conclusion

Automating gait and posture diagnostic tests with AI optical
detection models and dedicated software on camera-equipped
computers or smartphones is easy as illustrated with the proposed
methodology. If applicable on the diagnostic test of interest, such
automation may extend the reach of specialized healthcare
services to wider population groups, as well as improve the
services offered regarding orthotics, exoskeletons, prosthetics, and
gait studies. The proposed methodology can assist in the
automation while ensuring data privacy, thus maximizing the
possibility of widespread public adoption and usage. The given
example, stand2squatAI_biorig app, can be prepared quickly,
efficiently, and cost-effectively, using free and open software tools.

Free, directly available to the general population, simple to use,
AI tools for human diagnosis through open platforms, help in the
Democratization of public health. The capability to perform self-
diagnosis may play a basic role on early detection of health
issues, let aside rehabilitation. It is of imperative importance to
increase the number of people that have access to free or low-cost
diagnostic solutions before contacting trained physicians which
are of course indispensable in a proper healthcare organization.

An AI model’s number of classes/complexity is to be
determined both by the specific diagnostic test’s requirements and
by the developer’s intentional choice between:

1) a simple and fast AI implementation, or
2) a complex and slow AI implementation.

For instance, while developing the example of
stand2squatAI_biorig, the test’s requirements allowed the choice
of a simple and flexible AI implementation, which we favored to
achieve a real-time response. Thus, we coupled it with a dedicated
software to filter and generate useful metrics. Instead, we could
have used a multi-class AI that detects and classifies the motion
of the subject under study through all-in-between angles from
zero knee flexion (−5o) up to a shallow squat (+95o) and combine
it with a simpler post-processing software that would select the
range of angles between the two stances to measure the cycle time.

To validate this diagnostic app, we performed a new set of
experiments using the rig instead of volunteers. We created an
algorithmic sit to squat cycle with fixed timing to be performed
by the biomimetic rig for five consecutive times. We set the
equipment to record the rig’s motion 15 times, as if we had
several volunteers. We included various initial delay responses, to
check that our software algorithm is able to remove such jitter.
With basic statistical analysis, we obtained an indication of the
expected accuracy with the particular system configuration, which
is quite promising for the implementation of such diagnostic apps.

We also discussed ethics issues that arise when patients’
medical data are used without anonymization. Our proposed

solution made use of an active biomimetic rig to accurately
reproduce human poses and gait cycle. This was helpful at
various stages of this research. Firstly, by using a rig instead of
human subjects, we zero the personal data exposed to any
system. Secondly, during the creation of the AI training dataset,
the rig gave us the opportunity to set different viewing angles
for the photos, for the exact same poses. It offered the chance to
put various clothes on the mechanical limbs for the same
stances. It repeated with ease any problematic stance during
fine-tuning. Finally, it offered an as-detailed-as-needed dataset,
excluding the human Intra and Inter-Subject variability [38]
which up to now has been largely uncontrolled. The rig also
discarded the burden of coping with a large number of human
volunteers.

Wewould urge co-researchers to work on this methodology and
automate gait and posture tests that require stance recognition or
similar tests with neurological stimuli and reactions.
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