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Abstract: This paper aims to investigate source camera identification (SCI), one of the challenges in image forensics. Besides SCI, research on the
robustness of the SCI algorithm for practical applications is necessary because images are altered due to JPEG compression,Gaussianwhite noise,
and rescaling on social networking platforms, where the fingerprints of the images may be contaminated. In this study, we explore robust SCI by
extracting sensor pattern noise (SPN) for each camera model using mean subtracted contrast normalization (MSCN). Firstly, MSCN is extracted
for every camera model. In this study, it is termed basic sensor pattern noise (BSPN). We further enhance the basic sensor pattern in the Fourier
domain to obtain the final fingerprint, termed SPN. To attribute an unknown image to its source camera, the SPN of the image is extracted. The
SPN of the unknown image is then correlated with the reference SPN of all camera models, respectively. If the correlation is greater than the
particular threshold, then it leads to the cameramodel identification. Experiment results confirm that the proposedmethod effectively attributes an
unknown image with its source camera and can resist JPEG compression, Gaussian white noise, and rescaling attacks more efficiently than the
state-of-the-art SCI methods. Furthermore, the time required to extract SPN from the query image is also low.
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1. Introduction

The increasing digital crime in various forms has given rise to
a wide research area in computer forensics that has several
applications in digital forensic investigations. Currently, a
variety of image-capturing devices enable the capture, storage,
and daily posting of millions of images for public viewing. The
purpose of camera model identification is to provide answers to
the following questions: 1. “Which model of camera does this
image (most likely) come from?” 2. “Is this photograph taken
with a camera of this make and model?” [1]. The same image
can be captured by different camera models as shown in
Figure 1, and the problem is to identify the camera model for an
image blindly. The effectiveness of image editing software is
also expanding in parallel, allowing anonymous to forge digital
image content. Anonymous may create phony accounts on social
media or image content may be changed by using photo editing
software. As a result, the actual owner of the image may be
harassed by Law enforcement agencies. The images can only be
used as “legal evidence” or “trusted evidence” when they are
correctly authenticated. Digital camera processing is quite
sophisticated, and it differs depending on the camera type and
manufacturer. Because of their actual authenticity, digital photos

are fragile. In situations involving child pornography and movie
piracy, insurance claims, and scientific fraud, establishing the
provenance of the imagery offered as only crucial evidence in
court requires reliable and authentic identification of the capture
device. Source camera identification (SCI) is a blind technique
[2] as there is no previous embedded information like a digital
watermark or digital signature within the image. In the digital
image forensic domain, an image has to be fabricated to its
source camera in a completely blind way. Blind image forensics
is a strategy that addresses the following two problems
primarily: unauthorized modification of image and image source
identification [3]. Images are inherently related to the capturing
device. It inherits sensor features from capturing devices, and
cameras of different brands and models have different features.
Even the same model can have a slightly different feature
because human operating errors and other errors affect the
correctness of the sensor.

In this study, we have employed a simplified model to construct
a less complex camera model identification approach adaptable to a
wide range of cameras using MSCN coefficients. The proposed
method is tested on the “Dresden Image Database”, and the
results are promising in terms of accuracy, speed, and robustness.
The paper is organized as follows: Section 2 gives related work.
Section 3 provides SCI using MSCN with the proposed
methodology in detail. Section 4 represents the experimental
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setup. Section 5 gives experimental results with robustness. Finally,
Section 6 concludes the paper.

2. Related Works

The sensor pattern noise-based (SPN) SCI techniques, such as
the pixel non-uniformity noise-based method, maximum
likelihood estimator of Photo Response Non-Uniformity
(PRNU), The BM3D filter, Content Adaptive Guided image
filter, and Dual-Tree complex wavelet transform based, etc.,
have been described in [4–11]. Under ideal conditions, the true
positive rate (TPR) for a False-positive rate (FPR) at 10�4 reaches
a peak of 23.23 (DTCWT). While most methods exhibit moderate
speed, CAGIF outperforms them all in terms of speed but com-
promises on TPR. However, robustness remains a challenge across
all methods. A multiscale feature fusion network is proposed in
[12] to enhance SCI by extracting and fusing SPN features from
image patches of different scales. A semi-supervised ensemble
learning method (multi-DS) is proposed in [13] for SCI. A novel
method for video SCI using noise patterns and majority voting is
presented in [14]. CNN-based SCI has been discussed in
[15–18]. CNN-based methods demonstrated an impressive accu-
racy of 97%. However, they lagged behind traditional methods
in speed due to their high computational demands. For evaluation
accuracy; state-of-the-art machine learning algorithms like SVM,
logistic regression, and random forest-based classification have
been used in most of the papers. These methods delivered an
impressive accuracy ranging from 90% to 97% while maintaining
a moderate processing speed. To identify the source camera, modi-
fied CNN such as AlexNet and local binary pattern are used [19] to
improve the accuracy. This paper offers a balanced trade-off, deliv-
ering moderate accuracy compared to standard CNN-based meth-
ods while significantly reducing training time. To enhance the
reliability of camera identification, undesirable artifacts should
be removed from SPN [20]. Though EXIF tags could be
used for SCI, EXIF metadata changes over time [21]. In [22],

wavelet-based feature extraction and image classification using
SVM are presented. In [23], depth cameras and their noise patterns
are discussed. The Forchheim Image Database has been proposed
in [24] and allows to cleanly separate image content from forensic
artifacts. A deep learning-based approach that learns the unique
traces from the images transformed to the discrete cosine and wave-
let domains is shown in [25]. The effects of off-nominal exposure
are studied in [26]. This paper uses DWT denoising methods with
signed peak-to-correlation energy (PCE) for correlation. In [27],
the authors extract SPN with 3 channels using DWT methods
and then enhance SPN using model 5, as described in [28]. This
method offers fast processing and delivers satisfactory results
under ideal conditions; however, it lacks resilience against
compression, rescaling, and Gaussian noise. [29] provides a
comprehensive review of SCI methodologies, offering an in-depth
exploration of the field. An advanced ConvNet-based SCI
approach is introduced in [30], showcasing the power of deep
learning. Pixel analysis-driven SCI techniques are discussed in
[31], while [32, 33] present innovative methods leveraging color
correlation features and multiscale feature fusion for enhanced
SCI performance. SCI and detection in digital videos through blind
forensics have been introduced in [34]. Fixed pattern noise
removal, leveraging a pre-calibrated noise pattern, is demonstrated
effectively in [35]. PRNU-based video source attribution, a method
that utilizes PRNU to trace the origin of video content, has been
meticulously developed and demonstrated in [36]. Non-distor-
tion-specific features, derived using normalized Discrete
Cosine Transform coefficients and modeled through a Generalized
Gaussian Distribution, have been proposed in [37] for the SCI.

Though state-of-the-art SCI methods provide good accuracy,
most of the approaches suffer from low robustness and high
complexity. A robust and simple system generally requires less
effort to extract the fingerprint of the query image and to speed up
the identification process. Besides accuracy, robustness methods
are the main concern in today’s socioeconomic scenario. So we
emphasize our work on robustness in SCI. The performance of the

Figure 1
Same image captured with different camera models (a) Agfa_DC-830i, (b) Canon_Ixus55,
(c) Canon_Ixus70, (d) Kodak_M1063, (e) Olympus_mju_1050SW, (f) Samsung_L74wide
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proposed method is measured in terms of TPR for fixed FPR, AUC
(area under the curve), and speed to extract the SPN of the query
image. The contributions can be encapsulated as follows:

1) The detection of SPN of the camera models using the MSCN of
red and green channels and its enhancement to correctly attribute
the source camera of an image is discussed. Using the test image
SPN of the red and green channel, correlation is calculated with
the reference SPN of all camera models.

2) The proposed algorithm provides high robustness when images
are attacked by JPEG compression, Gaussian white noise, and
rescaling. The proposed framework outperforms some recent
works in terms of speed and robustness. The method also
provides comparable results with state-of-the-art SCI methods.

3. SCI Using MSCN

The image sensor is the heart of every digital camera. In a
traditional digital camera, there are numerous processing phases.
Various errors in the image acquisition process are unavoidable.
The sensor is divided into pixels, which gather photons and
convert them to voltages. Voltage amplification and quantization
create the output digital value. Before reaching the sensor, light
from the captured scene goes via the camera lenses, a filter, and a
color filter array (CFA). At each pixel, the CFA permits only one
color to be measured. The digitized sensor data are subsequently
interpolated (demosaicked) using color interpolation methods to
obtain the three fundamental colors for each pixel. The digital
image is then recorded in the camera’s internal memory.

3.1. Conventional methods to extract SPN

Due to silicon wafer inhomogeneity, the Sensor Pattern Noise
(SPN) created by Photo-Response Non-Uniformity (PRNU) varies
from one camera to another, even within the same model and make.
As a result, the source camera can be effectively identified using
sensor-based pattern noise, which is calculated using Equation (1).

W ¼ Y � FðYÞ (1)

whereF is the denoising filter, Y is the image, andW is the noise residue.
The denoising filter is critical for extracting pure SPN. The SPN of a
specific camera model k is calculated using Equation (2) by averaging
a number of noise residues from the same camera model [38] as:

SPN kð Þ ¼
P

N
i¼1 Wi

N
(2)

or using Equation (3), the maximum likelihood approach [39] is
calculated as:

SPN kð Þ ¼
P

N
i¼1 YiWiP
N
i¼1 Y

2
i

(3)

where Yi, i2 1; 2; 3; . . . ;Nf g denotesN photos captured by the same
camera model, Wi is the noise residue of the ith image, Wi =

Yi � Y 0ð Þ
i , Y 0ð Þ

i , is Yi denoised using a denoising filter. The number
of images used to calculate SPN for camera model k is N. All the
operations in Equation (3) are elementwise. Image content is sup-
pressed in this fashion, and SPN is calculated correspondingly.
For identification, normalized correlation coefficients, a statistical
hypothesis test, and PCE are typically utilized.

3.2. Mean subtracted contrast normalization (MSCN)

In image processing and computer vision tasks, the MSCN
technique is frequently employed. The main characteristics for
which MSCN has been used to extract SPN are listed below. By
normalizing the contrast, it keeps the structure of an image intact.
A more informative image is produced by normalizing the local
contrast, which enhances both low- and high-contrast areas of an
image. When lighting conditions vary between or within images,
MSCN is especially helpful. MSCN effectively removes the
global illumination component from each pixel by subtracting the
mean intensity from each pixel, making the image more invariant
to lighting variations, which is an important aspect of SCI. This is
useful for SCI, as images captured in different lighting conditions
can have a significant impact on performance. The noise
component is attenuated by subtracting the mean value, making
the image more resistant to noise interference. MSCN is one of
the modern techniques which transform the image intensity into
luminance at a given pixel. The MSCN coefficients are calculated
using the following steps, as illustrated in Figure 2.

On the log–contrast values, local mean subtraction and variance
normalization follow the Gaussian distribution observed by Daniel L
Ruderman [40]. MSCN coefficients are calculated using the following
Equations (4), (5) and (6).

Î i; jð Þ ¼ I i; jð Þ � µ i; jð Þ
σ i; jð Þ þ c

(4)

where I(i, j) is the image intensity at a given pixel(i,j) and Î i; jð Þ is the
luminance corresponding to the pixel, where i∈ {1, 2, 3, : : : ,H}, j∈ {1,
2, 3, : : : , W } are the spatial indices (H andW are the height andwidth of
the image, respectively), μ(i, j) is the local mean-field and σ(i, j) is the
local variance field.

µ i; jð Þ ¼
XM

m¼�M

XM
n¼�M

Wm;nI iþm; jþ nð Þ (5)

σ i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m¼�M

XM
n¼�M

Wm; n I iþm; jþ nð Þ � µ i; jð Þ½ �2
vuut (6)

whereW = {wm,n|m = −M, : : : , M, n = −N, : : : , N} is a 2D circularly
symmetric Gaussian weighting function sampled out to 3 standard
deviations (M = N= 3) and rescaled to unit volume. In Equation (4),
μ is the denoised version of an image I with a Gaussian filter. The
Gaussian kernel filter is designed with a window size of
7 × 7. The value of c= 1 is a constant in Equation (4) that is used to
prevent instabilities when the denominator approaches zero. As the
SPN is unique to the camera model, the MSCN is used here to
extract the SPN in conjunction with Equation (2), described in
Section 3.4 in more detail. In Figure 3, the observation of the MSCN
coefficient is shown.

Figure 2
Steps to calculate MSCN coefficients
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3.3. The proposed methodology

The overview of the proposed method is shown in Figure 4. The
MSCN coefficients of the green and red channels of a number of
images are used to determine the basic sensor pattern noise

(BSPN). The reason for using green and red channels is that the
Bayer pattern has twice as many green pixels in the matrix as red or
blue pixels. When the RGB triplets are rebuilt from neighboring
sensor pixels, the blue and red channels immediately fall behind the
green channel, resulting in significantly higher spectral noise for
those two channels [41]. Second, current CMOS sensors are around
50% more sensitive to the green and red regions of the spectrum
than to the blue. Blue has a significantly worse signal-to-noise ratio
than the other two colors due to its lack of sensitivity combined with
a fixed sensor level and sampling noise for all pixels throughout the
sensors. In experiments to determine the best channel, it is found that
the red and green channels work better together than the red, green,
blue, red-green, blue-green, and green-blue channels. By including
the blue channel along with the other two channels, the performance
remains the same. To decrease the running time to extract SPN from
the query image, the blue channel is disregarded to enable the
proposed method to be used in real time. Figure 5 illustrates the
channel comparison in terms of TPR for fixed FPR 10�4.

3.4. Extraction of SPN

In order to extract SPN from an image, BSPN is extracted using
algorithm 1, Equation (2), and the method described in [38] with red
and green channel MSCN coefficients. During the estimation of SPN,
the extracted signal contains additional non-unique components, such
as artifacts due to color interpolation, on-sensor signal transfer, and
JPEG compression (blockiness). These artifacts are not unique to a
specific camera sensor but are shared among cameras of the same
brand or those using similar sensor designs. This may introduce
correlations between SPNs of different cameras, leading to an
increase in false identification rates and a decrease in the reliability
of the camera identification process. To mitigate this issue, these
non-unique artifacts are removed using Fourier domain
enhancement of SPN. Hence, discrete Fourier domain is adapted as
used by [5] in algorithm 2. First DFT of the BSPN is computed and

Figure 3
MSCN coefficient calculation

Figure 4
Overview of the proposed method using MSCN coefficients
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takes the real part only. Estimate the noise variance of the BSPN in the
frequency domain using MAP (maximum a posteriori probability)
estimation for two sizes of square N x N neighborhoods [N= 3, 5].
The final estimate is a minimum of two. The noise coefficient is
then calculated, and a Wiener filter-like attenuation is applied to
obtain denoised BSPN in the frequency domain. By taking the
inverse DFT, pure SPN is extracted.

When a fingerprint is calculated, a non-unique artifact of an
image that came from several cameras of the same model revealed
only a modest similarity. This non-unique artifact is not exclusive
to the sensor, and as a result, they raise the FPR. These non-unique
artifacts and the image content need to be suppressed in order to
recover pure SPN. Fortunately, the majority of these artifacts are
caused by demosaicking methods, which are periodic in nature
and rely on the CFA [42]. Along with these periodic artifacts,
non-periodic artifacts (e.g., compression artifacts or artifacts
inherent to sensor on-board circuitry) are also present in BSPN. To
suppress periodic and non-periodic artifacts from BSPN, Algorithm
2 is introduced, as done in [1]. Step 1 in algorithm 2 is used to
convert BSPN into the frequency domain, as the non-unique
artifacts and image details from the scene are largely contaminated

in the frequency domain. In step 2, the noise variance of the BSPN
is calculated as the noise that we want to not exceed locally. Step 3
entails estimating the BSPN coefficient variance using MAP and
noise variance with two sizes of square NxN neighborhoods [N= 3,
5] to avoid exceeding the noise variance locally. Equation (13) in
algorithm 2 is used to extract the noise coefficient after suppressing
non-unique artifacts present in BSPN.

3.5. Detection of camera model

The reference SPN of different camera models is correlated with
the extracted SPN of the query image using both the red and green
channels using Equations (7) and (8). The total correlation is
calculated using Equation (9). If the total correlation value is greater
than a particular threshold value, then it is decided that the query
image is taken with that camera model; otherwise, the query image
is not taken with that camera model. The steps are given below:

Steps:
1) Calculate the correlation of red and green channel SPN of query

imagewith red and green channel reference SPN of cameramodel
say A, using Equations (7) and (8).

Figure 5
Performance comparison of RGB channels in terms of ROC curves

(a) Medium size (1024 × 768), (b) big size (2592 × 1944), (c) small size (128 × 128)
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corr red SPNRed; Pc Redð Þ ¼
P

SPNRed:Pc Redð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
SPN2

Red:
P

P2
c Red

p (7)

corr green SPNGreen;Pc Greenð Þ ¼
P

SPNGreen:Pc Greenð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
SPN2

Green:
P

P2
c Green

p (8)

where Pc Red and Pc Green are the red and green channel SPN for query
image P respectively.

2) Calculate the total correlation usingEquation (9) for all cameramodels,
to decide whether image P has been captured by camera model A.

corrT ¼ corr red þ corr green (9)

where corrT is the total correlation value.

3) If the corrT value is greater than a particular threshold value,
then P is taken with the camera model A, else P is not taken
with camera model A. To maintain the recommended FPR, the
detector threshold should be changed correspondingly.

4). Experimental Setup

In this experiment, images are taken from the “Dresden Image
Database”, a widely used benchmark dataset [43]. From this data set,
a total of 14 camera models and devices were selected to carry out the
experiments. For each camera model and device, 50 natural images
are chosen at random from the dataset as training images to determine
the reference SPN of each red and green channel of a specific camera
model. The reason to choose RGB color space is that the Bayer filter
is a very common RGB filter, and most camera models use it. Other
CFAs, like RYYB CFA, have been introduced since 2019 and are
used in Huawei’s p30 series smartphones. X-trans CFA has been
introduced in 2013, and it is only Fujifilm Camera-specific. We have
not explored other CFA in this study and that will be our future work.
Additionally, images are taken to test the proposed method of each
model and device that are not in the training images.

Algorithm 1: To Find Basic Sensor Pattern Noise (BSPN)

Input: Color image
Output: Basic Sensor Pattern Noise (BSPN)

1) Find MSCN coefficients for each image using Equations (4), (5),
and (6).

2) Extract the red and green channel MSCN coefficients.
3) Find the BSPNpattern of the red and green channels for a particular

camera model using the following Equations (10) and (11):

BSPNc
Red ¼

P
N
i¼1 MSCN Rc

i

N
(10)

BSPNc
Green ¼

P
N
i¼1 MSCN Gc

i

N
(11)

where MSCN Rc
i and MSCN Gc

i represent the MSCN
coefficients of the red and green channels for image i of camera
model C, respectively. N is the number of images for a particular
camera model C. BSPNc

Red and BSPNc
Green represent the BSPN of

the red and green channels of camera model C, respectively.
4) Repeat steps 1 to 3 to find the BSPN of the red and green channels

for all camera models.

Table 1 represents the experimental data set for the experiment,where
the last digit of each camera model specifies the different devices of the
same camera model. Three image sizes are tested in the study when the

images are not subjected to any attack. For example, small (128 × 128),
medium (1024 × 768), and large (2592 × 1944) images are used. To
test the robustness, an image size of 128 × 128 is taken from the center
of the image, which is the most commonly used patch size for SCI
methods. Once one camera is designated as the reference camera, the
images taken with this camera are treated as positive samples, whereas
the images from all the other cameras are used as negative samples.

For example, the Canon Ixus55_0 camera model has 136 positive
samples and (2474-136)= 2338 negative samples. A total of
2474 positive samples and 32162 negative samples are used in the
experiment. The proposed method is compared with the state-of-the-art
SCI methods such as DWT [39], CAGIF method [5], BM3D methods
[4], DTCWT method [6], KLD method [7], and JSD method [11]. The
baseline DWT method is used in the comparison. The CAGIF method
with σ ¼ 5 and smoothing parameter 2¼ 0:02 is used as indicated in
[5]. As indicated in [6], the DTCWT method with a decomposition level
l= 4 and standard deviation of SPN σ ¼ 1:8 as recommended in [38,
39] is used. In theBM3D technique, σ is set 5. In [27],DWTwith enhanced
SPN,asdescribed in [28], is used,where enhancedmodel5withα is set to7.

Algorithm 2: To Enhance the Basic Sensor Pattern Noise (BSPN)

Input: BSPN (Basic Sensor Pattern Noise) and standard deviation of
BSPN (sigma)
Output: Enhanced SPN

1) Compute the discrete Fourier transform (DFT) of BSPN and take
the real part, i.e.,

F ¼ DFT BSPNð Þ; D ¼ real Fð Þ

2) Estimate the variance: variance ¼ sigma2

3) Estimate coefficient variance (coeff) of D using maximum a pos-
teriori probability (MAP) estimation for two sizes of square

NxN neighborhoods [N= 3, 5].
4) Extract noise coefficient (Nc) using the Equation (12):

Nc ¼
D:variance

coeff þ varianceð Þ (12)

5) Compute F
0
(denoised version of BSPN in the frequency

domain).

Table 1
List of experiment camera models and image data sets

Sl. No. Camera model

Number of
images to find

reference
SPN

Number
of images
for testing

1 Agfa_DC-830i_0 50 287
2 Canon_Ixus55_0 50 136
3 Casio_EX-Z150_0 50 120
4 FujiFilm_FinePixJ50_0 50 160
5 Kodak_M1063_0 50 302
6 Nikon_CoolPixS710_0 50 127
7 Olympus_mju_1050SW_0 50 137
8 Olympus_mju_1050SW_1 50 134
9 Panasonic_DMC-FZ50_0 50 157
10 Panasonic_DMC-FZ50_1 50 312
11 Pentax_OptioA40_0 50 117
12 Ricoh_GX100_0 50 139
13 Samsung_L74wide_0 50 178
14 Samsung_L74wide_1 50 168
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F0 ¼ F:Nc

D
(13)

6) Compute the inverse DFT of F
0
to get the final SPN.

SPN ¼ realðIDFTðF0ÞÞ

5. Experimental Results

The true positive (TP) and false positive (FP) of each camera are
determined for a specified detection threshold, and then, the overall TP
and FP can be obtained. The TPR and FPR are defined as Equations
(14) and (15):

TPR ¼ TP
TPþ FN

(14)

FPR ¼ FP

FPþ TN
(15)

where FN and TN are the false negative and true negative,
respectively. For normal images, DTCWT is shown to be the

most accurate of the eight approaches for images of size 128 × 128,
while our method is ranked third in terms of accuracy for fixed FPR
10−4. The ROC curves in Figure 6 demonstrate a direct comparison
of different techniques (Best Six). The FPR is on the x-axis, and the
TPR is on the y-axis. For image size 128 × 128

Figure 6
Performance comparison of different SCI methods in terms of ROC curves. From top to bottom: (a) small size (128 × 128),

(b) medium size (1024 × 768), (c) big size (2592 × 1944), TPR = True-positive rate, FPR = False-positive rate

Table 2
Average time comparison for extraction SPN from a query

image (time in seconds)

Image size 1024 × 768 2592 × 1944
Method Running time(s) Running time(s)

CAGIF [5] 0.52 2.92
DWT [39] 0.62 3.72
DTCWT [6] 0.78 5.36
MSCN(R+G) 0.6 3.01
BM3D [4] 4.81 29.09
MSCN(G) 0.43 1.99
KLD [7] 0.63 3.86
JSD [11] 0.64 3.99
ESPN [27] 0.75 3.96
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at fixed FPR 10−4, the TPR of eight methods are 16.2
(MSCN(R+G)), 14.2 (CAGIF), 16.0 (DWT), 20.1 (BM3D), 23.32
(DTCWT), 1.14(KLD), 13.06 (ESPN), and 1.45 (JSD),
respectively. For image sizes of 1024 × 768 and 2592 × 1944, the
proposed method ranked second for fixed FPR at 10−4.

In a real-time application, the SPN extraction method from the
query image is the main computational load of SCI. To provide an
obvious speed comparison, the SPN for query images is extracted
using several approaches from images of sizes 1024 × 768, 2592 ×
1944, and 500 × 500 pixels. The average run times are compared in
Tables 2 and 3, respectively. The simulations are performed with a
MATLAB 2019a laptop with a 3.30 GHz Intel core i5 CPU and
4GB RAM. If the red and green channels are considered, the
CAGIF approach is the fastest of the mentioned methods, while the
MSCN(R+G) method comes in second for images of size 1024 ×
768, 2592 × 1944 as shown in time comparison Table 2. In terms
of the red and green channels, the MSCN(R+G)-based technique
outperforms DWT, DTCWT, and BM3D methods, respectively.
Table 3 shows the average run time for a 500 × 500 pixels image.

KLD [7] employs 5 camera models for PRNU extraction, each of
which requires a different amount of time to process.

To make a fair comparison across different methods, the average
processing time for a 500 × 500 pixel-sized image is taken. The
recommended approach came in second place here as well. The
limitation of the proposed method is that for almost dark images,
the correlation value is very poor. As a result, the false negative
increases, as shown in Figure 7. The TPR for a given FPR of 10−4

varies when a random number of images are used to generate the
reference SPN in increasing order, as illustrated in Figure 8. The
proposed method indicates that the performance is optimum when
the number of images taken to find the reference SPN is 80.

5.1. Robustness of proposed method

For speed and storage, most images on the internet are JPEG
compressed, and it is well known that when an image is JPEG
compressed, the SPN suffers. Similarly, when an image is subjected
to Gaussian noise and rescaling, the SPN is weakened. The test
images are JPEG compressed with a Quality factor of 75 and 90,
rescaled with a factor of 0.9 and 1.1, and Gaussian attacked with a
mean of 0 and variance of 0.01 and 0.001, respectively. Despite
modest ROC performance degradation, all of the approaches are
resilient to JPEG compression, rescaling, and Gaussian noise. The
MSCN approach outperforms the seven methods. Figure 9 shows the
direct comparison in terms of robustness including JPEG compression
(QF= 75), rescaling (0.9), and Gaussian attack (0.01). Only the best
six methods are shown in graphical representation. Also, it is
observed that none of the methods provides the same performance
with respect to the three attacks. For example, the CAGIF method is
more robust in Gaussian noise than the rescaling attack. The proposed
method provides the same efficiency in terms of robustness
concerning JPEG compression, rescaling, and Gaussian noise. In all
cases, the image is cropped from the center of the image to a size of
128 × 128. The numerical results are shown in Table 4 of image size
128 × 128. The AUC of different methods is listed in Table 5.

Table 3
Average time comparison for extraction of SPN from a query

image of size 500 × 500 (time in seconds)

Image size 500 × 500
Method Running time(s)

CAGIF [5] 0.12
DWT [39] 0.19
DTCWT [6] 0.23
MSCN (R+G) 0.13
BM3D [4] 2.16
KLD [7] 0.19
JSD [11] 0.20
ESPN [27] 0.22

Figure 7
Few image samples which are incorrectly identified by our proposed method
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Figure 8
Performance ofMSCN(R+G) in terms of ROC curves by taking a randomnumber of images in increasing order to generate reference

SPN. Image size is taken 1024 × 768, TPR = True-positive rate, FPR = False-positive rate

Figure 9
Comparison of robustness from top to bottom: (a) JPEG compression (QF= 75),

(b) rescaling (0.9), and (c) Gaussian noise (mean= 0, variance= 0.01)
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6. Conclusions

The SCI problem is re-examined in this study using the MSCN
coefficient with accuracy, speed, and robustness. The newly proposed
method uses MSCN coefficients to extract SPN from a query image.
The proposed method is compared with other cutting-edge SCI
techniques. When images are not modified, the proposed method
produces comparable results, but when images are compressed,
rescaled, and exposed to Gaussian noise, the proposed method
produces the best results in terms of TPR for fixed FPR at 10−4

than the state-of-the-art methods. In terms of AUC, the proposed
method is best for rescaling and Gaussian attack, but it ranked
second for JEPG compression. Despite being the most robust of the
seven approaches, the proposed method came in second-best after
CAGIF in terms of speed when using both the red and green
channels together. When images are not manipulated, however, the
DTCWT and BM3D methods produce the best results, but the time
to extract SPN is significant, and though the CAGIF approach is
the fastest, its performance falls short of expectations. The proposed
method, on the other hand, outperformed CAGIF. This advantage
will allow the proposed method to be applied in real-time
applications. However, for the almost dark images, the proposed
method gives a poor value of correlation, and as a result, it
increases the false negative. Handling this constraint and developing
an SPN of MSCN-based strategy should be investigated in the
future. Further, the Spectral Cross-Domain Neural Network [44]
could be trained on images from various camera brands and
models, learning their unique spectral signatures for SCI. The
limitation of the proposed work may be overcome by brightening
the image during the preprocessing stage. Furthermore, enhancing
the SPN could improve the system’s performance and may serve as
future work under different ISO sensitivity conditions.
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