
Received: 7 May 2024 | Revised: 23 October 2024 | Accepted: 10 November 2024 | Published online: 3 March 2025

RESEARCH ARTICLE
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Abstract: Neural networks (NN) in combination with parametric models (i.e., Hybrid models) are increasingly employed for option pricing.
However, a fundamental question needs to be addressed within the current research domain of financial option pricing utilizing hybrid NN:
Does integrating a NNwith a more advancedmathematical optionmodel enhance its pricing capabilities compared to integrating with a robust
mathematical model? In this paper, we conducted a novel ANN-Heston and ANN-CS option pricing research based on the 50ETF options
obtained from the Shanghai Stock Exchange covering January 2018 to December 2021. Having compared the pricing accuracies between
ANN-Heston and ANN-CS, we show that the hybrid ANN in combination with the CS model is adequately competent in pricing Chinese
options. We also comment that the parametric model should be robust with only some parameters to be estimated. The CS model can capture
Chinese option features, and its hybrid ANNmodel exhibits remarkable competence in pricing options. This research is useful for practitioners
and researchers in the field of option trading.
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1. Introduction

Option pricing has been a prominent area of research for many
years since Black, Scholes, and Merton introduced their Nobel
Prize-winning option pricing model (OPM) in 1973 (See [1]). The
Black-Scholes-Merton model is widely regarded as one of the
greatest achievements in financial theory over the past several
decades. However, empirical research has demonstrated that the
formula is subject to systematic biases (see [2]).

As is widely recognized, the bias in the Black-Scholes (BS)
model arises from the numerous assumptions upon which it is
based, including constant market volatility, geometric Brownian
motion of the underlying asset prices, constant interest rates, a
fixed drift term, and the assumption of efficient market conditions.
Consequently, subsequent research following the development of
the BS model has sought to relax some of these assumptions,
exploring alternatives such as stochastic volatility, stochastic
interest rates, jump-diffusion processes, and regime-switching in
economics.

On the other hand, models usingmachine learningmodels, such
as artificial neural networks (ANNs), present promising alternatives
to traditional parametric OPMs (see [3–8]). ANNs do not require
specific assumptions regarding the input variables of options or
their transaction data. Option pricing functions are inherently
multivariate and highly nonlinear, making ANNs effective tools
for option pricing in fluctuating market conditions. In particular,
ANNs can capture the nonlinear dependencies between input and
output variables. Consequently, ANNs can potentially address the
biases associated with the BS model [9].

There are numerous applications of ANNs in pricing financial
options. Meanwhile, scholars have consistently reviewed research on
machine learning for options. In particular, Ruf and Wang [10]
conducted a comprehensive review after analyzing approximately
150 papers and provided valuable suggestions for implementing
ANNs as nonparametric estimation tools in option pricing and hedging.

Investigations into option problems have focused on the input
features of ANNs (e.g., [11]) and the outputs of ANNs (e.g., [12,
13]). Some researchers concentrate on pricing American options
(e.g., [14, 15]). Others have explored exotic options that involve
more complex processes, including jumps and stochastic volatilities
(e.g., [16, 17]). In recent years, several papers have addressed issues
concerning market efficiency conditions, such as no arbitrage and
market frictions (see [18–20]), and some others have adopted
interpretable ALE method [21] and GA-BP neural network [22].

In this paper, we will utilize hybrid neural networks to price
Chinese options. These networks differ from the previously
mentioned models in that they integrate parametric models with
ANN models, rather than relying solely on ANN models. We will
introduce hybrid ANN models in the following section. More
importantly, we will address several challenges in the field of
option pricing. First, the literature indicates that hybrid ANNs are
often combined with relatively robust parametric models, such as
the BS model [23]. Therefore, we need to explore whether a more
complex parametric model can enhance the option pricing
performance of ANNs. Second, the Chinese options market is still
emerging; notably, the Chinese SSE50 options exhibit complex
features and are influenced by risk appetite [24]. Consequently,
we are interested in applying hybrid ANN models to these
options. In the following sections, we will first present the models
used in our research and provide a detailed discussion on
parametric models, including both the CS model and the Heston
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model, with a particular focus on hybrid neural networks for financial
options. We will then present the results of pricing Chinese options
using hybrid ANNs. The performance of the models will be
illustrated, followed by our conclusions.

2. Models

2.1. Hybrid ANN model

As mentioned earlier, in most ANN models for option pricing,
the option price is typically used as the output. In some instances, the
output may be the option price normalized by the strike price.
Notably, ANNs can be combined with certain parametric models
to enhance their option pricing capabilities. In this approach, the
ANN is trained to learn the so-called bias, which is the difference
between the market price and the price estimated by a parametric
model. Such an ANN is referred to as a hybrid ANN (see
Figure 1), for example, the work of Andreou et al. [25]. In a
hybrid ANN model, the ANN essentially calibrates the parametric
models [23, 25].

A recent surge in the application of hybrid ANNs has been
observed in option pricing [10, 23, 26]. In this approach, option
prices are initially mapped to a parametric model, which is
subsequently utilized to determine the option prices [10]. This
methodology can significantly enhance the accuracy of option
pricing. More recently, models that are more complex than the BS
model have been developed to improve ANNs. For example,
Dimitroff et al. [27], and McGhee [28] have calibrated stochastic
volatility models. Additionally, Hernandez [29] employed an
ANN to calibrate a single-factor Hull-White model, while Bayer
et al. [30] focused on calibrating rough volatility models.

The hybrid neural network depicted in Figure 1 employs a
backpropagation (B-P) neural network in combination with a
parametric model. The B-P neural network is a multilayer
feedforward architecture that utilizes the error B-P algorithm. This
type of neural network exhibits strong nonlinear fitting
capabilities and robust generalization performance in information
processing. In a B-P neural network with hidden layers, the model
can effectively map complex nonlinear relationships from the
input layer to the output layer, thereby revealing the underlying
patterns and characteristics inherent in these mappings. We will
also consider various parametric models, which will be discussed
in detail below.

2.2. Parametric models

Parametric models describe stationary nonlinear relationships
between theoretical option prices and related variables. However,
it is well-documented that these models often produce significant
discrepancies in their predictions of market option prices.
Consequently, it is advantageous for such models to collaborate
with ANNs.

When selecting a parametric model, we prefer to adhere to the
recent guidance provided by Ruf andWang [10], which suggests that
stationary features should be utilized as inputs. While there are
significant research efforts aimed at integrating ANNs with
increasingly complex parametric models, such as jump-diffusion
models, we believe that parametric models need not be overly
complicated or involve numerous parameters that must be estimated.

As the benchmark in this paper, we first consider the semi-
parametric Corrado and Su (CS) model for Chinese options,

which accommodates excess skewness and kurtosis. This model
can serve as a proxy for more complex parametric models.
Developed by Corrado and Su [31], the CS model explicitly
accounts for excess skewness and kurtosis, thereby providing a
correction to the BS model to some extent. The CS model is
classified as semi-parametric because it does not depend on
specific assumptions regarding the underlying stochastic process.
CS define their model for option price as follows:

CCS ¼ CBS þ µ3Q3 þ µ4 � 3ð ÞQ4 (1)

where

CBS ¼ S0N d1ð Þ � Ke�rtN d2ð Þ (2)
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n zð Þ is the standard normal probability density function, N(z) is the
standard normal cumulative distribution, St is a random stock price
at time t, µ3 is the skewness, and µ4 is the kurtosis.

To address the primary challenge outlined in the introduction,
we need to design an innovative hybrid ANN model that integrates
the neural network with a more sophisticated parametric model than
the classical model. For this purpose, we will consider a moderately
complex OPM: Heston’s volatility model.

Heston’s model [32] is a bivariate composite model that
consists of two coupled univariate models. First, the underlying
asset follows

dSt ¼ µStdt þ
ffiffiffiffiffi
Vt

p
StdW

Sð Þ
t (5)

St is the price of the underlying at time t, μ is the drift term, Vt is the

volatility at t,W Sð Þ
t represents Brownian motion. Secondly, Heston’s

model assumes that the volatility also follows a CIR process:

dVt ¼ κ θ � Vtð Þdt þ σV

ffiffiffiffiffi
Vt

p
dW Vð Þ

t (6)

where W Vð Þ
t is another Brownian motion 。W Sð Þ

t and W Vð Þ
t satisfy:

dW Sð Þ
t dW Vð Þ

t ¼ ρdt (7)

where ρ is the instantaneous correlation.
This model usually corresponds to a price process whose

volatility (variance rate) is governed by the second univariate model.
The main parameters of interest in the Heston Model are v, κ, θ,

σ, and ρ. v(t) is the instantaneous variance at time t, r is the risk-
neutral rate of return, θ is the long-run average variance (as t
tends to infinity, the expected value of v(t) tends to θ), κ is the
rate at which v(t) reverts to θ and σ is the volatility of the
variance. In the work, we shall calibrate the Heston’s OPM by
using simulated annealing algorithm (SAA).

3. Shanghai 50ETF Option

The data for 50ETF options were obtained from the Shanghai
Stock Exchange, covering the period from January 2018 to
December 2021. The underlying asset prices are illustrated in
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Figure 1 for the duration of the study. The options are classified as
European options. Table 1 presents several typical option contracts
along with their trading details.

There are 43,900 call option data points. The first 30,730 option
contracts, representing 70% of the entire dataset, are designated as
the training set, while the remaining 13,170 option contracts, or
30% of the dataset, are allocated as the test set. The factors that
are theoretically considered to influence the option price include
the underlying share price, the time remaining until the option’s
expiration date, the exercise price, the risk-free interest rate, and
the volatility of the underlying share price returns.

When selecting the input variables, five key factors are
considered in the model: the price of the underlying asset (S), the
option strike price (K), the risk-free interest rate, the time to
expiration, and the volatility.

It is important to note that, for the time to expiration (T) in each
option contract, trading days are calculated based on the assumption
of 252 days in a year. In terms of duration, an option contract is
classified as having a short-term expiration if it has an expiration
date of less than 60 days, a medium-term expiration if it has an
expiration date between 60 and 180 days, and a long-term
expiration if it has an expiration date of 180 days or more. To
calculate the risk-free rate (r), we match each option contract to a
continuous rate r using nonlinear cubic spline interpolation,
utilizing 3-month, 6-month, and 1-year savings rates collected
from the Bank of China.

4. Model Techniques and Pricing Performance

The ANN developed in this study is a standard densely
connected neural network featuring four hidden layers, each
containing 120 neurons. In this research, we implemented two
technical steps to train and evaluate the ANN, which are
outlined below:

1) We first use Moneyness Ratio, Cmrk /K (i.e., the call market price
Cmrk normalized by its strike priceK) as the objective function for
approximation.

2) We then implemented the hybrid structure ((Cmrk−Cp)/K), where
the objective function is represented by the pricing error between
the option market price and the parameter model estimate Cp, and
normalized by the strike price.

We employed a minimization process similar to that proposed
by Andreou et al. [25] to derive four distinct sets of implicit
parameters from the parametric CS model, utilizing the sum of
squared errors (SSE).

1) the first optimization approach involves obtaining the daily
average implied structural parameters, which we will denote as
implied volatility1 or imvol1, implied skewness1 or imsk1,
implied kurtosis1 or imku1, with all available option trading data.

2) In the second approach, we fit the CS model for options with the
same maturity by minimizing the SSE to obtain the implied
parameters, which we will denote as implied volatility2 or
imvol2, implied skewness2 or imsk2, implied kurtosis2 or imku2.

3) In the third approach, for each maturity, the four nearest options
are grouped based on their moneyness ratios to minimize the
aforementioned SSE function for the implied parameters. We
will refer to these parameters as implied volatility3 or imvol3,
implied skewness3 or imsk3, implied kurtosis3 or imku3;

4) We finally calibrate the implied structural parameters, which we
will denote as implied volatility4 or imvol4, implied skewness4 or
imsk4, implied kurtosis4 or imku4, by focusing on the Brownian
volatility for each contract, aiming to reduce the residual error to
zero or a negligible value after fixing the skewness and kurtosis
coefficients to the values obtained in the previous process.

Figure 1
Illustration of a Hybrid ANN model

Table 1
Examples of 50 ETF options on Shanghai stock exchange

Code Open High Low Close K t

510050C1803M02650 0.4831 0.4991 0.4507 0.455 2.65 0.230159
510050C1803M03100 0.1042 0.1131 0.0803 0.0845 3.1 0.230159
510050C1803M03200 0.0594 0.066 0.044 0.0469 3.2 0.230159
510050C1803M03300 0.0329 0.037 0.023 0.025 3.3 0.230159
510050C1803M03400 0.0184 0.0203 0.0121 0.0136 3.4 0.230159
510050C1803M03500 0.0106 0.0116 0.0068 0.0075 3.5 0.230159
510050C1806M03400 0.0675 0.0725 0.0562 0.0567 3.4 0.59127
510050C1806M03500 0.0502 0.0532 0.0409 0.0421 3.5 0.59127
510050C1806M03600 0.0381 0.0402 0.0305 0.031 3.6 0.59127
510050C1809M03000 0.3021 0.3104 0.2741 0.2763 3.0 0.952381
510050C1809M03100 0.2459 0.2509 0.2162 0.2184 3.1 0.952381
510050C1809M03200 0.1903 0.1993 0.1697 0.1721 3.2 0.952381
510050C1809M03300 0.1503 0.1579 0.1325 0.1328 3.3 0.952381
510050C1809M03400 0.1207 0.1232 0.1029 0.1042 3.4 0.952381

: : : : : : : : : : : : : : : : : : : : :
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As a benchmark, we also use rv60 (the 60-day realized
volatility), sk60 (the 60-day skewness), and ku60 (the 60-day
kurtosis) as an alternative input for hybrid ANN training.

For Heston’s model, calibrating the model parameters involves
high-dimensional optimization; therefore, it is not suitable to
consider a large number of option contracts during each
calibration. In this process, we calibrate the Heston model using
the SAA to obtain the model parameters. For instance, in each
calibration, we first fix the settlement date (e.g., March 28, 2018),
and there will be many different option contracts (23 contracts in
the case of March 28, 2018) with various strike prices, time to
maturity, and market prices. We then conduct the optimization
process to derive the model parameters. In this manner, the
Heston model parameters are retained for multiple settlement
dates based on our selections. Table 2 presents some examples of
Heston parameters obtained through optimization (note: only a
portion of the data is displayed here). Clearly, Heston model
parameters are not unique; The five parameters in Table 2 depend
on various factors, including option characteristics and the
optimization processes employed.

After obtaining the parameters of the Heston model for a
sufficient number of settlement days, we calculate the implied
volatilities and model the option prices. These will be used for
training and testing ANNs.

5. Neural Network Predictions

5.1. Neural network predictions: The output
is Cn/K

First, we train the neural network by providing various groups
of input variables using the training sets of option data. The initial

group of inputs serves as our benchmark data, which includes
moneyness, the risk-free rate, rv60, sk60, and ku60. This group
does not consider the implied volatilities generated by the
previously mentioned parametric CS model. Subsequently, we
train the neural networks by incorporating four types of implied
parameters as described in the preceding section. In total, there are
five groups of input variables. Upon completion of the training,
the networks are utilized to predict option prices using the test set
of option data. For comparative purposes, in this section, the
output value will be defined as the option price divided by the
strike price.

It can be observed from the error table above that we have
calculated the mean square error (MSE), root mean square error
(RMSE), mean absolute error, and mean absolute percentage error.

The results presented in Table 3 indicate that the best-
performing group is labeled CSimvol4, in comparison to the
benchmark group labeled CSRV60, as the group yields the
smallest pricing errors for options. For instance, when considering
the error measure RMSE, the CSimvol4 group yields a low value
of 0.03454, while the CSRV60 group produces a slightly higher
value of 0.03543. Overall, the CSimvol3 group corresponds to the
worst-performing set.

We need to emphasize that, in all the predictions of option prices
made by the CS-NN model, the errors are relatively low when
compared to the actual market prices. Even the “worst” group
CSimvol3 has provided very accurate predictions of option prices.
For example, Figure 2 illustrates a positive correlation between
the actual prices and the predicted prices for all 29,050 option
contracts, with the trendline closely resembling a positive linear
correlation. Furthermore, the scatter points are concentrated and
aligned within a narrow band, indicating that the spread of error is
relatively small. Additionally, the error distribution tends to

Table 2
Examples of Heston parameters obtained via optimizations

Settlement V0 ThetaV Kappa SigmaV RhoSV

28/03/2018 0.343461 0.400203 0.200249 0.595387 −0.09803
29/03/2018 0.255192 0.400172 0.200222 0.598773 −0.09464
17/12/2018 0.070361 0.400083 0.200366 0.574782 −0.11257
24/12/2018 0.149299 0.400098 0.200145 0.598538 −0.09919
16/04/2019 0.090128 0.399576 0.199421 0.599631 −0.09932
17/04/2019 0.116268 0.400697 0.200945 0.600602 −0.10112
21/06/2019 0.099597 0.399999 0.199999 0.599971 −0.09981
09/12/2019 0.045968 0.403208 0.208038 0.394389 −0.16461
12/12/2019 0.055748 0.402818 0.207313 0.341996 −0.19896
16/12/2019 0.070171 0.401575 0.204417 0.367826 −0.22405
20/03/2020 0.051153 0.399844 0.199753 0.601596 −0.10212
23/03/2020 0.040605 0.399866 0.199785 0.600689 −0.10323
24/03/2020 0.078926 0.399959 0.199936 0.600233 −0.10099
11/09/2020 0.035021 0.392188 0.183211 0.758964 −0.55937
08/12/2020 0.945955 0.405281 0.205389 0.614998 −0.14105
14/01/2021 0.198294 0.401991 0.202836 0.601829 −0.10459
15/01/2021 0.055365 0.397987 0.197099 0.599696 −0.09787
03/02/2021 0.251255 0.402254 0.203123 0.603121 −0.10702
08/02/2021 0.001737 0.393038 0.186911 0.598709 −0.24854
16/09/2021 0.074861 0.401378 0.203953 0.365974 −0.23529
17/09/2021 0.079451 0.400729 0.202154 0.465834 −0.17242
: : : : : : : : : : : : : : : : : :
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exhibit a normal shape with a mean error of −0.025, as shown in
Figure 3. It is also worth noting that the range of the errors lies
within a relatively wide domain (−0.15, 0.15).

In contrast, the ANN combined with the Heston model does not
yield better prediction accuracy. For instance, MSE= 0.00314 and
RSME= 0.05605. This model performs the worst in all cases. We
will revisit this point later.

5.2. Hybrid neural network predictions: The
output is (Cn − Cp)/K

In the second round of tests, the input variables are similarly
divided into five groups, as described in Section 4. A key
distinguishing feature is that the output value of the hybrid neural
networks will be (Cn − Cp)/K, i.e., the pricing error between the
option price and the parameter model estimate, normalized by the
strike price. Therefore, the ANN effectively calibrates the CS model.

The results presented in Table 4 are consistent with those in
Table 3, indicating a general improvement in prediction accuracy,
except for the CSRV60 group, which utilizes realized volatility
instead of implied volatility. Hybrid ANNs that incorporate CS-
implied parameters as inputs significantly outperform the
benchmark group. Furthermore, when considering the error
measure RMSE, the CSimvol4 group achieves a low error value
of 0.01495, compared to 0.03454 in Table 3, representing a 56%
improvement in accuracy. In contrast, the CSRV60 group reports

a slightly higher error value of 0.0403628. Overall, all hybrid
neural networks demonstrate enhanced accuracy in their
performance.

In the scatter plot presented in Figure 4, we illustrate the
relationship between the actual prices and the predicted prices for
the group CSimvol4. The data points align closely along a highly
linear trend, indicating a strong positive correlation. In this
scenario, the scatter of the points is minimal, suggesting that the
results are approaching an ideal state of prediction accuracy.

Figure 5 illustrates that the error distribution is centered around
a mean of zero when comparing the predicted values to the actual
values. In comparison to Figure 3, the range of errors is much
smaller roughly within (−0.03, 0.08). This further confirms that
our hybrid neural network has performed satisfactorily.

It is important to note that the hybrid ANN utilizing Heston’s
model does not outperform any of the CS groups, although it
performs slightly better than the CSRV60 group. For example, in
terms of the RMSE, the hybrid ANN with the Heston model
yields a value of 0.036518, which indicates a marginally better
accuracy compared to the CSRV60 group, which has an RMSE of
0.0403628. In contrast, the hybrid CS models give relatively
smaller errors, ranging from 0.010613 to 0.02663. The underlying
reasons for this discrepancy can be attributed to the calibration of
the Heston model, which presents a complex optimization
problem for determining the model parameters numerically. In the
context of option pricing, one may obtain the “optimized” set of

Table 3
Prediction accuracy of option prices when the output is Cn/K

CS
RV

60 sk60 ku60 CSimvol1 imsk1 imku1 CSimvol2 imsk2 imku2 CSimvol3 imsk3 imku3 CSimvol4 imsk4 imku4 Heston imvol

MSE 0.00125 0.00137 0.00217 0.00439 0.00119 0.00314
RMSE 0.03543 0.03714 0.04658 0.06630 0.03454 0.05605
MAE 0.02823 0.02697 0.03660 0.05491 0.02613 0.03998
MPE 0.16140 0.16915 0.21218 0.30196 0.15731 0.33208

Figure 2
The underlying prices of 50 ETF options from January 2018 to December 2021
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parameters; however, this set likely corresponds to a local minimum
rather than the global minimum. This is why the model parameters
are not unique in our practice of option pricing. Consequently, such
model uncertainty can propagate into the implied volatilities,
resulting in larger errors when training ANNs to predict option
prices.

5.3. Comparisons between hybrid neural networks
and recent models

In this section, we compare the results obtained from the hybrid
neural network used in this study with those from several recent
neural network models for option pricing.

One of the significant models recently employed for option
pricing is the Long Short-Term Memory (LSTM) neural network
[33]. We have utilized this method to price Chinese options [33].
Another noteworthy approach is the combined use of the Black-
Scholes model and neural networks (BS-NN), which was recently
applied by Shvimer and Zhu [23]. In this research, we adopt these

two methods to price Chinese exchange-traded fund (ETF)
options and compare their pricing performance with the hybrid
neural networks discussed in the preceding sections. It is
important to note that, for the BS-NN model, we have chosen to
use the 60-day realized volatility as one of the input parameters
for the BS model.

Table 5 shows the prediction accuracies produced by using the
aforementioned models. Typically, we have examined the output
(Cn − Cp)/K under the hybrid neural network.

The results presented in Table 5 and Figure 6 are intriguing, as
the comparisons indicate that both the LSTM and CS hybrid models
have outperformed the Heston hybrid model, while the BS-NN
demonstrates a pricing performance comparable to that of the
Heston hybrid model. As shown in the table, the CS hybrid model
yields a RMSE of 0.01495, whereas the RMSE for the BS-NN is
0.0369105, and for the Heston hybrid model, it is 0.036518.
Therefore, our research findings align with recent studies in which
ANN is integrated with the parametric BS model. Furthermore,
the results indicate that the hybrid model utilizing a complex

Figure 3
Predicted option price vs actual market price for the group CSimvol3

Table 4
Prediction accuracy of option prices when the output is (Cn − Cp)/K

CSRV60 sk60 ku60 CSimvol1 imsk1 imku1 CSimvol2 imsk2 imku2 CSimvol3 imsk3 imku3 CSimvol4 imsk4 imku4 Heston imvol

MSE 0.0016291 0.0001448 0.000112 0.000329 0.000223 0.001333
RMSE 0.0403628 0.012037 0.010613 0.02663 0.01495 0.036518
MAE 0.0292693 0.008047 0.00677 0.008491 0.00290 0.013714
MPE 0.1838273 0.054821 0.04833 0.09016 0.06811 0.216339

Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

06



Figure 4
Error probability distribution in the group CSimvol3

Figure 5
Predicted option price vs actual market price for the group CSimvol4

Table 5
Prediction accuracy of option prices

LSTM BS-NN CSimvol4 imsk4 imku4 Heston imvol

MSE 0.000663 0.0013624 0.000223 0.001333
RMSE 0.025756 0.0369105 0.01495 0.036518
MAE 0.018401 0.0159296 0.00290 0.013714
MPE 0.119731 0.2181041 0.06811 0.216339
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parametric method, such as Heston, does not significantly
outperform the other models; no superior accuracy is observed in
this case.

6. Conclusion

In this study, hybrid ANN models are developed to price
Chinese options by integrating parametric models, specifically the
CS model and Heston’s model. Typically, a hybrid objective
function is employed, contrasting with the conventional objective
function that focuses solely on the option price. By comparing the
pricing predictive capabilities of the two approaches for 50 ETF
call options, we demonstrate that the hybrid ANN models exhibit
significantly enhanced pricing accuracy.

Further, the hybrid ANN approach is compared to recent
models, such as LSTM networks and the hybrid BS model, for
pricing Chinese options. The comparison of results indicates that
the ANN, when combined with the CS formulas, is equally
competent as the LSTM model and outperforms both the
BS-ANN model and the Heston hybrid model.

Nevertheless, there is a growing trend of combining neural
networks with increasingly complex parametric models, which
requires significant offline effort to estimate model parameters. This
approach is highly beneficial for scientific research. However, this
paper demonstrates that hybrid ANNs are highly effective in pricing
Chinese options, while the performance of parametric models does
not justify their complexity. In contrast, a relatively robust model
can outperform more complex parametric models, provided that the
latter can accurately capture essential implied structural parameters.
We hope this conclusion will be useful for practitioners analyzing
option prices in the Chinese market.

This paper presents significant findings regarding the application
of hybrid neural networks in the Chinese options market. However,
several areas warrant further investigation. Our training and testing
datasets encompass all types of options based on their moneyness,
covering the period from 2018 to 2021. Nonetheless, it is essential to

distinguish between three specific cases: real (in-the-money),
imaginary (out-of-the-money), and two-even (at-the-money) options,
whether they are call or put options with the same expiration date. In
this study, all cases were analyzed collectively, but it may be
beneficial to examine these cases separately. Consequently, more
comprehensive research will be conducted in the future.
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