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Abstract: This short-term weather forecast is particularly important for human production activities and safety. However, the existing short-
term weather forecasts are often difficult to meet the demands in terms of precipitation accuracy, and traditional numerical weather forecasts
have low efficiency in short-term weather forecasting. Artificial intelligence (AI) can infer uncertain information based on data with lower
temporal and spatial density and can use abstract knowledge in statistical and numerical models, thereby improving the prediction accuracy of
short-term weather and precipitation. However, traditional AI weather forecasting technology often cannot perform feature extraction well.
Therefore, this paper proposes a new U-shaped neural network model UTrans-Net that combines transformer. This proposed model adds
transformer to the U-Net model to determine the weights of different meteorological elements. Afterwards, the precipitation at a later
time is predicted by using the monitoring values of the previous series of time points, and the parameters of the neural network are
adjusted according to the results. By conducting experiments on the weather dataset of 2400 samples given by the China Meteorological
Administration, the results of our experiment show that UTrans-Net has a more accurate prediction accuracy, and the average prediction
accuracy at 0.1, 3, and 100 mm thresholds is 59%, 78%, and 82%, respectively.
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1. Introduction

As weather forecast becomes more and more important in
production and life, the demand for the accuracy of short-term weather
forecast is increasing day by day. As an important part of weather
forecast, precipitation prediction can also be applied in many fields.

Generally speaking, precipitation is affected by multi-scale
physical factors, such as air temperature, air pressure, and water
vapor content (Zhang et al., 2018). With the research on
precipitation prediction for many years, there are mainly two
basic methods at present, namely numerical weather prediction
and artificial intelligence (AI) methods (Jing, Li, Ding et al.,
2019; Zhang et al., 2021). However, since short-term rainfall is a
strongly random, non-linear event and can be affected by
unexpected situations (such as the sudden disappearance of the
main body of precipitation), it is difficult to predict the
precipitation for a period of time in the future (Nguyen et al.,
2021; Shi et al., 2015). Existing researchers have tried to use the
sequence autoregressive model (seq2seq) to achieve effective use

of historical information. By taking historical observation
information and historical forecast information as the input of
the next prediction moment, this method effectively uses
historical spatial and temporal information to correct the
prediction error to a certain extent and makes the prediction
model to have a certain risk resistance capability (Zhang
et al., 2017). However, the network often has the defect of
insufficient feature extraction, so how to fully and effectively
extract the core meteorological information has become an
important problem.

In order to improve the effectiveness of feature extraction of
sequence data and solve the problem of low time efficiency and
accuracy of traditional AI in precipitation prediction (Shi et al.,
2018), this paper proposes a U-shaped network structure (UTrans-
Net) using transformer to multi-scale meteorological elements for
feature extraction (Trebing et al., 2021).

The contributions of this paper are as follows:
1. Generate multiple semantic vectors for the encoder and

decoder at each moment through the attention mechanism
in transformer, so as to distribute the weights of the
semantic information preserving the current moment
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information and obtain the current meteorological features.
Based on variable-length semantic information representation,
data loss caused by long sequence data can be avoided.

2. In order to reduce the problem of unstable precipitation
prediction, a relatively smooth loss function Smooth-L1 is
introduced in this paper to realize insensitive operation to
outliers, thus improving the robustness against emergencies.

3. The experimental results show that the precipitation prediction
accuracy of the proposed model is tested on the data provided
by theChinaMeteorologicalAdministration, and the prediction
accuracy is improved compared with other methods.

2. Related Work

2.1. Numerical weather forecast

According to the actual atmospheric conditions and the
monitored data conditions, numerical weather forecast is used to
solve the equations of the weather evolution process by means of
numerical calculation on a large computer so as to predict the
atmospheric movement in a period of time in the future.
Specifically, numerical weather forecast mainly collects data from
the grid of the earth, and the size of the grid can occasionally
affect the spatial and temporal resolution of numerical weather
forecast. Then, the collected meteorological element data are
substituted into the atmospheric equations describing atmospheric
motion, and the atmospheric equations composed of partial
differential equations can be calculated after a reasonable
approximation, which includes the rainfall value of precipitation.
However, the computer usually needs to consume more resources
to perform the calculation of the equation when there are more
types of meteorological elements. In addition, how to determine
which meteorological elements have higher weights for
precipitation prediction needs to be further analyzed.

Bauer et al. (2015) summarize the basic concepts of numerical
weather forecast and further describe the basic principles and
methods of atmospheric motion models. For the formulas of
atmospheric motion, they give some of these formulas and explain
how these formulas can be used to predict weather forecasts at
future moments. In addition, they also explain the prospects and
current bottlenecks of numerical weather forecasting, give
some explanations of current classical models, and propose
some evaluation indicators on how to evaluate the algorithms and
models.

2.2. AI weather forecast

Weather forecast often requires a large number of monitoring
data of meteorological elements and extracts effective
meteorological elements from a series of abstract data. However,
due to the problems of insufficient distribution of existing sites
and relatively high monitoring costs, the current data have
insufficient spatial and temporal density. In addition, there may be
certain connections between different meteorological elements,
and it is difficult for numerical forecast models to accurately
describe the connections of some of these meteorological elements.

AI technology can infer information based on the monitored
data and abstract data with insufficient spatial and temporal
density. More importantly, AI technology can summarize expert
knowledge and experience to improve the average prediction
level. Due to the fit between the two, AI methods can often be a
powerful complement to numerical forecasting. At present, AI
technology and some other computer technologies have been

widely used in weather forecast and achieve some remarkable
results, and are considered to be effective methods by
meteorological experts (Zhao et al., 2021). There are mainly two
types of forecasting networks based on traditional AI methods and
forecasting networks based on deep learning (DL).

Traditional methods mainly use the motion vector of radar
echo images to forecast the weather, including optical flow
method, particle filter method, cross-correlation method, and so
on (Torcasio et al., 2021; De Andrade et al., 2021). Ayzel
et al. (2019) track the motion of the precipitation feature by the
optical flow method and replace the motion to the future
predicted moment for prediction and keep the feature intensity
unchanged. In addition, they also develop software based on
different optical flow algorithms and test a set of benchmark
models. The experimental results show that the precipitation
prediction based on the optical flow method can achieve a
certain improvement compared with the traditional numerical
forecast. As mentioned above, AI technology can use abstract
data and summarize expert knowledge and experience. Therefore,
McGovern et al. (2017) extract the originally unavailable
information through machine learning technology and data
mining technology and make use of the characteristics of high
accuracy to bridge the gap between numerical model and real-
time model, thus improving the prediction accuracy of various
types of high-impact weather, such as tornadoes. However, in
most cases, traditional AI methods do not take into account the
impact of multiple related and complex factors such as storm
dynamics and thermodynamics on the echoes, and how to deal
with such multi-related meteorological elements has become the
improvement direction of the follow-up forecast.

The prediction network based on DL can predict the future time
of echo through long short-term memory (LSTM) and other neural
networks, which has certain advantages over optical flow method
and has achieved some success and practical application in the
near prediction, but it is not widely used in short-term weather
forecasting. There have been some successful and practical
applications, but the application in short-term weather forecasting
is not very extensive. Chen et al. (2020) propose a prediction
method Conv-LSTM based on convolutional LSTM network,
which is a convolutional LSTM model with star bridge layers.
The model solves the chaotic and dynamic problems in strong
convective weather forecasting through an end-to-end trainable
model established by radar echo data and a rain-oriented loss
function. Furthermore, the use of normalization techniques in this
model improves the convergence performance of deep networks,
enabling predictions with effective spatiotemporal resolution. Erol
et al. (2019) use generative adversarial network (GAN) to extract
the information of radar echo images from a series of radar puzzle
data by using the convolution method. The experiments show that
GAN can be used to enhance the extrapolation effect of radar
images, and it has a good effect in the prediction of medium
echoes, but it still needs further optimization and improvement in
the prediction of strong echoes. Therefore, in order to make
full use of the advantages of these two methods, Jing, Li, and
Peng (2019) propose a multi-level correlated LSTM model
MLC-LSTM, which combines the GAN method with the LSTM
method and introduces the idea of adversarial training to the
volume LSTM network. The evolution of the model is carried out
through the spatiotemporal correlation between the multi-level
radar echoes, and the adversarial training is used to help the
model to extrapolate the real echoes, thereby further improving
the prediction accuracy. DeepMind also uses a deep generative
model method similar to GAN, which proposes a conditional
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generative model DGMR for immediate precipitation forecasting
and makes detailed and reasonable predictions of future weather
information through past radar data, and the effect is remarkable.

In order to further analyze the relationship between radar echo
images, contextual information modeling methods in computer
vision are used to make up for this deficiency. Although the high
echo value part in the radar echo image may indicate the
occurrence of weather such as heavy rain, it is often ignored in
the actual analysis. Luo et al. (2021) develop an interaction
framework by constructing a series of coupled convolutions of
input and hidden states. The framework can make full use of
short-term contextual information, and a dual attention mechanism
of channel and position is established to model the forgotten
information. The dual-channel attention in this method can make
up for the lack of low-level details and ensure that the model
makes full use of effective information.

In addition, after the introduction ofDL and othermethods, higher
requirements are often placed on the original data. In current DL
models, the input data lack necessary physical process information.
Pan et al. (2021) introduce differential reflectivity ZDR and
differential phase shift rate KDP to describe microphysical and
dynamic structural information and propose a new DL architecture.
Through a high-dimensional fusion strategy, the architecture is able
to capture the evolutionary characteristics of the precipitation system
while maintaining multi-scale spatial information. This method, that
is, introducing more meteorological factors that meet the
requirements according to the target architecture, is a suitable choice
and subsequent optimization direction in precipitation prediction.

2.3. Precipitation prediction

Precipitation is an event with both spatial and temporal features, so
the model needs to have the ability to extract both temporal and spatial
features. Shi & Yeung (2018) make the ConvLSTM2D model able to
extract spatial features by replacing the dot product operation in the
LSTM gate with convolution, which make up for the difficulty of
extracting spatial information in the temporal convolutional network
model (Hewage et al., 2020). Through state transfer, that is, skip
connection, the feature evolution of the model can be captured on
the basis of maintaining multi-scale spatial information.

Although these models have achieved good results in the near
forecast, they still have the same problem as the numerical weather
forecast in the short-term weather forecast (24–72 hours), that is,
there is still a great deal of uncertainty in the prediction of emergent
conditions such as newborn rain belt. Even if it is theoretically
unavoidable, Seq2seq models can minimize this effect as much as
possible. By using historical observation information and historical
prediction information in the encoder stage of LSTM, and taking
each prediction information as input in the decoder stage, the
information of each observation can be utilized as much as possible.
Zhang et al. (2020) constructed Seq2seq with an attention model for
each cluster to screen out the more favorable physical factors for
inferring precipitation, and the results show that the Seq2seq model
outperformed other existing methods.

The above researches predict the extracted information through
the features, and further optimizing the feature extraction can better
improve the accuracy of the prediction. Diao et al. (2019) propose a
short-term weather forecast model based on wavelet denoising and
Catboost, which combines correlation heatmap, recursive feature
elimination, and tree model and learns in advance through wavelet
denoising for better feature extraction. The experiments show that
this model has higher accuracy and shorter convergence time. Xie
et al. (2021) update transformer structure by using layered encoder
to output multi-scale features, so that features with high resolution
coarse-grained and low resolution fine-grained can be captured and
optimized together. In addition, the framework does not require
position coding, thus avoiding the interpolation of position coding
that results in performance degradation when the resolution is
different between test and training. The results show that after
feature extraction and optimization, the performance can be
significantly improved and the amount of computation can be reduced.

3. Method

3.1. Baseline architecture

The basic framework of this paper is shown in Figure 1. The
core part of the baseline framework is the U-Net structure, which
is a classic fully convolutional network (Chen et al., 2021;
Ronneberger et al., 2015).

Figure 1
Baseline architecture
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The U-Net structure consists of convolution, max pooling, and
up-sampling. In the contracting path of the left part of the network,
that is, the down-sampling operation part, effective convolution is
performed through blocks of different sizes, and then a down-
sampling operation is completed according to a max pooling
operation to obtain the feature map. In the expanded path on the
right side of the network, that is, the up-sampling part, the feature
map is deconvolved by using blocks of different sizes. In
addition, since the size of the feature maps of the left compression
path and the right expansion path are different, skip connection
operations are performed in each layer structure. In this part, the
corresponding feature map in the lower sampling layer is cut and
spliced with the feature map obtained from the upper sampling
layer to realize the normalized operation, and the process is
repeated at each layer. In this way, the semantic information lost
due to the reduction of feature map resolution caused by effective
convolution in the up-sampling process can be recovered to a
certain extent, thus ensuring a certain accuracy.

In addition, in our Baseline architecture, we also add
transformer to obtain global self-attention, which compensates for
U-Net’s limitations in long-range dependencies.

Figure 2 gives the specific details of the transformer
encoder (Vaswani et al., 2017). First, the given input information
is represented by E= [e1, e2, : : : , eN]. After a certain linear
transformation, the vectors of Q, K, and V can be obtained, as
shown below:

Q ¼ WqE (1)

K ¼ WkE (2)

V ¼ WvE (3)

where Q, K, and V represent the query vector, the correlation vector
between the queried information and other information, and the
vector of the queried information, respectively.

Then, the formula of the dot product self-attention mechanism
can be given, as shown below, and Wq, Wk, Wv will be updated and
changed according to the task goal, so as to ensure the effect of the
self-attention mechanism:

Zi ¼ Attention Qi;Ki;Við Þ ¼ Vi � softmax QiKT
Iffiffiffiffi
dk

p
� �

(4)

where Z represents different weight matrices, QKT is the obtained
attention matrix,

ffiffiffiffiffi
dk

p
is used to turn the attention matrix into a stan-

dard normal distribution, and softmaxð�Þ is used for normalization to
ensure that the sum of the weights is 1, which makes the results after
normalization more stable.

In addition, through the multi-head attention mechanism
existing in the encoder can be obtained

Z ¼ Z Q;K;Vð Þ ¼ Z1 � Z2 � . . .� ZN (5)

where� represents the contact operation. By splicing multiple weight
matrices Zi, the output of the feedforward neural network layer (self-
attention layer) can be obtained. However, since the feedforward neural
network only needs one matrix, an additional weight matrix is multi-
plied to it. Figure 3 shows a schematic diagram of this matrix splicing.
Through the multiplication operation of the matrix, the requirements of
the feedforward neural network can be satisfied.

Besides, there is also a residual connection in the transformer’s
encoder. Since attention (Q,K, V) is consistent with the dimension of
the input, we can directly add element-wise. In the later training
process, the residual connection can be obtained by adding the
values before and after the operation, which is convenient for the
gradient to be directly transmitted to the initial layer.

Due to the adoption of multi-head attention mechanism,
the model is divided into multiple heads, that is, the model can
form multiple subspaces, which enables the model to pay attention
to different aspects of information, so as to select meteoro-
logical elements more conducive to rainfall prediction and
judgment (Diao et al., 2019; Xie et al., 2021).

3.2. Prediction model

Figure 4 shows the network structure of precipitation prediction
model. The idea of the model is to use the model of the previous time
period to predict the future time. For example, if there are N times of
known monitoring information, we will use the information at t−N
to predict the information at t−N+ 1, and the correspondingK andV
are calculated (Sriram et al., 2017). In the same way, we then predict
the value at t−N+ 2 in terms of (t−N, t−N+ 1). As shown in
Figure 4, we can predict the future time according to the

Figure 2
Transformer encoder
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monitoring data at (t−N, : : : ,t), thus realizing the prediction of
precipitation information.

The specific prediction process is as follows:

t � N ! t � N þ 1

t � N; t � N þ 1ð Þ ! t � N þ 2

� � � � � � � � �
t � N; t � N þ 1; . . . ; t � 1ð Þ ! t

t � N; . . . ; t � 1; tð Þ ! t þ 1

� � � � � � � � �
By using the historical observation information and historical
numerical forecast information as the input of the model and
adding the numerical forecast results in each training, the
precipitation prediction error can be corrected. Moreover, by using
historical observation information in the decoding stage, the
model can learn the ability to be different from the numerical
prediction results, so as to obtain more effective prediction results
to a certain extent. The proposed sequential autoregressive model
can take into account the randomness of heavy rainfall events and
the regularity of precipitation forecasting at the same time by
adding forecast results at each moment.

The structure of transformer decoder is shown in Figure 5. In
order to solve the problem of gradient disappearance, the structure
of residual network is adopted in both the encoder and decoder to
include the original input and the output Z of the self-attention layer.

However, the decoder calculates the attention score from the
output of the attention layer with its output and feeds the score
into the feedforward neural network. Since transformer is not a
sequential model, the speed of the model can be increased through
parallel computation, but the location information will be lost.

In order to solve the above problems, transformer uses
positional encoding. In most cases, since each time step still
requires a unique positional encoding, one of

the most common approaches is to use trigonometric functions
for positional encoding, which has the advantage of being able to
extend to unknown sequence

lengths, and then convert the positional information into a
vector. The formula for the position vector is as follows:

p2i ¼ sin ui � 2ið Þ (6)

p2iþ1 ¼ cos ui � 2iþ 1ð Þð Þ (7)

where p represents the position vector at the corresponding moment,
and ui represents the corresponding frequency:

ui ¼
1

10000
2i
d

(8)

3.3. Loss function

In the training process of the neural network, the error gradient
represents the direction and size of the calculation and can be used to
update the subsequent network weights to improve the performance
of the network. However, as the number of network layers increases
or cycles, the error gradient can accumulate and become large, which
may cause drastic changes in the weights of the network, making the
network unstable and possibly generating NaN values.

The traditional L1 loss, that is, the mean absolute error, can
generate a stable gradient for any input, avoid the generation of
gradient explosion, and have a stable solution. However, the
function has a vertex at the center point and is difficult to derive,
which makes it difficult to generate gradients and hinders the
subsequent optimization of the network. Therefore, in order to
make the network more robust, we choose Smooth-L1 as the loss
function. The Smooth-L1 loss function smoothes the L1 function,
and its specific formula is as follows:

smoothL1 ¼ 0:5x2; if xj j < 1;
xj j � 0:5; otherwise:

�
(9)

It can be clearly seen from the above formula that if the predicted value
is not much different from the actual value, the gradient value can be
reduced by squaring, and the weight of the network is only slightly
adjusted. If the predicted value is very different from the actual
value, the gradient value will be directly subtracted by 0.5, which
can ensure that the parameters of the network can be better
adjusted. Unlike the L1 loss function that is not smooth enough, the
Smooth-L1 loss function used here can avoid the generation of
breakpoints. In addition, compared to the L2 function, the Smooth-
L1 function is insensitive to outliers, that is, the overall performance
does not change due to individual outliers.

4. Experiment

4.1. Dataset

In this paper, we conduct experiments using meteorological
data released by the China Meteorological Administration to
verify the effectiveness of our method Utrans-Net.

This dataset gives the numerical model (NWP) grid point data
of a certain area, the size of the grid point area is 73 × 69, and each
grid point contains the physical quantities of 23 meteorological
elements, including rainfall, water vapor content, and temperature
wait. The dataset contains a total of 2400 samples from different
monitoring sites, each sample gives the monitoring data of 3 hours
within 24 hours, and each monitoring site is processed as an NWP
grid point data. The training set and test set can be divided
according to certain requirements, and the target position to be
predicted will be given.

Figure 6 presents a schematic representation of NWP, and the
points that need to be predicted are randomly given in the figure.
Based on the comparison of the predicted precipitation with the
true value, the validity of the model can be verified.

4.2. Experiment setting

In our experiments, we use the threat score (TS) to evaluate
the precipitation accuracy in our experiments, which is a
method prescribed by the China Meteorological Administration
for evaluating short-term forecast accuracy and forecasting
ability (Wang, 2014). TS is calculated as follows:

Figure 5
Transformer decoder
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TS1 ¼
TP

TP þ TE þ TN
(10)

TS2 ¼
TP

TP þ TE þ NE þ NP
(11)

where TP is the number of samples that correctly predict
precipitation, TE is the number of samples that are predicted to
have precipitation but actually no precipitation, NE is the number
of samples that have no precipitation but actually have
precipitation, and NP is the number of samples that are correctly
predicted to have no precipitation. Therefore, TS1represents the pro-
portion of accurately predicted precipitation, and TS2 represents the
proportion of correctly predicted precipitation. Since this paper
mainly studies the accuracy of precipitation prediction, we will
use the value of TS1 by default.

In addition, we can set different thresholds for TS to evaluate the
prediction accuracy of precipitation respectively, and the thresholds
can be set to 0.1, 3.0, and 10.0 mm. By conducting experiments
under different threshold conditions, we can verify the effect of
our model at different thresholds. The settings of different
thresholds can be applied to different application scenarios, such
as military scenarios that are extremely sensitive to precipitation,
and civilian scenarios that are not sensitive to precipitation. Our
experiments are deployed on a server with an NVIDIA 1080Ti GPU.

4.3. Experimental comparison and analysis

To demonstrate the effectiveness of our method UTrans-Net,
we compare it with other methods, including ECMWF (European
Centre for Medium-Range Weather Forecasts, which is also an
atmospheric model used by China), NCEP (weather used by the
US Meteorological Center forecast model), and ARIMA
(autoregressive integrated moving average model, which is a
traditional time series model) (Zhang, 2003). Figure 7 shows an
example heatmap of a precipitation prediction, where the dots
represent a portion of the location that needs to be forecasted.

Table 1 shows the comparison of the prediction accuracy of
several models in precipitation prediction under different
thresholds. It can be found that ARIMA has the lowest prediction
accuracy relative to other methods, while several other methods
have no significant difference. Furthermore, our method presents

the best prediction results, with 7, 2, and 1% improvement under
different thresholds, respectively. According to the results, under
the condition of higher threshold, the improved performance
becomes smaller, because as the threshold increases, the
requirements for the accuracy rate of model prediction will also
become lower accordingly, which also leads to the fact that most
models can better meet forecast requirements. Therefore, our
method is more suitable for scenarios that are more sensitive to
precipitation prediction requirements.

4.4. Ablation experiment

In this paper, we design ablation experiments to verify the
effectiveness of adding transformer. As can be seen from Table 2,
if the transformer structure is not added, the prediction accuracy
of the rainfall model will decrease.

By replacing the loss function with L1 and L2 functions, this
paper also studies the role of the Smooth-L1 loss function in
training the precipitation prediction model. As can be seen from
Table 3, the accuracy of precipitation prediction can be slightly
improved after using the Smooth-L1 loss function. Compared with
the L1 loss function, the Smooth-L1 function after smoothing can

Figure 6
The example of NWP

Figure 7
The example of precipitation prediction

Table 1
Average prediction accuracy of precipitation prediction models

Method 0.1 mm 3mm 10mm

ECMWF 0.55 0.76 0.81
NCEP 0.53 0.73 0.79
3ARIMA 0.33 0.38 0.44
UTrans-Net 0.59 0.78 0.82

Table 2
Ablation experiment of transformer on precipitation prediction

Method 0.1 mm 3mm 10 mm

Ours (without transformer) 0.52 0.73 0.75
Ours 0.59 0.78 0.82

Artificial Intelligence and Applications Vol. 1 Iss. 2 2023

111



handle the vertices existing in L1, which also enables Smooth-L1 to
slightly improve the accuracy of precipitation prediction. In addition,
the Smooth-L1 function can also accommodate some abnormal
points in the data, avoiding the sudden drop of the gradient
caused by the occasional abnormal data, which greatly affects the
adjustment of network parameters, which can improve the fault
tolerance rate of the entire model.

4.5. Discussion and analysis

Precipitation prediction has a wide range of application
scenarios in real life and has a strong timeliness. Moreover, if it
involves short-term precipitation prediction or long-term
precipitation prediction, it is also necessary to screen the
meteorological data sequence that has been monitored and to infer
its evolution process as accurately as possible.

We need to evaluate our model Utrans-Net in terms of time
consumption, including certain requirements in terms of training
time and prediction time of the model. The model needs to train
relevant parameters within a specified time and filter out more
important meteorological elements. This can be met by a certain
pre-trained model, so it is more necessary for the model to be able
to give a prediction result through a certain monitoring data
within a given time. In addition, since precipitation prediction is a
time-sensitive event, it further requires that the model needs to be
able to make predictions in a very short period of time after the
station has monitored the required data, and our transformer
structure happens to be able to perform well, increasing this
demand. Moreover, our model can still make good predictions
when the amount of data is insufficient or small.

5. Conclusion

Short-term weather forecasting is particularly important in daily
life, and we study the precipitation events in this paper. In order to
solve the problems of low accuracy and slow efficiency of existing
precipitation prediction models, as well as the problem that
traditional AI models cannot effectively mention the characteristics
of meteorological elements, this paper proposes a U-shaped neural
network model UTrans-Net using the transformer mechanism to
extract features from multi-scale meteorological elements and use
them for precipitation prediction. Specifically, we use the self-
attention mechanism in transformer to assign weights to different
meteorological elements. Then, we use the precipitation monitoring
value and predicted value at the previous moment to predict
the precipitation value at the next moment, so as to realize the
precipitation forecast at the specified moment. Afterwards, we
use the loss function Smooth-L1 to adjust the parameters of
the network, which further improves the prediction accuracy of
the model. The experimental results on meteorological data
provided by the China Meteorological Administration prove that
our method maintains higher prediction accuracy than other
methods, and the average prediction accuracy at 0.1, 3, and 100mm
thresholds is 59%, 78%, and 82%, respectively. In the future, we

strive to further improve our model to make it more generalized
and able to predict more meteorological elements, including
temperature, precipitation, and other important elements.
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