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Abstract: The rising energy consumption of large-scale distributed computing systems raises operational expenses and has a negative impact
on the environment (e.g. carbon dioxide emissions). Themost expensive operating cost aspect in data centers is the electricity consumption for
cooling purposes (DC). Inefficient cooling causes excessive temperatures, which leads to hardware breakdown. To solve this issue, novel
thermal-aware green scheduling algorithms were developed to dramatically reduce cooling energy consumption costs while avoiding high
thermal stress conditions such as big hotspots and thermal violations while preserving typical competitive performance. As a result of this
research, the novel thermal-aware green scheduling algorithms can save cooling electricity usage during job execution when compared to
nongreen scheduling methods. Thus, the green scheduling algorithms clearly outperform nongreen scheduling algorithms in terms of cooling
power usage effectiveness.
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1. Introduction

As large-scale distributed computing systems grow in size,
adding more and more computing nodes and storage resources,
their energy consumption exponentially increases (Pop et al.,
2007). Recent studies have shown that the increase in server
power density has led to a concomitant increase in DC heat
density. Servers require approximately 1–1.5 watts of cooling for
each watt of power used (Lawton, 2007). The ratio of cooling
power to server power requirements will continue to increase as
DC server densities increase. Such DCs typically use two or three
times the amount of power overall as used for the IT equipment,
mostly for cooling (Dietrich et al., 2007).

However, transitioning to green computing has involved a
number of strategies, such as integrating new approaches for
power and cooling with energy-efficient hardware, virtualization,
software, and power and workload management (Dietrich et al.,
2007). This optimizes the efficiency of DC operations by
lowering costs and lessening the impact of computing on the
environment. Based on the Arrhenius time-to-fail model (Hale,
1986), at every increase of 10°C temperature, system failure rate
may be doubled. Consequently, resource management with
thermal considerations is important for data center operations.

Vanderster et al. (2007) present the concept of a task-
temperature profile, which is defined as a rise in temperature as a
task is completed. By predicting resource temperatures based on
online task-temperature profiles, Wang et al. (2009, 2012) created
a thermal-aware task scheduling method. Using past task-
temperature profile knowledge and the resistor-capacitor thermal
model, they compute an online task-temperature profile. Tang
et al. (2006) also propose “Thermal-Aware Job Scheduling,”
which uses temperature data from onboard and ambient sensors to
quantify hot air recirculation and accelerate the thermal evaluation
process for high-performance data centers.

When evaluating thread migration, Mulas et al. (2008) examine
the thermal and performance state of the destination core. According
to their findings, tasks are migrated between two cores because the
destination core is cooler and works at a lower frequency than the
source core. Furthermore, the chip’s temperature will be more
uniformly distributed if the total power required to migrate a job
is less than that required to avoid migration. The migration should
be triggered when a core’s temperature exceeds the average chip
temperature. The migration policy outperforms the halt and go
technique. However, when shifting task data, the source core’s
temperature may grow. As a result, transferring large workloads is
costly in terms of energy.

Maruyama et al. (2013) proposed minimizing hotspots to
reduce cooling energy consumption in Japan’s Telecommunications
Equipment Room. They used various thermal control measures
in their studies to eliminate hotspots. Using their technique in
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tropical regions (such as Malaysia) can be problematic, as removing
the hot zone is a difficult task. As a result, the Universiti Teknologi
PETRONAS (UTP) server is distributed across the DC, which
consists of server rooms in different parts of the university and
schedules jobs to run. However, it is vital to reduce cooling
energy consumption while avoiding hot areas, thermal stress
conditions, and violations when jobs are being scheduled for
execution.

Specific studies have been conducted to implement a green
scheduling strategy that can minimize hotspots and reduce cooling
power demand in DC server rooms in tropical countries (such as
Malaysia) (Badi et al., 2022; Li and Qi, 2008). However, none of
these studies use the proposed scheduling approach and threshold
mechanism used in this study, so there is potential for additional
cooling energy savings at DC. Therefore, this study is an extension
of the previous version (Yousif et al., 2011; Haruna et al., 2014)
that was demonstrated using the Large Hadron Collider Computing
Grid (LCG) benchmark trace (I. C. London, n.d.) in a similar
network environment with competing delays, average processing
times, and maximum delays. However, this work requires the
inclusion of scalability tests in this study.

Therefore, in this study we are considering the evaluation of the
proposed novel thermal-aware green scheduling algorithms using
Sharcnet benchmark traces file (Iosup et al., 2008) with different
processing demands were used to observe the performance of the
proposed novel thermal-aware green scheduling algorithms by
varying the number of jobs.

Hence, the rest of this research is structured as follows: The
proposed scheduling method is described in detail in Section 2.
Section 3 provides the results of algorithm implementation and
discussion, Section 4 finishes the research work, and Section 5
presents future research options.

2. Proposed Scheduling Algorithm

In this paper, we aim to design and implement a novel green
scheduling algorithm that is an extension of previous versions
(Least Slack Time-Based Round Robin (LSTRR) scheduling
algorithm, Least Slack Time Rate First-Based Round Robin
(LSTRFRR) scheduling algorithm, then First Come First Served
(FCFS) scheduling algorithm, and Round Robin (RR)
scheduling algorithm) (Haruna et al., 2014) that have
demonstrated to perform with competitive waiting time, average
turnaround time, and maximum throughput. This is
accomplished by including green elements: (I) thermal
awareness based on an anticipated temperature profile, (ii) air
conditioning control based on a temperature threshold, and (iii)
allows for an increase in the amount of air conditioning
temperature settings by 1°C or 1.5°C (Maruyama et al., 2013)
(e.g. 19°C–20.5°C).

A thermal-aware profile was combined with the given
scheduling algorithms based on an hourly predicted temperature
of eight (8) DC’s server rooms on the UTP campus from 0 to 23
h (LSTRR and LSTRFRR, then FCFS and RR). Taking load
balance into account, the preemption of a job for execution is
based on a cyclic system specified variable (time quantum (TQ))
for the LSTRR, LSTRFRR, and RR scheduling algorithms (RR
approach). Each task was given a time limit of 60 min (1 h). This

means that work cannot be performed beyond the 1 h time limit.
This is done to ensure that all jobs are treated equally and to
reduce the computational load of each server room while the job
is running.

There are tasks that are completed every hour. Comparing the
temperature profile to the arrival time of the work, the algorithm
routes the job to the coldest server room in DC at that time. The
scheduler evaluates the room temperature level hourly as soon as
the job is assigned to the associated server room for execution.
When the temperature exceeds the threshold, cooling (On-AC)
is activated because there is not enough space cooling to cool
the space for the entire job run at that time. However, if the
temperature is below the threshold, cooling (Off-AC) is not
required because there is enough room cooling to keep the
room cool while performing the task at that time.

These approaches used minimum temperature and threshold
limits. This is done to avoid situations where the server room is
too hot to allocate workloads to the servers in that room.
Additional cooling flows should be used as the server slows
down and can overheat. As a result of the proposed new green
scheduling algorithm, the AC temperature setting can be
increased by 1.5°C (AT Masato, 2013). With these limitations,
the proposed algorithm can prevent high heat stress situations
such as serious hotspots and heat violations and reduce the
incidence of hardware failures. In other words, the AC
temperature setting to reduce power consumption increases.

2.1. Algorithm

Jobs are routed to a server room in DC with a set minimum
temperature level at a given hour. A process ID, an arrival time, a
burst time, and a deadline are all assigned to each job. When a
scheduler receives a job, it double-checks the job’s arrival time.
Following that, the scheduler examines the temperature profiles
of the server rooms in the University’s DC at that specific time
period of 1 h (between 0 and 23 h). During that hour, the
scheduler will select the server room with the lowest
temperature. The job is subsequently distributed to the server
room servers that meet the conditions of the proposed
scheduling algorithm.

TQ is a predetermined value that is used to execute jobs. A job
is preempted for execution depending on a system determined
variable (TQ) in a cyclic form, with load balancing and the
temperature hourly profile in mind (RR approach). Each project
was given a time limit of 60 min (1 h). This means that a work
cannot run for longer than the 1-h time limit. This means that a
job cannot last more than 1 h. This is done to ensure that all jobs
are treated similarly and to lessen computational demands in
each server room when workloads are running.

The scheduler checks the room temperature every hour after a
job has been allocated a processor; if it exceeds the threshold
temperature, cooling is utilized (On-AC). However, if the
temperature is below the threshold, cooling is not required
(Off-AC). If a job finishes running before the time limit
expires, the job ends and is removed from the system, and the
next job is dispatched based on the lowest priority of the ready
queue. This method is repeated until the pool is completely
exhausted.
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2.2. Terms or equation

The following are some of the terms we used to describe our
approach as shown in Table 1:
i. Time quantum TQi: TQi represents the amount of time and

specifies the defined time for each job to complete periodically.
ii. Absolute deadline: This means the time frame in which the task

must be completed.

Di ¼
X

di ; Ati (1)

iii. Remaining execution time: This refers to the time remaining until
the job is completed.

TREi ¼ αi � Ati (2)

iv. Remaining absolute deadline: This refers to the remaining
execution time of the completed job.

TRDi ¼
X

di ; Ati

� �
� Ati (3)

v. Priority rate: Defines which job in the ready queue to run first.

Pri ¼
TREi

TRDi � Ati
(4)

2.3. Performance metrics

The following measures are used to assess the performance of
green scheduling methods:

Electricity Consumption:
This refers to the total amount of power consumed during the

execution of each job. The estimated power consumption of the
air conditioner was calculated using electricity consumption (EC)
constraints.

Tdi ¼ max Thi;Ti�TTið Þ (5)

TPCi ¼ Ji � PCEi (6)

TPCTTi ¼ Tdi ¼ 0 0 max Thi;
TPCi
COPi

� �� �
1 Tdi ¼ 0;Thið Þ

( !
(7)

IfTdi= 0 in equation (8), that is true (meaning that air conditioningwas
not used because the room temperature was below the threshold
temperature). If 1, it is true (meaning that AC was used because the
room temperature was higher than the threshold temperature).
Otherwise, if it is 1, it is false (meaning that AC was used because
the room temperature was higher than the threshold temperature). As
a result, there is not enough cooling to get the job done at that time.

TAECi ¼
Tdi

1:5�C

� �
AECi �

TPCTTi

PCEi

� �
(8)

TECi ¼
X

TPCi;TAECi (9)

Power Usage Effectiveness
Thismetricmeasures the total amount of energy used to complete

a task. Get the power usage effectiveness (PUE) by summing the total
AC power of the PC at the job threshold temperature, the total AC
power compensation, and the total PC power of all jobs.

PUEi ¼
P

TPCTTi; TAECi; TPCi

TPCi
(10)

Power Usage Effectiveness:
It refers to the total power efficiency usage while job execution.

The PUE is measured by summing the total air-condition electricity
for PC at threshold temperature of jobs, the total air-condition
electricity correction and the total PC electricity for all jobs.

PUEi ¼
P

TPCTTi; TAECi; TPCi

TPCi
(11)

2.4. Procedure

Pool of jobs with arrival time, burst time, and deadline

List of server rooms, each with forecasted temperature

profile

Begin

For each job

Each job should be assigned to a server room

Table 1
Key symbols for T_aware LSTRFRR

Set Ji Be the ith Job

n Quantity of jobs
TQi Jobs i time quantum
Ati Jobs i arrival time
di Jobs i deadline
αi Jobs i burst time
Ci Jobs i completion time
Di Jobs i absolute deadline time
TREi Jobs i remaining execution time
TRDi Jobs i remaining absolute deadline time
Pri Jobs i priority rate;
Thi Jobs i temperature time from 0-23 h
Ti Jobs i temperature at arrival time
TTi 20C is defined as job i threshold Temp; the maximum

temperature server should be running.
PCEi 100W is defined as jobs i server power when executing
AECi 10 is defined as air-condition electricity correction of job i
COPi 3 is defined as coefficient of performance, because standard

electric chiller’s performance is normally around 3.
TAECi Jobs i total air-condition electricity correction of PC
TPCTTi Jobs i total air-condition electricity consumption for

server at Threshold Temp
TAECi Jobs i total air-condition electricity correction
TPCi Jobs i total server electricity consumption
Tdi Jobs i temperature difference
TECi Jobs i total electricity consumption
PUEi Jobs i power usage effectiveness
S-list Sorted list
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If the job arrival time is the same as the room

temperature time, Select the room with the lowest

temperature.

TQi= 60 mins

Using equations (1–4), calculate the slack time rate for

all tasks

EndFor

Sort the job list by equation in ascending order (4);

Store in to (S-list)

Calculate the difference in temperature between the

server room temperature and the temperature limit (5)

If (Tdi != 0)

Calculate the total amount of electricity used by the

server (6)

As a result, there is not enough cooling to finish the

work. Calculate the total air-conditioning

electricity usage for the server at the specified

temperature using AC (7)

Calculate the total electricity correction for air

conditioning (8)

Else

There is sufficient cooling to complete the task.

Turning off the air conditioning.

Calculate the total amount of electricity used by the

server (6)

EndIf

While (S-list is not empty)

Execute jobs at the CPU level in response to demand.

If (αi> 0)

αi= αi - TQi
Put back into S-list

EndIf

EndWhile

Compute total electricity consumption (9)

Compute the power usage effectiveness (10)

End

3. Results and Discussions

This phase involved testing the proposed T_aware LSTRFRR
scheduling algorithm with the proposed scheduling algorithm was
compared to various green and nongreen scheduling algorithms
from the work originally presented at the 2014 IEEE 3rd
International Conference on Computer and Information Sciences
(Yousif et al., 2011). However, a Sharcnet traces file (Iosup et al.,
2008) with various processing demands was employed in this
study to observe the performance of the suggested green
scheduling methods by altering the number of jobs. By increasing
the real demand, a scalability test for the scheduling methods was
required (Kołodziej et al., 2013). As a result, two data sets were
created, one utilizing 50 traces files processes and the other
using 100.

The nongreen scheduling algorithms (FCFS, RR, LSTRR, and
LSTRFRR) were compared to the green scheduling algorithms
(T_aware FCFS, T_aware RR, T_aware LSTRR, and T_aware
LSTRFRR) (Haruna et al., 2014).

3.1. Using 50 Sharcnet traces

Figure 1 shows how Sharcnet traces were used to plan 50 jobs
for execution. Because all of the jobs came at 0, 3, 4, and 11 a.m.,
they were all completed in server room 2. In comparison to the

Figure 1
Electricity consumption (W) based on 50 Sharcnet traces in server room 2
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other server rooms, server room 2 has the lowest temperature at 0, 3,
4, and 11 h (see Figure 2).

Figure 1 shows the cooling power consumption of 50 jobs that ran
for a week (1st to 7th day) using the green scheduling algorithm and
the nongreen green scheduling algorithm. Compared to nongreen
scheduling algorithms, green scheduling algorithms save cooling power
consumption.

Figure 1 shows that the amount of cooling electricity consumed
decreases from day 1 to day 2. The reason for this is that the server can
quickly complete important subtasks. However, from day 2 to day 7,
the cooling usage remained unchanged. This is owing to the fact
that the task/subtask will take longer than 7 days to complete. The
simulation lasts 7 days.

Figure 2
Power usage effectiveness (PUE) based on 50 Sharcnet traces in server room 2

Figure 3
Electricity consumption (W) based on 100 Sharcnet traces in server room 6

Artificial Intelligence and Applications Vol. 1 Iss. 4 2023

248



T aware LSTRFRR saves 25.31% (10217.43/40377.03 ×100)
of cooling electricity usage, according to an exhaustive
examination of the 50 jobs executed during the week (1–7 days).
T aware LSTRR reduces cooling EC by 25.22% (6926.08/
27465.22 × 100), T aware FCFS reduces cooling EC by 25.42%
(6752.93/26570.28 × 100), and T aware RR scheduling algorithm
reduces cooling EC by 25.22% (6926.08/27465.22× 100).

From day 1 to day 7, the performance of the nongreen
scheduling method is the same as 1.48 PUE as shown in Figure 2.
The green scheduling algorithm, on the other hand, has the same
performance from day 1 with PUE 1.09 and grows to day 7 with
PUE 1.11. The 1st day PUE of the T aware FCFS is 1.06, and the
4th day PUE of the T aware LSTRFRR is 1.08. It is clear that
the green scheduling algorithm has a better PUE for cooling than
the nongreen scheduling algorithm.

3.2. Using 100 Sharcnet traces

Figures 3 and 4 show the results of an examination of 100 jobs
run in server room 6. Figures 5 and 6 show the results of 100 jobs run
in server room 2. Server room 2 jobs arrived at 0, 3, 4, and 11 a.m.,
while server room 6 jobs arrived at 7, 8, 9, 10, 14, 16, 17, and 18 a.m.
Figure 2 shows that server room 2 has the lowest temperature
at 0, 3, 4, and 11 h, whereas server room 6 has the lowest
temperature at 7, 8, 9, 10, 14, 16, 17, and 18 h.

Figure 3 shows that the green scheduling algorithm can save
cooling power compared to the nongreen scheduling algorithm.

The cooling electricity required by the green scheduling
algorithms and the nongreen scheduling algorithms is decreasing
from day 1 to day 7 as shown in Figure 3. The reason for this is
that the server swiftly completes important subtasks. From day 1
to day 7, the cooling consumption of green scheduling algorithms
and nongreen scheduling strategies remained consistent. This is

owing to the fact that the task/subtask will take longer than 7 days
to complete. The simulation period is 7 days.

T aware LSTRFRR saves 19.74% (4925.17/24946.64× 100) of
cooling electricity usage, according to the experimental investigation.
T aware LSTRR saves 19.30% (12585.71/65227.21× 100), T aware
FCFS saves 19.74% (4925.17/24946.64× 100), and T aware RR
scheduling method saves 18.91% (11297.76/59741.50× 100) of
cooling electricity use over the course of a week (from day 1 to day 7).

Throughout the week, Figure 4 shows that the green scheduling
algorithms outperform the nongreen scheduling algorithms in terms
of PUE.

When compared to nongreen scheduling algorithms, Figure 5
shows that green scheduling strategies can save cooling EC.
Figure 5 shows that the amount of cooling electricity consumed
(by green and nongreen scheduling techniques) is fairly high on
day 1, but decreases on day 2. The reason for this is that the
server swiftly completes important subtasks. However, the cooling
consumption remained constant from day 2 to day 7 because the
task/subtask required more than 7 days to finish, and the
simulation duration was 7 days.

The result analysis shows that T aware LSTRFRR saves
29.37% (4896.65/16674.98 × 100) of cooling electricity usage
over the course of a week (from day 1 to day 7). T aware LSTRR
reduces cooling EC by 24.29% (8739.04/35975.88× 100), T
aware FCFS reduces cooling EC by 25.51% (8596.60/
33696.85 × 100), and T aware RR scheduling algorithm reduces
cooling EC by 24.29% (8739.04/35975.88 × 100) per week.

Figure 6 shows that the nongreen scheduling scheme maintains a
constant PUE of 1.48 from day 1 to day 7. Similarly, Green’s
scheduling algorithm works consistently from day 1, with a PUE of
1.14, a drop of 1.11 by day 2, and a PUE of 1.07 by day 7. It is
clear that the green scheduling algorithm is more successful in
utilizing the cooling capacity than the nongreen scheduling algorithm.

Figure 4
Power usage effectiveness (PUE) based on 100 Sharcnet traces in server room 6
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4. Conclusions

In this study, a detailed performance evaluation is performed
using the Sharcnet benchmark trace to test the effectiveness of the
proposed green scheduling method. The proposed green
scheduling method significantly reduces cooling power

consumption, such as large hotspots, while maintaining
competitive performance when running workloads or jobs while
preserving space on the DC server. The proposed green
scheduling methods significantly reduces high thermal stress
conditions and avoids thermal overshoot (by applying minimum
temperature and threshold). Therefore, the research finding

Figure 6
Power usage effectiveness (PUE) based on 100 Sharcnet traces in server room 2

Figure 5
Electricity consumption (W) based on 100 Sharcnet traces in server room 2
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concludes that green scheduling algorithms can reduce cooling
power consumption during job execution compared to nongreen
scheduling algorithms (50 and 100 jobs, respectively). Moreover,
it is also evident that the green scheduling algorithms are better
with cooling power usage effectiveness (PUE) compared to the
nongreen scheduling algorithms.

5. Future Research Work

However, in a situation when resource users’ jobs miss the
deadline, the present scheduling systems based on controlled
resource scheduling provide little or no compensation. The lack of
knowledge about performance aspects and paying resource users
may discourage them from submitting work to the grid. As a result,
future research should take into account resource users’ performance
goals and incentivize them to stay on the grid by including an
economy model into a regulated grid (Aram et al., 2005; Haruna
et al., 2021; Wang et al., 2009). The economic model’s requirements
are intended to satisfy both resource providers and their users in a
controlled resource scheduling framework. The cost of all grid
resources is determined by the resource’s performance.
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