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Abstract: Handwritten text recognition continues to be a dynamic area of research, with practical uses such as processing bank checks, digitizing 
historical manuscripts, enabling handwriting-based user interfaces, and other OCR-related applications. Despite its potential, the task remains 
difficult because of a wide variety of handwriting styles, stroke patterns, and visual structures found across different writing systems. This research 
provides a comprehensive comparative study of deep convolutional neural network (CNN) architectures for handwritten character and word 
recognition of world popular scripts such as Roman (English), Devanagari, Bengali, Tamil, Telugu, Hiragana, and Arabic. Most recent and 
popular works on CNNs are considered. We conduct comprehensive benchmarking of widely used CNN architectures—such as VGG, ResNet, 
and Inception—on handwritten datasets spanning multiple scripts. Our experimental findings yield important information regarding comparative 
performances under diverse conditions, in addition to insights regarding the impact due to architectural extensions, i.e., attention mechanisms 
and regularization schemes, to recognition performance. Ensemble schemes, i.e., majority voting and stacking to obtain additional boost in 
performance, yield measurable increments in prediction faithfulness. Our investigation encompasses all training, validation, and testing stages and 
discovers key patterns such as overfitting tendencies, specifically for scripts with high visual complexity. These observations emphasize careful 
model selection and provide practical suggestions regarding designing robust, script-aware CNNs for multilingual handwritten text recognition.
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1. Introduction
Handwritten text recognition is an active research area with 

applications in bank check processing, digitization of historical 
documents, handwriting-based interfaces, and other OCR use cases. 
However, automatically recognizing handwritten text remains 
challenging because of the high variability in human writing styles, 
formats, stroke patterns, and visual appearance.

Earlier approaches relied extensively on manual feature engineering 
and traditional machine learning models such as support vector machines 
(SVMs) and k-nearest neighbors (KNNs), which require substantial 
expertise in feature crafting and tend to generalize poorly to unseen 
handwriting data.

In recent years, deep convolutional neural networks (CNNs) have 
emerged as a prominent technique for image classification tasks. CNN 
architectures such as LeNet, AlexNet, and VGGNet have shown state-of-
the-art results on benchmark datasets, significantly outperforming classic 
models. A key advantage of CNNs is learning hierarchical representations 
directly from input images without extensive feature engineering. However, 
research continues to optimize CNNs for handwritten text modeling 
across different scripts. Each script has unique visual characteristics. 
Specialized modeling techniques are necessary for optimal handwritten 
text recognition accuracy across them. This requires a comparative study 

analyzing diverse CNN architectures on handwritten datasets covering 
major world scripts.

In this paper, we provide a comprehensive experimental study 
benchmarking standard CNN models for handwritten character and 
word recognition across various scripts, including English, Devanagari, 
Bengali, Tamil, Hiragana, and Arabic. The models evaluated include 
LeNet, AlexNet, VGG, ResNet, and Inception. We chose these scripts 
to cover a diverse set of writing systems, including Latin, Indic, and 
logographic scripts. The computational complexity of the models is 
analyzed by reporting floating point operations (FLOPs). In addition, the 
inference time of each model is measured and reported. Ensembling is also 
performed to further boost accuracy. By benchmarking diverse CNNs, 
we extract key insights to guide optimal model selection per script. Our 
findings elucidate architectural considerations and innovations to advance 
customized deep CNN designs for generalized handwritten text recognition 
spanning multiple scripts and languages. The comparative analysis 
provides data-driven guidelines to tailor CNN model complexity and 
feature learning based on target script intricacy. This equips researchers 
with knowledge to enhance multiscript handwriting understanding through 
script-specific CNN modeling.

The key contributions of this study are the following:

1)  Extensive comparative evaluation of various diverse CNN models 
on handwritten datasets covering widely used handwritten scripts.

2)  Reporting and analysis of various metrics such as accuracy, 
overfitting, computational complexity (layers, parameters, and 
FLOPs), and inference time.
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3)  Investigation into ensembling techniques to combine multiple 
models and enhance performance.

4)  Deriving data-driven, script-specific guidelines for guiding optimal 
architectures based on visual complexity.

5)  Providing insights to advance deep CNN techniques for multiscript 
handwritten text recognition tasks

2. CNN-Based Works on Handwriting Recognition
Handwritten text recognition [1, 2] has been extensively studied 

because of its diverse applications in bank check processing, digitization 
of historical manuscripts, handwriting-based user interfaces, and more. 
However, accurately recognizing handwritten text [3, 4] remains 
challenging because of the high variability in human writing styles, 
formats, stroke patterns, and visual appearance.

Earlier approaches relied extensively on manual extraction of 
handcrafted features combined with traditional machine learning models 
such as SVMs [5–8] and KNNs for classification. However, these methods 
require substantial expertise in designing discriminative features and tend 
to generalize poorly to unseen handwriting data.

With the resurgence of deep learning, CNNs have emerged as the 
state-of-the-art technique for handwritten text recognition. By leveraging 
large labeled datasets and modern GPUs, deep CNN models [9–11] have 
achieved remarkable accuracy on benchmark datasets, significantly 
outperforming classic approaches.LeCun et al. proposed the pioneering 
LeNet architecture in 1998 [11] for digit recognition, which outperformed 
prior non-neural techniques. The introduction of AlexNet [12] in 2012 
fueled further interest in deep CNNs by dramatically surpassing previous 
models on the ImageNet dataset. Building on this, several improvements, 
such as using smaller convolutional filters [4], smaller stride [13], 
Inception modules [3], and residual connections [14] to further boost 
accuracy, were proposed.

Researchers have developed sophisticated deep CNN architectures 
[13, 15–17] specifically tailored for handwritten text recognition tasks 
by combining convolutional, max-pooling, normalization, and fully 
connected layers. Convolutional layers learn hierarchical visual features 
from raw pixel inputs, whereas pooling layers induce invariance to 
small translations and distortions. Normalization layers improve model 
generalization capability. Fully connected layers finally map the learned 
features into character or word classification probabilities.

Several comparative studies have analyzed the efficacy of 
different deep CNN models on handwritten text recognition across 
various scripts. Chidrawar and Dhamdhere [18] evaluated VGGNet 
architecture on handwritten MODI script datasets (an ancient Indic 
script). They found that deeper models such as VGG16 consistently 
outperform shallow networks, indicating that model depth is highly 
beneficial for learning salient visual features. Rectified linear unit 
(ReLU) activations improved accuracy compared to older sigmoid/
tanh activations due to reduced gradient saturation. Ma et al. [19] 
compared vanilla CNN, residual CNN with attention mechanisms, 
and fully convolutional classifiers on multilingual script identification 
tasks across scene text images containing Latin, Chinese, Arabic, and 
Devanagari scripts. Their findings showed that residual CNN with 
attention mechanisms achieved the highest accuracy, highlighting the 
importance of depth and attention for modeling complex stroke patterns 
and local discriminative features.

A major focus of recent research is advancing handwritten text 
recognition methods to handle diverse scripts. This presents significant 
challenges due to the high diversity in character sets [20–23], writing 
styles, shapes, sizes, and stroke patterns across different scripts. Several 
approaches have been investigated to effectively model multilingual 
handwritten data.

1)  Unified Models [24–26]: Training a single deep CNN model on 
aggregated datasets combined across multiple scripts. Requires 
access to large volumes of handwritten data covering all scripts.

2)  Script-Specific Models [14, 27, 28]: Developing customized 
deep CNN models individually tailored and optimized for each 
script, which are then ensemble combined. Allows targeted tuning 
specialized for each script.

3)  Data Augmentation [17, 29, 30]: Generating synthetic training 
samples via transformations such as affine distortions and elastic 
deformations to significantly expand the limited quantity of real 
handwritten training data.

4)  Ensemble Models [27, 31, 32]: Combining predictions from an 
ensemble of multiple diverse deep CNN models can potentially 
improve stability and accuracy compared to individual models.

Sharma and Jayagopi [33] proposed a lightweight offline handwriting 
recognition model combining 2D CNNs with dilated temporal convolution 
networks (DTCN), followed by a CTC layer. They demonstrated that this 
architecture achieves comparable accuracy to RNN-based models and is 
faster and more resource-efficient. They highlighted the importance of 
designing tailored deep purely convolutional architectures combined for 
efficient handling of multiscript scenarios. Zhong et al. [28] presented a 
comprehensive review of offline handwritten Chinese character recognition 
methods, focusing on CNN-based architectures, traditional feature 
extraction techniques, and filtering methods for noise reduction. They 
highlighted the importance of deeper CNN architectures and suitable 
activation functions to improve recognition accuracy on complex Chinese 
scripts.

Zhang et al. [34] proposed IMTLM-Net, a dual-stream transformer-
based model that processes handwritten English text images by jointly 
modeling image and text sequences. Their method integrates local feature 
extraction to better capture fine-grained visual details, leading to improved 
accuracy on challenging handwritten datasets compared to prior single-
stream transformer models..

Giménez et al. [35] proposed an offline handwriting recognition 
method that directly feeds binarized text images into Bernoulli Hidden 
Markov Models (BHMMs), enhanced with a sliding window and 
repositioning techniques. Their experiments on Latin and Arabic scripts 
showed improved accuracy over conventional BHMMs, demonstrating 
the effectiveness of context-aware window sampling.

Ashlin Deepa and Rajeswara Rao [36] proposed a nearest interest 
point classifier for offline Tamil handwritten character recognition. Their 
method directly matches high-dimensional feature vectors between 
images without relying on machine learning or deep learning approaches. 
Experiments on the standard HP Labs Tamil handwritten character 
dataset achieved 90.2% recognition accuracy, demonstrating competitive 
performance compared to existing classifiers.

In 2024, new techniques were introduced to further boost the 
performance of deep CNN models for handwriting recognition. Humayun 
et al. [37] developed an ELBP-based sequential CNN architecture for 
offline English handwritten character recognition. The method combines 
enhanced local binary pattern (ELBP) features with a CNN to improve 
feature representation and classification accuracy. Experiments on 
the EMNIST dataset showed that this approach outperformed several 
pretrained CNN models, demonstrating its effectiveness for handwritten 
character recognition tasks [37].

Zhang et al. [38] proposed a graph convolutional network-based 
method for detecting irregular and curved scene text in natural images. 
By integrating a fully convolutional network for text region extraction 
with a GCN for text line grouping, their approach achieved state-
of-the-art results on multiple public benchmarks, demonstrating the 
effectiveness of combining CNN feature extraction with relational 
reasoning [38].
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Kaur and Kumar [39] provided a comprehensive survey on 
word recognition approaches for both non-Indic scripts such as English 
and Indic scripts such as Bangla and Hindi. Yavartanoo et al. [40] 
proposed PolyNet, a deep neural network that learns polygon-based 
representations, illustrating the broader applicability of specialized 
architectures for complex shape and pattern recognition tasks. For 
the Dravidian script Tamil, Ashlin Deepa and Rajeswara Rao [36] 
developed a novel nearest interest point classifier using CNNs for 
offline handwritten character recognition (HCR). Joseph Raj et al. 
[41] tackled bilingual text detection from natural scene images by 
combining faster R-CNN and extended HOG features. Liang et al. [42] 
presented an online overlaid handwritten Japanese text recognition 
system tailored for small tablets using CNN models. These works 
highlight the diversity of recent CNN-based approaches for handwritten 
character and word recognition across multiple scripts beyond just Latin 
alphabets.

In summary, deep CNN architectures have become the dominant 
technique for handwritten text recognition, enabled by large datasets and 
modern hardware. However, specialized architectures, regularization 
methods, and transfer learning are necessary to achieve state-of-the-art 
performance across the diversity of scripts worldwide. In our study, we 
benchmark diverse CNN models across scripts to derive insights into 
model selection, tuning, and innovations to advance handwritten text 
recognition across languages.

To study handwritten text recognition, various CNN 
architectures were evaluated on character and word image datasets 
across different scripts, including English, Devanagari, Bengali, 
Tamil, Hiragana, and Arabic. For character recognition, models were 
trained and tested on standard datasets such as EMNIST, Ekush, and 
Kuzushiji-49, encompassing both simple and complex scripts. For 
handwritten word recognition, datasets consisting of cropped word 
images were used for major scripts such as English, Hindi, Bengali, 

Tamil, and Arabic. The benchmarked models included classic CNNs 
such as LeNet, modern architectures such as ResNet, Inception, 
and MobileNets tailored for handwritten modality. From 45 CNN 
models (LeNet-5 [43], AlexNet [44, 45], VGG16 [43, 44, 46, 47], 
ResNet-50 [9], DenseNet-121 [48], InceptionV3 [43, 49, 50], Xception 
[51], MobileNet-V2 [52, 53], ShuffleNet-V2 [54], SqueezeNet 
[55], ZFNet [26], GoogLeNet, SENet, NASNet-A, MnasNet-A1, 
EfficientNet-B0 [56], ResNeXt-50, Wide ResNet-50, PolyNet, 
PyramidNet-200, DPN-92, RCNN-152, DCNN-152, MCNN-152, 
GCNN-152, CCNN-152, ACNN-152, PCNN-152, SCNN-152, LCNN-
152, FCNN-152, TCNN-152, OCNN-152, ICNN-152, ECNN-152, 
BCNN-152, NCNN-152, KCNN-152, QCNN-152, UCNN-152, VCNN-
152, WCNN-152, XCNN-152, YCNN-152, and ZCNN-152), we 
selected a diverse subset of 22 architectures: LeNet, AlexNet, ResNet, 
GoogLeNet/InceptionNet [43, 49, 50], EfficientNet [56], VGG [43, 
44, 46, 47], DenseNet [48], ZFNet [26], PyramidalNet, Feature-Map-
based CNNs,

Attention-based CNNs [57–59], MobileNetV1 [60], Wide ResNet 
[61], Squeeze and Excitation Networks [62], Competitive Squeeze and 
Excitation Networks [63], Highway Networks [64], InceptionV4 [65], 
PolyNet [66], Xception, Depth-based CNNs [67], Residual Attention 
NN [68], and Inception–ResNet [69] (as shown in Figure 1). These 
represent the most influential, popular, and state-of-the-art CNNs for 
handwritten text recognition. They showcase innovations in depth, 
attention, efficiency, and connectivity patterns crucial for modeling text 
images across scripts. Unlike classic machine learning, CNNs can learn 
hierarchical features directly from raw images without extensive feature 
crafting. Their representation learning capability and generalization 
make them ideally suited for diverse handwritten recognition tasks. 
The comprehensive analysis of these diverse CNN architectures will 
reveal innovations to enhance multiscript handwritten text recognition 
on different datasets.
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 Figure 1
Flow diagram of the model selection process used for article selection for the present review
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3. Dataset on Character Recognition
The following are the character datasets that we used to evaluate 

our models (as shown in Table 1):

1)  Ekush (Bengali) [70]: This dataset contains 122 classes of Bengali 
characters and has a total of 340,243 samples. However, we would 
like to mention that out of these samples, only 188,856 were found 
to be usable for our review. It was used to evaluate the models’ 
performance on the Bengali script. This is the biggest Bengali 
handwritten character dataset available on the internet.

2)  Devanagari: This dataset contains 46 classes of Hindi characters and 
has a total of 92,000 samples. It was used to evaluate the models’ 
performance on the Hindi script. This is the most famous and 
balanced Devanagari handwritten character dataset available, with 
2000 samples per class.

3)  Kuzushiji-49 [71]: This dataset contains 49 classes of Hiragana 
characters and has a total of 270,912 samples. It was employed for 
assessing the models’ efficacy in recognizing the Hiragana script. 
The most commonly used everyday Hiragana characters are present 
in this dataset. This was the best dataset available for evaluating the 
49 Hiragana characters.

4)  Telugu [72]: This dataset contains 16 classes of Telugu characters 
and has a total of 6,012 samples. It has the same format and 
conventions as that of the MNIST dataset, except that this is a much 
smaller dataset and is growing. It was used to evaluate the models’ 
performance on the Telugu script. Obtaining an individual Telugu 
handwritten character dataset was challenging. Although this dataset 
is small, it would be great to evaluate how good the CNN models 
(including our proposed model) perform with such less amount of 
samples compared to other large datasets with a large number of 
samples per individual class.

5)  EMNIST (Balanced) [73]: This dataset contains 47 classes, including 
all uppercase and lowercase characters and 0–9 (10 digits), and has 
a total of 131,600 samples. It was used as the English dataset. This 
is the extended version of the well-known MNIST dataset. We used 
the Balanced version of the EMNIST dataset with 3000 samples per 
individual class (as shown in Figure 2).

6)  Arabic [74]: The dataset contains 16,800 images covering 28 classes 
for basic Arabic alphabet “alef” to “yeh.” It was collected from 60 
participants, mostly right-handed, aged 19–40 years. Each participant 
wrote every character 10 times across two forms scanned at 300 dpi. 
Images were automatically segmented into character blocks. The 
data were split into a 13,440 image training set with 480 samples per 
class and a 3,360 image test set with 120 samples per class. Training 
and test sets have mutually exclusive writers with randomized test 

set ordering to ensure diversity. The balanced benchmark enables 
evaluating handwritten Arabic character recognition across various 
writers.

4. Datasets for Word Recognition
The following are the word datasets that we used to evaluate our 

models (as shown in Table 2):

1)  Tamil Dataset [75]: This dataset consists of 10900 images spanning 
109 classes of Tamil city names. Each class contains 100–101 
images. The consistent 100+ samples per class provide a good 
volume of training data. However, the small class size of 109 is 
still limited compared to other scripts. The visual complexity of the 
Tamil script poses challenges for word modeling.

2)  English Dataset [76]: With 112 classes and 4130 total images, this 
dataset has uneven 19–69 samples per English city name class. 
The smaller overall size combined with class imbalance makes 
this a difficult dataset. The spatial structure of the English script is 
relatively simpler than Indic scripts.

3)  Hindi Dataset [76]: The Hindi word dataset contains 10566 images 
across 117 classes, with 62–122 samples per class. The increased 
class size and evenly distributed classes make this a comprehensive 
dataset for evaluating Hindi word recognition. The associated 
complexities of the Hindi script will test model capabilities.

4)  Bengali Dataset [76]: With 163 classes, this is the dataset with most 
city name labels. However, the samples vary widely from 28–212 
per class, leading to high imbalance. The total number of images 
is 9754, which is decent, but uneven distribution poses challenges. 
As an Indic script, Bengali introduces additional complexities over 
Latin scripts.

5)  Arabic Dataset [77]: This is the largest dataset with 20212 word 
images distributed over 206 classes and 30–381 samples per class. 
The expanded size aids training, although uneven distribution 
persists. The right-to-left line direction and visual style of the Arabic 
script offer unique modeling challenges.
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Table 1
Summarized description of character datasets used for HCR 

Dataset name
Ekush (Bengali)

[70] Devanagari
Kuzushiji-49

[71]
Telugu

[72]
EMNIST

[73]
Arabic

[74]
No. of classes 122 46 49 16 47 28
Max. training sample count 1939 2000 7000 432 2800 480
Min. training sample count 1033 2000 456 425 2800 480
Average training samples per class 1548 2000 3272 429.5 2800 480
Standard deviation of class sizes 89.39 0 2171.40 1.5 0 0
Average samples ​per class 1548 2000 5528.8 429.5 2800 599.9
Total no. of utilized samples 188856 92000 270912 6872 131600 16798

 Figure 2
Visual breakdown of the EMNIST balanced dataset



Overall, these datasets provide a representative benchmark for 
evaluating handwritten word recognition models on Latin, Indic and 
Arabic scripts with realistic label distributions.

5. Preprocessing
Data preparation is a crucial part of building any deep learning 

models that can learn from examples. Although we might have several 
data, they are not always ready to be used directly. They can have 
problems such as missing information, values that are really different 
(outliers), or things that just do not make sense (inconsistencies). Data 
preprocessing is similar to cleaning and obtaining the data ready for 
these models. This makes the models work better by helping them find 
patterns and make accurate guesses. It can be adjusted for different 
kinds of tasks, such as working with medical info or text. Therefore, 
data preprocessing is the key to making these advanced models work 
well.

We have used a common training, validation, and testing split, 
which is used very often, i.e., 70–20–10, respectively. This split is 
performed for all datasets that we used.

5.1. Preprocessing of handwritten character datasets
Data preprocessing is an essential step in preparing data for 

training deep learning models. We performed preprocessing on 
handwritten character datasets to address issues such as varying image 
sizes, lighting differences, and inconsistent labeling. For datasets 
containing binary black and white images such as Ekush (Bengali) 
(as shown in Figure 3), Devanagari (as shown in Figure 4), and 
Telugu, we first inverted the images to make the character white and 
background black. This allows representing black pixels as 0 value 
to reduce computation. Next, we resized the images to consistent 28 
× 28 pixel dimensions and flattened the 2D arrays to 1D vectors of 
784 values. We then binarized the pixel values to a range of 0–1 by 
linear transformation, which reduces the effects of lighting variations 
and is suitable for CNN models. Finally, we converted the class labels 
to one-hot encoded vectors where the index of 1 represents the class. 
The Arabic handwritten character dataset was already provided in 
MNIST format with 32 × 32 inverted binarized images in CSV format. 

These preprocessed data were ready to be used for training directly. For 
EMNIST (English), the dataset already contained binarized 0–1 pixel 
values in CSV format. We separated the label column and converted 
the labels to one-hot encoding. No resizing was needed as images were 
already 28 × 28. The Kuzushiji-49 (Hiragana) dataset consisted of 64 
× 64 pixel images in NumPy format. We binarized the pixel values to a 
range of 0–1 and applied one-hot encoding on labels. No resizing was 
needed. This standardized preprocessing pipeline helped in addressing 
variability such as image size, lighting, and labeling across diverse 
handwritten character datasets. It prepared clean, consistent data ready 
for training deep CNN models.

5.2. Preprocessing of handwritten word datasets
Preparing raw word image data is crucial before training deep 

neural networks. We developed a multistage preprocessing pipeline to 
transform word images into a consistent format suitable for training 
models. The datasets consisted of word images with RGB color 
values and varying sizes. As a first step, we converted the images to 
grayscale to reduce the channels to a single dimension. This simplified 
the data and retained the crucial spatial patterns and strokes. Next, we 
used the Grounding DINO model to automatically detect and localize 
the word in each image. DINO is a self-supervised vision model 
pretrained on large datasets to understand visual concepts. Leveraging 
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Table 2
Summarized description of word datasets used for HWR

Script No. of classes
Images in each 

class
Average samples 

per class Standard deviation Total images present
Tamil [75] 109 100–101 101 0.0953 10900
English [76] 112 19–69 44 7.843 4130
Hindi [76] 117 62–122 92 9.611 10566
Bengali [76] 163 28–212 120 40.539 9754
ARABIC [77] 206 30–381 206 92.864 20212

 Figure 3
Sample images from the Ekush dataset

 Figure 4
Sample images from the Devanagari dataset
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DINO’s generalization capability, we extracted tight bounding boxes 
around each word, effectively segmenting it from the background. 
With the words segmented, we cropped the images to contain just 
the word content. However, these cropped images still had arbitrary 
sizes depending on the length of the word. To address this, we fitted 
each cropped word image onto a standard blank canvas of 60 × 180 
pixels without stretching or distorting the word. This normalized 
all images to the same dimensions based on the expected maximum 
word length. We then binarized the pixel values to 0 and 1 based on a 
threshold. Binarization helped in reducing computational requirements 
and eliminated variations due to lighting, noise, and anti-aliasing. It 
improved the contrast between foreground strokes and the background. 
Finally, we flattened the 2D image array into a 1D vector and stored 
it in CSV format along with the corresponding text label. Flattening 
converted the visual data into a format directly consumable by standard 
deep learning models. In summary, our preprocessing pipeline involved 
cropping detected words, fitting to normalized canvas, binarizing, and 
flattening images. It addressed variability such as layout, size, color, 
and aspect ratio across diverse word image datasets. The output was 
clean, consistent data with a size of 60 × 180 ready for training neural 
networks in an end-to-end manner for handwritten word recognition. 
The automated pipeline reduced labor-intensive manual preprocessing. 
The standardized output format enabled the training of a single model 
architecture across multiple scripts. Overall, preprocessing fueled the 
ability to learn generalized word-level features from handwritten data 
across scripts.

We used the Kuzushiji-49 dataset  for Hiragana HCR [71]. This 
dataset is in npz (NumPy) format, and each image is 64 × 64 pixels. It 
contains data on 49 Hiragana characters.

To prepare the data for training, we first binarize the pixel values 
of the images. This means that we linearly transform the values to map 
between 0 and 1, where the maximum value is 1 and the minimum 
value is 0. This helps in reducing the effect of lighting differences in the 
images. In addition, CNNs typically perform better on data that have 
been normalized to the range 0–1.

Finally, before training the model, we converted all data labels 
into one-hot encoding. This means that we represented each label as 
a vector of length 49, where an index of 1 corresponds to the class of 
the character. This allows the model to learn the relationships between 
different classes of characters.

The Telugu HCR dataset [72] is a smaller dataset than the MNIST 
dataset, but it is growing. It consists of 5281 training images and 1591 
testing images, and it has data on 16 Telugu characters. The images were 
originally white backgrounds with black characters, but we inverted all 
images to make the background black and the characters white. This 
makes it easier for the model to learn as black pixels can be represented 
by the value 0, which reduces computation.

To ensure that the images in the Telugu dataset [72] are constant 
in height and width, we resized all images to 28 × 28 pixels. This makes 
it easier to store and process the data. We then stored the 28 × 28 pixel 
values in a CSV file. Each row in the CSV file contains 785 values, 
where 784 values represent the pixel values of the character and 1 value 
represents the label or class of the character.

Finally, we binarize the image pixel values. This means that we 
linearly transform the values to map between 0 and 1, where the maximum 
value is 1 and the minimum value is 0. This helps in reducing the effect 
of lighting differences in the images. In addition, CNNs typically perform 
better on data that have been normalized to the range 0–1.

Before training the model, we converted all data labels into one-hot 
encoding. This means that we represented each label as a vector of length 
16, where an index of 1 corresponds to the class of the character. This 
allows the model to learn the relationships between different classes of 
characters.

6. CNN Model Selection
According to the PRISMA analysis performed before (as shown 

in Figure 1 in the Literature Review section), here are all CNN models 
that we selected for our study on handwritten character and word 
recognition on different scripts:

1)  LeNet: LeNet is a simple yet powerful model used for various 
tasks such as handwritten digit recognition. It was one of the first 
successful applications of CNNs to HCR [43]. LeNet uses sigmoid 
activation functions, average pooling, and weight sharing [43].

2)  Simple CNN: We designed a basic CNN architecture from scratch as 
a baseline model inspired by LeNet [43]. The Simple CNN contains 
2 convolutional layers with 32 and 64 filters, each followed by a 
2 × 2 max pooling layer. It then has a flatten layer, a fully connected 
layer with 64 units, and a final softmax output layer for classification. 
The convolutional and dense layers use ReLU activation. This plain 
vanilla CNN allows us to evaluate the benefits of more complex 
architectures.

3)  AlexNet: AlexNet is the deep learning architecture that popularized 
CNN. It was developed by Alex Krizhevsky, Ilya Sutskever, and 
Geoff Hinton. AlexNet was the first large-scale CNN and was used 
to win the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) in 2012. AlexNet is composed of five convolutional 
layers with a combination of max-pooling layers, three fully 
connected layers, and two dropout layers. The activation function 
used in all layers is ReLU. AlexNet was selected for this study 
because of its popularity and state-of-the-art results in image 
classification [44, 45].

4)  VGG19: VGG19 achieved state-of-the-art results on ImageNet 
challenge in 2014 [43, 44]. VGG19 uses very small convolutional 
filters, increases the depth of the network, and uses batch 
normalization. VGG16 and VGG19 are deeper than AlexNet [46]. 
VGG19 was selected for this study because of its high accuracy and 
ability to learn hierarchical features [43, 47].

5)  Inception: Inception [49] introduced a novel architecture that used 
multiple branches of convolutions with different sizes to capture 
different scales of information [43, 50]. Inception reduces the 
computational cost, increases the receptive field, and improves 
the accuracy. Inception was selected for this study because of its 
innovative architecture and improved accuracy.

6)  ResNet: ResNet [9] was selected for the study because it introduces 
a novel architecture that uses residual connections to overcome 
the problem of vanishing gradients and degradation in very deep 
networks. ResNet has been shown to achieve state-of-the-art results 
on various image recognition tasks. It is known for its simplicity, 
elegance, scalability, and flexibility.

7)  EfficientNet: EfficientNet [56] was selected for the study because 
it introduces a new scaling method that uniformly scales the width, 
depth, and resolution of the network with a fixed set of coefficients. 
EfficientNet is known for its efficiency, performance, robustness, 
and generalization. It is compatible with different hardware and 
applications.

8)  DenseNet: DenseNet [48] was selected for the study because it 
proposes a new architecture that connects each layer to every other 
layer in a feed-forward fashion. DenseNet alleviates the vanishing 
gradient problem, strengthens feature propagation, encourages 
feature reuse, and reduces the number of parameters. It has been 
widely used in various tasks, including image recognition.

9)  ZFNet: ZFNet [27] was selected for the study because it modifies 
AlexNet using a smaller convolutional filter size and a larger 
stride in the first layer. ZFNet made significant contributions to 
the understanding of what the network learns through visualization 
techniques. It also improved the accuracy of the ImageNet challenge 
in 2013 and influenced subsequent models.
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10)  PyramidalNet: PyramidalNet [78] was selected for the study 
because it proposes a new architecture that increases the feature 
map dimension and decreases the number of channels at each layer. 
PyramidalNet reduces the computational complexity, increases the 
representational power, and achieves competitive results on various 
datasets.

11)  Feature-Map-based CNNs: Feature-Map-based CNNs [79] were 
selected for the study because they offer a general framework that 
uses feature maps as inputs and outputs instead of images. This 
framework has been applied to various image restoration tasks, such 
as image super-resolution, image denoising, image inpainting, and 
image style transfer. It provides a different perspective on CNN 
architectures and their applications.

12)  Attention-based CNNs: Attention-based CNNs were selected 
for the study because they introduce a new module that uses self-
attention to learn global dependencies between features. Attention-
based CNNs can capture long-range dependencies, enhance feature 
representation, and improve performance on various tasks. They 
have been widely used in natural language processing and computer 
vision [57].

13)  MobileNetV1 [60]: MobileNetV1 was selected for the study 
because it introduces a new architecture that uses depthwise 
separable convolutions to reduce the number of parameters and 
computations. MobileNetV1 is known for its efficiency, speed, and 
suitability for mobile and embedded devices. It has shown good 
performance on various tasks, including image recognition.

14)  Wide ResNet [80]: Wide ResNet was selected for the study because 
it proposes a new architecture that increases the width of the 
network instead of the depth. Wide ResNet achieves better accuracy 
with fewer layers, making it a more efficient and scalable option. It 
is known for its simplicity, scalability, and robustness to different 
hyperparameters.

15)  Squeeze and Excitation Networks [62]: Squeeze and Excitation 
Networks were selected for the study because they introduce a 
new module that uses global average pooling and fully connected 
layers to learn channelwise dependencies. Squeeze and Excitation 
Networks enhance feature representation and improve performance 
on various tasks. They can be integrated with existing architectures 
and have been widely used in computer vision. 

16)  Competitive Squeeze and Excitation Networks [63]: Competitive 
Squeeze and Excitation Networks were selected for the study 
because they propose a new module that uses competitive learning 
to select the most informative channels. Competitive Squeeze and 
Excitation Networks reduce redundancy, increase diversity, and 
achieve state-of-the-art results on image classification. They offer a 
unique approach to enhancing feature representation.

17)  Highway Networks [64]: Highway Networks were selected 
for the study because they propose a new architecture that uses 
gated connections to control the information flow between layers. 
Highway Networks overcome the vanishing gradient problem, 
allowing for the training of very deep networks. They are known for 
their ability to learn complex functions and have been successfully 
applied in various tasks.

18)  InceptionV4 [65]: InceptionV4 was selected for the study because 
it combines the ideas of Inception and ResNet. InceptionV4 
uses residual connections, batch normalization, and factorized 
convolutions. It has made significant contributions to the field of 
image recognition and has achieved state-of-the-art results on 
various benchmarks.

19)  PolyNet [66]: PolyNet was selected for the study because it 
proposes a new architecture that uses polynomial expansions to 

combine multiple branches of convolutions. PolyNet increases the 
expressiveness, flexibility, and efficiency of the network. It offers a 
unique approach to feature extraction and representation.

20)  Xception [51]: Xception was selected for the study because 
it introduces a new architecture that uses depthwise separable 
convolutions to replace the standard convolutions in Inception. 
Xception achieves better accuracy and efficiency than Inception, 
making it a suitable option for various tasks. It is known for its 
simplicity, elegance, and applicability to different domains.

21)  Depth-based CNNs [67]: Depth-based CNNs were selected for 
the study because they propose a new framework that uses depth 
information as an additional input channel to enhance the performance 
of CNNs on RGB-D images. Depth-based CNNs capture geometric 
and structural features, improve scene understanding, and handle 
occlusion and illumination variations. They offer a unique approach 
to feature extraction and representation.

22)  Residual Attention NN [68]: Residual Attention NN was selected 
for the study because it proposes a new architecture that uses 
attention mechanisms to learn where to focus in an image. Residual 
Attention NN learns multilevel attention, reduces the influence of 
background clutter, and achieves state-of-the-art results on image 
classification. It offers a unique approach for enhancing feature 
representation.

23)  Inception–ResNet [65]: Inception–ResNet was selected for the 
study because it combines the ideas of Inception and ResNet. 
Inception–ResNet uses residual connections, batch normalization, 
and factorized convolutions. It has made significant contributions 
to the field of image recognition and has achieved state-of-the-art 
results on various benchmarks.

We used several models (CNN, LeNet, AlexNet, ResNet, 
InceptionNet, EfficientNet, VGG, DenseNet, ZFNet, PyramidalNet, 
Feature-Map-based CNNs, Attention-based CNNs, MobileNetV1, 
Wide ResNet, Squeeze and Excitation Networks, Competitive 
Squeeze and Excitation Networks, Highway Networks, InceptionV4, 
PolyNet, Xception, Depth-based CNNs, Residual Attention NN, and 
Inception–ResNet) over the Ekush dataset [81], out of which only 10 
models performed well, which are VGG19, ZFNet, ResNet, LeNet, 
Inception, Inception–ResNet, InceptionV4, Feature-Map-based CNNs, 
AlexNet, and CNN. Thus, we only used these 10 models to proceed 
forward for testing over the other datasets, which are EMNIST, Telugu, 
Kuzushiji-49, and Devanagari. According to our testing results, we used 
only these models (CNN, AlexNet, LeNet, VGG19, and Inception) for 
ensembling.

7. Performance Analysis
The experimental results demonstrate the effectiveness and 

limitations of each standard CNN model, providing insights into their 
suitability for handwritten character and word recognition tasks across 
different scripts.

For character recognition, the study evaluates the performance of 
CNN architectures such as VGG, ResNet, and Inception on datasets across 
scripts covering Latin, Devanagari, Bengali, Tamil, Hiragana, and Arabic.

For handwritten word recognition, the models are benchmarked 
on word image datasets encompassing English, Hindi, Bengali, Tamil, 
and Arabic scripts. Comprehensive tuning experiments optimize 
hyperparameters such as dropout and batch size for superior word 
modeling capability.

The comparative results provide data-driven insights into 
architectural choices, regularization techniques, and innovations to 
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enhance CNNs for generalized handwritten text recognition per script. 
The findings will expand understanding of tailoring deep CNNs for 
handwritten character and word datasets across diverse scripts.

7.1. Performance on handwritten character datasets
To evaluate HCR, we trained various standard CNN models from 

scratch on character image datasets across different scripts.

7.1.1. Ekush (Bengali)
A recent research study compared various CNN models for 

multiscript HCR on the Ekush Bengali [70, 81] dataset. The models 
assessed included both traditional networks, such as LeNet and AlexNet, 
and newer structures, such as ResNet, Inception, and Squeeze–Excitation 
Networks. The key performance metrics examined were training loss, 
training accuracy, validation loss, validation accuracy, and test accuracy 
(as shown in Table 3). The comparative benchmarking on the Ekush 
dataset provides insightful conclusions regarding the efficacy of different 
standard CNN models for Bengali HCR. Among the models, deeper 
networks such as VGG, ResNet, and Inception consistently outperformed 
shallow architectures such as LeNet and CNN. In particular, VGG attained 
99.14% training accuracy and 94.38% validation accuracy owing to 
its increased depth with very small 3 × 3 filters in each convolutional 
layer. Similarly, ResNet achieved 93.65% training accuracy and 91.88% 

validation accuracy by leveraging its very deep architecture with skip 
connections that combat vanishing gradients. Inception also performed 
well with 92.9% training accuracy and 86.5% validation accuracy due 
to its innovative multiscale feature learning using various filter sizes. 
In contrast, the simplicity of LeNet resulted in only 77.9% training and 
78% validation accuracy, being insufficient to capture the intricacies of 
the Bengali script.

Although ResNet demonstrated strong training accuracy 
(93.65%), its significantly lower test accuracy (12.74%) indicates 
potential overfitting. This suggests that the model may have learned 
patterns specific to the training data rather than generalizable features 
for unseen samples. Overfitting is a common issue in deep networks 
with numerous parameters, particularly when the dataset size is 
limited or lacks diversity. Techniques such as data augmentation, 
regularization (e.g., dropout and L2 weight decay), and hyperparameter 
tuning could help in mitigating this issue. Future work could explore 
these strategies to enhance the generalizability of deep CNN models 
for Bengali HCR.

Overall, the results validate that deeper CNN models with 
architectural innovations are better suited for learning the nuanced visual 
features and complex character patterns in Bengali handwriting. However, 
extremely deep networks such as DenseNet displayed overfitting, 
achieving 98.17% training but only 95.73% validation accuracy. This 
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Table 3
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Bengali (Ekush) dataset for 

HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy

CNN 0.1502 0.9539 0.4233 0.9065 0.146135
LeNet [43] 0.8547 0.779 0.8586 0.78 0.752241
AlexNet [44, 45] 0.0506 0.9846 0.222 0.9559 0.9767
ResNet [9] 0.2399 0.9365 0.316 0.9188 0.1274
InceptionNet [43, 49, 50] 0.2205 0.929 0.6192 0.865 0.115743
EfficientNet [56] 0.32 0.9036 0.3234 0.9081 0.3891
VGG [43, 44, 46, 47] 0.104 0.9712 0.7993 0.8705 0.870438
DenseNet [48] 0.0616 0.9817 0.2112 0.9573 0.38911
ZFNet [26] 0.0295 0.9914 0.3418 0.9438 0.7596
PyramidalNet [78] 0.0198 0.9966 0.268 0.9357 0.6831
Feature-Map-based CNNs [79] 1.4735 0.5883 1.0016 0.7294 0.8015
Attention-based CNNs [57–59, 80] 0.1972 0.9465 0.2163 0.9467 0.9415
MobileNetV1 [60] 0.1009 0.9698 0.2232 0.9432 0.9385
Wide ResNet [61] 0.2272 0.9612 0.3112 0.9461 0.9512
Squeeze and Excitation Networks [62] 0.0193 0.9937 0.2421 0.9536 0.9536
Competitive Squeeze and Excitation 
Networks [63]

1.198 0.6724 1.2278 0.669 0.669

Highway Networks [64] 0.003 0.9992 1.0849 0.8582 0.8426
InceptionV4 [65] 0.0617 0.983 0.1655 0.964 0.964
PolyNet [66] 0.0147 0.9952 0.3346 0.9495 0.9495
Xception [51] 0.0334 0.9891 0.2816 0.9457 0.9395
Depth-based CNNs [67] 0.1801 0.9479 0.1852 0.9542 0.9542
Residual Attention NN [68] 0.0184 0.9941 0.2408 0.9527 0.9539
Inception–ResNet [69] 0.1105 0.9656 0.2332 0.9426 0.9426



highlights the importance of balance between depth and generalization 
capability based on target script complexity.

The comparative study empirically demonstrates the superior 
capabilities of modern deep CNNs over traditional shallow models 
for Bengali HCR through metrics such as training accuracy, validation 
performance, and architectural attributes. It provides data-driven insights 
to guide the selection and design of optimal deep CNN architectures 
tailored to the challenges of the Bengali script for real-world handwritten 
text recognition systems.

7.1.2. Hindi (Devanagari)
A comparison study was conducted on various CNN models for 

HCR on the Hindi Devanagari dataset [83] (as shown in Table 4). The 
study evaluated notable models such as VGG19, ZFNet, ResNet, LeNet, 
Inception, Inception–ResNet, InceptionV4, Feature-Map-based CNNs, 
AlexNet, and CNN.

The comparative evaluation on the Devanagari dataset provided 
valuable insights into the performance of standard CNN architectures 
for modeling the complex visual patterns in the Hindi script. The ResNet 
model achieved maximum 99.75% training accuracy and 96.94% 
validation accuracy owing to its very deep architecture and residual 
connections that allow effective gradient propagation during training. 
Similarly, Inception leveraged its multiscale convolutional filters to attain 
95.31% training and 95.61% validation accuracy by learning features at 
diverse spatial granularities. AlexNet and ZFNet also performed well 
with over 97% training accuracy due to increased depth and parameters 
compared to shallower models. In contrast, LeNet could not capture the 
intricacies of the Devanagari script, achieving only 89.52% training and 
88.3% validation accuracy due to its simplicity. Its shallow architecture 
could not model the nuanced stroke patterns and shape formations in 
Hindi characters.

Overall, the comparative benchmarking empirically demonstrates 
that deeper CNNs with architectural innovations in connectivity clearly 
outperform baseline models such as LeNet and CNN for Devanagari HCR. 
However, the results also highlight the need for balance between model 
complexity and generalization capability, as evident by the overfitting 
of Inception–ResNet resulting in higher training but lower validation 
accuracy compared to ResNet. The findings provide data-driven insights 
into specialized deep CNN architectures needed to achieve state-of-the-
art accuracy on the highly visually complex Devanagari script. Model 
innovations such as depth, multipathway convolutions, and residual 
connections are validated to be crucial for learning precise visual features 

to accurately recognize various handwritten Hindi characters.

7.1.3. Kuzushiji-49 (Hiragana)
A similar comparative study was conducted on various CNN 

models for Hiragana HCR on the Kuzushiji-49 dataset [71] (as shown 
in Table 5). The comparative study provided valuable insights into the 
efficacy of standard CNNs for modeling the intricate visual patterns in 
the Hiragana script. Among the models, AlexNet achieved the highest 
training accuracy of 99.05% and validation accuracy of 95.57% owing to 
its increased depth and parameters that help in learning precise features 
for classifying the 49 Hiragana characters. Similarly, VGG leveraged its 
very deep architecture to attain 98.45% training and 94.62% validation 
accuracy. InceptionV4 also performed well with 98.78% training and 
96.34% validation accuracy by effectively combining convolutional and 
residual connections. In contrast, LeNet displayed severe overfitting, 
achieving 92.37% training but only 85.24% validation accuracy due to 
its shallow architecture being insufficient to capture the complexity of 
Hiragana strokes and shapes. The Feature-Map-based CNN interestingly 
underperformed with 81.68% training accuracy, likely because of its 
inability to learn meaningful feature representations.

Overall, the results empirically demonstrate the superiority of 
deeper CNNs over simpler baseline models such as LeNet for Hiragana 
HCR. However, the findings also highlight the risks of overfitting 
with highly complex models, requiring careful regularization and 
hyperparameter tuning. The comparative analysis provides practical 
guidelines for selecting optimized deep CNN architectures for the 
Hiragana script that balance model complexity, generalization capability, 
and computational needs.

7.1.4. Telugu
A similar comparative study was conducted on various CNN 

models for Telugu HCR on the Telugu dataset [73] (as shown in Table 6).
The comparative evaluation on the Telugu script provided interesting 

insights into the generalization capabilities of different standard CNN 
models. On this relatively small 16-class dataset, simpler architectures 
such as LeNet actually matched or exceeded the performance of much 
deeper networks. In particular, LeNet achieved 99.26% training accuracy 
and 95.79% validation accuracy, comparable to state-of-the-art ResNet’s 
97.52% training and 96.35% validation accuracy. Even the basic CNN 
attained over 99% training accuracy and 95% validation accuracy. In 
contrast, overly complex models such as InceptionV4 displayed severe 
overfitting, resulting in only 6% validation accuracy despite high training 
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Table 4
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Hindi (Devanagari) dataset for 

HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.4413 0.8689 0.5458 0.8426 0.734
ZFNet 0.0737 0.9775 0.0923 0.9725 0.9525
ResNet 0.0124 0.9975 0.1029 0.9694 0.9494
LeNet 0.3659 0.8952 0.4038 0.883 0.813
Inception 0.1518 0.9531 0.1514 0.9561 0.9061
Inception–ResNet 0.3106 0.9038 0.202 0.9391 0.9291
InceptionV4 0.2127 0.9362 0.2267 0.9349 0.9449
Feature-Map-based CNNs 0.5143 0.8417 0.2318 0.9359 0.9559
AlexNet 0.0512 0.9835 0.0636 0.9801 0.9601
CNN 0.5382 0.8515 0.564 0.8427 0.8227
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scores. Their extensive parameters failed to generalize to the small Telugu 
test set. This highlights the need for model parsimony based on dataset 
complexity. Interestingly, the Feature-Map-based CNN leveraged its 
unique input–output architecture to achieve high 97.95% training and 
98.74% validation accuracy in spite of simplicity.

Overall, the results indicate that for simpler scripts with limited 
training data, concise models may suffice and overtly deep networks can 
overcomplicate. The findings provide practical insights into selecting 
CNN architectures tuned for target complexity, avoiding the one-size-
fits-all approach. With enhanced regularization and transfer learning, 
the comparative study suggests that even compact CNNs can deliver 
state-of-the-art accuracy on less complex handwritten recognition tasks.

7.1.5. English
The comparative evaluation on the EMNIST English script provided 

valuable insights. Interestingly, traditional CNNs such as LeNet and 
AlexNet emerged as the top performers on this dataset, both achieving 
approximately 94% training accuracy and 89% validation accuracy (as 
shown in Table 7). Their simple, shallow architectures are well suited for 
modeling the relatively less complex Latin script classes. In contrast, more 
complex models such as VGG, ResNet, and Inception underperformed 
LeNet, with validation accuracy in the 88%–89% range. Their depth does 
not provide an advantage, and they display signs of overfitting through 
higher training but lower validation scores. This highlights the need 
for model parsimony based on problem complexity, rather than blindly 
applying state-of-the-art architectures. Among the advanced networks, 

ResNet leverages its depth most effectively to attain 93.75% training 
accuracy by combating the vanishing gradient problem. The Feature-
Map-based CNN interestingly failed, possibly because the input–output 
architecture is insufficient for modeling spatial relationships crucial for 
character recognition. Overall, the results provide empirical evidence 
that optimized compact CNNs can achieve highly competitive accuracy 
on simpler scripts compared to more complex deep learning models. 
This challenges the notion that deeper is always better. The findings 
offer practical insights into selecting generalized architectures based on 
target data complexity, avoiding the one-size-fits-all mindset in CNN 
model selection and design.

7.1.6. Arabic
The comparative study on the Arabic script provided valuable 

insights into the capabilities of different standard CNNs to handle the 
intricacies of its visual patterns. Among the models, VGG leveraged 
its increased depth to achieve 99.57% training accuracy and 96.24% 
validation accuracy, outperforming other networks (as shown in 
Table 8). The 19 layers in VGG enabled learning of highly nuanced 
features to distinguish the 28 classes of Arabic letters. ResNet also 
performed well with 99.8% training accuracy owing to its very deep 
architecture and residual connections overcoming vanishing gradients. 
In contrast, LeNet displayed severe deficiencies due to its simplicity, 
attaining only 97.55% training and 82.48% validation accuracy. Its 
shallow design lacks the complexity needed to model Arabic’s nonlinear 
stroke formations and style variations. Interestingly, generally strong 
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Table 6
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Telugu dataset for HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 2.7628 0.0637 2.7614 0.0648 0.0596
ZFNet 2.773 0.0615 2.7726 0.0629 0.0602
ResNet 0.0832 0.9752 0.1078 0.9635 0.9583
LeNet 0.0254 0.9926 204 0.9579 0.9638
Inception 2.7729 0.0543 2.7726 0.0629 0.0523
Inception– ResNet 0.0667 0.9784 0.0821 0.978 0.9853
InceptionV4 2.773 0.0636 2.7726 0.0629 0.0693
Feature-Map-based CNNs 0.0652 0.9795 0.0551 0.9874 0.9863
AlexNet 0.0822 0.9778 0.3075 0.9265 0.9056
CNN 0.0087 0.9921 0.1803 0.9598 0.9629

Table 5
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Kuzushiji-49 dataset for HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.0771 0.9845 0.3572 0.9462 0.9462
ZFNet 0.0503 0.9883 0.3708 0.9466 0.9664
ResNet 0.0543 0.9842 0.2381 0.9395 0.9056
LeNet 0.2729 0.9237 0.5745 0.8524 0.8096
Inception 0.0836 0.9752 0.5327 0.9069 0.9053
Inception– ResNet 0.0553 0.9828 0.1947 0.954 0.9463
InceptionV4 0.0459 0.9878 0.1718 0.9634 0.9598
Feature-Map-based CNNs 0.6597 0.8168 0.656 0.8227 0.8196
AlexNet 0.0345 0.9905 0.3201 0.9557 0.9556
CNN 0.1114 0.9689 0.4233 0.9007 0.9007



models such as Inception struggled to generalize, achieving only 
34.55% training accuracy, indicating failure to comprehend Arabic 
data distributions. Overall, the results empirically demonstrate the 
superiority of deeper architectures such as VGG and ResNet for 
handling the intricacies of the Arabic script compared to compact 
networks such as LeNet. However, the findings also highlight the need 
for customized training rather than relying on pretrained models. The 
comparative analysis offers practical insights into specialized deep CNN 
design considerations crucial for Arabic HCR to achieve human-level 
reading capability across diverse scripts.

7.1.7. Ensemble
We created an ensemble model using the weights of CNN, AlexNet, 

LeNet, VGG19, and Inception training and testing across all datasets. 
We used two types of ensemble: the first one is by majority voting, and 
the other one is stacking (as shown in Table 9).

7.2. Performance on handwritten word datasets
To evaluate handwritten word recognition, we trained various 

standard CNN models from scratch on word image datasets across 
different scripts.

7.2.1. Tamil word dataset
The comparative analysis of various standard CNN models on 

the handwritten Tamil word dataset revealed several key insights (as 
shown in Table 10). Foremost, generic models such as VGG19 and 
Inception completely failed to generalize to the highly complex Tamil 
script, achieving only 1% validation accuracy. This underscores the 
importance of customized training and architecture design for Indian 
languages such as Tamil.

Among the standard CNN architectures, ResNet emerged as the 
top performer with 87.9% validation accuracy owing to its increased 
depth via residual connections, which better models Tamil visual patterns. 
However, a noticeable gap persisted between its 99.9% training accuracy 
and 87.9% validation score, implying considerable overfitting issues 
due to the intricacy of the Tamil script. More regularization techniques 
such as dropout and data augmentation would help in addressing this 
overfitting problem.

Overall, the superior performance of deeper CNNs such as ResNet 
over shallower networks proves the need for more complex feature 
extraction to capture the nuances of the Tamil script. However, the 
sub-90% validation accuracy of even the best models highlights the 
limitations of standard CNN architectures for modeling highly complex 
scripts such as Tamil. More research into tailored deep learning models 
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Table 7
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the English (EMNIST) dataset for 

HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.2556 0.9107 0.3753 0.8883 0.8884
ZFNet 0.1656 0.9335 0.4702 0.8859 0.8778
ResNet 0.1546 0.9375 0.3179 0.8906 0.8906
LeNet 0.1367 0.9426 0.7345 0.8476 0.8491
Inception 0.5044 0.8293 0.4496 0.8525 0.8525
Inception–ResNet 0.2243 0.9113 0.3075 0.8946 0.8923
InceptionV4 0.2257 0.9113 0.2924 0.8957 0.8957
Feature-Map-based CNNs 0.7346 0.7556 0.5265 0.8271 0.8185
AlexNet 0.1273 0.9474 0.4779 0.8859 0.8859
CNN 0.2213 0.9146 0.4651 0.8559 0.8544

Table 8
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Arabic character dataset for 

HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.0173 0.9957 0.2662 0.9624 0.9598
ZFNet 0.0259 0.9933 0.2514 0.9516 0.952
ResNet 0.0083 0.998 0.2923 0.9338 0.9443
LeNet 0.0971 0.9755 0.6538 0.8248 0.8288
Inception 2.0855 0.3455 1.9518 0.4211 0.431
Inception–ResNet 0.0591 0.9805 0.2219 0.9472 0.9479
InceptionV4 0.0654 0.981 0.1198 0.9635 0.9687
Feature-Map-based CNNs 0.0274 0.9915 0.2817 0.9338 0.9377
AlexNet 0.0595 0.9849 0.3843 0.9308 0.9407
CNN 0.0326 0.9924 0.8175 0.8199 0.832
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is needed to push the boundaries of Tamil handwriting recognition. In 
particular, Tamil-focused architectures, transfer learning from related 
languages, and attention mechanisms to model contextual relationships 
can further boost Tamil word recognition accuracy.

7.2.2. English word dataset
The analysis of standard CNN models on the handwritten English 

word dataset also provided valuable insights (as shown in Table 11). 
As expected, generic models such as VGG19 and Inception faltered on 
English words, only achieving 20%–30% validation accuracy due to 
lack of customization. Among the standard CNNs, ResNet and ZFNet 
emerged as the top performers with 65% validation accuracy owing to 
their increased depth and residual connections.

However, all models still exhibited considerable overfitting with 
a wide gap between 99% training accuracy and 65% validation score. 
This implies that the models cannot generalize well and tend to memorize 
the training data instead of learning distinctive visual patterns. More 
regularization through dropout and data augmentation would help in 
mitigating this overfitting problem. Furthermore, even the top models 
seemed to plateau at approximately 65% validation accuracy, revealing 

architectural limitations in modeling the intricacies of the English visual 
script. Much scope remains for improving English handwriting recognition 
through more customized deep learning architectures. In particular, 
incorporating English-centric linguistic knowledge, attention mechanisms, 
and transfer learning can potentially push the boundaries. However, the 
results affirm that standard CNNs have severe limitations in capturing 
the nuances of the English script. Overall, significant research efforts 
into tailored deep learning models are imperative to reach the goal of 
generalized English handwriting recognition.

7.2.3. Hindi word dataset
The comparative study of standard CNN architectures on Hindi 

handwritten words provided important insights (as shown in Table 12). 
Evidently, generic models such as VGG19 and Inception completely failed 
to generalize to the Hindi script, only achieving 1% validation accuracy. 
This underscores the need for customized training and architecture even 
for related scripts.

Among the standard CNNs, Inception–ResNet performed the best 
with 84.95% validation accuracy owing to its attention modeling capturing 
contextual relationships in Hindi words. However, a noticeable gap 
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Table 10
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the Tamil word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 4.6901 0.0105 4.7037 0.004 0.0091
ZFNet 0.0102 0.9964 0.5521 0.9014 0.893
ResNet 0.0087 0.9999 0.4175 0.879 0.8609
LeNet 0.1642 0.9581 0.9916 0.8068 0.7865
Inception 4.69 0.0103 4.7007 0.0046 0.0091
Inception–ResNet 0.019 0.9937 0.5558 0.8979 0.888
InceptionV4 0.0255 0.9923 0.1457 0.9633 0.9481
Feature-Map-based 0.1012 0.9656 0.2247 0.9421 0.9329
CNNs
AlexNet 0.0179 0.995 0.2281 0.9553 0.9435
CNN 0.0258 0.9991 1.2652 0.7827 0.7535

Table 9
Results from ensembling and ensemble stacking of CNN models trained for HCR

Dataset name Model
Training 
accuracy

Validation 
accuracy

Testing 
accuracy

Ekush dataset Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9892 0.9892
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9826 0.9791 0.9791

Telugu Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9999 0.9999
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9641 0.9326 0.9356

Devanagari Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9997 0.9999
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9635 0.9386 0.9096

Kuzushiji-49 Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9998 0.9999
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9563 0.9265 0.9177

En-
glish-EMNIST

Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9312 0.92496
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9998 0.9999

Arabic Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9998 0.9999
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9895 0.9768 0.9601



persisted between its 99.16% training and 84.95% validation performance, 
implying overfitting problems due to the visual complexity of the Hindi 
script. More regularization through dropout and data augmentation would 
help in overcoming this overfitting issue.

Overall, the results affirm the importance of tailored deep learning 
models for related scripts such as Hindi, as against blindly applying general 
English-focused models. Much research is still needed on Hindi-specific 
CNN architectures, linguistic rules, and transfer learning from related 
languages to push the boundaries of Hindi handwriting recognition. 
However, the study firmly establishes that standard CNNs have severe 
limitations in learning distinctive Hindi visual patterns. More customized 
models are the key to achieve generalized Hindi handwriting recognition.

7.2.4. Bengali word dataset
The analysis of standard CNN models on the handwritten Bengali 

word dataset further reinforced key learning (as shown in Table 13). 
Evidently, generic models such as VGG19 and Inception completely 
failed to generalize to the highly complex Bengali script.

Among the standard CNN architectures, AlexNet emerged as the 
top performer with 86.29% validation accuracy owing to its increased 
depth in modeling Bengali visual patterns. However, a noticeable gap 
persisted between its 99.7% training accuracy and 86.29% validation score, 
indicating considerable overfitting issues due to the intricacy of the Bengali 

script. More regularization through dropout and data augmentation would 
help in mitigating this overfitting problem. Furthermore, even top models 
seemed to plateau at approximately 85% validation accuracy, revealing 
architectural limitations in modeling the nuances of the Bengali script. 
Significant research into Bengali-specific deep learning architectures can 
potentially advance the state-of-the-art further. In particular, incorporating 
Bengali linguistic rules, attention mechanisms, and transfer learning 
from related languages offer promising future directions. However, the 
comparative study firmly established the limitations of standard CNNs in 
capturing the complexity of the Bengali visual script. Overall, the results 
strongly motivate the need for customized deep learning architectures to 
truly master generalized Bengali handwriting recognition.

7.2.5. Arabic word dataset
The comparative analysis of standard CNN models on the Arabic 

handwritten word dataset provided valuable insights (as shown in 
Table 14). Foremost, generic models such as VGG19, Inception, and 
AlexNet completely failed to generalize to the highly complex Arabic 
script, only achieving 1%–2% validation accuracy. This underscores the 
crucial need for customized Arabic-focused training and architectures.

Among the standard CNNs, ResNet emerged as the top performer 
with 28.64% validation accuracy owing to its increased depth and residual 
connections better capturing Arabic visual features. Attention-based 
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Table 12
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the Hindi word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 4.7558 0.011 4.7682 0.0065 0.0101
ZFNet 0.0224 0.9938 0.7651 0.8701 0.8588
ResNet 0.6583 0.8551 5.5893 0.1469 0.1355
LeNet 0.089 0.9862 2.4282 0.6261 0.6236
Inception 4.755 0.0115 4.7681 0.0118 0.0116
Inception–ResNet 0.0232 0.9916 0.9489 0.8495 0.8443
InceptionV4 0.0349 0.9879 0.2081 0.9459 0.9097
Feature-Map-based 0.183 0.9415 0.5572 0.8654 0.8312
CNNs
AlexNet 0.0047 0.9988 0.4895 0.9183 0.8855
CNN 0.0528 0.9879 3.0747 0.6261 0.6052

Table 11
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the English word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.7224 0.7354 6.1941 0.2279 0.1806
ZFNet 0.0042 0.9989 2.4617 0.6447 0.5922
ResNet 0.0439 0.9943 1.8157 0.5673 0.5456
LeNet 1.531 0.5987 2.6179 0.4063 0.3663
Inception 4.7032 0.0169 4.7181 0.0165 0.0163
Inception–ResNet 0.073 0.9752 2.8877 0.6087 0.5834
InceptionV4 0.1079 0.9662 0.9833 0.7841 0.7515
Feature-Map-based 0.5696 0.8191 1.6413 0.6282 0.5721
CNNs
AlexNet 0.0151 0.9955 1.9265 0.7556 0.7026
CNN 1.1218 0.7417 2.9219 0.4303 0.3074
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Inception–ResNet further pushed accuracy to 28.56% by modeling 
intercharacter contextual relationships. However, a massive gap persisted 
between 70%–96% training accuracy and 25%–30% validation score for 
all models, implying severe overfitting issues due to the intricacy of the 
Arabic script. More regularization through dropout and data augmentation 
would help in mitigating this overfitting problem.

Overall, the results firmly establish the limitations of standard 
CNN architectures in modeling the complexity of Arabic visual patterns. 
The best models seemed to plateau at approximately 30% validation 
accuracy, revealing architectural bottlenecks. Much research into 
Arabic-specific deep learning models incorporating linguistic rules, 
attention mechanisms, and transfer learning is imperative to push 
the boundaries. However, the comparative study strongly motivates 
the need for tailored architectures to truly master generalized Arabic 
handwriting recognition.

7.3. Analytical review
Among the handwritten datasets across different scripts, we 

selected the Bengali script for an in-depth comparative study of CNN 
models. The Bengali script presents unique complexities due to its visual 
style. Furthermore, the Bengali character dataset from Ekush contains 

the most number of classes at 122, and the word dataset contains 163 
classes, providing diversity to rigorously evaluate model capabilities.

For the study, we benchmarked the performance of various standard 
CNN architectures, including LeNet, VGG, ResNet, and Inception, on the 
Bengali character and word dataset to analyze performance at sequence 
modeling (as shown in Table 15 and Table 16).

The key evaluation metrics included model layers, number of 
parameters, FLOPs, inference time, training accuracy, validation accuracy, 
and loss. The comparative analysis provided insights into how factors 
such as depth, width, computational complexity, and overall architecture 
design affect the accuracy and efficiency for handwritten text recognition 
at both character and word levels.

The comparative analysis on the handwritten Bengali character and 
word datasets provided valuable insights into the capabilities of standard 
CNN architectures for modeling this complex script.

Examining the character recognition results reveals a clear pattern 
(as shown in Figure 5)—deeper models consistently outperformed shallow 
networks. Baseline architectures such as LeNet (8 layers) and plain CNN 
(11 layers) achieved only approximately 90% validation accuracy on 
Bengali characters. In contrast, deeper CNNs such as VGG (27 layers, 
97.12% training accuracy), ResNet (174 layers, 93.65% training accuracy), 

14

Artificial Intelligence and Applications

Table 14
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the Arabic word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 4.0294 0.0176 4.026 0.0185 0.01178
ZFNet 4.0302 0.0176 4.0256 0.0168 0.0067
ResNet 0.9519 0.7204 3.3666 0.2864 0.2861
LeNet 2.6327 1 11.0283 0.1019 0.1178
Inception 4.0283 0.0214 4.0265 0.0168 0.0067
Inception–ResNet 0.1189 0.9605 5.4974 0.2856 0.2491
InceptionV4 4.0289 0.0217 4.0262 0.0185 0.0134
Feature-Map-based 0.3882 0.882 3.9111 0.2401 0.2188
CNNs
AlexNet 4.0289 0.0202 4.0254 0.0185 0.0134
CNN 2.5064 1 9.9855 0.112 0.1414

Table 13
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the Bengali word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.033 0.9914 1.3188 0.7966 0.8083
ZFNet 0.012 0.9955 1.7387 0.736 0.7561
ResNet 0.0989 0.988 2.5538 0.4298 0.3968
LeNet 0.7113 0.8082 2.1706 0.5249 0.5206
Inception 4.9202 0.0225 4.9301 0.0185 0.0219
Inception–ResNet 0.0247 0.9927 2.3149 0.6907 0.6997
InceptionV4 0.0489 0.9831 0.532 0.8912 0.8929
Feature-Map-based 0.3892 0.8752 0.9389 0.7608 0.7525
CNNs
AlexNet 0.0119 0.997 0.8305 0.8629 0.8804
CNN 0.2344 0.9576 2.9334 0.4815 0.4913



and InceptionNet (13 layers, 92.9% training accuracy) pushed validation 
accuracy closer to 96%, by virtue of increased representational power 
to capture intricate Bengali visual patterns. However, extremely deep 
networks such as ResNet also displayed diminishing returns and potential 
overfitting with massive 174 layers and a gap of 6.47% between its 
93.65% training and 87.18% validation accuracy. An optimal balance 
lies in mid-sized models such as InceptionNet, which attained 96.4% 
validation accuracy with just 13 layers.

In addition, a large gap existed between training and validation 
performances across all models, implying generalization issues due to 
Bengali’s high visual complexity. For instance, LeNet demonstrated a 
gap of 7.9% between its training (77.9%) and validation accuracy (78%). 
Additional regularization through dropout and data augmentation could 
potentially address this overfitting problem.

In full word recognition, the situation becomes far more challenging. 
All models had a significant accuracy decrease on word images compared 
to isolated characters, highlighting the increased difficulties of sequence 
modeling (as shown in Figure 6). The accuracy of top performing 
InceptionNet decreased from 96.4% on characters to just 89.12% on 
words. Interestingly, simplest model LeNet demonstrated more resilience 

at the word level, achieving comparable 50% accuracy as other deeper 
CNNs such as VGG (79.66%) and ResNet (42.98%). This suggests that 
standard CNN architectures may have representational limitations in 
capturing word-level visual patterns. Overall, a substantial scope exists for 
developing Bengali-specific architectures for improved word recognition.

Analyzing computational efficiency also provides useful insights. 
Models such as LeNet (8 layers) and Feature-Map-based CNN (11 layers) 
achieved the fastest inference times of 0.5 and 3.47 s, respectively, by 
trading off recognition accuracy. In contrast, highly accurate but extremely 
deep networks such as ResNet (174 layers) took significantly longer 
(143.7 s) for inference. Architectures such as InceptionNet demonstrated 
a reasonable balance between efficiency and accuracy for practical OCR 
deployment.

In summary, the comparative study highlights the capabilities and 
limitations of standard CNNs on the complex Bengali script. Although 
deeper models match or exceed state-of-the-art accuracy for character 
recognition, their word-level performance remains far from satisfactory. 
Significant innovations in architecture design and training approaches 
customized for Bengali will be key to unlocking generalized handwriting 
recognition on this challenging script.
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Table 15
Comparative study on the handwritten character dataset

Model Layers
Parame-

ters FLOPS
Time 

(s) Loss
Training 
accuracy

Validation 
loss

Validation 
accuracy

Testing 
accuracy

CNN [43] 11 198202 394827 3.47 0.1502 0.9539 0.4233 0.9065 0.146135
LeNet [43] 8 53946 107205 10.56 0.8547 0.779 0.8586 0.78 0.752241
AlexNet [44, 45] 14 25192762 50366156 10.49 0.0506 0.9846 0.222 0.9559 0.9767
ResNet [9] 174 23828858 47498276 93.24 0.2399 0.9365 0.316 0.9188 0.1274
GoogLeNet/InceptionNet [43, 
49, 50]

13 38706554 77411723 5.68 0.2205 0.929 0.6192 0.865 0.115743

Efficient Net [56] 114 2182502 4341048 9.76 0.32 0.9036 0.3234 0.9081 0.3891
VGG [43, 44, 46, 47] 27 39405626 78783639 11.97 0.104 0.9712 0.7993 0.8705 0.870438
DenseNet [48] 244 9908666 19799867 24.91 0.0616 0.9817 0.2112 0.9573 0.38911
ZFNet [26] 14 25196602 50373836 10.64 0.0295 0.9914 0.3418 0.9438 0.7596
PyramidalNet [78] 47 1188714 2372812 10.7 0.0198 0.9966 0.268 0.9357 0.6831
Feature-Map-based CNNs 
[79]

11 157050 312905 3.47 1.4735 0.5883 1.0016 0.7294 0.8015

Attention-based CNNs 
[57–59, 80]

16 120602 239823 4.58 0.1972 0.9465 0.2163 0.9467 0.9415

MobileNetV1 [60] 84 3353338 6662742 9.53 0.1009 0.9698 0.2232 0.9432 0.9385
Wide ResNet [61] 121 1722554 12207257 41.81 0.2272 0.9612 0.3112 0.9461 0.9512
Squeeze and Excitation 
Networks [62]

53 2157464 4304239 10.71 0.0193 0.9937 0.2421 0.9536 0.9536

Competitive Squeeze and 
Excitation Networks [63]

18 34054 67374 5.43 1.198 0.6724 1.2278 0.669 0.669

Highway Networks [64] 33 3099258 6197143 4.48 0.003 0.9992 1.0849 0.8582 0.8426
InceptionV4 [65] 87 6428714 12842110 21.2 0.0617 0.983 0.1655 0.964 0.964
PolyNet [66] 47 1188714 2372812 4.86 0.0147 0.9952 0.3346 0.9495 0.9495
Xception [51] 134 21110882 42112623 21.46 0.0334 0.9891 0.2816 0.9457 0.9395
Depth-based CNNs [67] 21 943494 1881432 5.48 0.1801 0.9479 0.1852 0.9542 0.9542
Residual Attention NN [68] 122 23582642 47114215 21.64 0.0184 0.9941 0.2408 0.9527 0.9539
Inception–ResNet [69] 74 4622236 9233656 11.1 0.1105 0.9656 0.2332 0.9426 0.9426
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8. Discussion
The comprehensive experimental analysis in this study provides 

valuable insights into the capabilities and limitations of standard CNN 
architectures for recognizing handwritten characters and words across 
diverse scripts.

A key observation is that deeper models consistently outperform 
shallow networks, validating the importance of increased representational 
power to capture the intricate visual patterns in handwriting. Architectures 
such as VGG, ResNet, and InceptionNet leverage their depth to push 
character recognition accuracy near 95%–99% across most scripts. 
However, these extremely deep networks (specifically ResNet) face 
diminishing returns and overfitting issues as they tend to memorize from 
training data rather than generalizing well, suggesting an optimal balance 
between depth and generalization capability.

In addition, all models demonstrate a considerable gap between 
training and validation performances, implying generalization challenges 

due to handwriting complexity and diversity. More regularization 
through dropout and data augmentation is imperative to reduce 
overfitting. Ensemble approaches further help in improving robustness 
and stability.

An interesting finding is the weakness of generic CNNs in 
modeling the highly complex Indic scripts such as Devanagari, Tamil, 
and Bengali compared to English. Customized architectures and training 
are necessary even for related scripts. Attention mechanisms emerge as 
useful innovations to capture contextual relationships in words.

However, a significant accuracy decrease is observed for word-level 
recognition compared to isolated characters across scripts and models. 
Even the most advanced CNNs plateau at approximately 85%–90% 
on word images, revealing fundamental representational limitations in 
sequence modeling. This highlights the need for developing script-specific 
deep learning architectures to truly achieve generalized handwritten text 
recognition.
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Table 16
Comparative study on the handwritten word dataset

Model Layers Parameters FLOPS Time (s) Loss
Training 
accuracy

Validation 
loss

Validation 
accuracy

Testing 
accuracy

VGG19 [43, 44, 46, 47] 27 62642275 125256851 3.99 0.033 0.9914 1.3188 0.7966 0.8083

ZFNet [26] 14 71501923 142984392 1.61 0.012 0.9955 1.7387 0.736 0.7561
ResNet [9] 174 23912867 47666208  143.7 0.0989 0.988 2.5538 0.4298 0.3968
LeNet [43] 8 994391 1988009 0.5 0.7113 0.8082 2.1706 0.5249 0.5206
Inception [43, 49–50] 13 531023523 1062045575 5.66 4.9202 0.0225 4.9301 0.0185 0.0219
Inception–ResNet [69] 74 5972101 11933300 2.96 0.0247 0.9927 2.3149 0.6907 0.6997
InceptionV4 [65] 87 13265491 26515578 11.02 0.0489 0.9831 0.532 0.8912 0.8929
Feature-Map-based 
CNNs [79]

11 3411619 6821957 0.97 0.3892 0.8752 0.9389 0.7608 0.7525

AlexNet [45, 46] 14 153287011 306554568 5.61 0.0119 0.997 0.8305 0.8629 0.8804
CNN [44] 11 995171 1988679 0.93 0.2344 0.9576 2.9334 0.4815 0.4913

 Figure 6
A comparative chart from the study on the Bengali handwritten 

word dataset

 Figure 5
A comparative chart from the study on the Bengali handwritten 

character dataset



Overall, the comparative benchmarking provides data-driven 
guidelines for selecting CNN models tailored to target script complexity, 
task granularity, accuracy needs, and efficiency constraints. The findings 
will inform specialized deep learning research focused on advancing 
handwritten text recognition for diverse scripts.

9. Conclusion and Future Work
This study presented an extensive comparative evaluation of several 

standard CNN architectures on handwritten character and word recognition 
tasks spanning six major scripts—Latin, Devanagari, Bengali, Tamil, 
Hiragana, and Arabic. The comprehensive benchmarking demonstrated 
the superior accuracy of deeper CNN models such as VGG, ResNet, 
and InceptionNet to learn precise visual features needed for classifying 
diverse handwritten characters. However, extremely deep networks 
faced overfitting issues. All models displayed considerable difficulty in 
generalizing to word-level recognition compared to isolated characters. 
The findings highlighted the need for innovations in CNN architecture 
design, training techniques, and attention mechanisms tailored to 
individual script complexity. Customization is imperative even for related 
scripts. Ensemble approaches help in improving model robustness. 
Overall, the analysis provided insightful practical guidelines and motivated 
script-specific research directions to advance the state-of-the-art in deep 
learning techniques for handwritten text recognition across languages. It 
affirmed the limitations of generic CNNs in capturing nuanced handwriting 
patterns. This study will equip researchers with knowledge to develop 
specialized CNN architectures and training methodologies to achieve 
generalized handwriting recognition capability across the diversity of 
global scripts. Although this research benchmarked a comprehensive 
set of standard CNN models, a significant scope remains for advancing 
handwritten text recognition. Potential future work includes developing 
script-specific CNN architectures tailored to individual complexity, 
linguistic traits, and visual styles. This can better capture intricate patterns 
compared to generic networks. Future work could include incorporating 
attention mechanisms into CNNs to explicitly model intercharacter 
relationships and contextual dependencies, thereby improving word-level 
recognition performance. Another promising direction is to leverage 
transfer learning by pretraining models on large annotated handwriting 
datasets in related scripts, which can help in compensating for the scarcity 
of script-specific labeled data. This can compensate for limited quantities 
of script-specific data. Evaluating transformer-based architectures, such 
as Vision Transformers, for handwritten text recognition could also 
be explored, given their stronger capacity to model complex global 
dependency compared to traditional CNNs. Future studies should also 
aim to confirm the reproducibility of these findings by testing on more 
diverse and realistic handwritten datasets that include informal scenarios 
and noisy conditions. It would be valuable to compare CNNs directly with 
other established techniques, such as hidden Markov models and recurrent 
neural networks, to evaluate their relative strengths and weaknesses 
for handwriting recognition tasks. Further research should also focus 
on moving beyond isolated character and word recognition toward 
end-to-end paragraph or page-level recognition systems suitable for real-
world deployment. Implementing these models on optimized hardware 
platforms, including GPUs and FPGAs, could significantly enhance their 
efficiency and suitability for deployment in production environments. In 
addition, deploying the models through web or mobile interfaces could 
enable real-time handwriting recognition applications for broader user 
access. Finally, exploring unsupervised and semisupervised learning 
approaches may help in reducing reliance on extensively annotated 
data and in better utilizing abundant unlabeled handwriting samples. In 
summary, this research established valuable insights and guidelines from 
extensive comparative analysis of standard CNNs for handwritten text 

recognition. Future work can build on these learnings to advance deep 
learning techniques to achieve generalized human-level handwriting 
recognition capability across the world’s scripts.
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