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Abstract: Handwritten text recognition continues to be a dynamic area of research, with practical uses such as processing bank checks, digitizing
historical manuscripts, enabling handwriting-based user interfaces, and other OCR-related applications. Despite its potential, the task remains
difficult because of a wide variety of handwriting styles, stroke patterns, and visual structures found across different writing systems. This research
provides a comprehensive comparative study of deep convolutional neural network (CNN) architectures for handwritten character and word
recognition of world popular scripts such as Roman (English), Devanagari, Bengali, Tamil, Telugu, Hiragana, and Arabic. Most recent and
popular works on CNNs are considered. We conduct comprehensive benchmarking of widely used CNN architectures—such as VGG, ResNet,
and Inception—on handwritten datasets spanning multiple scripts. Our experimental findings yield important information regarding comparative
performances under diverse conditions, in addition to insights regarding the impact due to architectural extensions, i.e., attention mechanisms
and regularization schemes, to recognition performance. Ensemble schemes, i.e., majority voting and stacking to obtain additional boost in
performance, yield measurable increments in prediction faithfulness. Our investigation encompasses all training, validation, and testing stages and
discovers key patterns such as overfitting tendencies, specifically for scripts with high visual complexity. These observations emphasize careful
model selection and provide practical suggestions regarding designing robust, script-aware CNNs for multilingual handwritten text recognition.
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1. Introduction analyzing diverse CNN architectures on handwritten datasets covering

. o . . major world scripts.
Handwritten text recognition is an active research area with

applications in bank check processing, digitization of historical
documents, handwriting-based interfaces, and other OCR use cases.
However, automatically recognizing handwritten text remains
challenging because of the high variability in human writing styles,
formats, stroke patterns, and visual appearance.

Earlier approaches relied extensively on manual feature engineering
and traditional machine learning models such as support vector machines
(SVMs) and k-nearest neighbors (KNNs), which require substantial
expertise in feature crafting and tend to generalize poorly to unseen
handwriting data.

In recent years, deep convolutional neural networks (CNNs) have
emerged as a prominent technique for image classification tasks. CNN
architectures such as LeNet, AlexNet, and VGGNet have shown state-of-
the-art results on benchmark datasets, significantly outperforming classic
models. A key advantage of CNNss is learning hierarchical representations
directly from input images without extensive feature engineering. However,
research continues to optimize CNNs for handwritten text modeling
across different scripts. Each script has unique visual characteristics.
Specialized modeling techniques are necessary for optimal handwritten
text recognition accuracy across them. This requires a comparative study 1) Extensive comparative evaluation of various diverse CNN models

on handwritten datasets covering widely used handwritten scripts.
2) Reporting and analysis of various metrics such as accuracy,

*Corresponding author: Kaushik Roy, Department of Computer Science, West overfitting, computational complexity (layers, parameters, and
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In this paper, we provide a comprehensive experimental study
benchmarking standard CNN models for handwritten character and
word recognition across various scripts, including English, Devanagari,
Bengali, Tamil, Hiragana, and Arabic. The models evaluated include
LeNet, AlexNet, VGG, ResNet, and Inception. We chose these scripts
to cover a diverse set of writing systems, including Latin, Indic, and
logographic scripts. The computational complexity of the models is
analyzed by reporting floating point operations (FLOPs). In addition, the
inference time of each model is measured and reported. Ensembling is also
performed to further boost accuracy. By benchmarking diverse CNNss,
we extract key insights to guide optimal model selection per script. Our
findings elucidate architectural considerations and innovations to advance
customized deep CNN designs for generalized handwritten text recognition
spanning multiple scripts and languages. The comparative analysis
provides data-driven guidelines to tailor CNN model complexity and
feature learning based on target script intricacy. This equips researchers
with knowledge to enhance multiscript handwriting understanding through
script-specific CNN modeling.

The key contributions of this study are the following:
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3) Investigation into ensembling techniques to combine multiple
models and enhance performance.

4) Deriving data-driven, script-specific guidelines for guiding optimal
architectures based on visual complexity.

5) Providing insights to advance deep CNN techniques for multiscript
handwritten text recognition tasks

2. CNN-Based Works on Handwriting Recognition

Handwritten text recognition [1, 2] has been extensively studied
because of'its diverse applications in bank check processing, digitization
of historical manuscripts, handwriting-based user interfaces, and more.
However, accurately recognizing handwritten text [3, 4] remains
challenging because of the high variability in human writing styles,
formats, stroke patterns, and visual appearance.

Earlier approaches relied extensively on manual extraction of
handcrafted features combined with traditional machine learning models
such as SVMs [5-8] and KNNs for classification. However, these methods
require substantial expertise in designing discriminative features and tend
to generalize poorly to unseen handwriting data.

With the resurgence of deep learning, CNNs have emerged as the
state-of-the-art technique for handwritten text recognition. By leveraging
large labeled datasets and modern GPUs, deep CNN models [9-11] have
achieved remarkable accuracy on benchmark datasets, significantly
outperforming classic approaches.LeCun et al. proposed the pioneering
LeNet architecture in 1998 [11] for digit recognition, which outperformed
prior non-neural techniques. The introduction of AlexNet [12] in 2012
fueled further interest in deep CNNs by dramatically surpassing previous
models on the ImageNet dataset. Building on this, several improvements,
such as using smaller convolutional filters [4], smaller stride [13],
Inception modules [3], and residual connections [14] to further boost
accuracy, were proposed.

Researchers have developed sophisticated deep CNN architectures
[13, 15-17] specifically tailored for handwritten text recognition tasks
by combining convolutional, max-pooling, normalization, and fully
connected layers. Convolutional layers learn hierarchical visual features
from raw pixel inputs, whereas pooling layers induce invariance to
small translations and distortions. Normalization layers improve model
generalization capability. Fully connected layers finally map the learned
features into character or word classification probabilities.

Several comparative studies have analyzed the efficacy of
different deep CNN models on handwritten text recognition across
various scripts. Chidrawar and Dhamdhere [18] evaluated VGGNet
architecture on handwritten MODI script datasets (an ancient Indic
script). They found that deeper models such as VGG16 consistently
outperform shallow networks, indicating that model depth is highly
beneficial for learning salient visual features. Rectified linear unit
(ReLU) activations improved accuracy compared to older sigmoid/
tanh activations due to reduced gradient saturation. Ma et al. [19]
compared vanilla CNN, residual CNN with attention mechanisms,
and fully convolutional classifiers on multilingual script identification
tasks across scene text images containing Latin, Chinese, Arabic, and
Devanagari scripts. Their findings showed that residual CNN with
attention mechanisms achieved the highest accuracy, highlighting the
importance of depth and attention for modeling complex stroke patterns
and local discriminative features.

A major focus of recent research is advancing handwritten text
recognition methods to handle diverse scripts. This presents significant
challenges due to the high diversity in character sets [20-23], writing
styles, shapes, sizes, and stroke patterns across different scripts. Several
approaches have been investigated to effectively model multilingual
handwritten data.

1) Unified Models [24-26]: Training a single deep CNN model on
aggregated datasets combined across multiple scripts. Requires
access to large volumes of handwritten data covering all scripts.

2) Script-Specific Models [14, 27, 28]: Developing customized
deep CNN models individually tailored and optimized for each
script, which are then ensemble combined. Allows targeted tuning
specialized for each script.

3) Data Augmentation [17, 29, 30]: Generating synthetic training
samples via transformations such as affine distortions and elastic
deformations to significantly expand the limited quantity of real
handwritten training data.

4) Ensemble Models [27, 31, 32]: Combining predictions from an
ensemble of multiple diverse deep CNN models can potentially
improve stability and accuracy compared to individual models.

Sharma and Jayagopi [33] proposed a lightweight offline handwriting
recognition model combining 2D CNNs with dilated temporal convolution
networks (DTCN), followed by a CTC layer. They demonstrated that this
architecture achieves comparable accuracy to RNN-based models and is
faster and more resource-efficient. They highlighted the importance of
designing tailored deep purely convolutional architectures combined for
efficient handling of multiscript scenarios. Zhong et al. [28] presented a
comprehensive review of offline handwritten Chinese character recognition
methods, focusing on CNN-based architectures, traditional feature
extraction techniques, and filtering methods for noise reduction. They
highlighted the importance of deeper CNN architectures and suitable
activation functions to improve recognition accuracy on complex Chinese
scripts.

Zhang et al. [34] proposed IMTLM-Net, a dual-stream transformer-
based model that processes handwritten English text images by jointly
modeling image and text sequences. Their method integrates local feature
extraction to better capture fine-grained visual details, leading to improved
accuracy on challenging handwritten datasets compared to prior single-
stream transformer models..

Giménez et al. [35] proposed an offline handwriting recognition
method that directly feeds binarized text images into Bernoulli Hidden
Markov Models (BHMMs), enhanced with a sliding window and
repositioning techniques. Their experiments on Latin and Arabic scripts
showed improved accuracy over conventional BHMMs, demonstrating
the effectiveness of context-aware window sampling.

Ashlin Deepa and Rajeswara Rao [36] proposed a nearest interest
point classifier for offline Tamil handwritten character recognition. Their
method directly matches high-dimensional feature vectors between
images without relying on machine learning or deep learning approaches.
Experiments on the standard HP Labs Tamil handwritten character
dataset achieved 90.2% recognition accuracy, demonstrating competitive
performance compared to existing classifiers.

In 2024, new techniques were introduced to further boost the
performance of deep CNN models for handwriting recognition. Humayun
et al. [37] developed an ELBP-based sequential CNN architecture for
offline English handwritten character recognition. The method combines
enhanced local binary pattern (ELBP) features with a CNN to improve
feature representation and classification accuracy. Experiments on
the EMNIST dataset showed that this approach outperformed several
pretrained CNN models, demonstrating its effectiveness for handwritten
character recognition tasks [37].

Zhang et al. [38] proposed a graph convolutional network-based
method for detecting irregular and curved scene text in natural images.
By integrating a fully convolutional network for text region extraction
with a GCN for text line grouping, their approach achieved state-
of-the-art results on multiple public benchmarks, demonstrating the
effectiveness of combining CNN feature extraction with relational
reasoning [38].
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Kaur and Kumar [39] provided a comprehensive survey on
word recognition approaches for both non-Indic scripts such as English
and Indic scripts such as Bangla and Hindi. Yavartanoo et al. [40]
proposed PolyNet, a deep neural network that learns polygon-based
representations, illustrating the broader applicability of specialized
architectures for complex shape and pattern recognition tasks. For
the Dravidian script Tamil, Ashlin Deepa and Rajeswara Rao [36]
developed a novel nearest interest point classifier using CNNs for
offline handwritten character recognition (HCR). Joseph Raj et al.
[41] tackled bilingual text detection from natural scene images by
combining faster R-CNN and extended HOG features. Liang et al. [42]
presented an online overlaid handwritten Japanese text recognition
system tailored for small tablets using CNN models. These works
highlight the diversity of recent CNN-based approaches for handwritten
character and word recognition across multiple scripts beyond just Latin
alphabets.

In summary, deep CNN architectures have become the dominant
technique for handwritten text recognition, enabled by large datasets and
modern hardware. However, specialized architectures, regularization
methods, and transfer learning are necessary to achieve state-of-the-art
performance across the diversity of scripts worldwide. In our study, we
benchmark diverse CNN models across scripts to derive insights into
model selection, tuning, and innovations to advance handwritten text
recognition across languages.

To study handwritten text recognition, various CNN
architectures were evaluated on character and word image datasets
across different scripts, including English, Devanagari, Bengali,
Tamil, Hiragana, and Arabic. For character recognition, models were
trained and tested on standard datasets such as EMNIST, Ekush, and
Kuzushiji-49, encompassing both simple and complex scripts. For
handwritten word recognition, datasets consisting of cropped word
images were used for major scripts such as English, Hindi, Bengali,

Tamil, and Arabic. The benchmarked models included classic CNNs
such as LeNet, modern architectures such as ResNet, Inception,
and MobileNets tailored for handwritten modality. From 45 CNN
models (LeNet-5 [43], AlexNet [44, 45], VGG16 [43, 44, 46, 47],
ResNet-50 [9], DenseNet-121 [48], InceptionV3 [43, 49, 50], Xception
[51], MobileNet-V2 [52, 53], ShuffleNet-V2 [54], SqueezeNet
[55], ZFNet [26], GoogLeNet, SENet, NASNet-A, MnasNet-Al,
EfficientNet-BO [56], ResNeXt-50, Wide ResNet-50, PolyNet,
PyramidNet-200, DPN-92, RCNN-152, DCNN-152, MCNN-152,
GCNN-152, CCNN-152, ACNN-152, PCNN-152, SCNN-152, LCNN-
152, FCNN-152, TCNN-152, OCNN-152, ICNN-152, ECNN-152,
BCNN-152, NCNN-152, KCNN-152, QCNN-152, UCNN-152, VCNN-
152, WCNN-152, XCNN-152, YCNN-152, and ZCNN-152), we
selected a diverse subset of 22 architectures: LeNet, AlexNet, ResNet,
GoogLeNet/InceptionNet [43, 49, 50], EfficientNet [56], VGG [43,
44, 46, 47], DenseNet [48], ZFNet [26], PyramidalNet, Feature-Map-
based CNNss,

Attention-based CNNs [57-59], MobileNetV1 [60], Wide ResNet
[61], Squeeze and Excitation Networks [62], Competitive Squeeze and
Excitation Networks [63], Highway Networks [64], InceptionV4 [65],
PolyNet [66], Xception, Depth-based CNNs [67], Residual Attention
NN [68], and Inception—ResNet [69] (as shown in Figure 1). These
represent the most influential, popular, and state-of-the-art CNNs for
handwritten text recognition. They showcase innovations in depth,
attention, efficiency, and connectivity patterns crucial for modeling text
images across scripts. Unlike classic machine learning, CNNs can learn
hierarchical features directly from raw images without extensive feature
crafting. Their representation learning capability and generalization
make them ideally suited for diverse handwritten recognition tasks.
The comprehensive analysis of these diverse CNN architectures will
reveal innovations to enhance multiscript handwritten text recognition
on different datasets.

Figure 1
Flow diagram of the model selection process used for article selection for the present review
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3. Dataset on Character Recognition

The following are the character datasets that we used to evaluate
our models (as shown in Table 1):

1) Ekush (Bengali) [70]: This dataset contains 122 classes of Bengali
characters and has a total of 340,243 samples. However, we would
like to mention that out of these samples, only 188,856 were found
to be usable for our review. It was used to evaluate the models’
performance on the Bengali script. This is the biggest Bengali
handwritten character dataset available on the internet.

2) Devanagari: This dataset contains 46 classes of Hindi characters and
has a total of 92,000 samples. It was used to evaluate the models’
performance on the Hindi script. This is the most famous and
balanced Devanagari handwritten character dataset available, with
2000 samples per class.

3) Kuzushiji-49 [71]: This dataset contains 49 classes of Hiragana

Figure 2
Visual breakdown of the EMNIST balanced dataset

EMNIST Balanced Dataset 47 Classes, 131,600 Samples

Digit Classes ;o mTesting | 3.000

R |

5 6 7 8 9

abcdefg mnopqQrstuvwxy?

set ordering to ensure diversity. The balanced benchmark enables
evaluating handwritten Arabic character recognition across various
writers.

4. Datasets for Word Recognition

The following are the word datasets that we used to evaluate our

characters and has a total of 270,912 samples. It was employed for  models (as shown in Table 2):

assessing the models’ efficacy in recognizing the Hiragana script.

The most commonly used everyday Hiragana characters are present D
in this dataset. This was the best dataset available for evaluating the
49 Hiragana characters.

4) Telugu [72]: This dataset contains 16 classes of Telugu characters
and has a total of 6,012 samples. It has the same format and
conventions as that of the MNIST dataset, except that this is a much
smaller dataset and is growing. It was used to evaluate the models’
performance on the Telugu script. Obtaining an individual Telugu
handwritten character dataset was challenging. Although this dataset
is small, it would be great to evaluate how good the CNN models
(including our proposed model) perform with such less amount of
samples compared to other large datasets with a large number of
samples per individual class.

5) EMNIST (Balanced) [73]: This dataset contains 47 classes, including
all uppercase and lowercase characters and 0-9 (10 digits), and has
a total of 131,600 samples. It was used as the English dataset. This
is the extended version of the well-known MNIST dataset. We used
the Balanced version of the EMNIST dataset with 3000 samples per
individual class (as shown in Figure 2).

6) Arabic [74]: The dataset contains 16,800 images covering 28 classes
for basic Arabic alphabet “alef” to “yeh.” It was collected from 60
participants, mostly right-handed, aged 1940 years. Each participant
wrote every character 10 times across two forms scanned at 300 dpi.
Images were automatically segmented into character blocks. The
data were split into a 13,440 image training set with 480 samples per
class and a 3,360 image test set with 120 samples per class. Training
and test sets have mutually exclusive writers with randomized test

2)

3)

4)

Table 1

Tamil Dataset [75]: This dataset consists of 10900 images spanning
109 classes of Tamil city names. Each class contains 100-101
images. The consistent 100+ samples per class provide a good
volume of training data. However, the small class size of 109 is
still limited compared to other scripts. The visual complexity of the
Tamil script poses challenges for word modeling.

English Dataset [76]: With 112 classes and 4130 total images, this
dataset has uneven 19-69 samples per English city name class.
The smaller overall size combined with class imbalance makes
this a difficult dataset. The spatial structure of the English script is
relatively simpler than Indic scripts.

Hindi Dataset [76]: The Hindi word dataset contains 10566 images
across 117 classes, with 62—122 samples per class. The increased
class size and evenly distributed classes make this a comprehensive
dataset for evaluating Hindi word recognition. The associated
complexities of the Hindi script will test model capabilities.
Bengali Dataset [76]: With 163 classes, this is the dataset with most
city name labels. However, the samples vary widely from 28-212
per class, leading to high imbalance. The total number of images
is 9754, which is decent, but uneven distribution poses challenges.
As an Indic script, Bengali introduces additional complexities over
Latin scripts.

5) Arabic Dataset [77]: This is the largest dataset with 20212 word

images distributed over 206 classes and 30-381 samples per class.
The expanded size aids training, although uneven distribution
persists. The right-to-left line direction and visual style of the Arabic
script offer unique modeling challenges.

Summarized description of character datasets used for HCR

Ekush (Bengali) Kuzushiji-49 Telugu EMNIST Arabic
Dataset name [70] Devanagari [71] [72] [73] [74]
No. of classes 122 46 49 16 47 28
Max. training sample count 1939 2000 7000 432 2800 480
Min. training sample count 1033 2000 456 425 2800 480
Average training samples per class 1548 2000 3272 429.5 2800 480
Standard deviation of class sizes 89.39 0 2171.40 1.5 0 0
Average samples per class 1548 2000 5528.8 429.5 2800 599.9
Total no. of utilized samples 188856 92000 270912 6872 131600 16798
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Table 2
Summarized description of word datasets used for HWR

Images in each Average samples

Script No. of classes class per class Standard deviation Total images present

Tamil [75] 109 100-101 101 0.0953 10900

English [76] 112 19-69 44 7.843 4130

Hindi [76] 117 62-122 92 9.611 10566

Bengali [76] 163 28-212 120 40.539 9754

ARABIC [77] 206 30-381 206 92.864 20212
Overall, these datasets provide a representative benchmark for Figure 4

evaluating handwritten word recognition models on Latin, Indic and
Arabic scripts with realistic label distributions.

5. Preprocessing

Data preparation is a crucial part of building any deep learning
models that can learn from examples. Although we might have several
data, they are not always ready to be used directly. They can have
problems such as missing information, values that are really different
(outliers), or things that just do not make sense (inconsistencies). Data
preprocessing is similar to cleaning and obtaining the data ready for
these models. This makes the models work better by helping them find
patterns and make accurate guesses. It can be adjusted for different
kinds of tasks, such as working with medical info or text. Therefore,
data preprocessing is the key to making these advanced models work
well.

We have used a common training, validation, and testing split,
which is used very often, i.e., 70-20-10, respectively. This split is
performed for all datasets that we used.

5.1. Preprocessing of handwritten character datasets

Data preprocessing is an essential step in preparing data for
training deep learning models. We performed preprocessing on
handwritten character datasets to address issues such as varying image
sizes, lighting differences, and inconsistent labeling. For datasets
containing binary black and white images such as Ekush (Bengali)
(as shown in Figure 3), Devanagari (as shown in Figure 4), and
Telugu, we first inverted the images to make the character white and
background black. This allows representing black pixels as 0 value
to reduce computation. Next, we resized the images to consistent 28
x 28 pixel dimensions and flattened the 2D arrays to 1D vectors of
784 values. We then binarized the pixel values to a range of 0—1 by
linear transformation, which reduces the effects of lighting variations
and is suitable for CNN models. Finally, we converted the class labels
to one-hot encoded vectors where the index of 1 represents the class.
The Arabic handwritten character dataset was already provided in
MNIST format with 32 x 32 inverted binarized images in CSV format.

Figure 3
Sample images from the Ekush dataset
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These preprocessed data were ready to be used for training directly. For
EMNIST (English), the dataset already contained binarized 0—1 pixel
values in CSV format. We separated the label column and converted
the labels to one-hot encoding. No resizing was needed as images were
already 28 x 28. The Kuzushiji-49 (Hiragana) dataset consisted of 64
x 64 pixel images in NumPy format. We binarized the pixel values to a
range of 0—1 and applied one-hot encoding on labels. No resizing was
needed. This standardized preprocessing pipeline helped in addressing
variability such as image size, lighting, and labeling across diverse
handwritten character datasets. It prepared clean, consistent data ready
for training deep CNN models.

5.2. Preprocessing of handwritten word datasets

Preparing raw word image data is crucial before training deep
neural networks. We developed a multistage preprocessing pipeline to
transform word images into a consistent format suitable for training
models. The datasets consisted of word images with RGB color
values and varying sizes. As a first step, we converted the images to
grayscale to reduce the channels to a single dimension. This simplified
the data and retained the crucial spatial patterns and strokes. Next, we
used the Grounding DINO model to automatically detect and localize
the word in each image. DINO is a self-supervised vision model
pretrained on large datasets to understand visual concepts. Leveraging
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DINO’s generalization capability, we extracted tight bounding boxes
around each word, effectively segmenting it from the background.
With the words segmented, we cropped the images to contain just
the word content. However, these cropped images still had arbitrary
sizes depending on the length of the word. To address this, we fitted
each cropped word image onto a standard blank canvas of 60 x 180
pixels without stretching or distorting the word. This normalized
all images to the same dimensions based on the expected maximum
word length. We then binarized the pixel values to 0 and 1 based on a
threshold. Binarization helped in reducing computational requirements
and eliminated variations due to lighting, noise, and anti-aliasing. It
improved the contrast between foreground strokes and the background.
Finally, we flattened the 2D image array into a 1D vector and stored
it in CSV format along with the corresponding text label. Flattening
converted the visual data into a format directly consumable by standard
deep learning models. In summary, our preprocessing pipeline involved
cropping detected words, fitting to normalized canvas, binarizing, and
flattening images. It addressed variability such as layout, size, color,
and aspect ratio across diverse word image datasets. The output was
clean, consistent data with a size of 60 x 180 ready for training neural
networks in an end-to-end manner for handwritten word recognition.
The automated pipeline reduced labor-intensive manual preprocessing.
The standardized output format enabled the training of a single model
architecture across multiple scripts. Overall, preprocessing fueled the
ability to learn generalized word-level features from handwritten data
across scripts.

We used the Kuzushiji-49 dataset for Hiragana HCR [71]. This
dataset is in npz (NumPy) format, and each image is 64 x 64 pixels. It
contains data on 49 Hiragana characters.

To prepare the data for training, we first binarize the pixel values
of the images. This means that we linearly transform the values to map
between 0 and 1, where the maximum value is 1 and the minimum
value is 0. This helps in reducing the effect of lighting differences in the
images. In addition, CNNs typically perform better on data that have
been normalized to the range 0-1.

Finally, before training the model, we converted all data labels
into one-hot encoding. This means that we represented each label as
a vector of length 49, where an index of 1 corresponds to the class of
the character. This allows the model to learn the relationships between
different classes of characters.

The Telugu HCR dataset [72] is a smaller dataset than the MNIST
dataset, but it is growing. It consists of 5281 training images and 1591
testing images, and it has data on 16 Telugu characters. The images were
originally white backgrounds with black characters, but we inverted all
images to make the background black and the characters white. This
makes it easier for the model to learn as black pixels can be represented
by the value 0, which reduces computation.

To ensure that the images in the Telugu dataset [72] are constant
in height and width, we resized all images to 28 x 28 pixels. This makes
it easier to store and process the data. We then stored the 28 x 28 pixel
values in a CSV file. Each row in the CSV file contains 785 values,
where 784 values represent the pixel values of the character and 1 value
represents the label or class of the character.

Finally, we binarize the image pixel values. This means that we
linearly transform the values to map between 0 and 1, where the maximum
value is 1 and the minimum value is 0. This helps in reducing the effect
of lighting differences in the images. In addition, CNNs typically perform
better on data that have been normalized to the range 0—1.

Before training the model, we converted all data labels into one-hot
encoding. This means that we represented each label as a vector of length
16, where an index of 1 corresponds to the class of the character. This
allows the model to learn the relationships between different classes of
characters.

6. CNN Model Selection

According to the PRISMA analysis performed before (as shown
in Figure 1 in the Literature Review section), here are all CNN models
that we selected for our study on handwritten character and word
recognition on different scripts:

1) LeNet: LeNet is a simple yet powerful model used for various
tasks such as handwritten digit recognition. It was one of the first
successful applications of CNNs to HCR [43]. LeNet uses sigmoid
activation functions, average pooling, and weight sharing [43].

2) Simple CNN: We designed a basic CNN architecture from scratch as
a baseline model inspired by LeNet [43]. The Simple CNN contains
2 convolutional layers with 32 and 64 filters, each followed by a
2 x 2 max pooling layer. It then has a flatten layer, a fully connected
layer with 64 units, and a final softmax output layer for classification.
The convolutional and dense layers use ReLU activation. This plain
vanilla CNN allows us to evaluate the benefits of more complex
architectures.

3) AlexNet: AlexNetis the deep learning architecture that popularized
CNN. It was developed by Alex Krizhevsky, Ilya Sutskever, and
Geoff Hinton. AlexNet was the first large-scale CNN and was used
to win the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012. AlexNet is composed of five convolutional
layers with a combination of max-pooling layers, three fully
connected layers, and two dropout layers. The activation function
used in all layers is ReLU. AlexNet was selected for this study
because of its popularity and state-of-the-art results in image
classification [44, 45].

4) VGG19: VGGI19 achieved state-of-the-art results on ImageNet
challenge in 2014 [43, 44]. VGG19 uses very small convolutional
filters, increases the depth of the network, and uses batch
normalization. VGG16 and VGG19 are deeper than AlexNet [46].
VGG19 was selected for this study because of its high accuracy and
ability to learn hierarchical features [43, 47].

5) Inception: Inception [49] introduced a novel architecture that used
multiple branches of convolutions with different sizes to capture
different scales of information [43, 50]. Inception reduces the
computational cost, increases the receptive field, and improves
the accuracy. Inception was selected for this study because of its
innovative architecture and improved accuracy.

6) ResNet: ResNet [9] was selected for the study because it introduces
a novel architecture that uses residual connections to overcome
the problem of vanishing gradients and degradation in very deep
networks. ResNet has been shown to achieve state-of-the-art results
on various image recognition tasks. It is known for its simplicity,
elegance, scalability, and flexibility.

7) EfficientNet: EfficientNet [56] was selected for the study because
it introduces a new scaling method that uniformly scales the width,
depth, and resolution of the network with a fixed set of coefficients.
EfficientNet is known for its efficiency, performance, robustness,
and generalization. It is compatible with different hardware and
applications.

8) DenseNet: DenseNet [48] was selected for the study because it
proposes a new architecture that connects each layer to every other
layer in a feed-forward fashion. DenseNet alleviates the vanishing
gradient problem, strengthens feature propagation, encourages
feature reuse, and reduces the number of parameters. It has been
widely used in various tasks, including image recognition.

9) ZFNet: ZFNet [27] was selected for the study because it modifies
AlexNet using a smaller convolutional filter size and a larger
stride in the first layer. ZFNet made significant contributions to
the understanding of what the network learns through visualization
techniques. It also improved the accuracy of the ImageNet challenge
in 2013 and influenced subsequent models.
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10) PyramidalNet: PyramidalNet [78] was selected for the study
because it proposes a new architecture that increases the feature
map dimension and decreases the number of channels at each layer.
PyramidalNet reduces the computational complexity, increases the
representational power, and achieves competitive results on various
datasets.

11) Feature-Map-based CNNs: Feature-Map-based CNNs [79] were
selected for the study because they offer a general framework that
uses feature maps as inputs and outputs instead of images. This
framework has been applied to various image restoration tasks, such
as image super-resolution, image denoising, image inpainting, and
image style transfer. It provides a different perspective on CNN
architectures and their applications.

12) Attention-based CNNs: Attention-based CNNs were selected
for the study because they introduce a new module that uses self-
attention to learn global dependencies between features. Attention-
based CNNs can capture long-range dependencies, enhance feature
representation, and improve performance on various tasks. They
have been widely used in natural language processing and computer
vision [57].

13) MobileNetV1 [60]: MobileNetV1 was selected for the study
because it introduces a new architecture that uses depthwise
separable convolutions to reduce the number of parameters and
computations. MobileNetV1 is known for its efficiency, speed, and
suitability for mobile and embedded devices. It has shown good
performance on various tasks, including image recognition.

14) Wide ResNet [80]: Wide ResNet was selected for the study because
it proposes a new architecture that increases the width of the
network instead of the depth. Wide ResNet achieves better accuracy
with fewer layers, making it a more efficient and scalable option. It
is known for its simplicity, scalability, and robustness to different
hyperparameters.

15) Squeeze and Excitation Networks [62]: Squeeze and Excitation
Networks were selected for the study because they introduce a
new module that uses global average pooling and fully connected
layers to learn channelwise dependencies. Squeeze and Excitation
Networks enhance feature representation and improve performance
on various tasks. They can be integrated with existing architectures
and have been widely used in computer vision.

16) Competitive Squeeze and Excitation Networks [63]: Competitive
Squeeze and Excitation Networks were selected for the study
because they propose a new module that uses competitive learning
to select the most informative channels. Competitive Squeeze and
Excitation Networks reduce redundancy, increase diversity, and
achieve state-of-the-art results on image classification. They offer a
unique approach to enhancing feature representation.

17) Highway Networks [64]: Highway Networks were selected
for the study because they propose a new architecture that uses
gated connections to control the information flow between layers.
Highway Networks overcome the vanishing gradient problem,
allowing for the training of very deep networks. They are known for
their ability to learn complex functions and have been successfully
applied in various tasks.

18) InceptionV4 [65]: InceptionV4 was selected for the study because
it combines the ideas of Inception and ResNet. InceptionV4
uses residual connections, batch normalization, and factorized
convolutions. It has made significant contributions to the field of
image recognition and has achieved state-of-the-art results on
various benchmarks.

19) PolyNet [66]: PolyNet was selected for the study because it
proposes a new architecture that uses polynomial expansions to

combine multiple branches of convolutions. PolyNet increases the
expressiveness, flexibility, and efficiency of the network. It offers a
unique approach to feature extraction and representation.

20) Xception [51]: Xception was selected for the study because
it introduces a new architecture that uses depthwise separable
convolutions to replace the standard convolutions in Inception.
Xception achieves better accuracy and efficiency than Inception,
making it a suitable option for various tasks. It is known for its
simplicity, elegance, and applicability to different domains.

21) Depth-based CNNs [67]: Depth-based CNNs were selected for
the study because they propose a new framework that uses depth
information as an additional input channel to enhance the performance
of CNNs on RGB-D images. Depth-based CNNs capture geometric
and structural features, improve scene understanding, and handle
occlusion and illumination variations. They offer a unique approach
to feature extraction and representation.

22) Residual Attention NN [68]: Residual Attention NN was selected
for the study because it proposes a new architecture that uses
attention mechanisms to learn where to focus in an image. Residual
Attention NN learns multilevel attention, reduces the influence of
background clutter, and achieves state-of-the-art results on image
classification. It offers a unique approach for enhancing feature
representation.

23) Inception—ResNet [65]: Inception—ResNet was selected for the
study because it combines the ideas of Inception and ResNet.
Inception—ResNet uses residual connections, batch normalization,
and factorized convolutions. It has made significant contributions
to the field of image recognition and has achieved state-of-the-art
results on various benchmarks.

We used several models (CNN, LeNet, AlexNet, ResNet,
InceptionNet, EfficientNet, VGG, DenseNet, ZFNet, PyramidalNet,
Feature-Map-based CNNs, Attention-based CNNs, MobileNetV1,
Wide ResNet, Squeeze and Excitation Networks, Competitive
Squeeze and Excitation Networks, Highway Networks, InceptionV4,
PolyNet, Xception, Depth-based CNNs, Residual Attention NN, and
Inception—ResNet) over the Ekush dataset [81], out of which only 10
models performed well, which are VGG19, ZFNet, ResNet, LeNet,
Inception, Inception—ResNet, InceptionV4, Feature-Map-based CNNs,
AlexNet, and CNN. Thus, we only used these 10 models to proceed
forward for testing over the other datasets, which are EMNIST, Telugu,
Kuzushiji-49, and Devanagari. According to our testing results, we used
only these models (CNN, AlexNet, LeNet, VGG19, and Inception) for
ensembling.

7. Performance Analysis

The experimental results demonstrate the effectiveness and
limitations of each standard CNN model, providing insights into their
suitability for handwritten character and word recognition tasks across
different scripts.

For character recognition, the study evaluates the performance of
CNN architectures such as VGG, ResNet, and Inception on datasets across
scripts covering Latin, Devanagari, Bengali, Tamil, Hiragana, and Arabic.

For handwritten word recognition, the models are benchmarked
on word image datasets encompassing English, Hindi, Bengali, Tamil,
and Arabic scripts. Comprehensive tuning experiments optimize
hyperparameters such as dropout and batch size for superior word
modeling capability.

The comparative results provide data-driven insights into
architectural choices, regularization techniques, and innovations to
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enhance CNNs for generalized handwritten text recognition per script.
The findings will expand understanding of tailoring deep CNNs for
handwritten character and word datasets across diverse scripts.

7.1. Performance on handwritten character datasets

To evaluate HCR, we trained various standard CNN models from
scratch on character image datasets across different scripts.

7.1.1. Ekush (Bengali)

A recent research study compared various CNN models for
multiscript HCR on the Ekush Bengali [70, 81] dataset. The models
assessed included both traditional networks, such as LeNet and AlexNet,
and newer structures, such as ResNet, Inception, and Squeeze—Excitation
Networks. The key performance metrics examined were training loss,
training accuracy, validation loss, validation accuracy, and test accuracy
(as shown in Table 3). The comparative benchmarking on the Ekush
dataset provides insightful conclusions regarding the efficacy of different
standard CNN models for Bengali HCR. Among the models, deeper
networks such as VGG, ResNet, and Inception consistently outperformed
shallow architectures such as LeNet and CNN. In particular, VGG attained
99.14% training accuracy and 94.38% validation accuracy owing to
its increased depth with very small 3 x 3 filters in each convolutional
layer. Similarly, ResNet achieved 93.65% training accuracy and 91.88%

validation accuracy by leveraging its very deep architecture with skip
connections that combat vanishing gradients. Inception also performed
well with 92.9% training accuracy and 86.5% validation accuracy due
to its innovative multiscale feature learning using various filter sizes.
In contrast, the simplicity of LeNet resulted in only 77.9% training and
78% validation accuracy, being insufficient to capture the intricacies of
the Bengali script.

Although ResNet demonstrated strong training accuracy
(93.65%), its significantly lower test accuracy (12.74%) indicates
potential overfitting. This suggests that the model may have learned
patterns specific to the training data rather than generalizable features
for unseen samples. Overfitting is a common issue in deep networks
with numerous parameters, particularly when the dataset size is
limited or lacks diversity. Techniques such as data augmentation,
regularization (e.g., dropout and L2 weight decay), and hyperparameter
tuning could help in mitigating this issue. Future work could explore
these strategies to enhance the generalizability of deep CNN models
for Bengali HCR.

Overall, the results validate that deeper CNN models with
architectural innovations are better suited for learning the nuanced visual
features and complex character patterns in Bengali handwriting. However,
extremely deep networks such as DenseNet displayed overfitting,
achieving 98.17% training but only 95.73% validation accuracy. This

Table 3
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Bengali (Ekush) dataset for
HCR
Model Loss Training accuracy  Validation loss  Validation accuracy  Testing accuracy
CNN 0.1502 0.9539 0.4233 0.9065 0.146135
LeNet [43] 0.8547 0.779 0.8586 0.78 0.752241
AlexNet [44, 45] 0.0506 0.9846 0.222 0.9559 0.9767
ResNet [9] 0.2399 0.9365 0.316 0.9188 0.1274
InceptionNet [43, 49, 50] 0.2205 0.929 0.6192 0.865 0.115743
EfficientNet [56] 0.32 0.9036 0.3234 0.9081 0.3891
VGG [43, 44, 46, 47] 0.104 0.9712 0.7993 0.8705 0.870438
DenseNet [48] 0.0616 0.9817 0.2112 0.9573 0.38911
ZFNet [26] 0.0295 0.9914 0.3418 0.9438 0.7596
PyramidalNet [78] 0.0198 0.9966 0.268 0.9357 0.6831
Feature-Map-based CNNs [79] 1.4735 0.5883 1.0016 0.7294 0.8015
Attention-based CNNs [57-59, 80] 0.1972 0.9465 0.2163 0.9467 0.9415
MobileNetV1 [60] 0.1009 0.9698 0.2232 0.9432 0.9385
Wide ResNet [61] 0.2272 0.9612 0.3112 0.9461 0.9512
Squeeze and Excitation Networks [62] 0.0193 0.9937 0.2421 0.9536 0.9536
Competitive Squeeze and Excitation 1.198 0.6724 1.2278 0.669 0.669
Networks [63]
Highway Networks [64] 0.003 0.9992 1.0849 0.8582 0.8426
InceptionV4 [65] 0.0617 0.983 0.1655 0.964 0.964
PolyNet [66] 0.0147 0.9952 0.3346 0.9495 0.9495
Xception [51] 0.0334 0.9891 0.2816 0.9457 0.9395
Depth-based CNNs [67] 0.1801 0.9479 0.1852 0.9542 0.9542
Residual Attention NN [68] 0.0184 0.9941 0.2408 0.9527 0.9539
Inception—ResNet [69] 0.1105 0.9656 0.2332 0.9426 0.9426
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highlights the importance of balance between depth and generalization
capability based on target script complexity.

The comparative study empirically demonstrates the superior
capabilities of modern deep CNNs over traditional shallow models
for Bengali HCR through metrics such as training accuracy, validation
performance, and architectural attributes. It provides data-driven insights
to guide the selection and design of optimal deep CNN architectures
tailored to the challenges of the Bengali script for real-world handwritten
text recognition systems.

7.1.2. Hindi (Devanagari)

A comparison study was conducted on various CNN models for
HCR on the Hindi Devanagari dataset [83] (as shown in Table 4). The
study evaluated notable models such as VGG19, ZFNet, ResNet, LeNet,
Inception, Inception—ResNet, InceptionV4, Feature-Map-based CNN,
AlexNet, and CNN.

The comparative evaluation on the Devanagari dataset provided
valuable insights into the performance of standard CNN architectures
for modeling the complex visual patterns in the Hindi script. The ResNet
model achieved maximum 99.75% training accuracy and 96.94%
validation accuracy owing to its very deep architecture and residual
connections that allow effective gradient propagation during training.
Similarly, Inception leveraged its multiscale convolutional filters to attain
95.31% training and 95.61% validation accuracy by learning features at
diverse spatial granularities. AlexNet and ZFNet also performed well
with over 97% training accuracy due to increased depth and parameters
compared to shallower models. In contrast, LeNet could not capture the
intricacies of the Devanagari script, achieving only 89.52% training and
88.3% validation accuracy due to its simplicity. Its shallow architecture
could not model the nuanced stroke patterns and shape formations in
Hindi characters.

Overall, the comparative benchmarking empirically demonstrates
that deeper CNNs with architectural innovations in connectivity clearly
outperform baseline models such as LeNet and CNN for Devanagari HCR.
However, the results also highlight the need for balance between model
complexity and generalization capability, as evident by the overfitting
of Inception—ResNet resulting in higher training but lower validation
accuracy compared to ResNet. The findings provide data-driven insights
into specialized deep CNN architectures needed to achieve state-of-the-
art accuracy on the highly visually complex Devanagari script. Model
innovations such as depth, multipathway convolutions, and residual
connections are validated to be crucial for learning precise visual features

to accurately recognize various handwritten Hindi characters.

7.1.3. Kuzushiji-49 (Hiragana)

A similar comparative study was conducted on various CNN
models for Hiragana HCR on the Kuzushiji-49 dataset [71] (as shown
in Table 5). The comparative study provided valuable insights into the
efficacy of standard CNNs for modeling the intricate visual patterns in
the Hiragana script. Among the models, AlexNet achieved the highest
training accuracy of 99.05% and validation accuracy of 95.57% owing to
its increased depth and parameters that help in learning precise features
for classifying the 49 Hiragana characters. Similarly, VGG leveraged its
very deep architecture to attain 98.45% training and 94.62% validation
accuracy. InceptionV4 also performed well with 98.78% training and
96.34% validation accuracy by effectively combining convolutional and
residual connections. In contrast, LeNet displayed severe overfitting,
achieving 92.37% training but only 85.24% validation accuracy due to
its shallow architecture being insufficient to capture the complexity of
Hiragana strokes and shapes. The Feature-Map-based CNN interestingly
underperformed with 81.68% training accuracy, likely because of its
inability to learn meaningful feature representations.

Overall, the results empirically demonstrate the superiority of
deeper CNNs over simpler baseline models such as LeNet for Hiragana
HCR. However, the findings also highlight the risks of overfitting
with highly complex models, requiring careful regularization and
hyperparameter tuning. The comparative analysis provides practical
guidelines for selecting optimized deep CNN architectures for the
Hiragana script that balance model complexity, generalization capability,
and computational needs.

7.1.4. Telugu

A similar comparative study was conducted on various CNN
models for Telugu HCR on the Telugu dataset [73] (as shown in Table 6).

The comparative evaluation on the Telugu script provided interesting
insights into the generalization capabilities of different standard CNN
models. On this relatively small 16-class dataset, simpler architectures
such as LeNet actually matched or exceeded the performance of much
deeper networks. In particular, LeNet achieved 99.26% training accuracy
and 95.79% validation accuracy, comparable to state-of-the-art ResNet’s
97.52% training and 96.35% validation accuracy. Even the basic CNN
attained over 99% training accuracy and 95% validation accuracy. In
contrast, overly complex models such as InceptionV4 displayed severe
overfitting, resulting in only 6% validation accuracy despite high training

Table 4
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Hindi (Devanagari) dataset for
HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.4413 0.8689 0.5458 0.8426 0.734
ZFNet 0.0737 0.9775 0.0923 0.9725 0.9525
ResNet 0.0124 0.9975 0.1029 0.9694 0.9494
LeNet 0.3659 0.8952 0.4038 0.883 0.813
Inception 0.1518 0.9531 0.1514 0.9561 0.9061
Inception—ResNet 0.3106 0.9038 0.202 0.9391 0.9291
InceptionV4 0.2127 0.9362 0.2267 0.9349 0.9449
Feature-Map-based CNNs 0.5143 0.8417 0.2318 0.9359 0.9559
AlexNet 0.0512 0.9835 0.0636 0.9801 0.9601
CNN 0.5382 0.8515 0.564 0.8427 0.8227
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Table S
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Kuzushiji-49 dataset for HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGGI19 0.0771 0.9845 0.3572 0.9462 0.9462
ZFNet 0.0503 0.9883 0.3708 0.9466 0.9664
ResNet 0.0543 0.9842 0.2381 0.9395 0.9056
LeNet 0.2729 0.9237 0.5745 0.8524 0.8096
Inception 0.0836 0.9752 0.5327 0.9069 0.9053
Inception— ResNet 0.0553 0.9828 0.1947 0.954 0.9463
InceptionV4 0.0459 0.9878 0.1718 0.9634 0.9598
Feature-Map-based CNN's 0.6597 0.8168 0.656 0.8227 0.8196
AlexNet 0.0345 0.9905 0.3201 0.9557 0.9556
CNN 0.1114 0.9689 0.4233 0.9007 0.9007

Table 6
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Telugu dataset for HCR

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGGI19 2.7628 0.0637 2.7614 0.0648 0.0596
ZFNet 2.773 0.0615 2.7726 0.0629 0.0602
ResNet 0.0832 0.9752 0.1078 0.9635 0.9583
LeNet 0.0254 0.9926 204 0.9579 0.9638
Inception 2.7729 0.0543 2.7726 0.0629 0.0523
Inception— ResNet 0.0667 0.9784 0.0821 0.978 0.9853
InceptionV4 2.773 0.0636 2.7726 0.0629 0.0693
Feature-Map-based CNN's 0.0652 0.9795 0.0551 0.9874 0.9863
AlexNet 0.0822 0.9778 0.3075 0.9265 0.9056
CNN 0.0087 0.9921 0.1803 0.9598 0.9629

scores. Their extensive parameters failed to generalize to the small Telugu
test set. This highlights the need for model parsimony based on dataset
complexity. Interestingly, the Feature-Map-based CNN leveraged its
unique input—output architecture to achieve high 97.95% training and
98.74% validation accuracy in spite of simplicity.

Overall, the results indicate that for simpler scripts with limited
training data, concise models may suffice and overtly deep networks can
overcomplicate. The findings provide practical insights into selecting
CNN architectures tuned for target complexity, avoiding the one-size-
fits-all approach. With enhanced regularization and transfer learning,
the comparative study suggests that even compact CNNs can deliver
state-of-the-art accuracy on less complex handwritten recognition tasks.

7.1.5. English

The comparative evaluation on the EMNIST English script provided
valuable insights. Interestingly, traditional CNNs such as LeNet and
AlexNet emerged as the top performers on this dataset, both achieving
approximately 94% training accuracy and 89% validation accuracy (as
shown in Table 7). Their simple, shallow architectures are well suited for
modeling the relatively less complex Latin script classes. In contrast, more
complex models such as VGG, ResNet, and Inception underperformed
LeNet, with validation accuracy in the 88%—89% range. Their depth does
not provide an advantage, and they display signs of overfitting through
higher training but lower validation scores. This highlights the need
for model parsimony based on problem complexity, rather than blindly
applying state-of-the-art architectures. Among the advanced networks,

10

ResNet leverages its depth most effectively to attain 93.75% training
accuracy by combating the vanishing gradient problem. The Feature-
Map-based CNN interestingly failed, possibly because the input—output
architecture is insufficient for modeling spatial relationships crucial for
character recognition. Overall, the results provide empirical evidence
that optimized compact CNNs can achieve highly competitive accuracy
on simpler scripts compared to more complex deep learning models.
This challenges the notion that deeper is always better. The findings
offer practical insights into selecting generalized architectures based on
target data complexity, avoiding the one-size-fits-all mindset in CNN
model selection and design.

7.1.6. Arabic

The comparative study on the Arabic script provided valuable
insights into the capabilities of different standard CNNs to handle the
intricacies of its visual patterns. Among the models, VGG leveraged
its increased depth to achieve 99.57% training accuracy and 96.24%
validation accuracy, outperforming other networks (as shown in
Table 8). The 19 layers in VGG enabled learning of highly nuanced
features to distinguish the 28 classes of Arabic letters. ResNet also
performed well with 99.8% training accuracy owing to its very deep
architecture and residual connections overcoming vanishing gradients.
In contrast, LeNet displayed severe deficiencies due to its simplicity,
attaining only 97.55% training and 82.48% validation accuracy. Its
shallow design lacks the complexity needed to model Arabic’s nonlinear
stroke formations and style variations. Interestingly, generally strong
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Table 7
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the English (EMNIST) dataset for
HCR
Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.2556 0.9107 0.3753 0.8883 0.8884
ZFNet 0.1656 0.9335 0.4702 0.8859 0.8778
ResNet 0.1546 0.9375 0.3179 0.8906 0.8906
LeNet 0.1367 0.9426 0.7345 0.8476 0.8491
Inception 0.5044 0.8293 0.4496 0.8525 0.8525
Inception—ResNet 0.2243 0.9113 0.3075 0.8946 0.8923
InceptionV4 0.2257 09113 0.2924 0.8957 0.8957
Feature-Map-based CNNs 0.7346 0.7556 0.5265 0.8271 0.8185
AlexNet 0.1273 0.9474 0.4779 0.8859 0.8859
CNN 0.2213 0.9146 0.4651 0.8559 0.8544
Table 8
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained on the Arabic character dataset for
HCR
Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.0173 0.9957 0.2662 0.9624 0.9598
ZFNet 0.0259 0.9933 0.2514 0.9516 0.952
ResNet 0.0083 0.998 0.2923 0.9338 0.9443
LeNet 0.0971 0.9755 0.6538 0.8248 0.8288
Inception 2.0855 0.3455 1.9518 0.4211 0.431
Inception—ResNet 0.0591 0.9805 0.2219 0.9472 0.9479
InceptionV4 0.0654 0.981 0.1198 0.9635 0.9687
Feature-Map-based CNNs 0.0274 0.9915 0.2817 0.9338 0.9377
AlexNet 0.0595 0.9849 0.3843 0.9308 0.9407
CNN 0.0326 0.9924 0.8175 0.8199 0.832

models such as Inception struggled to generalize, achieving only
34.55% training accuracy, indicating failure to comprehend Arabic
data distributions. Overall, the results empirically demonstrate the
superiority of deeper architectures such as VGG and ResNet for
handling the intricacies of the Arabic script compared to compact
networks such as LeNet. However, the findings also highlight the need
for customized training rather than relying on pretrained models. The
comparative analysis offers practical insights into specialized deep CNN
design considerations crucial for Arabic HCR to achieve human-level
reading capability across diverse scripts.

7.1.7. Ensemble

We created an ensemble model using the weights of CNN, AlexNet,
LeNet, VGG19, and Inception training and testing across all datasets.
We used two types of ensemble: the first one is by majority voting, and
the other one is stacking (as shown in Table 9).

7.2. Performance on handwritten word datasets

To evaluate handwritten word recognition, we trained various
standard CNN models from scratch on word image datasets across
different scripts.

7.2.1. Tamil word dataset

The comparative analysis of various standard CNN models on
the handwritten Tamil word dataset revealed several key insights (as
shown in Table 10). Foremost, generic models such as VGG19 and
Inception completely failed to generalize to the highly complex Tamil
script, achieving only 1% validation accuracy. This underscores the
importance of customized training and architecture design for Indian
languages such as Tamil.

Among the standard CNN architectures, ResNet emerged as the
top performer with 87.9% validation accuracy owing to its increased
depth via residual connections, which better models Tamil visual patterns.
However, a noticeable gap persisted between its 99.9% training accuracy
and 87.9% validation score, implying considerable overfitting issues
due to the intricacy of the Tamil script. More regularization techniques
such as dropout and data augmentation would help in addressing this
overfitting problem.

Overall, the superior performance of deeper CNNs such as ResNet
over shallower networks proves the need for more complex feature
extraction to capture the nuances of the Tamil script. However, the
sub-90% validation accuracy of even the best models highlights the
limitations of standard CNN architectures for modeling highly complex
scripts such as Tamil. More research into tailored deep learning models
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Table 9
Results from ensembling and ensemble stacking of CNN models trained for HCR

Training Validation Testing

Dataset name Model accuracy accuracy accuracy
Ekush dataset Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9892 0.9892
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9826 0.9791 0.9791
Telugu Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9999 0.9999
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9641 0.9326 0.9356
Devanagari Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9997 0.9999
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9635 0.9386 0.9096
Kuzushiji-49 Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9998 0.9999
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9563 0.9265 0.9177

En- Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9312 0.92496
glish-EMNIST Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9998 0.9999
Arabic Ensembling (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9999 0.9998 0.9999
Ensemble stacking (CNN, AlexNet, LeNet, VGG19, and Inception) 0.9895 0.9768 0.9601

Table 10
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the Tamil word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGGI19 4.6901 0.0105 4.7037 0.004 0.0091
ZFNet 0.0102 0.9964 0.5521 0.9014 0.893
ResNet 0.0087 0.9999 0.4175 0.879 0.8609
LeNet 0.1642 0.9581 0.9916 0.8068 0.7865
Inception 4.69 0.0103 4.7007 0.0046 0.0091
Inception—ResNet 0.019 0.9937 0.5558 0.8979 0.888
InceptionV4 0.0255 0.9923 0.1457 0.9633 0.9481
Feature-Map-based 0.1012 0.9656 0.2247 0.9421 0.9329
CNNs

AlexNet 0.0179 0.995 0.2281 0.9553 0.9435
CNN 0.0258 0.9991 1.2652 0.7827 0.7535

is needed to push the boundaries of Tamil handwriting recognition. In
particular, Tamil-focused architectures, transfer learning from related
languages, and attention mechanisms to model contextual relationships
can further boost Tamil word recognition accuracy.

7.2.2. English word dataset

The analysis of standard CNN models on the handwritten English
word dataset also provided valuable insights (as shown in Table 11).
As expected, generic models such as VGG19 and Inception faltered on
English words, only achieving 20%-30% validation accuracy due to
lack of customization. Among the standard CNNs, ResNet and ZFNet
emerged as the top performers with 65% validation accuracy owing to
their increased depth and residual connections.

However, all models still exhibited considerable overfitting with
a wide gap between 99% training accuracy and 65% validation score.
This implies that the models cannot generalize well and tend to memorize
the training data instead of learning distinctive visual patterns. More
regularization through dropout and data augmentation would help in
mitigating this overfitting problem. Furthermore, even the top models
seemed to plateau at approximately 65% validation accuracy, revealing
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architectural limitations in modeling the intricacies of the English visual
script. Much scope remains for improving English handwriting recognition
through more customized deep learning architectures. In particular,
incorporating English-centric linguistic knowledge, attention mechanisms,
and transfer learning can potentially push the boundaries. However, the
results affirm that standard CNNs have severe limitations in capturing
the nuances of the English script. Overall, significant research efforts
into tailored deep learning models are imperative to reach the goal of
generalized English handwriting recognition.

7.2.3. Hindi word dataset

The comparative study of standard CNN architectures on Hindi
handwritten words provided important insights (as shown in Table 12).
Evidently, generic models such as VGG19 and Inception completely failed
to generalize to the Hindi script, only achieving 1% validation accuracy.
This underscores the need for customized training and architecture even
for related scripts.

Among the standard CNNs, Inception—ResNet performed the best
with 84.95% validation accuracy owing to its attention modeling capturing
contextual relationships in Hindi words. However, a noticeable gap
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Table 11
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the English word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGGI19 0.7224 0.7354 6.1941 0.2279 0.1806
ZFNet 0.0042 0.9989 24617 0.6447 0.5922
ResNet 0.0439 0.9943 1.8157 0.5673 0.5456
LeNet 1.531 0.5987 2.6179 0.4063 0.3663
Inception 4.7032 0.0169 4.7181 0.0165 0.0163
Inception—ResNet 0.073 0.9752 2.8877 0.6087 0.5834
InceptionV4 0.1079 0.9662 0.9833 0.7841 0.7515
Feature-Map-based 0.5696 0.8191 1.6413 0.6282 0.5721
CNNs

AlexNet 0.0151 0.9955 1.9265 0.7556 0.7026
CNN 1.1218 0.7417 2.9219 0.4303 0.3074

persisted between its 99.16% training and 84.95% validation performance,
implying overfitting problems due to the visual complexity of the Hindi
script. More regularization through dropout and data augmentation would
help in overcoming this overfitting issue.

Overall, the results affirm the importance of tailored deep learning
models for related scripts such as Hindi, as against blindly applying general
English-focused models. Much research is still needed on Hindi-specific
CNN architectures, linguistic rules, and transfer learning from related
languages to push the boundaries of Hindi handwriting recognition.
However, the study firmly establishes that standard CNNs have severe
limitations in learning distinctive Hindi visual patterns. More customized
models are the key to achieve generalized Hindi handwriting recognition.

7.2.4. Bengali word dataset

The analysis of standard CNN models on the handwritten Bengali
word dataset further reinforced key learning (as shown in Table 13).
Evidently, generic models such as VGG19 and Inception completely
failed to generalize to the highly complex Bengali script.

Among the standard CNN architectures, AlexNet emerged as the
top performer with 86.29% validation accuracy owing to its increased
depth in modeling Bengali visual patterns. However, a noticeable gap
persisted between its 99.7% training accuracy and 86.29% validation score,
indicating considerable overfitting issues due to the intricacy of the Bengali

script. More regularization through dropout and data augmentation would
help in mitigating this overfitting problem. Furthermore, even top models
seemed to plateau at approximately 85% validation accuracy, revealing
architectural limitations in modeling the nuances of the Bengali script.
Significant research into Bengali-specific deep learning architectures can
potentially advance the state-of-the-art further. In particular, incorporating
Bengali linguistic rules, attention mechanisms, and transfer learning
from related languages offer promising future directions. However, the
comparative study firmly established the limitations of standard CNNs in
capturing the complexity of the Bengali visual script. Overall, the results
strongly motivate the need for customized deep learning architectures to
truly master generalized Bengali handwriting recognition.

7.2.5. Arabic word dataset

The comparative analysis of standard CNN models on the Arabic
handwritten word dataset provided valuable insights (as shown in
Table 14). Foremost, generic models such as VGG19, Inception, and
AlexNet completely failed to generalize to the highly complex Arabic
script, only achieving 1%-2% validation accuracy. This underscores the
crucial need for customized Arabic-focused training and architectures.

Among the standard CNNs, ResNet emerged as the top performer
with 28.64% validation accuracy owing to its increased depth and residual
connections better capturing Arabic visual features. Attention-based

Table 12
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the Hindi word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 4.7558 0.011 4.7682 0.0065 0.0101
ZFNet 0.0224 0.9938 0.7651 0.8701 0.8588
ResNet 0.6583 0.8551 5.5893 0.1469 0.1355
LeNet 0.089 0.9862 2.4282 0.6261 0.6236
Inception 4.755 0.0115 4.7681 0.0118 0.0116
Inception—ResNet 0.0232 0.9916 0.9489 0.8495 0.8443
InceptionV4 0.0349 0.9879 0.2081 0.9459 0.9097
Feature-Map-based 0.183 0.9415 0.5572 0.8654 0.8312
CNNs

AlexNet 0.0047 0.9988 0.4895 0.9183 0.8855
CNN 0.0528 0.9879 3.0747 0.6261 0.6052
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Table 13
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the Bengali word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 0.033 0.9914 1.3188 0.7966 0.8083
ZFNet 0.012 0.9955 1.7387 0.736 0.7561
ResNet 0.0989 0.988 2.5538 0.4298 0.3968
LeNet 0.7113 0.8082 2.1706 0.5249 0.5206
Inception 4.9202 0.0225 4.9301 0.0185 0.0219
Inception—ResNet 0.0247 0.9927 2.3149 0.6907 0.6997
InceptionV4 0.0489 0.9831 0.532 0.8912 0.8929
Feature-Map-based 0.3892 0.8752 0.9389 0.7608 0.7525
CNNs

AlexNet 0.0119 0.997 0.8305 0.8629 0.8804
CNN 0.2344 0.9576 2.9334 0.4815 0.4913

Inception—ResNet further pushed accuracy to 28.56% by modeling
intercharacter contextual relationships. However, a massive gap persisted
between 70%—-96% training accuracy and 25%—30% validation score for
all models, implying severe overfitting issues due to the intricacy of the
Arabic script. More regularization through dropout and data augmentation
would help in mitigating this overfitting problem.

Overall, the results firmly establish the limitations of standard
CNN architectures in modeling the complexity of Arabic visual patterns.
The best models seemed to plateau at approximately 30% validation
accuracy, revealing architectural bottlenecks. Much research into
Arabic-specific deep learning models incorporating linguistic rules,
attention mechanisms, and transfer learning is imperative to push
the boundaries. However, the comparative study strongly motivates
the need for tailored architectures to truly master generalized Arabic
handwriting recognition.

7.3. Analytical review

Among the handwritten datasets across different scripts, we
selected the Bengali script for an in-depth comparative study of CNN
models. The Bengali script presents unique complexities due to its visual
style. Furthermore, the Bengali character dataset from Ekush contains

the most number of classes at 122, and the word dataset contains 163
classes, providing diversity to rigorously evaluate model capabilities.

For the study, we benchmarked the performance of various standard
CNN architectures, including LeNet, VGG, ResNet, and Inception, on the
Bengali character and word dataset to analyze performance at sequence
modeling (as shown in Table 15 and Table 16).

The key evaluation metrics included model layers, number of
parameters, FLOPs, inference time, training accuracy, validation accuracy,
and loss. The comparative analysis provided insights into how factors
such as depth, width, computational complexity, and overall architecture
design affect the accuracy and efficiency for handwritten text recognition
at both character and word levels.

The comparative analysis on the handwritten Bengali character and
word datasets provided valuable insights into the capabilities of standard
CNN architectures for modeling this complex script.

Examining the character recognition results reveals a clear pattern
(as shown in Figure 5)—deeper models consistently outperformed shallow
networks. Baseline architectures such as LeNet (8 layers) and plain CNN
(11 layers) achieved only approximately 90% validation accuracy on
Bengali characters. In contrast, deeper CNNs such as VGG (27 layers,
97.12% training accuracy), ResNet (174 layers, 93.65% training accuracy),

Table 14
Training loss, validation loss, training accuracy, and validation accuracy of CNN models trained with the Arabic word dataset

Model Loss Training accuracy Validation loss Validation accuracy Testing accuracy
VGG19 4.0294 0.0176 4.026 0.0185 0.01178
ZFNet 4.0302 0.0176 4.0256 0.0168 0.0067
ResNet 0.9519 0.7204 3.3666 0.2864 0.2861
LeNet 2.6327 1 11.0283 0.1019 0.1178
Inception 4.0283 0.0214 4.0265 0.0168 0.0067
Inception—ResNet 0.1189 0.9605 5.4974 0.2856 0.2491
InceptionV4 4.0289 0.0217 4.0262 0.0185 0.0134
Feature-Map-based 0.3882 0.882 39111 0.2401 0.2188
CNNs

AlexNet 4.0289 0.0202 4.0254 0.0185 0.0134
CNN 2.5064 1 9.9855 0.112 0.1414
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and InceptionNet (13 layers, 92.9% training accuracy) pushed validation
accuracy closer to 96%, by virtue of increased representational power
to capture intricate Bengali visual patterns. However, extremely deep
networks such as ResNet also displayed diminishing returns and potential
overfitting with massive 174 layers and a gap of 6.47% between its
93.65% training and 87.18% validation accuracy. An optimal balance
lies in mid-sized models such as InceptionNet, which attained 96.4%
validation accuracy with just 13 layers.

In addition, a large gap existed between training and validation
performances across all models, implying generalization issues due to
Bengali’s high visual complexity. For instance, LeNet demonstrated a
gap of 7.9% between its training (77.9%) and validation accuracy (78%).
Additional regularization through dropout and data augmentation could
potentially address this overfitting problem.

In full word recognition, the situation becomes far more challenging.
All models had a significant accuracy decrease on word images compared
to isolated characters, highlighting the increased difficulties of sequence
modeling (as shown in Figure 6). The accuracy of top performing
InceptionNet decreased from 96.4% on characters to just 89.12% on
words. Interestingly, simplest model LeNet demonstrated more resilience

at the word level, achieving comparable 50% accuracy as other deeper
CNNs such as VGG (79.66%) and ResNet (42.98%). This suggests that
standard CNN architectures may have representational limitations in
capturing word-level visual patterns. Overall, a substantial scope exists for
developing Bengali-specific architectures for improved word recognition.

Analyzing computational efficiency also provides useful insights.
Models such as LeNet (8 layers) and Feature-Map-based CNN (11 layers)
achieved the fastest inference times of 0.5 and 3.47 s, respectively, by
trading off recognition accuracy. In contrast, highly accurate but extremely
deep networks such as ResNet (174 layers) took significantly longer
(143.7 s) for inference. Architectures such as InceptionNet demonstrated
areasonable balance between efficiency and accuracy for practical OCR
deployment.

In summary, the comparative study highlights the capabilities and
limitations of standard CNNs on the complex Bengali script. Although
deeper models match or exceed state-of-the-art accuracy for character
recognition, their word-level performance remains far from satisfactory.
Significant innovations in architecture design and training approaches
customized for Bengali will be key to unlocking generalized handwriting
recognition on this challenging script.

Table 15
Comparative study on the handwritten character dataset

Parame- Time Training  Validation Validation Testing
Model Layers ters FLOPS (s) Loss accuracy loss accuracy accuracy
CNN [43] 11 198202 394827 3.47  0.1502 0.9539 0.4233 0.9065 0.146135
LeNet [43] 8 53946 107205 10.56  0.8547 0.779 0.8586 0.78 0.752241
AlexNet [44, 45] 14 25192762 50366156 10.49  0.0506 0.9846 0.222 0.9559 0.9767
ResNet [9] 174 23828858 47498276 93.24  0.2399 0.9365 0.316 0.9188 0.1274
GoogLeNet/InceptionNet [43, 13 38706554 77411723  5.68  0.2205 0.929 0.6192 0.865 0.115743
49, 50]
Efficient Net [56] 114 2182502 4341048 9.76 0.32 0.9036 0.3234 0.9081 0.3891
VGG [43, 44, 46, 47] 27 39405626 78783639 11.97  0.104 0.9712 0.7993 0.8705 0.870438
DenseNet [48] 244 9908666 19799867 2491 0.0616 0.9817 0.2112 0.9573 0.38911
ZFNet [26] 14 25196602 50373836 10.64  0.0295 0.9914 0.3418 0.9438 0.7596
PyramidalNet [78] 47 1188714 2372812 10.7  0.0198 0.9966 0.268 0.9357 0.6831
Feature-Map-based CNN's 11 157050 312905 3.47 1.4735 0.5883 1.0016 0.7294 0.8015
[79]
Attention-based CNNs 16 120602 239823 458  0.1972 0.9465 0.2163 0.9467 0.9415
[57-59, 80]
MobileNetV1 [60] 84 3353338 6662742 9.53  0.1009 0.9698 0.2232 0.9432 0.9385
Wide ResNet [61] 121 1722554 12207257 41.81  0.2272 0.9612 0.3112 0.9461 0.9512
Squeeze and Excitation 53 2157464 4304239  10.71  0.0193 0.9937 0.2421 0.9536 0.9536
Networks [62]
Competitive Squeeze and 18 34054 67374 5.43 1.198 0.6724 1.2278 0.669 0.669
Excitation Networks [63]
Highway Networks [64] 33 3099258 6197143 4.48 0.003 0.9992 1.0849 0.8582 0.8426
InceptionV4 [65] 87 6428714 12842110 212 0.0617 0.983 0.1655 0.964 0.964
PolyNet [66] 47 1188714 2372812 4.86  0.0147 0.9952 0.3346 0.9495 0.9495
Xception [51] 134 21110882 42112623 21.46  0.0334 0.9891 0.2816 0.9457 0.9395
Depth-based CNNs [67] 21 943494 1881432 548  0.1801 0.9479 0.1852 0.9542 0.9542
Residual Attention NN [68] 122 23582642 47114215 21.64 0.0184 0.9941 0.2408 0.9527 0.9539
Inception—ResNet [69] 74 4622236 9233656 11.1 0.1105 0.9656 0.2332 0.9426 0.9426
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Table 16
Comparative study on the handwritten word dataset

Training Validation Validation Testing
Model Layers Parameters FLOPS Time (s) Loss accuracy loss accuracy accuracy
VGG19 [43, 44, 46, 47] 27 62642275 125256851 3.99 0.033 0.9914 1.3188 0.7966 0.8083
ZFNet [26] 14 71501923 142984392 1.61 0.012 0.9955 1.7387 0.736 0.7561
ResNet [9] 174 23912867 47666208 143.7 0.0989 0.988 2.5538 0.4298 0.3968
LeNet [43] 8 994391 1988009 0.7113 0.8082 2.1706 0.5249 0.5206
Inception [43, 49-50] 13 531023523 1062045575 5.66 4.9202 0.0225 4.9301 0.0185 0.0219
Inception—ResNet [69] 74 5972101 11933300 2.96 0.0247 0.9927 2.3149 0.6907 0.6997
InceptionV4 [65] 87 13265491 26515578 11.02 0.0489 0.9831 0.532 0.8912 0.8929
Feature-Map-based 11 3411619 6821957 0.97 0.3892 0.8752 0.9389 0.7608 0.7525
CNNs [79]
AlexNet [45, 46] 14 153287011 306554568 5.61 0.0119 0.997 0.8305 0.8629 0.8804
CNN [44] 11 995171 1988679 0.93 0.2344 0.9576 2.9334 0.4815 0.4913
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8. Discussion

The comprehensive experimental analysis in this study provides
valuable insights into the capabilities and limitations of standard CNN
architectures for recognizing handwritten characters and words across
diverse scripts.

A key observation is that deeper models consistently outperform
shallow networks, validating the importance of increased representational
power to capture the intricate visual patterns in handwriting. Architectures
such as VGG, ResNet, and InceptionNet leverage their depth to push
character recognition accuracy near 95%-99% across most scripts.
However, these extremely deep networks (specifically ResNet) face
diminishing returns and overfitting issues as they tend to memorize from
training data rather than generalizing well, suggesting an optimal balance
between depth and generalization capability.

In addition, all models demonstrate a considerable gap between
training and validation performances, implying generalization challenges
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due to handwriting complexity and diversity. More regularization
through dropout and data augmentation is imperative to reduce
overfitting. Ensemble approaches further help in improving robustness
and stability.

An interesting finding is the weakness of generic CNNs in
modeling the highly complex Indic scripts such as Devanagari, Tamil,
and Bengali compared to English. Customized architectures and training
are necessary even for related scripts. Attention mechanisms emerge as
useful innovations to capture contextual relationships in words.

However, a significant accuracy decrease is observed for word-level
recognition compared to isolated characters across scripts and models.
Even the most advanced CNNs plateau at approximately 85%—90%
on word images, revealing fundamental representational limitations in
sequence modeling. This highlights the need for developing script-specific
deep learning architectures to truly achieve generalized handwritten text
recognition.
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Overall, the comparative benchmarking provides data-driven
guidelines for selecting CNN models tailored to target script complexity,
task granularity, accuracy needs, and efficiency constraints. The findings
will inform specialized deep learning research focused on advancing
handwritten text recognition for diverse scripts.

9. Conclusion and Future Work

This study presented an extensive comparative evaluation of several
standard CNN architectures on handwritten character and word recognition
tasks spanning six major scripts—Latin, Devanagari, Bengali, Tamil,
Hiragana, and Arabic. The comprehensive benchmarking demonstrated
the superior accuracy of deeper CNN models such as VGG, ResNet,
and InceptionNet to learn precise visual features needed for classifying
diverse handwritten characters. However, extremely deep networks
faced overfitting issues. All models displayed considerable difficulty in
generalizing to word-level recognition compared to isolated characters.
The findings highlighted the need for innovations in CNN architecture
design, training techniques, and attention mechanisms tailored to
individual script complexity. Customization is imperative even for related
scripts. Ensemble approaches help in improving model robustness.
Overall, the analysis provided insightful practical guidelines and motivated
script-specific research directions to advance the state-of-the-art in deep
learning techniques for handwritten text recognition across languages. It
affirmed the limitations of generic CNNs in capturing nuanced handwriting
patterns. This study will equip researchers with knowledge to develop
specialized CNN architectures and training methodologies to achieve
generalized handwriting recognition capability across the diversity of
global scripts. Although this research benchmarked a comprehensive
set of standard CNN models, a significant scope remains for advancing
handwritten text recognition. Potential future work includes developing
script-specific CNN architectures tailored to individual complexity,
linguistic traits, and visual styles. This can better capture intricate patterns
compared to generic networks. Future work could include incorporating
attention mechanisms into CNNs to explicitly model intercharacter
relationships and contextual dependencies, thereby improving word-level
recognition performance. Another promising direction is to leverage
transfer learning by pretraining models on large annotated handwriting
datasets in related scripts, which can help in compensating for the scarcity
of script-specific labeled data. This can compensate for limited quantities
of script-specific data. Evaluating transformer-based architectures, such
as Vision Transformers, for handwritten text recognition could also
be explored, given their stronger capacity to model complex global
dependency compared to traditional CNNs. Future studies should also
aim to confirm the reproducibility of these findings by testing on more
diverse and realistic handwritten datasets that include informal scenarios
and noisy conditions. It would be valuable to compare CNNs directly with
other established techniques, such as hidden Markov models and recurrent
neural networks, to evaluate their relative strengths and weaknesses
for handwriting recognition tasks. Further research should also focus
on moving beyond isolated character and word recognition toward
end-to-end paragraph or page-level recognition systems suitable for real-
world deployment. Implementing these models on optimized hardware
platforms, including GPUs and FPGAs, could significantly enhance their
efficiency and suitability for deployment in production environments. In
addition, deploying the models through web or mobile interfaces could
enable real-time handwriting recognition applications for broader user
access. Finally, exploring unsupervised and semisupervised learning
approaches may help in reducing reliance on extensively annotated
data and in better utilizing abundant unlabeled handwriting samples. In
summary, this research established valuable insights and guidelines from
extensive comparative analysis of standard CNNs for handwritten text

recognition. Future work can build on these learnings to advance deep
learning techniques to achieve generalized human-level handwriting
recognition capability across the world’s scripts.
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