Received: 5 July 2022 | Revised: 10 August 2022 | Accepted: 27 August 2022 | Published online: 31 August 2022

Artificial Intelligence and Applications

REVIEW 2023, Vol. 1(1) 11-25

DOI: 10.47852/bonviewAlA2202297

)

BON VIEW PUBLISHING

Applications of Artificial
Intelligence in Automatic
Detection of Epileptic
Seizures Using EEG Signals:
A Review

Sani Saminu***, Guizhi Xu'?, Shuai Zhang"?, Isselmou Ab El Kader'?, Hajara Abdulkarim Aliyu®,

Adamu Halilu Jabire’, Yusuf Kola Ahmed® @ and Mohammed Jajere Adamu®

IState Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, China
’Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of
Technology, China

’Biomedical Engineering Department, University of Ilorin, Nigeria

4Jigawa State Polytechnic, Nigeria

>Taraba State University, Nigeria

8School of Microelectronics, Tianjin University, China

Abstract: Correctly interpreting an electroencephalogram signal with high accuracy is a tedious and time-consuming task that may take
several years of manual training due to its complexity, noisy, non-stationarity, and nonlinear nature. To deal with the vast amount of
data and recent challenges of meeting the requirements to develop low cost, high speed, low complexity smart internet of medical things
computer-aided devices (CAD), artificial intelligence (AI) techniques which consist of machine learning and deep learning (DL) play a
vital role in achieving the stated goals. Over the years, machine learning techniques have been developed to detect and classify epileptic
seizures. But until recently, DL techniques have been applied in various applications such as image processing and computer visions.
However, several research studies have turned their attention to exploring the efficacy of DL to overcome some challenges associated
with conventional automatic seizure detection techniques. This article endeavors to review and investigate the fundamentals,
applications, and progress of Al-based techniques applied in CAD system for epileptic seizure detection and characterization. It would
help in actualizing and realizing smart wireless wearable medical devices so that patients can monitor seizures before their occurrence
and help doctors diagnose and treat them. The work reveals that the recent application of DL algorithms improves the realization and
implementation of mobile health in a clinical environment.
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1. Introduction leading causes of seizures are low blood sugar levels,
malformations, and oxygen shortage during childbirth (Sazgar &

With the rapid development of smart internet of things devices Young, 2019; Sirven, 2015). Epileptic seizures can happen

and the successful deployment of the 5G network, the integration of  anytime and cause a loss of consciousness, leading to injuries and
health care services for monitoring, diagnosis, and analysis of
various diseases can never be overemphasized. One chronic brain
disorder that happens due to abnormal excitation of brain cells
which leads to unprovoked seizures is called epilepsy. Some

even death. Generally, there are two main types of seizures,
generalized and partial, depending on whether the seizures affect
some part or all of the brain region. In generalized seizures, all
brain sections are affected; for partial seizures, only an area of the
- i . . Lo brain is affected (Fisher, 2017; Patel & Moshé, 2020). Figure 1
*Corresponding author: Sani Saminu, State Key Laboratory of Reliability and

Intelligence of Electrical Equipment, Hebei University of Technology, China. shows a block diagram of different types of seizures. It is vital to
Email: sansam4k@gmail.com predict the occurrence of these seizures since it is challenging for
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Figure 1
General block diagram of different types
of epileptic seizures
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a patient to predict when they will happen so that preventive
measures can be taken to avoid loss of consciousness and even
can sometimes lead to death (Falco et al., 2018; Saminu et al., 2020).

Manual visual inspection and analysis of epileptic
electroencephalogram (EEG) signals are traditional methods of
detection and classification by experts, which tends to be time-
consuming, tedious, and prone to errors. Therefore, investigation
of automatic modes that employ artificial intelligence (Al) is
paramount to overcome the problem associated with visual
inspection and traditional machine learning techniques. Various
traditional and machine learning methods have been developed,
such as using time, frequency, time—frequency, and nonlinear
methods (Gavvala et al., 2015; Siuly et al., 2017). However, with
the advent of generating a huge amount of data in the form of
signals, texts, images, and sounds, among others in health care
management and the need for automated, smart, portable,
wearable, and low-cost devices to improve patient diagnosis, DL
algorithms find its applications in epileptic seizure prediction and
classification. Much success has been recorded due to its ability to
deal with a large amount of data and learn from the raw data,
eliminating the need for hand feature extraction as in conventional
techniques (Hu et al., 2019; Malekzadeh et al., 2021).

An EEG signal is a one-dimensional (1D) signal in a time domain
that measures the changes in the brain’s electrical activity. It is
measured either from the scalp (EEG) or intracranial (ECoG)
recorded using electrodes to indicate the normal from abnormal
conditions such as seizure and non-seizure conditions in epilepsy
patients (Minasyan et al., 2010). Early detection and identification of
these seizures are vital and prevent patients from losing
consciousness that may lead to injury and even death, and help
doctors in diagnosis and treatment. EEG measured during seizure
occurrence is called ictal EEG and, due to the unpredictability of
seizure, makes it difficult to rely on only ictal EEG in differentiating
between seizure and non-seizure epileptic signals (Acharya et al.,
2018). Interictal EEG is also used to distinguish between an epileptic
seizure and other conditions as it reveals the possible epileptic seizure
occurrence to assist in diagnosis, monitoring, and treatment
(Freestone et al., 2017; Kuhlmann et al., 2018). The general block
diagram of epileptic seizure detection stages consists of data

acquisition, preprocessing, feature extraction, classification, and
performance evaluation, as depicted in Figure 2.

This article tends to review the recent trends and progress in
epileptic seizure detection using Al such as the deep learning (DL)
technique, which is the extension of machine learning. The article
reviews the recent works from 2016 to 2021 using the Google
Scholar, PubMed, and ScienceDirect databases that cover the
science and engineering fields. Keyword combinations such as
“Epileptic seizures detection using machine learning,” “machine
learning in EEG signals,” “deep learning in EEG signals,”
“epileptic seizure detection using deep learning,” “automatic
seizure detection and characterisation using deep neural network,”
“CAD systems for epileptic seizure detection and classification,”
among others were used. This work includes related studies from
engineering, science and medical conferences, journal articles,
review articles, books, thesis, and other electronics repositories.
The selection criteria for the state-of-the-art techniques include the
initial selection of 376 published research articles from the
mentioned search engines. Two hundred and 43 research articles
were selected after the keyword and title search from the initial
obtained research articles. Thereafter, manual search of the full-text
articles was conducted to finally select 187 best articles considered
in this review. Some of the exclusion criterion includes articles that
used other neuroimaging techniques apart from EEG such as
magnetoencephalography, functional MRI among others in their
study, non-availability of the performance metrics in the results
presented such as accuracy, sensitivity, and specificity, and those
articles that used other languages rather than English among others.

Yannick et al. (2019) listed the data items to be extracted and
considered in each reviewed study, such as type of study, data
used in the study, EEG processing methods, DL techniques, and
results presented in the study and reproducibility of the study.
Table 1 depicts the details of data items extracted in the
study with their description.

Several works in literature endeavor to review the works carried
out in epilepsy detection and classification using various techniques.
In our previous work (Saminu et al., 2021), an investigation on the
recent advances in epileptic seizure detection and classification was
conducted. The work presents detail highlight on the conventional
techniques used in the stages during the detection and
classification of epileptic seizures such as data acquisition,
preprocessing, feature ranking, and selection and classification.
The work covered the period of 2010-2020. DL was briefly
discussed to explore some recent trends in the area. Another
recent review work presents a narrative summary in epileptic
seizure diagnosis and management (Nair et al., 2021). The authors
discussed the role of Al in the areas such as seizure detection,
understanding epileptogenesis, medical management, surgical
management, neurostimulation, and wearable devices. A quick
review on machine learning applications in EEG epileptic seizures
detection and application was presented by Si (2020). The author
briefly discussed the conventional classification techniques
commonly employed in detection and classification of epileptic
seizures such as support vector machine (SVM), k-nearest
neighbor (k-NN), random forest, and artificial neural network
(ANN). This article covers the most recent investigation of works

Figure 2
General block diagram of epileptic seizures detection system
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Table 1

Components to be considered in a review study

Category

Data item

Description

Origin of article

Data

EEG processing

Deep learning
techniques

Type of Publication

Venue

Affiliations

Quantity of data

Hardware

Number of channels

Sampling rate

Subject

Data split and cross-validation
Data augmentation

Preprocessing
Denoising
Feature extracted (where applicable)

Architecture

Number of layers
EEG-specific design choices
Training procedure

Journal article, conference paper, book, thesis
Name of journal and publisher

Affiliation of lead author

Number of samples and duration of recording
Model of recording device

EEG channels used during recording

Sampling rate (Hz)

Number of subjects used in the analysis

Dividing data into training, testing, and validation
Data augmentation technique used

Raw data preparation
Artifact denoising applied or not
Significant and relevant features extracted for

Structure of the neural network

A measure of architecture depth

Specific architecture selection for processing EEG data

Selected technique to train the network

Constraint on the hypothesis class intended to improve a learning algorithm

generalization performance

Regularization

Optimization
Hyperparameter search

Parameter update rule

Whether a specific method was employed in order to tune
the hyperparameter set

Intra- versus inter-subject analysis

Subject handling
Inspection of trained Models

Results Type of baseline
Performance metrics

Validation procedure
Statistical testing
Comparison of results

Dataset
Code

Reproducibility

The method used to inspect a trained DL model

Baseline models included in the study or not
Performance measures used to evaluate the model
The method used to validate the trained model

The statistical method used to evaluate the model
Results of the study

Dataset used in the study (public or private)
Availability of the code used in the study

performed in detection and classification of epileptic seizures. The
work covers the detail list of works carried out using DL
architectures unlike the previous works that focussed on
conventional machine learning techniques as highlighted. This
work also differs from the previous reviews discussed and that of
(Minasyan et al., 2010; Paul Fergus & Hussain, 2015) as the work
reported in this article provides an extensive discussion on the
stand-alone and hybrid techniques in terms of complexity,
accuracy, ease of implementation, and requirement of larger
datasets. The most unique feature of this review is the
investigation and discussion of hybrid approaches that consist of
conventional machine learning techniques and DL algorithms
which provides a new phase and direction in the detection,
classification, and localization of epileptogenic zone research.

1.1. Objectives and contribution of the study

This study covers the systematic and comprehensive analysis of the
state of the art of recent publications related to the application of Al in

automated epileptic seizure detection and prediction. Many recent
publications have analyzed both machine learning and DL techniques
to provide an insight to those researchers familiar with traditional
approaches and interested in exploring the efficacy of Al techniques.
Also, the study aims to review the recent machine learing and DL
techniques in the same place to help the existing researchers in the
field to compare and expand their techniques with their benchmarking
dataset easily. Several components of machine learning and DL
methodological pipeline have been provided. Various publicly EEG
epileptic seizure databases have been highlighted and summarized.

1.2. Organization of the article

The remaining part of the article is organized as follows. Section 2
provides a background study of Al that consists of machine learning
and DL networks. Section 3 describes the feature extraction and
classification techniques in artificial intelligence, discussion of the
reviewed study of the article was described in Section 4, and Section
5 concludes the review presented in the article.
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2. Background

2.1. Machine learning

The concept of Al is that in which vast knowledge and intelligence
acquired by human experts are translated and built into machines and
computers so that they can learn and perform the function of human
experts. Several types of machine learning models which are part of
Al have been proposed in the literature to detect and classify
epileptic seizures, such as ANN, SVM, k-means clustering, naive
Bayes, logistic regression, among others (Ahmed et al., 2018;
Saminu et al, 2021). These ML algorithms overcome human
limitations such as variations in interpretations, time consumption,
and fatigue. Machine learning can be classified as either supervised
or unsupervised learning. In supervised learning, the input data are

labeled and then used in training the algorithm to estimate the
outputs for unlabeled data. An algorithm uncovers the outliers,
trends, and subgroups of unlabeled input data in unsupervised
learning. An example of supervised and unsupervised learning is
shown in Figure 3. In epileptic seizure detection, supervised learning
is called supervised learning when the algorithm is trained with
annotated EEG data to detect seizure or non-seizure automatically.
While in unsupervised learning, the algorithm detects the seizure or
non-seizures with raw EEG data recording without annotation
(Saminu et al., 2019; Series, 2021). This section highlights and
briefly explains some of the commonly employed ML structures as
follows:

In ANN, the structure consists of the interconnection of nodes
called neurons, input, hidden, and output layers, as shown in
Figure 4(a); the advancement of ANN ranges from its simple

Figure 3
Types of machine learning. (a) Supervised learning and (b) unsupervised learning
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perceptron structure into a deeper neural network with several
cascaded interconnected hidden layers that can handle huge
amount and complex different types of data (Mello & Ponti,
2018). In k-NN classification, as shown in Figure 4(b), input data
and labeled data are represented and plotted as a vector within a
feature space, and the distance between the vectors is calculated in
the training set. The class of k-nearest input data is then assigned,
a class of majority. In the SVM classifier, Figure 4(c), a higher
dimensional feature space is used to generate a hyperplane to
provide a decision boundary and assign a class to new input data
by maximally separating clusters of labeled input data. In the
machine learning approach, relevant and informative features are
calculated and selected either manually or by the algorithm. The
output prediction of these features is generated using a mapping
function. Several factors determined the selection of mapping
function in a particular application, such as sample size, relative
interpretability, and simplicity. However, the choice of mapping
function may sometimes be iterative, empirical, or by the
experimenter’s experience. To overcome the problem of
overfitting the training data due to the model’s complexity and
small amount of data, the training data are divided into a training
set, validation set, and testing set. The process of k-fold cross-
validation is applied in which the partitioning is repeated a
pre-specified number of times or across the entire dataset, and
holding out a single data point for validation in each iteration
(leave-one-out cross-validation), the final model can be generally

Figure 5
The percentage of conventional techniques involved
in epilepsy studies
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estimated to evaluate its performance using a withheld testing
data. The process of k-fold validation is shown in Figure 4(d)
with k=5 (Jaiswal & Banka, 2018).

Recently, much of the researchers’ attention have been focused
on hybrid techniques when adopting conventional techniques in
detection and prediction of epileptic seizures as shown in
Figure 5. From the figure, the hybrid techniques cover 39% of the
works reviewed in this study. The advantages of the SVM classifier
is that of simplicity, capability to deal with many predictors, it is
suitability for binary classification, and high accuracy make it the
most employed stand-alone classifier with 23%. ANN classifier
covered 13% of the conventional methods reviewed in this article.
RF and clustering technique shared the 3% of the investigated
approaches. ANN which uses number of neurons and layers unlike
in SVM which uses kernel function covered 12% of the articles
reviewed in this work as shown in Figure 5.

2.2. DL techniques

DL algorithms were employed in the automated epilepsy
detection system to solve the limitations of machine learning
techniques. DL does not require hand-crafted features to be
extracted manually; due to its multilayer architecture, it can deal
with large datasets, execute imbalanced datasets, and provide a
result without biasing toward a majority class (Boonyakitanont
et al.,, 2020; Mu & Zeng, 2019). Some of the DL architectures
include convolutional neural network (CNN), long short-term
network (LSTM), and gated recurrent unit (GRU). This article
discusses the basic idea and underlying principles of the most
common types of DL models. The basic concept of DL models is
to produce output for a given input after approximating a
function; different challenges can be handled by different models
with different input data and the type of function to be performed,
such as for speech, images, and texts, among others. The structure
of the model consists of hidden layers which consist of
interconnected neurons that connect an input to output. The
sequence of activation was produced through the weighted
functions (Sharmila & Geethanjali, 2019; Tzimourta et al., 2019).

2.2.1. Convolutional neural network

A CNN is a common DL model that mimics the biological
human brain processing in which the connection between neurons
resembles the human neurons. Various convolutional models have
been proposed and applied by different researchers to investigate
their capability in automated epilepsy detection systems (Ouichka
et al., 2022). The most common approach is a CNN with a variety
of architectures such as temporal CNN (TCNN), temporal graph
convolutional networks (TGCNs), and CNN-recurrent neural
network (CNN-RNN). The basic structure of CNN consists of

Figure 6
Basic structure of CNN architecture
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Figure 7
Basic structure of RNN architecture

Input parameter

Input layer

convolutional layers, max-pooling layers, fully connected layers, and
softmax layers (Josh & Adam, 2017; Mu & Zeng, 2019), as shown in
Figure 6. Although DL algorithms outperform their conventional
counterpart, the requirement of large datasets for their operation is
its major limitation.

2.2.2. Recurrent neural network

RNN forms a directed graph sequence when its hidden layer has
a connection between neurons. This temporal dynamic state feature
makes it useful in applications where the previous state influences the
output. Therefore, the interdependent data are used in training the
network so that previous computations information can be
maintained. RNN uses memory in its operation at a given time
depending on the inputs’ recent, past, and current source. Unlike
other DL models, RNN adopted the same weight for all layers,
reducing the number of parameters the network needs to learn.
The major drawback of this model is exploding gradient and long
sequence that cause a vanishing gradient (Beanbonyka et al.,
2020). In Hochreiter and Schmidhuber (1997), a solution to this
problem by inventing a LSTM network is proposed. A GRU is
another variant of RNN. The basic structure of RNN architecture
is shown in Figure 7.

3. Feature Extraction and Classification
in AI Techniques

A good and relevant dataset is needed to train and classify EEG
epileptic signals by DL models. This raw input data can extract
meaningful features and then be used as input or supplied directly
into the network without the feature extraction stage. Some
researchers have employed DL models as feature extractors with
conventional machine learning techniques used as classifiers,
Figure 8(a), while others use conventional techniques as feature
extractors and DL networks as classifiers, as shown in Figure 8(b).
For the direct method or end-to-end learning, the raw input data are
directly fed to the DL networks as classifiers, as shown in Figure 8(c).

3.1. Performance measures

Some statistical metrics evaluate the performance of machine
learning and DL techniques. Accuracy is the most common metric
used by researchers in assessing the classifier’s efficiency.
Accuracy can be defined as in equation

16
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Accuracy = IN + TP
) = IN+ TP+ FP+FN

where TN is the “true negative,” TP is the “true positive,” FP is the
“false positive,” and FN is the “false negative.”

Other metrics that are also used are precision, sensitivity, and
specificity, among others

TP

Precision = ———
TP + FP

. TP
Senszthty = m

TN
Specificity = 1N+ Fp
. TP
Precision = ——
TP + FP

Precision * Sensitivity
F1_Score = 2

Precision + Sensitivity

The area under the curve (AUC) and the receiver operating
characteristics are performance measures for evaluating the DL
networks. Other performance measures calculated based on the
seizure events of epileptic EEG signals are good detection rate
and False Positive Rate (FPR) per hour.

The list of works in automated epilepsy detection and analysis
that uses DL methods is summarized in Table 1. The most common
DL networks employed in computer-aided device system for
epileptic seizure detection are highlighted below.

One of the limitations of machine learning approaches is the
ineffectiveness of the models in dealing with multichannel EEG
signals and a huge amount of data. DL networks are designed to
handle those limitations. From our survey, as shown in Table 1,
researchers commonly employ CNN networks to effectively detect
and classify epileptic seizures. CNN extracts learnable features
automatically instead of machine learning classifiers that require
the features to be extracted manually. Several works used CNN to
propose an automatic seizure detection model. Hossain et al.
(2019) proposed a model based on CNN architecture using a
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Figure 8
Feature extraction and classification architecture. (a) Deep learning (DL) model as feature extractor and machine
learning model as a classifier. (b) Machine learning model as feature extractor
and DL model as a classifier. (c) End- to-end learning
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multichannel CHB-MIT dataset to perform binary classification of
seizure and non-seizure classes. The model extracts spatial,
spectral, and temporal features from cross-patient and patient-
specific EEG data. The model’s overall performance in terms of
accuracy is 98.1% and 99.7% for cross-patient and patient
specific, respectively. Authors in (Boonyakitanont et al., 2019)
used both CNN and ANN to propose a seizure detection method
in which time domain, frequency domain, and time—frequency
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domain features were extracted and used in ANN for the
classification of seizures while raw EEG data were used in CNN
architecture. CNN architecture provides better accuracy than the
ANN network, with an accuracy of 99.1%. Acharya et al. (2018)
proposed a multi-classification approach for detecting ictal,
preictal, and normal epileptic seizures using a CNN architecture
with a Bonn University dataset. Detail of work that employed
various types of DL architectures is provided in Table 2.

Table 2
List of works that used deep learning in detecting and classifying EEG epileptic seizures

Author Year Features Performance (%)
Johansen et al. (2016) 2016 CNN Accuracy =94.7
Antoniades et al. (2016) 2016 CNN Accuracy = 87.51
Lin et al. (2016) 2016 SSAE Accuracy = 96.0
Achilles et al. (2016) 2016 CNN Accuracy =78.3
Thodoroff et al. (2016) 2016 CNN + RNN Sensitivity = 85.0
Page et al. (2016) 2016 MPCNN NA

Vidyaratne et al. (2016) 2016 DRNN NA

Yan et al. (2016) 2016 SAE Accuracy = 100.0
Lin et al. (2016) 2016 SSAE Accuracy =100.0
Hosseini et al. (2016) 2016 SSAE Accuracy =94.0
Wei et al. (2018) 2016 Multichannel CNN Accuracy =92.4
Golmohammadi et al. (2017) 2016 CNN-RNN NA

Tagqi et al. (2017) 2017 AlexNet, GoogleNet, LeNet Accuracy= 100.0
O’Shea et al. (2017) 2017 1D-FCNN NA

Talathi (2017) 2017 GRU Accuracy =98.0
Yuan et al. (2017) 2017 SSDA Accuracy =93.8
Le et al. (2017) 2017 DBN Accuracy =96.9

(Continued)
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Table 2

(Continued )
Author Year Features Performance (%)
Hosseini et al. (2017) 2017 2D-CNN NA
Gogna et al. (2017) 2017 Semi-supervised SAE Accuracy =96.9
Achilles et al. (2018) 2017 2D-CNN NA
Park et al. (2018) 2018 1D-CNN, 2D-CNN Accuracy =90.5
Roy et al. (2018) 2018 1D-CNN, GRU Accuracy =99.2
Ahmedt-Aristizabal et al. (2018) 2018 FRCNN Accuracy =95.2
Thomas et al. (2018) 2018 1D-CNN Accuracy = 83.8
Daoud et al. (2018) 2018 ID-CNN Accuracy = 98.6
Zhang et al. (2018) 2018 1D-TCNN Accuracy = 100.0
Ullah et al. (2018) 2018 P-1D-CNN Accuracy =99.1
Acharya et al. (2018) 2018 1D-CNN Accuracy = 86.7
Yildinim et al. (2018) 2018 1D-CNN Accuracy =79.3
Chen et al. (2018) 2018 1D-CNN Accuracy =97.3
Yuvaraj et al. (2018) 2018 1D-CNN NA
Hussein et al. (2018) 2018 LSTM Accuracy = 100.0
Ahmedt-Aristizabal et al. (2018) 2018 LSTM Accuracy =91.3
Hussein et al. (2018) 2018 LSTM Accuracy = 100.0
Rajaguru and Prabhakar (2018) 2018 AE, EM-PCA Accuracy =93.9
Sharathappriyaa et al. (2018) 2018 AE Accuracy =98.7
Qiu et al. (2018) 2018 DSAE Accuracy = 100.0
Yuan et al. (2018) 2018 mSSDA Accuracy =96.6
Gasparini et al. (2018) 2018 SAE Accuracy = 86.5
Karim et al. (2018) 2018 SAE Accuracy = 96.0
Singh and Malhotra (2018) 2018 SAE Accuracy = 88.8
Fang et al. (2018) 2018 ST-GRU ConvNets Accuracy =77.3
Yuan et al. (2018) 2018 CNN-AE Accuracy =94.4
Wen and Zhang (2018) 2018 CNN-AE Accuracy =92.0
Abdelhameed et al. (2018) 2018 ID-CNN, LSTM Accuracy =99.3
Antoniades et al. (2018) 2018 ASAE-CNN Accuracy = 66.0
Gill et al. (2018) 2018 2D-CNN NA
Hao et al. (2018) 2018 ResNet NA
Yan et al. (2018) 2018 3D-CNN Accuracy = 89.8
Gleichgerrcht et al. (2018) 2018 2D-CNN NA
Ullah et al. (2018) 2018 P-1D-CNN Accuracy =99.9
Acharya et al. (2018) 2018 CNN Accuracy = 88.7
Tjepkema-Cloostermans et al. (2018) 2018 CNN (1D and 2D) and/or LSTMs Specificity = 99.9
Hiigle et al. (2018) 2018 CNN Sensitivity = 96.0
Thomas et al. (2018) 2018 CNN Accuracy = 83.9
Hussein et al. (2019) 2019 LSTM + FC Specificity = 100.0
Emami et al. (2019) 2019 CNN Accuracy = 100.0
Jang and Cho (2019) 2019 Dual deep neural network Sensitivity = 100.0
Nejedly et al. (2019) 2019 CNN NA
Iesmantas and Alzbutas (2019) 2019 CNN Accuracy = 74.0
Avcu et al. (2019) 2019 SeizNet NA
Hossain et al. (2019) 2019 CNN Accuracy =98.1
Zuo et al. (2019) 2019 CNN NA
Asif et al. (2019) 2019 SeizureNet NA
Covert et al. (2019) 2019 TGCN NA
Bouaziz et al. (2019) 2019 CNN Accuracy =99.5
Emami et al. (2019) 2019 CNN NA
San-Segundo et al. (2019) 2019 CNN Accuracy =99.5
Sui et al. (2019) 2019 CNN Accuracy =91.8
Akut (2019) 2019 CNN Accuracy = 100.0
Turk and Ozerdem (2019) 2019 CNN Accuracy = 100.0
Liu and Woodson (2019) 2019 CNN Accuracy =99.6
Tian et al. (2019) 2019 CNN Accuracy =99.5
Ansari et al. (2019) 2019 CNN NA
Cao et al. (2019) 2019 CNN Accuracy =99.3
Boonyakitanont et al. (2019) 2019 CNN Accuracy =99.1
Craley et al. (2019) 2019 PCM-CNN NA

18
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Table 2
(Continued )
Author Year Features Performance (%)
Yao et al. (2019) 2109 IndRNN Accuracy = 87.0
Lu and Triesch (2019) 2019 CNN Accuracy =99.0
Wei et al. (2019) 2019 CNN Accuracy = 84.0
Meisel et al. (2019) 2019 CNN Accuracy = 86.3
Fukumori et al. (2019) 2019 CNN-LSTM-GRU NA
Yao et al. (2019) 2019 ADIndRNN Accuracy = 88.7
Roy et al. (2019) 2019 ChronoNet Accuracy =90.6
Jaafar and Mohammadi (2019) 2019 LSTM Accuracy =97.7
Emami et al. (2019) 2019 AE NA
Karim et al. (2019) 2019 DeSAE Accuracy = 100.0
Choi et al. (2019) 2019 CNN-GRU Accuracy =99.4
Liang et al. (2019) 2019 CNN-LSTM Accuracy =99.0
RaviPrakash et al. (2019) 2019 CNN-LSTM Accuracy = 89.7
Dev et al. (2019) 2019 CNN NA
Jiang et al. (2019) 2019 ResNet, VGG Accuracy =98.2
Shiri et al. (2019) 2019 DAC NA
Haotian et al. (2019) 2019 CNN, LSTM, GRU Accuracy =96.0
Rohan (2019) 2019 WT-CNN Accuracy =99.4
Wei et al. (2020) 2020 DNN Accuracy =99.5
Kyung et al. (2020) 2020 CNN AUC=0.99
Fabio et al. (2020) 2020 CNN Accuracy =98.3
Gao et al. (2020) 2020 Deep CNN Accuracy =90.0
Dongmei and Xuemei (2020) 2020 Improved RBF NA
Jaoude et al. (2020) 2020 CNN-BP NA
Sue et al. (2021) 2021 CNN Accuracy= 94.3
Malekzadeh et al. (2021) 2021 CNN-RNN Accuracy =99.7
Peng et al. (2021) 2021 CNN Sensitivity=91.2
Mrutyunjaya et al. (2021) 2021 RDCNN Accuracy =100.0
Rashed et al. (2021) 2021 CNN Accuracy =99.2
Islam et al. (2022) 2021 DCB,FAM,RB,HT Accuracy =99.9

The number of reviewed articles employing different DL techniques
in this article is summarized and presented in Figure 9.

Figure 9
Number of deep learning techniques reviewed
in this article
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3.2. Dataset source

EEG epileptic seizure detection and classification studies
using DL models have been studied using the scalp and
intracranial EEG recording. Many studies conducted used
publically available online databases such as Bonn University
Germany database, University Hospital of Freiburg, Germany,
Boston Children’s Hospital, Bern-Barcelona Database from the
University of Bern, Barcelona, Spain, CHB-MIT Scalp EEG
database, and many more private datasets that are recorded in
laboratories of hospitals and institutions that are not publically
available, in some cases researchers can obtain the data based on
permission from the owners.

4. Discussion

Despite the contribution and effort by researchers to develop
and improve seizure prediction and characterization algorithms,
the realization of clinical devices by converting these existing
algorithms into clinical use has been a significant bottleneck.
Based on the studies of algorithms, it is evident that specific
buildup to a seizure state is responsible for the occurrence of
seizure and not a random process.
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DL models have applications in epileptic seizure prediction and
characterization in either feature extraction or classification tasks.
Regarding the model most researchers employed, CNN is the
most widely used neural network, followed by RNN with LSTM
structure. Some works combine CNN and RNN networks to
enhance the performance. Different training architectures have
been investigated, and from our review, we found that traditional
machine learning methods are still used together with DL models
by extracting features using the machine learning method while
the DL network is used for classification. This structure improves
the system’s accuracy because the raw EEG epileptic data are
converted into feature data with higher dimensionality and
discriminative features than the raw data. However, labeling hand-
crafted features by the machine learning method increases the
burden on the feature extractor; therefore, DL model can be used
as feature extractor while machine learning models are classifiers.
To reduce the structural complexity and optimize the DL models
without relying on the raw data, DL models train the raw EEG
epileptic signals and produce the output directly.

Standardization of epileptic seizure techniques is also an issue
of concern because homogenous comparison performance measures
must be grouped to provide a homogeneous and standard
comparison. Another problem is recording the EEG signal
duration in either scalp EEG or intracranial EEG.

Each of the recent state of the art techniques reviewed in this
work has its own advantages and disadvantages, based on the
investigations performed in this work, we summarized the
performance of these techniques in terms of complexity, accuracy,
ease of implementation and requirement of larger datasets, etc. as
follows: conventional machine learning methods such as SVM,
ANN, and k-NN performed very well in the detection and
classification of epileptic seizures. However, as SVM performed
better in binary classification and better accuracy than k-NN and
ANN, it has higher computational complexity. In contrast, low
performance was observed in k-NN classifier, but it has low
complexity and can handle high dimensional dataset. Hybrid
techniques provide high performance accuracy such as SVM-
ANN and SVM-ANN as compared to single machine learning
model. However, their computational complexity limits their
suitability for practical implementation.

On the part of DL algorithms that are mostly used in detection
and classification of epileptic seizures, these models help in
extraction and development of high dimensional features without
the need for extraction of hand-crafted features with high
accuracy. The most common models are CNN, RNN, and LSTM.
Based on our survey in this article, LSTM has some
computational complexity issues as compared to CNN and RNN
in some publicly available dataset such as Bonn and CHB-MIT.
In contrast, RNN shows a lower performance accuracy but
exhibits a faster in computation compared to other two DL
models. A combination of two different DL structures or DL and
conventional machine learning models shows a higher
performance accuracy in selection and classification of epileptic
seizures. However, these models normally have high computation
time complexity.

4.1. Challenges/Limitations

Despite the progress achieved in detection and classification of
epileptic seizures recently, there are still some challenges and
limitations holding the researchers back that includes among
others: (1) artifacts, noise, and non-brain activities such as EMG,
ECG, power line interference removal without distorting loss of
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the required signal/information. (2) Though there are many
available datasets used by researches in their work, however
combining these datasets is quite difficult as each has different
sampling frequency, number of electrodes, and other parameters,
which hinders the researchers to combine different datasets in
order to obtain large dataset for training the model. (3) To realize
real-world applications in clinical setup, real-time signals need to
be used for detection and classification but most of the datasets
available contain a chosen segments of EEG signals that are not
suitable for real-world clinical implementation. (4) Channel
selection is another limitation of reviewed technique as using a
single channel leads to little information, while using multi-
channel approach leads to lack of coordination among the
channels. (5) Lack of standardization among the developed
algorithms is another challenge which makes homogenous
performance comparison difficult. (6) In case of recent DL
models, requirement of higher computational resources that are
not available by some researches hinders the realization of
reliable, practical, and precise non-invasive models that meet the
demand of mobile health and internet of medical things.

4.2. Future research direction

This article provides a comprehensive investigation on epileptic
seizure identification and detection techniques. Over the years,
tremendous progress has been witnessed ranging from traditional
techniques to the recent application of DL. However, some of the
challenges and limitations have been identified and raised that
brings some interested research questions which still need to be
addressed for the successful implementation and improvement of
these developed models.

The following are some of the suggestions for uplifting future
research and addressed the mentioned limitations in Section 4.1.

1. Advanced artifacts removal techniques need to be thoroughly
investigated and developed to identify and eliminate the
artifacts and non-brain activities.

2. With large volume and high dimension of epileptic seizures
dataset, dimensional reduction techniques that reduce the
dataset dimension and still retain the significant signal
information need to be further investigated.

3. Suitable features that reduce the classifiers computational
complexity and time should be considered in selecting
statistical and machine learning classifiers.

4. For models that use invasive recordings, the developed methods
must be able to identify seizure onset and to also measure the
seizure strength.

5. Channel selection strategies should be adopted in epileptic
detection algorithms for choosing optimal channels that
represent the EEG seizure activities.

6. Researchers should choose a classifier that will not miss or skip all
the relevant EEG channels and electrodes.

5. Conclusion

This article presents a survey on epileptic seizure detection and
classification techniques based on EEG signals using Al specifically
studies that employed DL architectures in their work. The study also
highlighted a brief overview of some machine learning techniques
most commonly used by researchers in detecting and classifying
epileptic seizures. The work reveals that DL methods record a
huge success, with most of the works in literature utilizing the
efficacy of CNN architecture. Recently, some researchers have
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investigated other types of DL architectures. At the same time, some
combine hybrid architectures such as CNN-RNN methods, while some
have been studying the combination of machine learning techniques
and DL techniques to detect, classify, and predict epileptic seizures
using EEG signals. Future work should investigate the hybrid
techniques, hardware implementation of the developed methods,
and the realization of these techniques in the clinical setup.
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