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Abstract: Ayurvedic medicine plays an essential role in the overall care that is provided for the physical and mental wellbeing of people. It is vital 
to correctly identify and categorize medicinal herbs to be able to provide better therapy. Medicinal herbs come in a wide variety of forms. It is a 
challenging task that requires a significant amount of professional medical experience to correctly name and classify the many distinct kinds of 
medicinal plants. Because of this, having an approach to the identification of medicinal plants that is completely automated is something that is 
highly desirable. In this study, a straightforward four-layer shallow Convolutional Neural Network (S-CNN) is proposed for the aim of classifying 
medicinal herbs. The potential utility of S-CNN is evaluated with the help of four distinct leaf datasets such as the Swedish Leaf, Flavia Leaf, 
MepcoTropicalLeaf Dataset, and Medicinal Leaf Dataset. Our model is capable of achieving a level of classification accuracy of 98.22%, 96.18% 
and 92.89% on Swedish, Flavia and Medicinal Leaf datasets respectively and that is comparable to that of other state-of-art methodologies in this 
field.
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1. Introduction
Plants play a crucial role in the preservation of life and biodiversity on 

Earth because they purify the air and water that all forms of life consume. 
Therapeutic plants are one of the most important plant categories because 
they are used to treat a wide variety of diseases. The medicinal plant 
knowledge that has been passed down through generations must be 
protected and preserved. Numerous individuals, including farmers, 
foresters, landscape architects, medical professionals, and biologists, 
benefit from it. Taxonomists, botanists, and plant ecologists have 
limited control over the identification of plants. Identifying plants using 
conventional methods, on the other hand, can be difficult and time-
consuming [1]. Locating a plant with the required quantity of a medicine 
is one of the most difficult tasks. Even though herbal medicine does 
not have negative side effects, a patient’s health could be jeopardized if 
they use an herb that was not prescribed to them. Manually identifying 
something in this field can be difficult and time-consuming at times. A 
system for the automated recognition of medicinal plants is required so 
that people can correctly identify plants used for medicinal purposes. The 
leaf is the plant part most commonly used for crop identification because 
it can be obtained at any time of year and is easily recognizable. Both the 
plant’s flowers and its roots are only available for a limited time and can 
be difficult to acquire. In addition, the leaf is the type of information that 
is most prevalent in botanical reference collections. The vast majority of 
a plant’s effective medicinal components are found in its leaves.

In the realm of plant leaf identification, the triad of shape, texture, 
and color stands as the cornerstone. Among the plethora of shape 
features, aspect ratio [2], simple morphological descriptors [3–5], 
and polar Fourier transform hold a prominent place [6]. To explore 

into the intricate details of leaf structure, researchers employ diverse 
methodologies, with digital morphological analysis being a standout. 
For instance, Neto et al. [7] harnessed the power of a Probabilistic 
Neural Network (PNN) classifier to discern plant species, leveraging 
five geometric parameters: perimeter, physical width, length, area, and 
leaf diameter. In a similar vein, Wu et al. [2] meticulously categorized 
32 variants of green leaves by employing a PNN classifier, honing in 
on their unique morphological characteristics. As the field advanced, 
subsequent studies [8, 9] explored deeper into the external attributes of 
leaves, encompassing shape, venation, margin, and texture. Noteworthy 
among these endeavors is Kumar’s method [10] for identifying 
Indian medicinal plants. Here, morphological traits took center stage 
alongside a Multilayer Perceptron (MLP) classifier. Kumar et al. 
meticulously extracted a plethora of morphological features from leaf 
images, including major and minor axis lengths, centroid, perimeter, 
orientation, and solidity. These features, acting as the building blocks of 
classification, were examined across various classifiers such as Decision 
Tree, k-NN, Multilayer Perceptron, and AdaBoost MLP [11].

Moreover, the leaves of numerous species share a similar 
appearance. In this instance, it is not possible to identify the leaf based on 
its shape, but it is possible to do so based on its texture. Commonly used 
texture features include Histogram of Gradients [12, 13], Gray-Level 
Co-Occurrence Matrix (GLCM) [14–18], Local Binary Patterns (LBP) 
[19–21], and Scale Invariant Feature Transform (SIFT) [22, 23], etc. 
Chaki et al. [24] identified fragmented images of leaves by combining 
histograms of fuzzy color and edge texture. Anami et al. [25] presented 
a classification method for leaves based on the edge histogram, the color 
histogram, and the leaf area. Bama et al. [26] suggested an efficient 
texture- and color-based content-based image retrieval method for 
leaves. In the process of leaf recognition, Gabor filters [27–29], kernel-
based principal component analysis [30, 31], and bag of words [32–34] 
are utilized as additional features. Priya et al. [35] used morphological, 
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geometric and vein structural features along with an SVM classifier to 
obtain 94.20% accuracy. Paithane and Wagh [36] employed the fuzzy 
c-means algorithm to detect blackarm spots on cotton leaves.

Deep learning facilitates the automation of feature extraction in 
modern computer systems by first capturing an accurate representation 
of training data and then constructing a reliable classification model. It 
has been widely applied in various research domains. Many researchers 
have employed convolutional neural networks (CNNs) for plant leaf 
identification [37–44] and disease classification [45, 46]. Zhang et al. 
introduced a method combining the Bag of Features (BOF) model 
with a Dual-output Pulse-Coupled Neural Network (DPCNN) for leaf 
classification [37]. Ahila Priyadharshini et al. [38] addressed the need 
for accurate identification of Ayurvedic medicinal plants by introducing 
MepcoTropicLeaf, a publicly available annotated database of Indian 
medicinal plant leaf images. The authors evaluated various feature 
extraction methods, including spatial, spectral, and machine-learned 
features, on a selected set of 50 species from the database. They proposed 
a six-level Convolutional Neural Network (CNN) that achieves an 
accuracy of 87.25% using machine-learned features, highlighting the 
potential of deep learning in medicinal plant identification. Nguyen 
Thanh et al. proposed a Convolutional Neural Network (CNN) model 
focused on classifying leaves based on the morphology of leaf veins [39]. 
Most existing deep learning methods for leaf recognition depend on pre-
trained models and transfer learning techniques. The lack of efficient and 
lightweight classification models for medicinal plant identification presents 
a significant challenge in preserving traditional medicinal knowledge. 
To bridge this gap, our study proposes a shallow Convolutional Neural 
Network (S-CNN) designed specifically for medicinal plant classification. 
Unlike many existing approaches that rely on deep learning models 
with high computational requirements, our proposed S-CNN offers a 
lightweight and efficient alternative, making it more suitable for real-
world applications, particularly in resource-constrained environments. 
The main contributions of this work are as follows:
(1) A four-layer shallow Convolutional Neural Network (S-CNN) is 

proposed for the classification of medicinal herbs, providing an 
alternative to complex deep learning models.

(2) The effectiveness of the proposed S-CNN model is assessed 
using four distinct leaf datasets: Swedish Leaf, Flavia Leaf, 
MepcoTropicalLeaf Dataset, and Medicinal Leaf Dataset, demon-
strating its generalizability.

(3) Unlike many existing approaches that rely on transfer learning and 
pre-trained deep learning models, this work presents a lightweight, 
standalone CNN architecture tailored for medicinal plant classification.

(4) The study explores the impact of fine-tuning network parameters, 
optimizing the model for better classification accuracy.

2. Proposed Methodology
Convolutional neural networks (CNNs), a deep artificial neural 

network variant, find extensive application in image classification and 
direct extraction of visual patterns from pixel-based images. The CNN 
architecture closely mimics the interconnectedness observed in the neural 
patterns of the human brain. Through the application of suitable filters, 
CNNs adeptly capture both spatial and temporal dependencies inherent 
within an image, thereby enabling efficient feature extraction. The 
shallow CNN architecture utilized in this study is depicted in Figure 1.

The S-CNN comprises four tiers of convolutional layers. Batch 
normalization is integrated alongside each convolutional layer to 
stabilize the learning process, consequently minimizing the required 
training epochs for deep network training. After batch normalization, 
rectified linear unit (ReLU) activation is applied. Subsequently, average 
pooling is employed to decrease the dimensionality of the output feature 

map. The ultimate layer is fully connected, with the number of neurons 
in this layer determining the class labels.

2.1. Components of the proposed CNN architecture
The first layer in a CNN is always a convolutional layer, which is 

the building block of CNN. The input to the convolutional layer may be 
either an input image or an output from the previous layer called feature 
maps. In this layer, the Convolution operation is performed on input 
image/feature maps with specific filter, called kernel and results in the 
output feature maps. The formula for calculating the dimensionality of 
output feature maps is given in Equation (1).

where, O is the dimension of output feature map, W is the dimension 
of input image/feature map, K is the filter size, P is the padding, and S 
is the stride. 

Typically, Low-Level information like edges, colors, gradient 
directions, and so forth are captured by the first convolutional layer. 
By adding layers, the architecture adapts to the High-Level features as 
well, providing us with a network that shares our understanding of the 
dataset’s images.

Activation functions play a crucial role in designing convolutional 
neural networks. They influence how effectively the network learns from 
the training data, with the choice of activation function in the hidden 
layers significantly impacting the model’s learning process. Moreover, 
the activation function employed in the output layer dictates the nature 
of predictions the model can generate. In this study, the activation 
function utilized is rectified linear unit (reLu), which is mathematically 
represented by Equation (2).

The rectified linear unit (reLu) function offers computational 
efficiency by activating only a small fraction of neurons, which effectively 
reduces the computational load. Its linear and non-saturating characteristics 
accelerate the convergence of the gradient descent optimization algorithm 
towards the global minimum of the loss function during training. This 
means that the network learns more efficiently and effectively, leading to 
faster convergence and potentially better performance.

Pooling layers, such as average pooling, play a crucial role in 
reducing the spatial dimensions of the feature maps generated by 
convolutional layers. This reduction in size not only decreases the 
computational burden but also helps in capturing the most essential 
information while discarding redundant details. Additionally, pooling 
aids in achieving rotational and positional invariance, which means 

(1)

(2)
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 Figure 1
Proposed CNN architecture
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that the network becomes less sensitive to changes in the orientation or 
position of features within the input data. This property is particularly 
advantageous for tasks like image recognition, where the same object 
can appear in different positions or orientations within an image. In the 
architecture described in the work, average pooling shown in Figure 2 
is applied only in the initial two layers. This selective use of pooling 
ensures that the network retains spatial information adequately for 
effective feature extraction while still benefiting from dimensionality 
reduction. By omitting pooling in later stages, the network can preserve 

more detailed spatial information, which may be crucial for accurately 
identifying complex patterns in the data.

Batch normalization is a network layer designed to enhance the 
independent learning capability of each layer. Its primary function is to 
normalize the outputs from preceding layers. This normalization process 
involves scaling the activations of the input layer. By incorporating 
batch normalization, the learning process becomes more efficient, and 
it can also act as a form of regularization to mitigate model overfitting. 
In this layer, the activations of each channel are typically normalized by 
subtracting the mean and dividing by the standard deviation of the mini-
batch. Subsequently, the input is adjusted by an offset parameter (β) and 
scaled by a factor parameter (ϒ). Both these parameters are updated 
iteratively during the training process. The batch-normalized output (yi) 
is calculated according to Equation (3).

ϒ β ϒ

where,  is the normalization of activation xi which is given by 
Equation (4)

(3)
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Figure 2
Average pooling

 Figure 3
Sample images from Swedish leaf dataset, one per species

 Figure 4
Sample images from Flavia leaf dataset, one per species
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μ

σ

where ϵ is the constant, µB is mini-batch mean and σ  is mini-batch 
variance and are given by Equations (5) & (6) respectively.

μ

σ μ

where, m is the mini-batch size.
Dropout serves as a training technique where randomly chosen 

neurons are excluded during training. This means that their influence 

on downstream neuron activations is temporarily removed during the 
forward pass, and weight updates for these neurons are not applied during 
the backward pass. Typically, a dropout probability hyperparameter, 
often set to 0.5, determines the likelihood of deactivation. Following 
this, the final output needs to be flattened and fed into a standard neural 
network for classification purposes. Introducing a Fully-Connected 
layer is a cost-effective method for learning nonlinear combinations of 
high-level information extracted by the convolutional layer’s output. 
During training, the network receives the flattened output from each 
round via backpropagation. Employing the Softmax classification 
technique enables the model to classify images by discerning low-level 
features prevalent across numerous epochs. The output layer generates 
an N-dimensional vector, where N corresponds to the number of 

(4)

(5)

(6)
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 Figure 6
Sample images from Medicinal leaf dataset, one per species 

 Figure 5
Sample images from MepcoTropicLeaf dataset



classes. Each element in this vector denotes the probability of a certain 
class. The class with the highest probability is the identified output. This 
approach is known as the Softmax classifier, defined by Equation (7).

where  is the score vector and is given in Equation (8).

The Softmax classifier derives its name from the softmax function, 
which is used to squash raw class scores into normalized positive values 
that total to one in order to apply the cross-entropy loss.

3. Datasets Used
The dataset used in this work are Swedish Leaf, Flavia Leaf, 

MepcoTropicLeaf and Medivinal Leaf dataset

3.1. Swedish leaf dataset
The Swedish leaf dataset, developed through collaboration 

between Linkoping University and the Swedish Museum of Natural 
History [47], consists of isolated leaf scans from 15 distinct Swedish 
tree species against a plain background. Each species comprises 75 
individual leaf scans, resulting in a total of 1125 images. Due to the 
significant similarities between different species, this dataset poses a 
considerable challenge for classification tasks. Sample images from the 
Swedish Leaf dataset are displayed in Figure 3.

3.2. Flavia leaf dataset
The Flavia dataset is the most widely used dataset for leaf 

recognition, with 1907 leaf images of 32 different types. The majority 
of the leaves in the Flavia dataset, as shown in Figure 4, are common 
plants in China’s Yangtze Delta. There are at least 50 leaves in each 
species and these leaves are single leaves with petiole removed and 
have a simple background.

3.3. MepcoTropicLeaf dataset
The first version of the MepcoTropicLeaf dataset [38] as shown in 

Figure 5, includes 50 distinct plant species that are regularly grown in 

tropical settings. There are more than 50 leaf images in each species. 
The database includes both single and compound leaves. To make the 
database more robust, the frontal and rear views of the leaf images are 
captured. Also, the dataset contains several broken, diseased leaves and 
leaves with flowers.

3.4. Medicinal leaf dataset
The dataset contains thirty species of healthy medicinal herbs 

[48]. The dataset contains 1835 images representing thirty species. 

(7)

(8)
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Layer Filter size Output size
Input Layer 160 × 160 × 3
Convolutional Layer 1 3×3 158 × 158 × 8
Batch Norn Layer 1 158 × 158 × 8
Average pooling Layer 1 2×2 79 × 79 × 8
Convolutional Layer 2 3×3 77 × 77 × 16
Batch Norn Layer 2 77 × 77 × 16
Average pooling Layer 2 2×2 38 × 38 × 16
Convolutional Layer 3 3×3 36 × 36 × 32
Batch Norn Layer 3 36 × 36 × 32
Convolutional Layer 4 3×3 34 × 34 × 32
Batch Norn Layer 4 34 × 34 × 32
Output Layer 1 × 1 × 15

Table 1
Layers of proposed model for Swedish dataset

Train–test 
ratio (%)

Recognition accuracy (%)
50 epochs 100 epochs 110 epochs 160 epochs

70:30 95.76 92.12 95.15 95.15
80:20 98.10 96.00 98.22 97.33
90:10 95.24 95.24 95.24 95.24

Table 2
Recognition accuracy for Swedish leaf dataset with different 

train–test ratio

Momentum Recognition accuracy (%)
0.90 98.22
0.94 97.33
0.96 95.56
0.98 97.33

Table 3
Recognition accuracy for different values of momentum

Learning rate Recognition accuracy (%)
0.001 93.78
0.0001 98.22
0.00001 93.33

Table 4
Performance of the architecture with different learning rates

Method Recognition accuracy (%)
Pattern counting approach [49] 97.07
Zernike moments + HOG [50] 98.13
BOF_DP [37] 97.93
Proposed model 98.22

Table 5
Performance comparison of proposed architecture with state of 

art methods on Swedish dataset

Method Recognition accuracy (%)
VGG16 [51] 95.00
VGG19 [51] 96.25
GIST [52] 95.50
S-Inception [53] 95.32
Proposed model 96.18

Table 6
Performance comparison of proposed architecture with state of 

art methods on Flavia dataset
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 Figure 7
Confusion matrix (a) Swedish leaf dataset (b) Flavia dataset (c) MepcoTropicLeaf dataset
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Each species comprises sixty to one hundred high-quality images. The 
harvested leaves are from various plants of the same species found in 
local gardens. The dataset is comprised of only healthy, mature leaves. 
The leaf images in the dataset are rotated and tilted slightly to maximize 
their utility for training machine learning and deep learning models. 
The sample medicinal leaf images of Medicinal Leaf dataset are shown 
in Figure 6.

4. Experimental Results and Discussions
This study introduces a medicinal plant recognition approach 

utilizing a CNN architecture. The experimental setup utilizes 
the architecture illustrated in Figure 1. The composition of layers 
in the proposed architecture is detailed in Table 1. The number 
of neurons in both the Input layer and the output layer fluctuates 
depending on the image dimensions and the quantity of species 
present in the datasets.

Initially, the experimentation is carried out using Swedish leaf 
dataset. The images are resized to 160 × 160 for the experimentation 
purpose. First, to fix the number of epochs, the experimentation is 
carried with different train and test ratio. The learning rate is fixed as 
0.0001. The mini batch size is 16. The optimizer used is Stochastic 
Gradient Descent (SGD) with momentum. The problem with SGD is 
that we cannot raise the learning rate when it tries to reach minima due 
to the high oscillation. So, convergence takes time. While incorporating 
momentum with SGD, exponentially weighted averages are used to 
compute Gradient which is then used to update the parameter. During 
experimentation data augmentation such as reflection and translational 
augmentation are carried out only for training images. The pooling 
used is average pooling. The recognition accuracy for Swedish leaf 
dataset with different train test ratio is shown in Table 2. The highest 
recognition accuracy is shown in bold. The formula for accuracy is 
shown in Equation (9).

From Table 2, it is inferred that, the highest recognition accuracy 
is obtained at 110 epochs with train–test ratio of 80:20. So, further 
experimentation is carried with this specification. Momentum causes 
gradient vectors to accelerate in the right directions, resulting in faster 
convergence. Rather than relying solely on the current step gradient to 
lead the search, the momentum gathers prior step estimates to discover 
a path to convergence. As a result, both training speed and accuracy are 
frequently improved. The recognition accuracy for different values of 
momentum is depicted in Table 3.

Table 3 shows that better performance is obtained for the 
momentum of 0.90. Then the experimentation is repeated by changing 
the optimizer as Adaptive Moment (ADAM) and we got the accuracy 
as 96.44% which less when compared to SGD with momentum. Again, 
the experimentation is carried out by varying the learning rate and the 
performance is depicted in Table 4.

From Table 4, it is inferred that, good performance is achieved with 
learning rate η=0.0001. By keeping this learning rate, the experimentation 
is repeated by changing the pooling method to max pooling and 
the accuracy obtained is 93.78% which is less compared to average 
pooling. The performance of our own architecture on Swedish dataset is 
compared with other state of art methods and is given in Table 5, and our 
performance is comparable with others.

In order to study the proficiency of the proposed 4-layer 
architecture, the experimentation is carried on Flavia leaf dataset. With 
400 epochs, we got the accuracy as 96.18%. The performance of the 
proposed architecture with the existing methods for Flavia dataset is 
shown in Table 6. It is observed that the performance of our method is 
comparable with others.

Further the experimentation is carried out using MepcoTropicLeaf 
dataset. With 700 epochs, we got the accuracy as 72.54%. Ahila 
Priyadharshini et al proposed a 6 layer network for the same dataset 
and got the accuracy as 87.5% [38]. It is inferred that the deep layer 
architecture with less number of layers perform well for the database 
having simple background. The Swedish and Flavia dataset have 
simple backgrounds and single leaves whereas the background in 
MepcoTropicLeaf dataset is complex and moreover it has compound 
leaves. More specific features are learnt of higher layers. So, CNN with 
more layers perform well for MepcoTropicLeaf dataset. The confusion 
matrices obtained during testing in the proposed CNN for the three 
datasets are shown in Figure 7. In the case of MepcoTropicLeaf dataset, 
the classes Belly ache Bush, Bristly White grape, Green Chireta, Night 
Blooming cereus and Rosary Pea are confused.

Finally, the experiment is conducted using the Medicinal leaf 
dataset. In Table 7, the recognition accuracy obtained for various epochs 
is tabulated, with the highest accuracy highlighted in bold. Figure 8 
depicts the feature maps obtained at various convolutional layers, and 
it can be inferred that the feature maps of deeper layers represent more 
specific characteristics. Table 8 displays the performance metrics of the 
Medicinal Leaf dataset over 500 epochs.

5. Conclusion
This study introduces a lightweight CNN model but also 

demonstrates how AI-driven classification can be effectively integrated 
into ethnobotanical research. This highlights the potential for deep 
learning in traditional medicinal knowledge preservation—an area that 
has received limited attention in existing literature. The method focuses 
on effectively capturing both local and global features of medicinal 
plant leaves. Additionally, the study thoroughly examines the CNN’s 
performance by adjusting key parameters such as learning rate and 
momentum. To evaluate its effectiveness, the proposed architecture is 
compared against several leading methods across four diverse medicinal 
plant leaf datasets. Ultimately, this research contributes to the preservation 
of traditional medicinal knowledge by providing a user-friendly tool for 

(9)

Epochs Recognition accuracy (%)
100 89.47
200 92.37
300 92.37
400 92.11
500 92.89
600 92.37
700 90.79
800 86.84

Table 7
Recognition accuracy of Medicinal leaf dataset for different epochs
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 Figure 8
Feature maps (a) sample image (b) 8 maps of layer 1 (c) 16 maps of layer 2 (d) 32 maps of layer 3 (e) 32 maps of layer 4



Artificial Intelligence and Applications Vol. 00 Iss. 00 2025

9

identifying and categorizing therapeutic plants. The model’s lightweight 
design enables its seamless integration into mobile or handheld devices 
for real-time identification of medicinal plants. This holds significant 
practical value for researchers, herbalists, and conservationists operating 
in remote areas.
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