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Abstract:Detecting and recognizing text in natural scene images and videos is vital for several real-world applications, such as in the analysis
of Crime scene CCTV footage, sports videos, and autonomous driving, to name a few. Therefore, one can expect several challenges, namely
arbitrarily oriented and shaped text detection and identification in movies and natural environments. Many methods have been developed in
the past to address these challenges, including advanced deep-learning models and transformers. Due to several methods available in the
literature, it is not so easy to understand the open challenges, applications, directions, scope, limitations, and weaknesses of the methods.
Therefore, there is a need to write a survey/review to highlight and discuss the strengths and weaknesses of the developed methods. This
survey/review presents different categories of work and discusses their importance, limitations, new challenges, applications, and,
finally, directions such that readers can choose appropriate methods and directions to carry out research work in the field of text
detection/recognition in the natural scene and videos.
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1. Introduction

The advent of text detection in scenes can be traced back to the
1990s and has been attributed to ground-breaking studies conducted
by pioneers such as Greenhalgh and Mirmehdi [1], Yin et al. [2], Ham
et al. [3], and Shilkrot et al. [4]. The surge in the implementation of
Internet Technology, in conjunction with the ubiquity of portable
mobile devices, has given rise to an escalating number of applications
wherein the extraction of text from image data and videos has become
imperative. Currently, the ability to detect and recognize text from
images and video scenes has swiftly emerged as a vital research focus
within Computer Vision and Pattern Recognition, distinct from but
related to traditional Document Analysis and Recognition. Prominent
international conferences, such as the International Conference on
Document Analysis and Recognition (ICDAR), the International
Conference on Computer Vision, Computer Vision and Pattern
Recognition, the European Conference on Computer Vision, and the
AAAI Conference on Artificial Intelligence, have recognized the
paramount importance of scene text detection and recognition (STDR),
dedicating it as an independent stream of academic research.

STDR is the technique of detecting and localizing textual
components in photographs collected from real-world settings. STDR
not only detects and locates pictures but also extracts critical high-
level semantic data from them [5–7]. As a result, its value is felt
across a wide range of industries, including, but not limited to, risk

and knowledge management, cybercrime countermeasures, content
augmentation, and fraud deterrence. Furthermore, STDR improves
knowledge extraction from photos or video information at many
granular levels, such as full pages, discrete text lines, specific phrases,
and even single characters. Following text detection, recognition
becomes an important component in a variety of computer vision
applications, including automated sign interpretation, autonomous
vehicle operation, language translation, and multimedia retrieval. The
implementation of driver-assist systems or autonomous automobiles,
which rely largely on such technology, is an appropriate
demonstration of the aforementioned use cases, considerably boosting
passenger safety and overall security [8, 9].

For example, sample scene images shown in Figure 1 represent
scene images of industry applications where detecting moving objects,
including humans, in day and night images is considered. In Figure 1,
the bounding boxes of the text indicate the results of text detection and
localization. For illustrating sample text detection, we use the method
[10] to fix bounding boxes for the text lines in the images. Similarly,
Figure 2 shows scene images with different complexities. These
images are challenging for text detection and recognition.
Therefore, choosing an appropriate method for detecting and
recognizing text successfully is a hard task when several methods
or models have been proposed in the literature [5–7].

2. Motivation

As illustrated by the performance of text detection methods in
Figure 1, the method [10] works well, while the method [11] does not
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work well. For the images shown in Figure 2, both methods fail to
detect text. This shows that although many methods/ models have
been developed in the past, there is still confusion about choosing
an appropriate method according to the complexity of the images
and applications. This is because there are several models and
methodologies that are offered with varying goals and bases and
that employ various metrics, datasets, assessment schemes, etc.
Therefore, in order to select a suitable technique based on user
objectives and applications, it is required to analyze the current
methods in order to validate the open challenges, limits, and
strengths of the methods. Additionally, the evaluation may be
utilized to identify unresolved issues and sources for developing
novel models. To assist users in selecting the most appropriate
method for their objectives and applications, we outline key
criteria for evaluation. These include the characteristics of the text
and scene (e.g., font style, background complexity, and motion),
robustness to shakiness or motion, accuracy versus speed

trade-offs, scalability and computational complexity, and specific
constraints posed by unique applications (e.g., real-time
processing in drones or underwater text detection). By considering
these factors, users can make informed decisions and identify
methods that best suit their requirements.

3. Proposed Plan

This work focuses on reviewing the methods of text detection
and recognition in natural scene and videos, as well as classifying the
text as shown in Figure 3. To capture a clear picture of the review, our
plan is to divide the methods of text detection into regression [12],
segmentation [13–15], and transform-based methods [16–18].
Similarly, recognition techniques are classified as transform and
segmentation-based, encoder-decoder and attention-based, and
connectionist temporary classification-based techniques. The
sections that follow provide a thorough examination and analysis

Figure 1
Text detection from video frames

Night video frame Day video frame 

Existing Halder Model [85]

Existing EAST Model [47]

Figure 2
Some challenging scenarios

Foggy-Night Night-Vision Smoky
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of each approach in relation to the various categories. However,
those studies thoroughly address both machine learning and
traditional techniques, since there are several surveys and reviews
on text detection and identification accessible in the literature
[5, 11, 19]. Consequently, the work here focuses on approaches
for review based on deep learning.

4. Research Methodology

4.1. Benchmark datasets

In order to find and identify the text, selecting the right dataset is
crucial. The well-known datasets for text detection and identification
are introduced in this section. Furthermore, the attributes of various
datasets are displayed in the table below.

ICDAR 2003 dataset [20]: For robust text localization, this dataset
comprises 258 training images and 251 test images.

ICDAR 2011 dataset [21]: This dataset consists of 255 test pictures
and 299 training photos.

ICDAR 2013 dataset [22]: In 462 photos, this dataset comprises 1189
words and 6393 letters. This package contains 233 test pictures and 229
training shots. The dataset contains several sophisticated examples,
such as reflection and language generated in difficult situations, yet
the text is always in English and is often horizontal. Low-contrast
photos with strange typefaces and stark backgrounds are examples
of flawed images.

ICDAR 2015 dataset [23]: For strong text localization, this dataset
contains 1000 training pictures and 500 test images. This includes
photos with text in various sizes. Pictures that occur in an image of
words of varying sizes are examples of bad images.

ICDAR 2017 dataset [24]: There are 18,000 images in this collection
that include texts in curved, multidirectional, horizontal, and
multilingual orientations. Scene photographs are included in nine
different languages. For the purpose of localizing robust texts,
ICDAR 2017 includes 7200 training pictures, 1800 validation
images, and 9000 test images. There aren’t many vertical texts in

this collection. This collection includes images in a variety of sizes
with glittery or cluttered backgrounds.

ICDAR 2019 dataset: For the purpose of localizing robust texts,
ICDAR 2017 includes 7200 training pictures, 1800 validation images,
and 9000 test images. There aren’t many vertical texts in this
collection. This collection includes images in a variety of sizes with
glittery or cluttered backgrounds. There are 1000 test and 1000
training photos in this dataset. This set of images features text in
several sizes and orientations, such as directed, curved, and vertical.
Bad photographs are those that include lettering arranged in different
sizes, flashy, crowded backgrounds, and different orientations.
Compared to the ICDAR 2017 collection, there are significantly more
curved and vertical pictures in this dataset. Compared to ICDAR
2017, this collection’s images are more intricate.

NEOCR:Multi-oriented words accompany photos of natural scenery
in the NEOCR collection. It has 5238marked bounding boxes and 659
real-world pictures. Given that the texts in it are written in a number of
languages, including English, Hungarian, Russian, Turkish, and
Czech, this dataset is multilingual.

KAIST [25, 26]: Three thousand photos taken in both indoor and
outdoor settings with different lighting conditions make up the
KAIST scene text dataset. This database, which contains texts in
both Korean and English, also acts as a multilingual benchmark.
Additionally, binary masks for every character in the pictures are
included. This means that this dataset may be applied to both
segmentation and text localization tasks.

SVHN [27]:The street view house numbers collection contains more
than 730000 digits in natural landscapes. The numerals are chopped
home numbers from Google Street View photographs. This
benchmark dataset is primarily used for the development and
testing of digit recognition algorithms.

MSRA-TD500 dataset: This dataset includes 500 natural photos of
the interior (office and market) and outdoor (street) settings captured
with a pocket camera. This dataset contains 300 training photos and
200 test images. Instead of words, text lines are employed as the
primary unit in this dataset. This dataset comprises Chinese,
English, or a mix of the two. This collection includes photos with

Figure 3
Block diagram of the proposed plan
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directed and curved text aswell as text in various sizes. There are only a
few vertical texts in this collection.

Char74K dataset: This collection consists of sixty-two courses. These
62 classes are made up of the numerals 0 through 9, the letters A through
Z, and the letters A through Z. This dataset contains 75,776 characters
that were extracted from various images. This comprises 62,992
characters made with different fonts and 12,784 handwritten
characters produced using tablets, each of which has 1016 data. Its
name comes from the fact that these data are a subset of a bigger
dataset that contains 74,000 photographs.

IIIT 5 K-Words (IIIT5K) dataset [28]: There are 2000 training
photos and 3000 testing images in this dataset. There is a
1000-word vocabulary and a 50-word vocabulary for each image.
Images featuring a range of fonts, colors, sizes, noise, blurring, and
really low resolutions are included in this collection.

MLT-2017 dataset [29]: The dataset is multilingual. It has nine
languages that correspond to six distinct scripts. This dataset
consists of 7,200 training photos, 1,800 validation images, and
9,000 testing images.

MLT-2019 dataset: This dataset is multilingual. This builds upon
MLT-2017. It has ten languages that correspond to seven distinct
scripts. Chinese, Japanese, Korean, English, French, Arabic, Italian,
German, Bangla, and Hindi (Devanagari) are among the languages
spoken there. This dataset contains 10,000 photos for training, 2,000
images for validation, and 10,000 images for testing.

Street View Text dataset [30]: This dataset includes 647 clipped
text, 249 testing street view pictures, and 101 training shots.
Pictures from Google Street View may be downloaded. This
dataset includes photos with noise, blurring, and lighting
variations. Each picture has its own 50-word glossary.

COCO-Text dataset [31]: Text identification and recognition in
natural photography is done using this dataset. The collection consists
of 63,686 photographs with 173,589 labeled text parts. The 43,686
training photos and the 20,000 validation images make up the two
halves of the dataset. There are issues with natural images in the
collection. This extensive dataset contains text with three different
orientations: curved, random, and horizontal.

Total-Text dataset [32]: This dataset consists of 9330 annotated
words in three different text orientations (curved, multi-oriented,
and horizontal) and 1555 scene photos. Total-Text is split into two
sets of 300 and 1255 images, respectively, for the training and test
sets. There are several issues with this dataset, including different
text fonts, text orientations, and picture backdrops.

SynthText [33]: There are 858750 images in all. This dataset
comprises annotations at the word and character levels, as well as
text recognition material, which may be used to train text
detection and recognition models.

Synth90K [33]: The Synth90k dataset comprises 9 million synthetic
images with text, with 7.2 million serving as training sets, 900000
serving as verification sets, and the remaining 900000 serving as
testing sets.

The details of the standard datasets of text detection are presented in
Table 1, where one can see different characteristics and nature of
datasets, such as type of orientation, scripts, the number of
training, testing samples, and ground truth at different levels and
sizes of the datasets.

4.2. Methods for text detection and recognition in
natural scene images

4.2.1. Detection methods
Text detection recognizes the position of text in a scene, locates the

text, records the image, and feeds it into the text recognition model to
provide anticipated text results. It consists of seven steps: input the
picture, transform the image to a fixed size, normalize, extract the
image’s characteristics, determine the location of the text, and, lastly,
run a series of processing steps to obtain the projected output. Text
detection models may be classified into two types based on how
they are implemented: regression text detection models [13, 34–36]
and segmentation text detection models. Text detection using
regression models first determines the text’s position coordinates and
then fits them to the actual box using regression. On the other hand,
text detection based on segmentation models judges each pixel point
using text detection as a segmentation problem.

Regression-based Text DetectionModels: Connectionist Text
Proposal Network (CTPN) [12] was created better to identify the
placement of text in a scene, which employed a vertical anchor
regression approach to find small-scale text candidate boxes in text
identification. The CTPN model only forecasts the output text box’s
horizontal offset—not its horizontal direction—because the text’s
length is not fixed. In addition, the CTPN model uses a Recurrent
Neural Network (RNN) loop network to get text lines, links small-
scale text that has been identified, and applies end-to-end training.
The CTPN model does not require post-processing and covers a
wide range of languages and scales. The CTPN model, on the other
hand, is poor at identifying non-horizontal text. In the year 2017,
Shi et al. suggested the Link Segments (SegLink) model, which is
similar to the CTPN model. Both models are identical in detecting a
portion of a text line and then connecting all the pieces to produce
the entire text line. To handle text in multiple directions, the
SegLink model contains a rotation angle and then employs a fusion
rule to fuse frame and line information at each stage to generate
text lines. The SegLink model, on the other hand, cannot recognize
extensive spacing lines or curved text.

Zhou et al. [11] presented the Efficient and Accurate Scene
Text Detector (EAST) model. The core principle of the EAST
model is to separate and label whole text lines before merging
them. It is possible to separate text detection into steps before
detecting them, which adds time and compromises the accuracy
of text recognition as well as the use of intermediate processing.
In addition to text boxes, the EAST model also predicts text
box positions and angles. By incorporating local-aware
non-maximum suppression (NMS) into the EAST model, NMS
complexity is reduced while accuracy and speed are raised.
Nevertheless, the EAST model’s range of vision is constrained, and it
is not very good at identifying long texts. There are two sections to
the generic text detection network model. To begin, the text region
(TR) proposal network is employed to extract text ideas. Second, a
refinement network is employed to validate and enhance these
recommendations. In 2019, Wang et al. introduced the Adaptive Text
Region Representation (ATRR) model for detecting text in any
shapes in scenes. The ATRR model uses an adaptive text area
representation based on a recursive neural network to thin the text
area. It does this by predicting two boundary points every time step
until it detects the presence of an expected stop tag. The ATRR
model is represented by an arbitrary number of suitable boundary
points and is capable of identifying text sections of any shape.
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Segmentation-based Text Detection models: The regression-
based method fails miserably at segmenting text that is close to one
another and at identifying curved text. Consequently, a pixel-based
method called Progressive Scale Expansion Network (PSENet) [14]
was introduced. Any type of text may be efficiently found using the
PSENet model. The PSENet model makes use of an incremental
expansion approach, which ensures that the positions of the text
instances may be accurately determined even when they are close to
one another. The selection of the hyperparameters is crucial as it
directly affects the text recognition results. However, PSENet needs
to re-select the hyperparameters (minimum scale and number of
segmentation results) for each dataset.

Tian et al. [12] introduced the Learning Shape-Aware Embedding,
or LSAE, model in 2019. An approach for text detection based on
instance segmentation is the LSAE model. The pixels are mapped to
the encoded feature space so that pixels from the same instance are as
near together as possible and pixels from different instances are as far
apart as possible in order to distinguish between separate text
instances with similar locations. Moreover, in order to address the
issue of text line length, the LSAE model generated a shape-aware
loss example that could adapt to different shapes and used a novel

post-processing technique to provide precise border prediction that
distinguished the nearby text samples. When confronted with curved,
irregular, or extremely lengthy text, the word-level text identification
paradigm (identifying the full word) is challenging to recognize.
Therefore, the Beak et al. 2019 model, Character Region Awareness
For Text Detection (CRAFT), is suitable. A character-by-character
labeled text detection method is the CRAFT model. There are no
limitations on the shape of the text because CRAFT detects individual
characters; just a limited field of view is needed. In order to identify a
group of words, the CRAFT model first identifies individual
characters and then determines which characters make up the text.
Conversely, the CRAFT model is not able to identify glued characters.

He et al. saw the adoption of a two-stage pipeline that allowed for
quicker detection rates while also improving accuracy and reliability.
They used a proposed scale-based area to estimate the text positioning.
Then, in order to get the best localization accuracy possible, they used a
fully convolutional network (FCN). Significant variations in character
size have been recognized by Zhu et al. as one of the most important
problems with text recognition. Excessively small text makes it harder
to read and decreases accuracy. They created a thorough text detector
based on a combination of quicker R-CNN features and region

Table 1
Details of various standard datasets for text detection

Dataset Orientation Annotation Number of images in the training set Scripts

Datasets for Text Detection
Regular Text
ICDAR2003 [20] Horizontal Character/Word 258 training images and 251 test images English
ICDAR2013 [22] Horizontal Character/ Word 229 training images and 233 test images English
KAIST [25, 26] Horizontal Character Consists of 3000 images English/Korean
MLT 2017 [29] Multi-Oriented Character/Word 7,200 training images, 1,800 validation

images, and 9,000 testing images
Multi-lingual (9 languages
representing 6 different scripts)

MLT 2019 Multi-Oriented Character/Word 10,000 training images, 2,000 validation
images, and 10,000 testing images

Multi-lingual (10 languages
representing 7 different scripts)

Irregular Text
ICDAR2011 [21] Horizontal Word Developed by ICDAR2003 299 training and

255 test images
English

ICDAR2015 [23] Multi-oriented Word 1,000 training images and 500 test images English
ICDAR2017 [24] Multi-oriented Word 7,200 training images, 1,800 validation

images, and 9,000 test images
Multi-lingual

MSRA-TD500 Multi-oriented Text line 300 training images and 200 test images English/Chinese

Datasets for Text Recognition
Regular Text
Char74K Horizontal Character Contains 75,776 characters English
IIIT 5K-Words [28] Horizontal Character/Word 2,000 training images and 3,000 test images English
SVHN [27] Horizontal Character More than 730000 training and 260000

testing images
Digit

Synthetic Text
SynthText [33] Horizontal Character/Word Contains 858750 images Multi-lingual

Datasets for Text Detection and Recognition
Regular Text
Street View Text [30] Horizontal Word 101 training images and 249 testing images English
ICDAR2019 Multi-oriented Word 1,000 training images and 1,000 test images English
NEOCR Multi-Oriented Text Line Contains 659 images with 5238 text fields Multi-lingual
COCO-Text [31] Multi-oriented Word 43,686 training images for training, 10,000

validation images, and 1,000 test images
Multi-lingual

Total-Text [32] Multi-oriented Word 1,255 training images and 300 test images English
Synthetic Text
Synth90K [33] Horizontal Word 7200000 train images, 900000 test images,

and more than 900000 for evaluation
English
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proposal network (RPN) features in order to solve this problem. 2017
saw the introduction of Text Boxes, a quick scene text detector with
faster and more accurate performance than previous methods by
Liao et al. A 28-layer deep convolutional network is used in this
architecture to identify words. The inability of the approach to
identify words with a large space between letters and words with
less than three characters is one of its shortcomings. Before training
the network, character-level label frames must be gathered. This
calls for a lot of labeling data, challenging training, and subpar
supervision training.

The rotation region proposal networks (RRPN) [37], a rotation-
based identification framework for text detection in any direction,
was proposed by Ma et al. in 2018. Nevertheless, this method was
unable to identify vertical or curved text. Based on data from the
higher convolutional layers of the grid on the orientation angle
of the TR, the method recommends inclined rectangles.
Consequently, multiple orientation text detection is produced. The
efficiency of this technique has been increased by developing and
fitting a revolutionary RRoI polishing layer to spinning RoI. Yang
et al. pioneered multi-dimensional scene text identification in
2018. A novel technique for text line representation is proposed
by TextSnake and Long et al. [38]. The TR breaks down into
many disks that overlap in an organized manner. PixelLink [39]
was influenced by SegLink. Deng et al. in the same year (2018).
Links for a specific pixel are labeled as positive if they are in the
same instance as nearby pixels; otherwise, they are labeled as
negative. In order to depict the text, a linked zone is formed by
connecting all pixels that are indicated as positive.

In 2018, Dai et al. introduced fused text segmentation networks
(FTSN) for multi-oriented scene text detection. First, they used a RPN
to identify and segment text occurrences simultaneously; then, they
used NMS to suppress overlapping instances. Lastly, a quadrangle
encloses the territory in each case. This method is unable to identify
images with vertical text or text at different angles. They dubbed it
IncepText [40], a new inception text module that improved PSROI
polling to identify text in a variety of orientations and size scales.
They used VGG, ResNet 50, and ResNet 101 networks, which
lengthened calculation times. Short durations of time cannot be
separated into two words with this method. Another disadvantage
of the method is that some characters in words with dense
backgrounds may not be identified. This approach does not
recognize curved or vertical text. According to our findings, this
strategy is ineffective for photos with varying text orientations.

A Pixel Aggregation Network (PAN) with a low-cost partition
and learnable post-processing was proposed by Wang et al. [13] in
2019. A Feature Fusion Module (FFM) and a Feature Pyramid
Enhancement Module (FPEM) make up the segment component of
PAN. FPEM is a cascade module with a U-shaped design that
provides multilayer information to aid with segmentation. To create
final segmentation characteristics, FFM may combine features from
FPEMs at different depths. Pixel Aggregation (PA), which properly
collects text pixels using anticipated similarity vectors, is used to
construct the learnable post-processing. The segment network
predicts the text area, kernel, and similarity vector. To increase the
accuracy of text recognition, the full-text instance is rebuilt from the
anticipated kernel using FPEM + FFM. A segment-based text
detection technique’s post-processing phase is essential since it
transforms the segmentation result into a text box or text area.

Liao et al. proposed a Differentiable BinarizationModule Network
(DBNet) model to simplify the post-processing stages. DBNet may
create adaptive thresholds to optimize network performance. DBNet’s
differential binarization enhances text identification accuracy without

requiring complex post-processing. An accurate multi-oriented scene
text localization approach (MOSTL) was presented by Naiemi et al.
[41]. The enhanced ReLU layer (i.ReLU) and the enhanced inception
layer (i.inception) were included as part of the suggested
methodology. Using the proposed framework, low-level visual
information is first extracted. Then, another layer was applied to
enhance feature extraction. Text detection has been enhanced by the
i.ReLU and i.inception layers providing necessary information.
Through feeding the output of the i.ReLU and i.inception layers into
an additional layer, MOSTL was able to recognize multi-oriented
texts, including curved and vertical ones.

Transformer-based Text Detection Models: In computer
vision and natural language processing (NLP), text detection is a
basic problem with applications ranging from picture interpretation
to document analysis. Conventional text identification techniques
may not be as flexible with a wide range of data as they frequently
depend on manually created characteristics and pre-established
criteria. Transformer-based models have become more potent text
identification techniques in recent years because of their capacity to
extract intricate patterns from massive datasets. These models have
been used for a number of text detection tasks, such as document
layout analysis [42, 43] and scene text identification. The capacity
of transformer-based models to extract contextual information and
long-range relationships from text-rich pictures is one of their main
benefits when it comes to text identification.

These models were first created for NLP sequence-to-sequence
tasks, but they have since been modified and improved for text
detection applications. They are able to identify and locate text
sections in a variety of situations by using self-attention
mechanisms to assess the significance of various parts in a picture.
LayoutLM [16], a transformer-based model presented Lee and
Osindero [44] and published by Microsoft Research, expands
BERT (Bidirectional Encoder Representations from Transformers)
to capture layout and text information in documents. Its
performance in information extraction and document layout analysis
jobs has significantly improved. Rosetta [17], is meant to handle
text in photos and movies in different languages.

It uses a vision-language pre-training model to comprehend text
in a variety of settings, making it suited for text identification in a wide
range of multimedia data. In 2022, Lu et al. [18] introduced a system
that includes four essential components—a feature extraction module,
boundary refinement module [45], boundary prediction module, and
text recognition module—that increase the value of their model.
The objective of the feature extraction module is to extract features
from input photos for the text detection and identification tasks.
Then, because of the different orientations and forms of the texts,
the boundary prediction module densely identifies the boundary
points but suffers from regressing their exact placements.

A lightweight boundary refinement module is suggested to
reduce this impact and provide more accurate boundary points at
minimal computational cost. Following the acquisition of the
text’s boundary points, the characteristics of text instances are
immediately sampled and sent into the text recognition module
that follows. ResNet series networks are suggested for feature
extraction in a text detection model by Zhu and Wang [46], 2022.
They concentrate on characteristics from stages C3, C4, and C5,
leaving out C2 because of its low-level data. A feature
redistribution module is introduced in order to maximize the
utilization of multi-level features. The model runs in two
concurrent branches: one that extracts text kernel characteristics
and the other that generates precise boundary maps. They use a
multi-level supervision technique to highlight text kernel
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characteristics. Ultimately, a region formulation approach is
employed to generate a binary map for text detection based on the
text border and text kernel maps.

In 2023, Halder et al. [10] introduced a new transformer-based
text detection module, setting a new standard in the field. This
innovative technology not only tackles low-light scenarios but
also scenes with unpredictable or arbitrary motion. Its activation
frame selection framework allows only the selection of a few
frames with dissimilarity to enter the detection module, enhancing
performance. The transformer is a combination of two
components: the similarity detection module and the detection
module, working together to achieve the best possible score in
record time. This transformative technology transcends time and
leaves us in awe of what’s possible in text detection.

Comparative Analysis of Different Text Detection Models:
Themost popular models for text detection are EAST [11] and CTPN
[12] based models, and most of the text detection methods use Total-
Text, CTW1500, and ICDAR 2015 datasets for experimentation and
evaluation. The EAST-based approach leverages a FCN model to
predict words or text lines based on pixel-level information swiftly.
PVANet, a lightweight feature extraction network architecture, was
introduced for real-time object detection. The model’s functionality
primarily relies on three crucial layers: a “stem” layer for feature
extraction, a “feature merging” layer, and an “output” layer for
feature processing. The network initiates by employing a sequence
of convolutional layers to generate four feature maps from the input
image, referred to as the feature extractor stem. Subsequently, a 1 ×
1 convolutional operation is applied to these feature maps, followed
by a 3 × 3 convolutional operation applied to the output of the
previous 1 × 1 convolutional step. The resulting feature volume is
utilized for scoring and box office forecasting. Specifically, a 1 × 1
filter with a depth of 1 generates the score map, a 1 × 1 filter with
a depth of 5 produces the RBOX (rotated boxes) with four box
offsets and a rotation angle, while a 1 × 1 filter with a depth of 8
yields the QUAD (quadrangle with eight offsets).

The CTPN is also introduced for comparative evaluation with the
EAST approach. CTPN has three key components: a convolutional
layer, a Bi Long Short-Term Memory (LSTM) layer, and a
comprehensive connection layer. Notable outcomes from CTPN
include its ability to reframe the text detection challenge by seeking
fine-grained text proposals. By using an anchor method to forecast
the horizontal location of every text proposal and its associated text/
non-text score, CTPN achieves exceptional localization accuracy.
Additionally, the network’s convolutional feature maps include a
recurrence mechanism that makes it possible to identify complicated
text by considering contextual data from nearby lines. Moreover, all
approaches may be combined into one completely trainable model
that takes into account the text’s sequential structure. There is no
longer any need for substantial post-processing because of this
coupled model’s ability to analyze text at different sizes and in
different languages. Using a pre-trained VGG16 backbone, CTPN’s
approach depends critically on the output of the most recent
convolutional maps. The first two convolutional maps have fixed
parameters, while the remaining four are trained with predetermined
values within the CTPN framework.

Similarly, the differentiable binarization and adaptive scale
fusion-based (ASF) methods are also popular for text detection and
have achieved great success. These models introduce a novel
architectural approach that relies on a stepwise structure. The
foundation of this architecture is built upon a feature-pyramid
backbone [47], where the initial input image undergoes a series of
transformations. The resulting output features are then up-sampled
to a consistent scale and channeled into the next module, referred to

as ASF. The primary objective of ASF is to generate a contextual
feature that serves a dual purpose: predicting both the probability
map and the threshold map. The probability map and the threshold
map, in turn, play pivotal roles in calculating an approximate binary
map. During training, all three maps—probability, threshold, and
approximate binary—undergo supervision. Remarkably, the
probability map and the approximate binary map share the same
supervision, fostering a cohesive learning process. In the inference
phase, the architecture enables the extraction of bounding boxes
from either the approximate binary map or the probability map.
This adaptability empowers the model to detect text instances of
varying scales effectively. It is essential to note that features derived
from different scales exhibit distinct perceptions and receptive fields.

To harness the full potential of these scale-specific features,
conventional semantic segmentation methods often employ
feature-pyramid or U-Net structures to fuse them through simple
cascading or summation. The novelty of the proposed ASF lies in
its dynamic approach to feature fusion across different scales.
ASF accomplishes this by concatenating scaled input features and
subsequently applying a 3 × 3 convolutional layer [48] to obtain
an intermediate feature representation. The next critical step
involves calculating attention weights using a spatial attention
module. Finally, these attention weights are partitioned along the
channel dimension, and weighted multiplication is applied to the
corresponding scaled features, yielding a fused feature that
effectively leverages information from diverse scales. This
dynamic and adaptive feature fusion mechanism enhances the
architecture’s ability to capture multiscale contextual information
for improved text instance recognition and segmentation.

There aremodels that focus on text detection in video frames, and
most of the methods explore the Yolov5 model for addressing the
challenges of video text detection. The suggested technique, which
is based on a CNN that is only utilized for object detection,
employed the YOLOv5 model for text detection. Depending on
preset grid sizes, the YOLO method splits the incoming photos into
discrete grids. Next, it shows the probability of the desired text at
each grid; it can accurately anticipate the text boundaries in a single
run, making it useful for real-time text identification. Subsequently,
it transfers the identified bounding box to TesseractOCR, a text
recognizer, in order to extract the text from the picture. The
assignment as a whole is composed of four key components. First,
they acquired data. For their tests, they employed three standard
datasets: ICDAR2013 [22], ICDAR2015 [23], and YVT. They also
conducted a quick comparison with other SOTA approaches. Data
annotation comes in second. The bounding box was manually
added to each image or frame from the movie using an online
annotation tool from Roboflow’s official website. They then
separated the resulting dataset into train sets, using 80% for training
and 20% for testing.

Third, in developing a Deep Neural Network using YOLOv5, in
every neural network architecture, features are extracted automatically,
but they are done manually in machine learning. The most well-known
deep-learning model for training using picture or video frame data is
Convolutional Neural Networks (CNN). The main justification for
utilizing YOLOv5 is that, in comparison to other state-of-the-art
detection models, it is a quick and small model that uses a lot less
processing power. YOLOv5 is composed of three main layers: the
backbone, the neck, and the final layer. Its backbone is CSPNet
(Cross Stage Partial Network), which it employs to extract features
from pictures, including forms and edges, and to extract important
properties. It also uses a Path Aggregation Network, or PANet, as its
neck to enhance information flow. Its purpose is to make multiscale
object prediction possible. As the last detection step, the 1 × 1
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convolutional layer known as the YOLO layer serves as the head of the
final layer. Subsequently, the identified word will undergo Optical
Character Recognition, or OCR, in order to get the identified text.
They employed TesseractOCR, an OCR that consists of sequential
pictures, adaptive binary thresholding, character recognition,
character aggregation to create words, and evaluation of the linked
components and their relationships.

The results of different methods on different standard datasets are
listed in Table 2, whereas for the complex datasets, such as ICDAR
2017 and ICDAR 2019, almost all the methods report poor results
compared to the results on other simple datasets. This shows that
there is a scope for improving the results on complex datasets. At
the same time, the models are advanced in addressing challenges of
text detection, and the performance of the method improves, as
shown in Figure 4, where it is noted that as the year passes, the
performance of the methods improves. The same conclusions can
be drawn from Tables 3–9, and Figures 5–11 on different datasets.
With the above analysis, one can conclude that most of the
challenges of simple datasets have been addressed while for the
complex datasets, the methods have not achieved significant
progress. Furthermore, when we look at the performance of all the
methods on all the datasets, none of the methods achieve consistent
results. For different datasets, different methods report the best
results. This is the limitation of the present methods.

4.2.2. Recognition methods
The popular deep-learning-based text recognition systems now

in use will be categorized and summarized in this section. Depending
on how they are implemented, six classes comprise text recognition
techniques based on segmentation, Transformer, Encoder-Decoder
and attention, Connectionist Temporary Classification (CTC), and
other methods.

In order to address image-based sequence identification issues,
particularly scene text recognition issues, Shi et al. introduced
the Convolutional Recurrent Neural Network (CRNN) text

recognition method. It integrates the loss functions of CTC, RNN,
and Convolutional Neural Network (CNN). In order to improve
context modeling, the CRNN model was extended to incorporate
LSTM [36], and end-to-end indefinite sequence recognition was
accomplished using the CTC loss function.

Table 2
Analyzing the text detection results of different methods on different standard datasets

Dataset
Method

MSERs Wang
et al. [49]

RRPN
[37]

EAST
[11]

CTPN
[12]

FTPN
[50]

IncepText
[40]

MOSTL
[51]

Naiemi
et al. [6]

Year 2014 2015 2018 2018 2016 2019 2018 2021 2021

ICDAR2013 R 0.5178 0.6011 0.7189 0.7468 0.8336 0.9190 0.9234 0.9250 0.9283
P 0.5248 0.7721 0.9022 0.9128 0.9311 0.9325 0.9402 0.9427 0.9463
F 0.5213 0.6760 0.8002 0.8215 0.8797 0.9257 0.9317 0.9338 0.9372

ICDAR2003 R 0.7702 0.7563 0.7483 0.8351 0.8422 0.8664 0.8612 0.8819 0.9101
P 0.7806 0.7712 0.7496 0.8730 0.8792 0.8920 0.9110 0.9281 0.9308
F 0.7754 0.7637 0.7489 0.8536 0.8603 0.8790 0.8854 0.9044 0.9203

ICDAR2015 R 0.4940 0.5532 0.7323 0.7833 0.5156 0.7800 0.8060 0.8456 0.9100
P 0.5063 0.6419 0.8217 0.8327 0.7422 0.6820 0.9050 0.9250 0.9250
F 0.5001 0.5943 0.7744 0.8072 0.6085 0.7277 0.8530 0.8835 0.9174

MSRA-TD500 R 0.4740 0.5332 0.6831 0.6743 0.6512 0.6800 0.7904 0.8111 0.8640
P 0.5063 0.6419 0.8219 0.8728 0.8842 0.8520 0.8726 0.8854 0.9034
F 0.4896 0.5825 0.7461 0.7608 0.7500 0.7563 0.8295 0.8466 0.8833

ICDAR2017 R 0.6625 0.6929 0.7036 0.7296 0.7312 0.7431 0.7412 0.7986 0.8165
P 0.6743 0.6991 0.7357 0.7812 0.7743 0.7911 0.7945 0.8371 0.8611
F 0.6683 0.6960 0.7193 0.7545 0.7521 0.7663 0.7669 0.8174 0.8382

ICDAR2019 R 0.4571 0.4752 0.5619 0.5647 0.5914 0.6418 0.6521 0.6717 0.6908
P 0.4912 0.4801 0.5849 0.5904 0.6311 0.6573 0.6611 0.6948 0.7119
F 0.4735 0.4776 0.5732 0.5773 0.6106 0.6495 0.6566 0.6830 0.7012

Figure 4
Detection comparison analysis over changing of time and

method on ICDAR2015
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Table 3
On the CTW1500, a comparison of several text detection models

Type Model Year Precision Recall F1-score

Regression CTPN [12] 2016 60.4 53.8 56.9
Regression EAST [11] 2017 78.7 49.1 60.4
Regression SegLink 2017 42.3 40.0 40.8
Regression TLOC [52] 2019 77.4 69.8 73.4
Regression TextMountain [41] 2021 82.9 83.4 83.2
Segmentation TextSnake [38] 2018 67.9 85.3 75.6
Segmentation DBNet 2019 86.9 80.2 83.4
Segmentation PAN [13] 2019 86.4 81.2 83.7
Segmentation PSENet [14] 2019 82.5 79.9 81.2
Segmentation SAE [53] 2019 82.7 77.8 80.1
Segmentation FCENet [15] 2021 87.6 83.4 85.5

Table 4
On Total-Text, a comparison of several text detection models

Type Model Year Precision Recall F1-score

Segmentation Mask TextSpotter 2018 82.5 75.6 78.6
Segmentation TextSnake [38] 2018 82.7 74.5 78.4
Segmentation PAN [13] 2019 89.2 81.0 85.0
Segmentation TextField 2019 81.2 79.9 80.6
Segmentation LOMO [54] 2019 87.6 79.3 83.3
Segmentation CRAFT 2019 87.6 79.9 83.6
Segmentation PSENet [14] 2019 84.0 78.0 80.9
Segmentation FCENet [15] 2021 89.3 82.5 85.8
Regression ATRR 2019 80.9 76.2 78.5
Regression CSE 2019 81.4 79.1 80.2
Regression TextMountain [41] 2021 88.5 84.1 86.3

Table 5
Comparing the ICDAR 2015 dataset with a number of text detection models

Type Model Year Precision Recall F1-score

Regression CTPN [12] 2016 74.0 52.0 61.0
Regression SegLink 2017 73.1 76.8 75.0
Regression EAST [11] 2017 83.6 78.3 78.2
Regression SSTD 2017 80.2 73.9 76.9
Regression WordSup [55] 2017 79.3 77 78.2
Regression TextBoxes++ [5] 2018 87.2 76.7 81.7
Regression RRD [56] 2018 85.6 79 82.2
Regression MCN 2018 72 80 76
Regression SBD 2019 92.1 88.2 90.1
Regression SPCNet [57] 2019 88.7 85.8 87.2

Segmentation Lyu et al. [58] 2018 94.1 70.7 80.7
Segmentation TextSnake [38] 2018 84.9 80.4 82.6
Segmentation LOMO [54] 2019 91.3 83.5 87.2
Segmentation SAE [53] 2019 85.1 84.5 84.8
Segmentation CRAFT 2019 89.8 84.3 86.9
Segmentation DBNet 2019 91.8 83.2 87.3
Segmentation PAN [13] 2019 84.0 81.9 82.9
Segmentation PSENet [14] 2019 88.7 85.5 87.1
Segmentation FCENet [15] 2021 90.1 82.6 86.2
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Table 6
Different text detection models comparing them on MSRA-TD500

Type Model Year Precision Recall F1-score

Regression EAST [11] 2017 75.3 87.3 76.1
Regression SegLink 2017 86.0 70.0 77.0
Regression DeepReg 2017 77 70 74
Regression RRD [56] 2018 87 73 79
Regression MCN 2018 88 79 83
Segmentation He et al. [59] 2016 71 61 69
Segmentation RRPN [37] 2018 82 68 74
Segmentation PixelLink [39] 2018 83 73.2 77.8
Segmentation Lyu et al. [58] 2018 87.6 76.2 81.5
Segmentation TextSnake [38] 2018 83.2 73.9 78.3
Segmentation Xue et al. 2018 83.0 77.4 80.1
Segmentation MSR [59] 2019 87.4 76.7 81.7
Segmentation SAE [53] 2019 84.2 81.7 82.9
Segmentation CRAFT 2019 88.2 78.2 82.9
Segmentation DBNet 2019 91.5 79.2 84.9
Segmentation PAN [13] 2019 84.4 83.8 84.1

Table 7
A comparison of different models for text detection

on MLT-2019

Type Model Year Precision Recall F1-score

Segmentation PSENet [14] 2019 73.5 59.6 65.8
Segmentation CRAFT 2019 79.5 59.6 68.1
Segmentation DBNet 2019 78.3 64.0 70.4

Table 8
Evaluating precision on a normative recognition dataset

Type Model Year IIIT-5k SVT ICDAR2013

CTC CRNN 2016 78.3 80.6 86.8
Encoder-Decoder & Attention RARE 2017 79.8 81.7 87.1
Encoder-Decoder & Attention ASTER 2018 90.1 93.3 91.4
Encoder-Decoder & Attention DAN 2020 94.1 89.1 93.6
Transformer NRTR [60] 2019 90.3 91.2 95.9
Transformer MASTER [61] 2021 95.2 90.8 95.4
End-To-End STN-OCR [57] 2017 86.2 79.9 90.7
Transformer MGP-STR [62] 2021 96.4 94.7 96.4
Transformer LevOCR [63] 2020 96.6 92.8 96.8

Table 9
Comparing detection accuracy on irregular dataset

Type Model Year SVT-P CUTE80 ICDAR2015

Encoder-Decoder & Attention ASTER 2018 90.1 93.3 91.4
Encoder-Decoder & Attention DAN 2020 80.2 84.5 74.5
Transformer NRTR [60] 2019 94.9 80.7 79.5
Transformer SRN [64] 2020 85.0 87.8 82.7
Transformer MASTER [61] 2021 84.2 87.3 79.3
Transformer MGP-STR [62] 2021 91.0 90.3 87.3
Transformer LevOCR [63] 2020 88.1 91.7 86.4
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The CRNN technique is one of the most popular text
recognition frameworks since it just needs basic word-level labels
and input pictures to complete model training. Typically, the CTC
process is utilized during the prediction step. CTC accumulates
conditional probabilities to transform the output features of CNN
[65] or RNN [66] into string sequences. By guaranteeing that the
anticipated text sequence matches the real text sequence in both

length and order, text recognition technology applications can
solve the temporal text alignment challenge. Several researchers
have looked at the improved method because the CRNN model
has shown promising performance in text recognition. Gao et al.
replaced LSTM with CNN convolution, which has fewer
parameters and comparable accuracy performance. Additionally,
Facebook unveiled Rosetta, an improved CTC-based text
recognition technology. English datasets show that the Rosetta

Figure 5
Detection comparison analysis over changing of time and

method on CTW1500

Figure 6
Detection comparison analysis over changing of time and

method on Total-Text

Figure 7
Detection comparison analysis over changing of time and

method on ICDAR2015

Figure 8
Detection comparison analysis over changing of time and

method on MSRA-TD500
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model, which consists of a CTC and a full convolution network,
works admirably. The preceding CTC-based algorithms perform
well on normal text; however, due to network design restrictions,
these systems struggle to tackle the recognition job of curved and
rotated irregular text.

Encoder-Decoder and Attention-Based Text Recognition:
The encoder, decoder, and attention methods serve as the
foundation for text recognition systems [66]. Because text
recognition algorithms based on CTC are unable to tackle text
recognition problems before and after them due to the recognized

text including special semantic information, researchers attempt to
overcome the dependence problem using an encoder-decoder. A
traditional Sequence2Sequence architecture is the encoder-decoder
architecture. Machine translation was the first use of the encoder-
decoder system. It takes a sequence as input and returns a sequence
as output. The encoder-decoder structure was recently developed by
vision researchers with promising results. The CRNN and other text
recognition algorithms may only identify normal text files
containing characters that are aligned horizontally. It cannot be
accurately recognized in cases of inconsistent text recognition.
Researchers began investigating irregular text recognition [67] by
using an encoder-decoder for text recognition.

Uneven text collections sometimes include non-horizontal
material with problems such as bending, occlusion, and blurring.
Before recognizing irregular text, it is sometimes necessary to
map it into horizontally ordered text using the rectification
module. In 2017, Cheng et al. [68] suggested a focused attention
network (FAN) for scene text detection in difficult and low-
quality photos. The attention network (AN) and the focusing
network (FN) comprise the FAN. Cheng et al. [68] described an
arbitrary text recognition (AON) system in 2018 [69]. In order to
create letter sequences, this method directly exploits the profound
properties of irregular texts in an attention-based decoder. End-to-
end networks may be trained with pictures and word-level
annotations. For scene text recognition, Bai et al. developed edit
probability, or EP. The objective of the EP is to ascertain the
chance that absent or superfluous characters would surface in a
series of output sequences derived from the conditional
probability distribution corresponding to the input picture.

As a result, the misalignment issue is mitigated and the training
process may concentrate on characters that are missing, duplicate, or
unidentified. For scene text recognition, the authors Bai et al. [70]
developed edit probability, or EP. The objective of the EP is to
ascertain the chance that absent or superfluous characters would
surface in a series of output sequences derived from the
conditional probability distribution corresponding to the input
picture. As a result, the misalignment issue is mitigated and the

Figure 10
Detection comparison analysis over changing of time and

method on regular text dataset

Figure 9
Detection comparison analysis over changing of time and

method on MLT-2019

Figure 11
Detection comparison analysis over changing of time and

method on irregular text dataset
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training process may concentrate on characters that are missing,
duplicate, or unidentified. A robust text recognizer that
automatically corrects irregular text is called Robust Text
Recognizer with Automatic Rectification (RARE).

The network is split into two sections: the Spatial Transformer
Network (STN), a network for spatial transformation, and
Sequence2Squence, an encoder-decoder network. The Thin-Plate-
Spline (TPS) irregular text picture is corrected, and the correction
module STN converts it into a horizontal image. A sequence
recognition network is then created by decoding the image. Correction-
based strategies improve migration. Methods based on corrections are
very adaptable. Apart from RARE’s text recognition approach, SpaTial
Attention Residue Network (STAR-Net) adds the correction module to
CTC-based algorithms and outperforms the conventional CRNN model.

Wang et al. [62], in their modified RNN [66] assigned greater
weight to the target data and related data, enabling the decoder to
focus its “attention” on the target data, gaining more details and
generating a reasonable vector representation of a longer input
sequence. The accuracy of irregular text recognition is
significantly improved with the addition of an attention
mechanism. The Recursive Recurrent Nets with Attention
Modeling (R2AM) [16, 44] technique was the first to apply
attention to the field of text recognition, coming after the advent
of RARE-based correction algorithms. This model first obtains the
encoded picture characteristics from the input image using the
recursive convolutional layer.

The techniques get around the issues with traditional recognition
methods [71–73] by using transformers. Transformer’s rapid progress
has led to strong results in both text categorization and visual task
recognition. For example, in the rule text recognition section, the
Transformer structure replaces additional LSTM context modeling
modules and focuses on global information in the feature extractor to
solve CNN’s limitations in long-dependency modeling. Using a
complete Transformer structure, the No-Recurrence Sequence-to-
Sequence Text Recognizer (NRTR) [60] technique encoded and
decoded the input photos. Using a foundation layer for text
recognition, the NRTR approach gathered features and confirmed the
Transformer structure. Yu et al. introduced Semantic Reasoning
Networks (SRN), a trainable framework approach that operates from
end to end in 2020. The SRN technique consists of a backbone
network, a Parallel Visual Attention Module (PVA recommended
parallel attention module), a Global Semantic Reasoning Module
(GSRM), and a Visual Semantic Fusion Decoder (VSFD). By using
the reading order as a query, the SRN technique may generate the
aligned visual characteristics for all time steps in parallel, so making
the computation time independent.

The SRN technique employs the Transformer encoder as the
semantic module to integrate the picture’s visual and semantic
information, improving opaque, blur, and other irregular text
detection. Even while the attention-based technique is capable of
learning the internal representation of one-dimensional or
one-dimensional features, it suffers from attention drift. A text
recognition model initially has enough attention to concentrate
on the TR when it scans the full image. But as the scan advances
to the right, the focus progressively becomes skewed toward the
background and other non-TRs, which degrades the model’s
accuracy and increases its failure rate. We call this phenomenon
attention drift. Attention drift is a problem with the ASTER
network structure diagram, for example, when letters in many
words are identical or when there is no visible gap between
consecutive characters.

The model is biased to spend attention on earlier characters
while scanning pictures, especially in sequence learning, which

causes the model to miss the subsequent letters or phrases. This is
one reason for attention drift. The model may have trouble
focusing on the middle letter or word when it detects a line of text
if its initial focus is on the leftmost portion of the line. Several
scholars have put forth several remedies to address the problem of
attention-wandering. One way to identify drift phenomena is
through the use of bidirectional RNNs in sequence learning.

Using a neural network, this technique keeps the attention
focused on the TR by utilizing both forward and backward
context information. Alternatively, the attention mechanism
[74, 75] may be used with a text localization box to train the
framework to identify text signals and more precisely predict text
locations. The attention-based method is unable to perform
parallel computing efficiently under the RNN architecture [76]. As
a result, Lu et al. [61], In 2021, the Multi-Aspect non-local
network for irregular Scene Text Recognition (MASTER) model
was introduced, This has a global attention system included. The
global contextual attention mechanism and multi-aspect-based
encoder and the Transformer-based decoder constitute the
foundation of the MASTER [61] model. Transformer-based text
recognition models might improve text recognition accuracy by
making full use of self-attention’s advantages to better understand
semantic information.

Segmentation-based techniques use an additional mechanism
for text recognition in addition to the Transformer and attention-
based recognition [61, 77] approaches. Characters inside a text
line are recognized as separate entities using segmentation-based
text recognition. Segmented characters are simpler to read than
characters that have been fixed as a whole text line at a time. To
achieve recognition results, the segmentation-based text
recognition [78–80] approach locates each character in the input
text picture using a character classifier. It reduces a big global
problem to a local challenge, which works well in irregular text
settings. However, this approach requires labeling each character
individually, which is challenging to acquire data for. An instance
segmentation model for word recognition was proposed by Lyu
et al. [18]. It identified the text bounding box’s corner and used
an FCN-based approach to segment the TR in the relative
location. This allowed the model to recognize text in the scene.
Character Attention Fully Convolutional Network (CA-FCN) was
developed by Wang et al. [49] with a new perspective on text
recognition [81]. This approach produces superior localization
results for both regular and irregular texts [82, 83] when the text
is curved or significantly deformed. The summary of the results of
different recognition models on different standard datasets is
reported in Table 10 and Figure 12, where it is noted that when
the complexity of the dataset increases, the performance of
methods degrades. In the same way, as the methods advance, the
results of recognition improve. Thus, it can be said that for all of
the datasets shown in Table 9, none of the approaches produces
the best and most consistent results. As a result, it is difficult to
create a model that would work consistently over a range of
datasets with varying levels of complexity.

4.3. Models for text detection and recognition
in video

4.3.1. Detection models
An end-to-end technique for identifying text watermarks in

videos was examined in 2022 by Banerjee et al. [85]. The model
can recognize captions, scenes, and text watermarks in videos. To
mitigate the effect of low contrast and complicated backgrounds,
the method combines UNet3+ and Fourier contour embedding.
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Anto Bennet et al. [86] created a deep-learning-based method for
identifying Telugu text in videos that was released in the same year,
2022. The model uses a convolutional neural network to encode
language-specific data in order to generate the results. The focus of
Nandanwar et al. [86] was on the challenges associated with text
recognition in 3D video. The model combines deep learning and
the wavefront idea to tackle the problem. Furthermore, before
combining wavefront and deep-learning models, dominating point
identification was accomplished using generalized gradient vector
flow. Chen et al. used parametric shape regression, propagation, and
fusion for text detection in movies. The relationship between the
intra-frame and inter-frames is used to refine the text candidate
features. The Yolov5 and TesseractOCR combo was proposed by
Chaitra et al. to identify and recognize text in video frames.
Nevertheless, TesseractOCR’s sensitivity to low contrast makes the
method effective for high-quality photos. In conclusion, the
methods leverage temporal information to enhance the performance
of text recognition and detection. The techniques’ applicability is
restricted to daytime photos; nighttime videos are not supported. It
follows that the models cannot be useful for daytime nighttime
video taken by both shaky and non-shaky cameras when the

approaches are unable to handle nighttime video. In 2023, Halder
et al. [10] introduced a new transformer-based text detection
module, setting a new standard in the field. This innovative
technology not only tackles low-light scenarios [72, 85, 87] but also
scenes with unpredictable or arbitrary motion. Its activation frame
selection framework allows only to selection of a few frames with
dissimilarity to enter the detection module, enhancing performance.
The transformer is a combination of two components, the similarity
detection module and the detection module, working together to
achieve the best score possible score in record time. This
transformative technology transcends time and leaves us in awe of
what’s possible in text detection.

Techniques like fusion, propagation, and parametric shape
regression are popular and produce the best results for video text
detection. The paper proposed a novel cross-frame text cues
propagation and fusion procedure based on a parametric text shape
representation and regression model. Unlike most previous
approaches for text detection in videos, which fused text cues in
multiple frames by tracking or aggregating features at the frame
level, these approaches carefully propagate and fuse the features
and shape parameters of individual text candidates across

Table 10
Analyzing text recognition results

Method

ICDAR2013 ICDAR2015 ICDAR2019

Year Task R P F R P F R P F

Text Recognition
SSDAN 2019 Reco. 0.779 0.901 0.836 0.783 0.892 0.834 0.783 0.923 0.848
FACLSTM [84] 2020 Reco. 0.795 0.912 0.849 0.799 0.901 0.847 0.790 0.921 0.850
RARE 2016 Reco. 0.761 0.887 0.819 0.754 0.862 0.804 0.742 0.875 0.803

End-to-End Text Spotting
Islam et al. [7] 2016 End-to-End 0.658 0.813 0.728 0.641 0.783 0.705 0.638 0.817 0.716
Yao et al. 2014 End-to-End 0.637 0.775 0.699 0.598 0.746 0.664 0.603 0.753 0.670
Naiemi et al. [6] 2021 End-to-End 0.809 0.924 0.863 0.830 0.934 0.879 0.811 0.938 0.870

Figure 12
Recognition model performance over time
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neighboring frames, which enhances the text detection performance of
the method on videos. Their suggested end-to-end trainable video text
detection network featured an attentive text feature and parameter
fusion module, an accurate TR regression module, and an efficient
R-CNN-based cross-frame text area propagation module. The
suggested detection network outperforms single-frame detection in
video text detection by combining text signals from several frames.

The suggested text detection model takes a video frame, extracts
its text areas, and uses shape parameter regression to merge those
regions with revised TR candidates that were transmitted from the
previous frame. Careful fusing of the regression and previous
parameter values further refines the form parameters of a text
contender. The whole system, including text identification in video
frames and localizing text in a single video frame, may be split into
three primary modules using a polynomial-based parametric
representation and regression approach for text areas. The global
form properties of text are efficiently captured by these modules. To
identify text candidates in a single video frame, they regress the
shape parameters of a TR using an R-CNN-based network, such as
PolyPRNet. The network combines ResNet50 and Feature Pyramid
Network (FPN) for feature extraction; it combines RPN with
RoIAlign operation for TR suggestions and associated feature maps.

After a Cascade R-CNN-based regression branch has been used to
tighten its bounding box and compute its text/non-text score, a shape
regression branch consisting of three convolutional layers and two
full-connected layers is employed to predict the shape parameters of
potential text candidates. An R-CNN model is used to simulate object
tracking since the moving objects are tiny and move quickly between
frames. They also present an easy-to-use method for text area
candidates to spread over neighboring frames using bounding box
regression [88] in the text recognition network. They propose to
propagate the shape parameters and features of the text candidate in
the previous frame to the current frame as supplementary text cues,
which are used to refine the corresponding text candidate in the frame
alternatively, since the appearance of a text instance typically varies
quite slightly between two frames, and the TR propagation
mechanism based on the R-CNN detection framework reveals the
correlation between two corresponding text candidates in two adjacent
frames. Using the ICDAR 2015 standard dataset, Table 11 and
Figure 13 present a comparative analysis of the video text
identification methods. In this investigation, the transformer-based
model performs better than other deep-learning models. The findings
indicate that there hasn’t been much development and that different
techniques function differently over time. This is the point where
scene text detection datasets and video behave differently. Thus, it
may be said that text detection in video is more challenging than
word identification in scene images. Consequently, it is required to
develop a single model that can be applied to both scene and video
datasets.

4.3.2. Recognition models
Deep-learning-based text recognition techniques used to be

straightforward, categorizing words directly as separate categories.

Two popular frameworks for text recognition arose as deep learning
progressed: the CTC-based approach (CRNN) and encoder-decoder
techniques that combine attention processes. While decoders are
different, both employ CNNs to extract features from text pictures.
The most widely used model for scene text recognition is CRNN,
which was the first to combine CNN, RNN, and CTC. CTC-based
techniques are commonly employed in Chinese recognition
applications because, while attention-based recognition performs well
for English recognition, its influence on Chinese recognition is
unreliable. In 2022, Feng et al. [89] Proposed a model where the text
detection process involved a YOLOv3-based detector with a vertical
anchor mechanism from CTPN, modifying the regression target from
text lines to fixed-width text sub-lines. Bounding boxes were obtained
using CTPN’s text line construction methods. Recognition was
performed using a CRNN model with two batch normalization layers.
A post-processing method was proposed for correct recognition
output. In the same year, Placidi et al. [90] proposed a system for text
normalization, feature extraction, semantics, fusion, and encoder-
decoder architecture. It uses a thin-plate spline spatial transformation
network for image normalization, a ResNet module for feature
extraction, an object detection network for semantics, a fusion of
semantic vector and feature map, and an encoder-decoder transformer
architecture for character predictions. The system incorporates inter-
sequence contextual information and predicts characters based on
previous predictions, ensuring accurate and efficient text processing.
In 2023, Shuai et al. bring a new model, named CLIP4STR [91], it is

Table 11
Accuracy comparison on ICDAR2015 video dataset advancements in text in video datasets

Type Methods Year Precision Recall F1-score

Regression East [11] 2017 55.4 40.0 46.4
Segmentation PSENet [14] 2019 78.3 75.7 76.9
Regression YOLOv5s 2020 61.0 46.0 52.44
Transformer Halder et al. [10] 2023 80.4 77.8 79.0

Figure 13
Detection model performance over time
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a dual encoder-decoder framework that utilizes CLIP and PSM for scene
text recognition tasks. The text and image encoders utilize the
architectures and pre-trained weights from CLIP, and the decoder
framework adopts the design of the transformer decoder and PSM
technique. The text encoder is partially frozen, and the visual branch
is fully trainable with a cross-modal branch acting as a semantic-
aware spell checker. The decoder aims to extract character
information from visual or cross-modal features using the transformer
decoder and PSM technique. In 2022, Weijia proposed a Transformer
model. The TransDETR architecture [92] is a video text spotting
method that uses a direct sequence prediction problem, with each text
query predicting the entire text instance trajectory and corresponding
text content. The pipeline consists of a backbone, transformer-based
encoder and decoder network [88], and an attention-based recognition
head with Rotated RoI. The backbone extracts the pixel-level feature
sequence of the input video clip, while the transformer decoder
decodes top pixel features representing text instances. The recognition
head is designed for end-to-end training and consists of a starter and
decoder.

The Single-Point Text Spotter v2 (SPTS v2), an improved text
spotting model built on Transformer architecture, was suggested by
Liu et al. [93] in 2023. The Parallel Recognition Decoder (PRD) and
the Instance Assignment Decoder (IAD) are the two primary parts.
For every text instance, the IAD predicts auto-regressively
indicators, and the PRD permits simultaneous prediction for
matching text recognition outcomes. The bounding box is
simplified, allowing for simpler detection and recognition. SPTS
v2 separates different text instances and uses information
transmission to pass on recognition tokens’ information. In the
same year, Wu et al. [94] proposed the TRAN method, which is a
text recognition model that rectifies irregular texts at both geometry
and pixel levels using a two-level recognition network (TORN). To
correct texts, it makes use of a Geometry-Level Rectification
Network and a Pixel-Level Rectification Network. To enhance text-
feature extraction, the model also includes a novel Channel-Wise
and Kernel-Wise Attention Unit (CKUnit). It employs a Skip
Training technique to bring subnetworks together during training
and an Attention-Based Recognition Network (ABRN) for sequence
recognition. Li et al. presented a scene text recognition model using
a dual relation module in the feature extraction stage in the same
year, 2023. Three phases make up the model: final decoding,
feature extraction, and image rectification. The Local Visual Branch
and the Long-Range Contextual Branch are combined into a single
network module by the Dual Relation Block. The authors
implement the Dual Relation Network (DRNet) for scene text
recognition by replacing ResNet blocks in the feature extraction
stage with the proposed DR block and removing the contextual
stage. In the same year, Shivkumara et al. [95] proposed a
language-independent text detection and style transfer system for
social media images. It uses EffiUNet++, a text detection model
based on EfficientNet and UNet++ architecture, and a Differential
Binarization module. The system uses the TESP-Net generative
model for text style transfer, which incorporates self-attention
feature maps for multilingual ability. The system uses image
inpainting to fit the generated target character without losing shape,
color, structure, and visibility.

4.4. Models for text classification

In the year 2023, Raja et al. [96] introduced the first dataset for
fake news detection in four Dravidian languages—Telugu, Tamil,
Kannada, and Malayalam—consisting of approximately 26,000
news articles. They proposed a novel adaptive learning method to

fine-tune a multilingual pre-trained transformer model, combining
English and Dravidian fake news datasets for enhanced
performance. The study employed transfer learning to assess the
effectiveness of the fine-tuned models on the Dravidian languages
dataset. Their approach demonstrated significant improvements in
detecting fake news, providing a critical resource for combating
misinformation in these underrepresented languages.

In order to detect false news in Dravidian languages, Raja et al.
[97] presented a novel hybrid model in this study that combines a
BiLSTM with a multiscale residual CNN network. They improved
the model’s capacity to identify subtle patterns in text by using a
multiscale feature extraction technique intended to capture both
local and long-range textual relationships. They used training
optimization approaches and gradient clipping to reduce
overfitting and enhance model performance in order to handle
problems like bursting gradients. This method outperforms state-
of-the-art models, as shown by their experimental research on
the Dravidian_Fake dataset, demonstrating its resilience and
efficacy.

In the same year, Raja et al. [98] made another noteworthy
contribution when they created a hybrid deep-learning architecture to
address the problem of detecting fake news in Dravidian languages.
This architecture incorporates DTCN, BiLSTM, and CAM. The
approach included a contextualized attention mechanism that increased
the detectability of bogus news while simultaneously improving
interpretability. To hasten model convergence, they also presented an
adaptive-based cycle learning rate technique with an early halting
mechanism. Based on studies conducted on the Dravidian_Fake
dataset, their suggested hybrid model outperformed baseline and state-
of-the-art methods, indicating a significant breakthrough in the field.

5. Future Challenges/Applications/Directions

5.1. Challenges

In the future, the detection and recognition of multi-oriented text in
photos and videoswill have countless real-world applications. Here are a
few examples of possible applications:

1) Multi-oriented text detection enhances autonomous cars’ capacity
to perceive their surroundings more thoroughly. Detecting text on
traffic signs from various angles, for example, can improve the
safety and reliability of self-driving technology.

2) Augmented Reality (AR): In order to give valuable context to
users, AR systems frequently require multi-oriented text
detection and identification. For example, recognizing
restaurant signage and delivering reviews and menu information.

3) Document Analysis: Extracting text data from scanned
documents, even ones containing text in many orientations,
can help businesses run more efficiently. It might lead to
breakthroughs in fields such as digital archiving, data mining,
and knowledge extraction from available data.

4) Robotics: This technology might help robots navigate and interact
with their surroundings more efficiently. Inventory management
robots, for example, can scan parcel labels in a variety of orientations.

5) Video Content Analysis: This technology can automatically
extract and catalog text data from videos, which may then be
utilized for a variety of applications like improved
searchability, automated subtitling, and video summarizing.

6) Smart City Applications: Detection and recognition of multi-
oriented text may be crucial in monitoring and maintaining
urban infrastructure, such as recognizing and interpreting signs
for repair, traffic control, or surveillance.
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7) Assistive Technology: This type of technology may be extremely
valuable to visually impaired persons. They may utilize it to
engage with the world more readily, recognizing and
understanding the text in real time and educating them about their
surroundings.

However, it is critical to emphasize that as these applications get
more advanced, greater emphasis must be placed on privacy and
ethical issues to guarantee that the use of text detection and
recognition technologies respects individuals’ rights and freedoms.

Providing a system that can recognize texts in various
orientations—especially curved and vertical texts—is essential in
order to detect and recognize curved or vertically flipped letters in
natural scene photographs. Although there are many languages
spoken in the globe, scene text detection and identification have
only advanced in a select few, namely English. So, multi-oriented
and multi-language detection and recognition systems will play a
crucial role in solving some major problems in the field of
Computer Vision and pattern recognition in the future.

5.2. Applications

Text detection and identification in videos and photos of natural
scenes can be extended to automatic driving vehicles, where
detection and recognition methods should focus on number plates for
tracing vehicles, similarly person identification and person re-
identification. For example, the bib number in the marathon images
can be used for person identification and re-identification. For sports
videos, the text can be used for retrieving the exciting events and
person tracing using a Multiview of the person. The work can also
be used for surveillance and security applications such as watching
exhibitions and processions and analyzing crowd behavior. There are
other applications like image-to-text transformation, Visual Question
Answering, and text image generation. In this review, we focus on
STDR, a distinct subfield of Optical Character Recognition (OCR)
that deals specifically with detecting and recognizing text in natural
scenes such as images and videos. While STDR shares some
techniques with traditional document analysis, it operates in more
complex and dynamic environments. We clearly define the scope of
this review by concentrating on STDR methods and outscoping other
areas of OCR, such as printed document recognition, handwriting
recognition, and CAPTCHA solving. This demarcation provides
clarity on the focus of our review, helping readers understand where
STDR fits within the broader OCR research landscape.

5.3. Directions

To address the new challenges of new applications, one should
think of exploring robust, unified models and end-to-end models
and, at the same time, exploring transformer-based models and
language-based models. These models are capable of tackling
challenges caused by distortion, different domains, quality, shapes,
orientation, etc. For example, language models do not require
recognition to predict the text. Furthermore, the language models
can be used to restore the missing text and text with loss of characters.

6. Summary

This review presents a discussion on different text detection and
recognition models on different datasets. When there are many
methods available with the same objective, it is not so easy to draw
inferences to understand the state-of-the-art. This makes it difficult to
choose between an open challenge and a suitable approach for
resolving difficulties in the future. The review assists readers in

narrowing down the conclusion. This article offers a thorough
examination of text recognition and detection in films and images of
natural scenes. In conclusion, it is observed from the examination and
analysis of several approaches that none of them produce consistent
outcomes for various datasets and applications. Moreover, techniques
designed for scene photos do not work well for videos. No
techniques exist that are effective for both scene and video pictures.
Furthermore, the approaches are not very effective when the picture
domain changes. Therefore, there is room for future development of
an approach that is independent of domain. This article provides not
only a review of existing text recognition and detection methods
but also offers a critical evaluation of these methods based on key
criteria such as robustness to dynamic and shaky environments,
computational efficiency, accuracy in complex scenes, and their
applicability to real-world scenarios. Rather than merely summarizing
the literature, we synthesize insights from various approaches and
provide a framework that helps users make informed decisions when
choosing methods for their specific applications. By focusing on these
criteria, the review adds value beyond a simple literature survey,
guiding researchers and practitioners in selecting techniques that align
with their objectives and constraints.
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